1
|
Hu C, Zeng D, Huang Y, Deng Q, Liu S, Zhou W, Zhou W. Sodium Butyrate Ameliorates Atopic Dermatitis-Induced Inflammation by Inhibiting HDAC3-Mediated STAT1 and NF-κB Pathway. Inflammation 2024; 47:989-1001. [PMID: 38159175 DOI: 10.1007/s10753-023-01955-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Accepted: 12/17/2023] [Indexed: 01/03/2024]
Abstract
A topic dermatitis (AD) is a common chronic and recurrent skin disorder. The protective effects of sodium butyrate (NaB), a metabolite of short-chain fatty acid breakdown by the gut microbiota, have been widely reported in numerous inflammatory diseases. However, the effect of NaB treatment alone on AD has not been reported. In the current study, AD was induced in BALB/c mice with 2,4-dinitrochlorobenzene (DNCB) for 28 days with NaB (200 mg/kg) treatment by gavage. NaB attenuated AD-induced skin bleeding, scarring, dryness, abrasions and erosions. In addition, NaB inhibited inflammatory cells infiltration and attenuated the expression of inflammatory cytokines and chemokines. Mechanistically, NaB reduced histone deacetylase 3 (HDAC3) expression and NF-κB p65 nuclear translocation by increasing the lysine acetylation levels of STAT1 and NF-κB p65 in AD. Taken together, our study suggests that NaB inhibits inflammatory mediators and ameliorates AD by inhibiting HDAC3 expression, thereby upregulating STAT1 and NF-κB p65 lysine acetylation levels and reducing NF-κB p65 nuclear translocation. Therefore, this study provides a new theoretical basis for NaB in the treatment of AD.
Collapse
Affiliation(s)
- Chaoqun Hu
- Department of Gastroenterology, Chongqing General Hospital, Chongqing, 400014, China
| | - Dan Zeng
- Department of Allergy, Chongqing General Hospital, Chongqing, 400014, China
| | - Yunxia Huang
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Qian Deng
- Department of Gastroenterology, Chongqing General Hospital, Chongqing, 400014, China
| | - Shunan Liu
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Weikang Zhou
- Department of Allergy, Chongqing General Hospital, Chongqing, 400014, China
| | - Wei Zhou
- Department of Allergy, Chongqing General Hospital, Chongqing, 400014, China.
| |
Collapse
|
2
|
Elfers K, Watanangura A, Hoffmann P, Suchodolski JS, Khattab MR, Pilla R, Meller S, Volk HA, Mazzuoli-Weber G. Fecal supernatants from dogs with idiopathic epilepsy activate enteric neurons. Front Neurosci 2024; 18:1281840. [PMID: 38356649 PMCID: PMC10864448 DOI: 10.3389/fnins.2024.1281840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024] Open
Abstract
Introduction Alterations in the composition and function of the gut microbiome have been reported in idiopathic epilepsy (IE), however, interactions of gut microbes with the enteric nervous system (ENS) in this context require further study. This pilot study examined how gastrointestinal microbiota (GIM), their metabolites, and nutrients contained in intestinal contents communicate with the ENS. Methods Fecal supernatants (FS) from healthy dogs and dogs with IE, including drug-naïve, phenobarbital (PB) responsive, and PB non-responsive dogs, were applied to cultured myenteric neurons to test their activation using voltage-sensitive dye neuroimaging. Additionally, the concentrations of short-chain fatty acids (SCFAs) in the FS were quantified. Results Our findings indicate that FS from all examined groups elicited neuronal activation. Notably, FS from PB non-responsive dogs with IE induced action potential discharge in a higher proportion of enteric neurons compared to healthy controls, which exhibited the lowest burst frequency overall. Furthermore, the highest burst frequency in enteric neurons was observed upon exposure to FS from drug-naïve dogs with IE. This frequency was significantly higher compared to that observed in PB non-responsive dogs with IE and showed a tendency to surpass that of healthy controls. Discussion Although observed disparities in SCFA concentrations across the various FS samples might be associated with the induced neuronal activity, a direct correlation remains elusive at this point. The obtained results hint at an involvement of the ENS in canine IE and set the basis for future studies.
Collapse
Affiliation(s)
- Kristin Elfers
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| | - Antja Watanangura
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
- Veterinary Research and Academic Service, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, Thailand
| | - Pascal Hoffmann
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Mohammad R. Khattab
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Rachel Pilla
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Sebastian Meller
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| | - Holger A. Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Gemma Mazzuoli-Weber
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| |
Collapse
|
3
|
Valvassori SS, da Rosa RT, Dal-Pont GC, Varela RB, Mastella GA, Daminelli T, Fries GR, Quevedo J, Zugno AI. Haloperidol alters neurotrophic factors and epigenetic parameters in an animal model of schizophrenia induced by ketamine. Int J Dev Neurosci 2023; 83:691-702. [PMID: 37635268 DOI: 10.1002/jdn.10296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023] Open
Abstract
This study aimed to evaluate Haloperidol's (Hal) effects on the behavioral, neurotrophic factors, and epigenetic parameters in an animal model of schizophrenia (SCZ) induced by ketamine (Ket). Injections of Ket or saline were administered intraperitoneal (once a day) between the 1st and 14th days of the experiment. Water or Hal was administered via gavage between the 8th and 14th experimental days. Thirty minutes after the last injection, the animals were subjected to behavioral analysis. The activity of DNA methyltransferase (DNMT), histone deacetylase (HDAC), and histone acetyltransferase and levels of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin-3 (NT-3), and glial-derived neurotrophic factor (GDNF) were evaluated in the frontal cortex, hippocampus, and striatum. Ket increased the covered distance and time spent in the central area of the open field, and Hal did not reverse these behavioral alterations. Significant increases in the DNMT and HDAC activities were detected in the frontal cortex and striatum from rats that received Ket, Hal, or a combination thereof. Besides, Hal per se increased the activity of DNMT and HDAC in the hippocampus of rats. Hal per se or the association of Ket plus Hal decreased BDNF, NGF, NT-3, and GDNF, depending on the brain region and treatment regimen. The administration of Hal can alter the levels of neurotrophic factors and the activity of epigenetic enzymes, which can be a factor in the development of effect collateral in SCZ patients. However, the precise mechanisms involved in these alterations are still unclear.
Collapse
Affiliation(s)
- Samira S Valvassori
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Richard T da Rosa
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Gustavo C Dal-Pont
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Roger B Varela
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Gustavo A Mastella
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Thiani Daminelli
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Gabriel R Fries
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
- Neuroscience Graduate Program, University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Alexandra I Zugno
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| |
Collapse
|
4
|
Ortega MA, Álvarez-Mon MA, García-Montero C, Fraile-Martínez Ó, Monserrat J, Martinez-Rozas L, Rodríguez-Jiménez R, Álvarez-Mon M, Lahera G. Microbiota-gut-brain axis mechanisms in the complex network of bipolar disorders: potential clinical implications and translational opportunities. Mol Psychiatry 2023; 28:2645-2673. [PMID: 36707651 PMCID: PMC10615769 DOI: 10.1038/s41380-023-01964-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/02/2023] [Accepted: 01/13/2023] [Indexed: 01/28/2023]
Abstract
Bipolar disorders (BD) represent a severe leading disabling mental condition worldwide characterized by episodic and often progressive mood fluctuations with manic and depressive stages. The biological mechanisms underlying the pathophysiology of BD remain incompletely understood, but it seems that there is a complex picture of genetic and environmental factors implicated. Nowadays, gut microbiota is in the spotlight of new research related to this kind of psychiatric disorder, as it can be consistently related to several pathophysiological events observed in BD. In the context of the so-called microbiota-gut-brain (MGB) axis, it is shown to have a strong influence on host neuromodulation and endocrine functions (i.e., controlling the synthesis of neurotransmitters like serotonin or mediating the activation of the hypothalamic-pituitary-adrenal axis), as well as in modulation of host immune responses, critically regulating intestinal, systemic and brain inflammation (neuroinflammation). The present review aims to elucidate pathophysiological mechanisms derived from the MGB axis disruption and possible therapeutic approaches mainly focusing on gut microbiota in the complex network of BD. Understanding the mechanisms of gut microbiota and its bidirectional communication with the immune and other systems can shed light on the discovery of new therapies for improving the clinical management of these patients. Besides, the effect of psychiatric drugs on gut microbiota currently used in BD patients, together with new therapeutical approaches targeting this ecosystem (dietary patterns, probiotics, prebiotics, and other novelties) will also be contemplated.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain.
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain.
| | - Miguel Angel Álvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Óscar Fraile-Martínez
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Lucia Martinez-Rozas
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Roberto Rodríguez-Jiménez
- Department of Legal Medicine and Psychiatry, Complutense University, Madrid, Spain
- Institute for Health Research 12 de Octubre Hospital, (Imas 12)/CIBERSAM (Biomedical Research Networking Centre in Mental Health), Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine, University Hospital Príncipe de Asturias (CIBEREHD), Alcalá de Henares, Spain
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, Alcalá de Henares, Spain
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, Alcalá de Henares, Spain
| |
Collapse
|
5
|
Majumdar A, Siva Venkatesh IP, Basu A. Short-Chain Fatty Acids in the Microbiota-Gut-Brain Axis: Role in Neurodegenerative Disorders and Viral Infections. ACS Chem Neurosci 2023; 14:1045-1062. [PMID: 36868874 DOI: 10.1021/acschemneuro.2c00803] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
The gut-brain axis (GBA) is the umbrella term to include all bidirectional communication between the brain and gastrointestinal (GI) tract in the mammalian body. Evidence from over two centuries describes a significant role of GI microbiome in health and disease states of the host organism. Short-chain fatty acids (SCFAs), mainly acetate, butyrate, and propionate that are the physiological forms of acetic acid, butyric acid, and propionic acid respectively, are GI bacteria derived metabolites. SCFAs have been reported to influence cellular function in multiple neurodegenerative diseases (NDDs). In addition, the inflammation modulating properties of SCFAs make them suitable therapeutic candidates in neuroinflammatory conditions. This review provides a historical background of the GBA and current knowledge of the GI microbiome and role of individual SCFAs in central nervous system (CNS) disorders. Recently, a few reports have also identified the effects of GI metabolites in the case of viral infections. Among these viruses, the flaviviridae family is associated with neuroinflammation and deterioration of CNS functions. In this context, we additionally introduce SCFA based mechanisms in different viral pathogenesis to understand the former's potential as agents against flaviviral disease.
Collapse
Affiliation(s)
- Atreye Majumdar
- National Brain Research Centre, Manesar, Haryana 122052, India
| | | | - Anirban Basu
- National Brain Research Centre, Manesar, Haryana 122052, India
| |
Collapse
|
6
|
Watanangura A, Meller S, Suchodolski JS, Pilla R, Khattab MR, Loderstedt S, Becker LF, Bathen-Nöthen A, Mazzuoli-Weber G, Volk HA. The effect of phenobarbital treatment on behavioral comorbidities and on the composition and function of the fecal microbiome in dogs with idiopathic epilepsy. Front Vet Sci 2022; 9:933905. [PMID: 35990279 PMCID: PMC9386120 DOI: 10.3389/fvets.2022.933905] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/11/2022] [Indexed: 01/09/2023] Open
Abstract
Phenobarbital (PB) is one of the most important antiseizure drugs (ASDs) to treat canine idiopathic epilepsy (IE). The effect of PB on the taxonomic changes in gastrointestinal microbiota (GIM) and their functions is less known, which may explain parts of its pharmacokinetic and pharmacodynamic properties, especially its antiseizure effect and drug responsiveness or drug resistance as well as its effect on behavioral comorbidities. Fecal samples of 12 dogs with IE were collected prior to the initiation of PB treatment and 90 days after oral PB treatment. The fecal samples were analyzed using shallow DNA shotgun sequencing, real-time polymerase chain reaction (qPCR)-based dysbiosis index (DI), and quantification of short-chain fatty acids (SCFAs). Behavioral comorbidities were evaluated using standardized online questionnaires, namely, a canine behavioral assessment and research questionnaire (cBARQ), canine cognitive dysfunction rating scale (CCDR), and an attention deficit hyperactivity disorder (ADHD) questionnaire. The results revealed no significant changes in alpha and beta diversity or in the DI, whereas only the abundance of Clostridiales was significantly decreased after PB treatment. Fecal SCFA measurement showed a significant increase in total fecal SCFA concentration and the concentrations of propionate and butyrate, while acetate concentrations revealed an upward trend after 90 days of treatment. In addition, the PB-Responder (PB-R) group had significantly higher butyrate levels compared to the PB-Non-Responder (PB-NR) group. Metagenomics of functional pathway genes demonstrated a significant increase in genes in trehalose biosynthesis, ribosomal synthesis, and gluconeogenesis, but a decrease in V-ATPase-related oxidative phosphorylation. For behavioral assessment, cBARQ analysis showed improvement in stranger-directed fear, non-social fear, and trainability, while there were no differences in ADHD-like behavior and canine cognitive dysfunction (CCD) scores after 90 days of PB treatment. While only very minor shifts in bacterial taxonomy were detected, the higher SCFA concentrations after PB treatment could be one of the key differences between PB-R and PB-NR. These results suggest functional changes in GIM in canine IE treatment.
Collapse
Affiliation(s)
- Antja Watanangura
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
- Veterinary Research and Academic Service, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, Thailand
| | - Sebastian Meller
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Rachel Pilla
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Mohammad R. Khattab
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Shenja Loderstedt
- Department for Small Animal, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Lisa F. Becker
- Department for Small Animal, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | | | - Gemma Mazzuoli-Weber
- Center for Systems Neuroscience (ZSN), Hannover, Germany
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Holger A. Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
- *Correspondence: Holger A. Volk
| |
Collapse
|
7
|
Kim S, Park S, Choi TG, Kim SS. Role of Short Chain Fatty Acids in Epilepsy and Potential Benefits of Probiotics and Prebiotics: Targeting “Health” of Epileptic Patients. Nutrients 2022; 14:nu14142982. [PMID: 35889939 PMCID: PMC9322917 DOI: 10.3390/nu14142982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Abstract
The WHO’s definition of health transcends the mere absence of disease, emphasizing physical, mental, and social well-being. As this perspective is being increasingly applied to the management of chronic diseases, research on gut microbiota (GM) is surging, with a focus on its potential for persistent and noninvasive dietary therapeutics. In patients with epilepsy (PWE), a chronic lack of seizure control along with often neglected psychiatric comorbidities greatly disrupt the quality of life. Evidence shows that GM-derived short chain fatty acids (SCFAs) may impact seizure susceptibility through modulating (1) excitatory/inhibitory neurotransmitters, (2) oxidative stress and neuroinflammation, and (3) psychosocial stress. These functions are also connected to shared pathologies of epilepsy and its two most common psychiatric consequences: depression and anxiety. As the enhancement of SCFA production is enabled through direct administration, as well as probiotics and prebiotics, related dietary treatments may exert antiseizure effects. This paper explores the potential roles of SCFAs in the context of seizure control and its mental comorbidities, while analyzing existing studies on the effects of pro/prebiotics on epilepsy. Based on currently available data, this study aims to interpret the role of SCFAs in epileptic treatment, extending beyond the absence of seizures to target the health of PWE.
Collapse
Affiliation(s)
- Soomin Kim
- Department of Preliminary Medicine, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Siyeon Park
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences, Boston, MA 02115, USA;
| | - Tae Gyu Choi
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (T.G.C.); (S.S.K.); Tel.: +82-2-961-0287 (T.G.C.); +82-2-961-0524 (S.S.K.)
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (T.G.C.); (S.S.K.); Tel.: +82-2-961-0287 (T.G.C.); +82-2-961-0524 (S.S.K.)
| |
Collapse
|
8
|
Tang X, Sun Y, Li Y, Ma S, Zhang K, Chen A, Lyu Y, Yu R. Sodium butyrate protects against oxidative stress in high-fat-diet-induced obese rats by promoting GSK-3β/Nrf2 signaling pathway and mitochondrial function. J Food Biochem 2022; 46:e14334. [PMID: 35848364 DOI: 10.1111/jfbc.14334] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/25/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022]
Abstract
Sodium butyrate (NaB), obtained by fermenting dietary fiber via intestinal microflora, was recently shown to improve the activity of some antioxidant enzymes in vivo. This study aims to investigate the term changes of mitochondrial energy metabolism and redox homeostasis in skeletal muscles and clarify the regulatory mechanism and dose effect of NaB on skeletal muscle. Male Sprague-Dawley rats were divided into the control group, obesity-prone (OP) group and obesity-resistant (OR) group based on the gain of body weight after 8 weeks' of feeding high-fat diet (HFD), followed by sacrificing rats at the end of 20th week. NaB intervention (12 weeks) could effectively reduce the body weight of rats in the OP and OR groups. NaB also mediated upregulation of antioxidant enzyme activity and GSH/GSSG ratio, while reducing reactive oxygen species (ROS) levels and malondialdehyde (MDA) content. At the molecular level, NaB upregulated Pi3k, Nrf2, Nqo-1, and Ho-1, but downregulated Gsk-3β mRNA expression by regulating the Nrf2 antioxidant pathway to enhance tissue antioxidant capacity. At the same time, NaB intervention significantly upregulated Glut4, Irs-1, Pdx1, and MafA, expression in gastrocnemius muscles of OP and OR rats, and elevated insulin secretion and muscle insulin sensitivity. Thus, NaB activates antioxidant pathway, improves the antioxidant capacity of obese rat tissues and promotes glucose metabolism. PRACTICAL APPLICATIONS: This study found that obesity-prone and obesity-resistant rats have differences in mitochondrial redox homeostasis and energy metabolism in tissues. Meanwhile, sodium butyrate can effectively promote muscle protein synthesis, increase insulin sensitivity, and promote glucose metabolism in obesity rats. Thus, sodium butyrate supplementation or increasing intestinal butyrate production (e.g., by consuming foods rich in dietary fiber) is a potential means of improving the body's glucose metabolism and obesity profile.
Collapse
Affiliation(s)
- Xue Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yongjuan Sun
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Yingrui Li
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shuhua Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Kai Zhang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Ailing Chen
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Yipin Lyu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Renqiang Yu
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| |
Collapse
|
9
|
Luo H, Li W, Wu L, Zhong S, Du C, Liu Y, Xu Y, Huang X, Bahru AH, Tang X, Zhou J, Wang D, Lou X, Bin X, Xiao X. Differences in cognition, short-chain fatty acids and related metabolites in pregnant versus non-pregnant women: a cross-sectional study. BMC Pregnancy Childbirth 2022; 22:533. [PMID: 35778690 PMCID: PMC9248184 DOI: 10.1186/s12884-022-04853-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 06/21/2022] [Indexed: 11/10/2022] Open
Abstract
Background Pregnancy induces cognitive reorganization which can lead to mental disorders. The aim of this study is to determine differences in cognitive scores, short-chain fatty acids (SCFAs) and related metabolites between pregnant and non-pregnant participants. Methods This cross-sectional study included 67 full-term pregnant women and 31 non-pregnant women. We compared scores of mental state and cognitive assessment tests, as well as serum concentrations of SCFAs, hormones, inflammatory factors, and neurotransmitters between these groups. Results Scores for information processing speed, immediate visual memory, motor response speed and accuracy, execution ability and verbal use ability in the pregnant group were lower than those in the non-pregnant group (p < 0.05 for all tests). Total serum SCFAs in the pregnant group were significantly lower than those in the non-pregnant group (P = 0.031). Among them, acetate and propionate were significantly decreased (P = 0.013 and 0.037, respectively) whereas butyrate was significantly increased (P = 0.035). Serum peptide YY, glucagon-like peptide-1, γ-aminobutyric acid, and dopamine showed no differences between the two groups. However, cortisol, adrenocorticotropic hormone, and acetylcholine were significantly increased in the pregnant group as compared with the non-pregnant group (P = 0.039, 0.016, and 0.012, respectively). Tumor necrosis factor-α was increased and interleukin-10 significantly decreased in the pregnant group (P = 0.045 and 0.019, respectively). Conclusion According to our study findings, cognitive reorganization in the third trimester of pregnancy showed that both the passive storage capacity of working memory and the executive function of online information processing were decreased to varying degrees. At the same time, the changes in total SCFAs, the proportions of SCFAs and related metabolites were also detected. These changes in the internal environment may be increasing the risk of perinatal mental illness.
Collapse
Affiliation(s)
- Huijuan Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, No.601, West Huangpu Avenue, Guangzhou, Guangdong, 510630, China
| | - Wengxiang Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, No.601, West Huangpu Avenue, Guangzhou, Guangdong, 510630, China
| | - Lulu Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, No.601, West Huangpu Avenue, Guangzhou, Guangdong, 510630, China
| | - Shuming Zhong
- Department of Psychology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510630, China
| | - Chengrong Du
- Department of Clinical Medicine, International College, Jinan University, Guangzhou, Guangdong, 510630, China
| | - Yimeng Liu
- Department of Clinical Medicine, International College, Jinan University, Guangzhou, Guangdong, 510630, China
| | - Yating Xu
- Department of Clinical Medicine, International College, Jinan University, Guangzhou, Guangdong, 510630, China
| | - Xinyu Huang
- Department of Clinical Medicine, International College, Jinan University, Guangzhou, Guangdong, 510630, China
| | - Awol Hanan Bahru
- Department of Clinical Medicine, International College, Jinan University, Guangzhou, Guangdong, 510630, China
| | - Xiaomei Tang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, No.601, West Huangpu Avenue, Guangzhou, Guangdong, 510630, China
| | - Juan Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, No.601, West Huangpu Avenue, Guangzhou, Guangdong, 510630, China
| | - Dongju Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, No.601, West Huangpu Avenue, Guangzhou, Guangdong, 510630, China
| | - Xiangying Lou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, No.601, West Huangpu Avenue, Guangzhou, Guangdong, 510630, China
| | - Xuefan Bin
- Shanghai Medical College, Fudan University (SMCFU), 138 Yi xue yuan Road, Shanghai, 200032, China
| | - Xiaomin Xiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, No.601, West Huangpu Avenue, Guangzhou, Guangdong, 510630, China.
| |
Collapse
|
10
|
Çiçekli MN, Tiryaki ES, Altun A, Günaydın C. GLP-1 agonist liraglutide improves ouabain-induced mania and depressive state via GSK-3β pathway. J Recept Signal Transduct Res 2022; 42:486-494. [PMID: 35133924 DOI: 10.1080/10799893.2022.2032747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Bipolar disorder (BD) is a severe mental illness characterized by aberrant mood changes between hypomania and mania or mixed states and depression. Metabolic changes also accompany disease progression and cause significant morbidity. Symptomatic treatment options are available, but asymptomatic patients and poor drug responders are significant problems. Based on the most common pharmacological agent that is used in the treatment, lithium and its main mechanisms of action, oxidative stress, and glycogen synthase kinase-3β (GSK-3β) signaling are extensively investigated. However, knowledge about the effects of compounds that positively affect oxidative stress and GSK-3β signaling, such as glucagon-like peptide-1 (GLP-1) mimetics, liraglutide, is still missing. Therefore, in this study, we aimed to investigate the effects of liraglutide on the ouabain-induced bipolar disease model in rats. After intracerebroventricular single dose ouabain administration, animals were treated with 100, 200, and 400 µg/kg liraglutide (s.c.) and valproic acid (200 mg/kg, i.p.) for 10 d. The locomotion and depressive states of animals were assessed by an open field, forced swimming test, and sucrose preference tests. Serum total antioxidant (TAS) and oxidant states (TOS) and glutathione, malonyl dialdehyde (MDA) levels in the brain tissue were determined. GSK-3β phosphorylation was evaluated by western blotting. Our results demonstrated that liraglutide attenuated ouabain-induced hyperlocomotion and depressive state. Additionally, liraglutide prevented oxidative stress after ouabain administration. Decreased GSK-3β phosphorylation due to the ouabain insult was alleviated by liraglutide treatment. These findings indicate that the manic and depressive-like behaviors are ameliorated by liraglutide, which exerted antioxidant action, possibly improving GSK-3β phosphorylation.
Collapse
Affiliation(s)
| | - Emre Soner Tiryaki
- Department of Physiology, School of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Ahmet Altun
- Department of Pharmacology, School of Medicine, Cumhuriyet University, Sivas, Turkey
| | - Caner Günaydın
- Department of Pharmacology, School of Medicine, Samsun University, Samsun, Turkey
| |
Collapse
|
11
|
Su Q, Yu XJ, Wang XM, Peng B, Bai J, Li HB, Li Y, Xia WJ, Fu LY, Liu KL, Liu JJ, Kang YM. Na+/K+-ATPase Alpha 2 Isoform Elicits Rac1-Dependent Oxidative Stress and TLR4-Induced Inflammation in the Hypothalamic Paraventricular Nucleus in High Salt-Induced Hypertension. Antioxidants (Basel) 2022; 11:antiox11020288. [PMID: 35204171 PMCID: PMC8868219 DOI: 10.3390/antiox11020288] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/26/2021] [Accepted: 01/04/2022] [Indexed: 02/04/2023] Open
Abstract
Numerous studies have indicated that a high salt diet inhibits brain Na+/K+-ATPase (NKA) activity, and affects oxidative stress and inflammation in the paraventricular nucleus (PVN). Furthermore, Na+/K+-ATPase alpha 2-isoform (NKA α2) may be a target in the brain, taking part in the development of salt-dependent hypertension. Therefore, we hypothesized that NKA α2 regulates oxidative stress and inflammation in the PVN in the context of salt-induced hypertension. Part I: We assessed NKA subunits (NKA α1, NKA α2, and NKA α3), Na+/K+-ATPase activity, oxidative stress, and inflammation in a high salt group (8% NaCl) and normal salt group (0.3% NaCl). Part II: NKA α2 short hairpin RNA (shRNA) was bilaterally microinjected into the PVN of salt-induced hypertensive rats to knockdown NKA α2, and we explored whether NKA α2 regulates downstream signaling pathways related to protein kinase C γ (PKC γ)-dependent oxidative stress and toll-like receptor 4 (TLR4)-induced inflammation in the PVN to promote the development of hypertension. High salt diet increased NKA α1 and NKA α2 protein expression in the PVN but had no effect on NKA α3 compared to the normal salt diet. Na+/K+-ATPase activity and ADP/ATP ratio was lower, but NAD(P)H activity and NF-κB activity in the PVN were higher after a high salt diet. Bilateral PVN microinjection of NKA α2 shRNA not only improved Na+/K+-ATPase activity and ADP/ATP ratio but also suppressed PKC γ-dependent oxidative stress and TLR4-dependent inflammation in the PVN, thus decreasing sympathetic activity in rats with salt-induced hypertension. NKA α2 in the PVN elicits PKC γ/Rac1/NAD (P)H-dependent oxidative stress and TLR4/MyD88/NF-κB-induced inflammation in the PVN, thus increasing MAP and sympathetic activity during the development of salt-induced hypertension.
Collapse
Affiliation(s)
- Qing Su
- Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Shaanxi Engineering and Research Center of Vaccine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (Q.S.); (X.-M.W.); (H.-B.L.); (Y.L.); (W.-J.X.); (L.-Y.F.); (K.-L.L.); (J.-J.L.)
| | - Xiao-Jing Yu
- Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Shaanxi Engineering and Research Center of Vaccine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (Q.S.); (X.-M.W.); (H.-B.L.); (Y.L.); (W.-J.X.); (L.-Y.F.); (K.-L.L.); (J.-J.L.)
- Correspondence: (X.-J.Y.); (Y.-M.K.); Tel./Fax: +86-298-265-7677 (X.-J.Y. & Y.-M.K.)
| | - Xiao-Min Wang
- Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Shaanxi Engineering and Research Center of Vaccine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (Q.S.); (X.-M.W.); (H.-B.L.); (Y.L.); (W.-J.X.); (L.-Y.F.); (K.-L.L.); (J.-J.L.)
| | - Bo Peng
- School of Clinical Medicine, Xi’an Jiaotong University, Xi’an 710061, China;
| | - Juan Bai
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China;
| | - Hong-Bao Li
- Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Shaanxi Engineering and Research Center of Vaccine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (Q.S.); (X.-M.W.); (H.-B.L.); (Y.L.); (W.-J.X.); (L.-Y.F.); (K.-L.L.); (J.-J.L.)
| | - Ying Li
- Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Shaanxi Engineering and Research Center of Vaccine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (Q.S.); (X.-M.W.); (H.-B.L.); (Y.L.); (W.-J.X.); (L.-Y.F.); (K.-L.L.); (J.-J.L.)
| | - Wen-Jie Xia
- Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Shaanxi Engineering and Research Center of Vaccine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (Q.S.); (X.-M.W.); (H.-B.L.); (Y.L.); (W.-J.X.); (L.-Y.F.); (K.-L.L.); (J.-J.L.)
| | - Li-Yan Fu
- Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Shaanxi Engineering and Research Center of Vaccine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (Q.S.); (X.-M.W.); (H.-B.L.); (Y.L.); (W.-J.X.); (L.-Y.F.); (K.-L.L.); (J.-J.L.)
| | - Kai-Li Liu
- Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Shaanxi Engineering and Research Center of Vaccine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (Q.S.); (X.-M.W.); (H.-B.L.); (Y.L.); (W.-J.X.); (L.-Y.F.); (K.-L.L.); (J.-J.L.)
| | - Jin-Jun Liu
- Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Shaanxi Engineering and Research Center of Vaccine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (Q.S.); (X.-M.W.); (H.-B.L.); (Y.L.); (W.-J.X.); (L.-Y.F.); (K.-L.L.); (J.-J.L.)
| | - Yu-Ming Kang
- Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Shaanxi Engineering and Research Center of Vaccine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (Q.S.); (X.-M.W.); (H.-B.L.); (Y.L.); (W.-J.X.); (L.-Y.F.); (K.-L.L.); (J.-J.L.)
- Correspondence: (X.-J.Y.); (Y.-M.K.); Tel./Fax: +86-298-265-7677 (X.-J.Y. & Y.-M.K.)
| |
Collapse
|
12
|
Zhang N, Qu Y, Qin B. Sodium butyrate ameliorates non-alcoholic fatty liver disease by upregulating miR-150 to suppress CXCR4 expression. Clin Exp Pharmacol Physiol 2021; 48:1125-1136. [PMID: 33721354 DOI: 10.1111/1440-1681.13497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/02/2020] [Accepted: 03/11/2021] [Indexed: 12/19/2022]
Abstract
Sodium butyrate (NaB) in the gut of animals possesses the potential to modulate lipid metabolism, regulate innate immunity and protect intestinal health. Accumulating data have supported the important function of metabolites of intestinal microflora (MIM) in non-alcoholic fatty liver disease (NAFLD). This study intended to investigate the role of NaB in NAFLD and its specific mechanism. Mice were fed a high-fat diet (HFD) for 16 weeks to establish the NAFLD mouse model. The mice were intragastrically administrated MIM (200 µL/day) or NaB (200 mg/kg/day) by gavage for another 8 weeks. The morphology of liver tissues was observed by hematoxylin and eosin (H&E) staining, and the lipid deposition of liver tissues was examined by oil red O staining. The NAFLD cell model was constructed in alpha mouse liver 12 (AML12) cells by 24 hours of stimulation with 0.5 mM free fatty acids. After treatment with 10 mM NaB, AML12 cells were transfected with mimic-miR-150 or inhibitor-miR-150. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting were used to measure the contents of interleukin 1β (IL-1β), IL-6 and tumour necrosis factor α (TNF-α) and the expression of microRNA (miR)-150 and CXCR4 in liver tissues of mice and in AML12 cells. A luciferase reporter assay was applied to verify the binding relationship between miR-150 and CXCR4. The H&E and oil red O staining results showed hepatic steatosis in the liver tissues of HFD-fed mice. There were elevated contents of triacylglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), fasting blood glucose, enhanced activities of alanine aminotransferase(ALT) and aspartate aminotransferase(AST), increased homeostatic model assessment of insulin resistance scores and increased inflammatory responses in the serum of HFD-fed mice. However, intervention with MIM or NaB reversed the above trends, indicating that MIM or NaB intervention relieved hepatic steatosis in mice. HFD-fed mice had downregulated expression of miR-150, whereas the expression level was upregulated after MIM or NaB treatment. Sodium butyrate attenuated NAFLD progression by regulating miR-150. MiR-150 can negatively target CXCR4. Sodium butyrate mitigates HFD-induced NAFLD in mice by upregulating miR-150 expression to downregulate CXCR4.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- General Practice, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Yunfei Qu
- Department of Cardiovascular Surgery, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Bo Qin
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
13
|
Kolar D, Kleteckova L, Brozka H, Vales K. Mini-review: Brain energy metabolism and its role in animal models of depression, bipolar disorder, schizophrenia and autism. Neurosci Lett 2021; 760:136003. [PMID: 34098028 DOI: 10.1016/j.neulet.2021.136003] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/13/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022]
Abstract
Mitochondria are cellular organelles essential for energy metabolism and antioxidant defense. Mitochondrial impairment is implicated in many psychiatric disorders, including depression, bipolar disorder, schizophrenia, and autism. To characterize and eventually find effective treatments of bioenergetic impairment in psychiatric disease, researchers find animal models indispensable. The present review focuses on brain energetics in several environmental, genetic, drug-induced, and surgery-induced animal models of depression, bipolar disorder, schizophrenia, and autism. Most reported deficits included decreased activity in the electron transport chain, increased oxidative damage, decreased antioxidant defense, decreased ATP levels, and decreased mitochondrial potential. Models of depression, bipolar disorder, schizophrenia, and autism shared many bioenergetic deficits. This is in concordance with the absence of a disease-specific brain energy phenotype in human patients. Unfortunately, due to the absence of null results in examined literature, indicative of reporting bias, we refrain from making generalized conclusions. Present review can be a valuable tool for comparing current findings, generating more targeted hypotheses, and selecting fitting models for further preclinical research.
Collapse
Affiliation(s)
- David Kolar
- National Institute of Mental Health, Klecany, Czech Republic.
| | | | - Hana Brozka
- Institute of Physiology, Academy of Sciences, Prague, Czech Republic.
| | - Karel Vales
- National Institute of Mental Health, Klecany, Czech Republic.
| |
Collapse
|
14
|
De Caro C, Di Cesare Mannelli L, Branca JJV, Micheli L, Citraro R, Russo E, De Sarro G, Ghelardini C, Calignano A, Russo R. Pain Modulation in WAG/Rij Epileptic Rats (A Genetic Model of Absence Epilepsy): Effects of Biological and Pharmacological Histone Deacetylase Inhibitors. Front Pharmacol 2020; 11:549191. [PMID: 33343343 PMCID: PMC7745735 DOI: 10.3389/fphar.2020.549191] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 10/29/2020] [Indexed: 01/18/2023] Open
Abstract
Epigenetic mechanisms are involved in epilepsy and chronic pain development. About that, we studied the effects of the natural histone deacetylase (HDAC) inhibitor sodium butyrate (BUT) in comparison with valproic acid (VPA) in a validated genetic model of generalized absence epilepsy and epileptogenesis. WAG/Rij rats were treated with BUT (30 mg/kg), VPA (300 mg/kg), and their combination (BUT + VPA) daily per os for 6 months. Rats were subjected at Randall–Selitto, von Frey, hot plate, and tail flick tests after 1, 3, and 6 months of treatment to evaluate hypersensitivity to noxious and non-noxiuous stimuli. Moreover, PPAR-γ (G3335 1 mg/kg), GABA-B (CGP35348 80 mg/kg), and opioid (naloxone 1 mg/kg) receptor antagonists were administrated to investigate the possible mechanisms involved in analgesic activity. The expression of NFkB, glutathione reductase, and protein oxidation (carbonylation) was also evaluated by Western blot analysis. WAG/Rij rats showed an altered pain threshold throughout the study (p < 0.001). BUT and BUT + VPA treatment reduced hypersensitivity (p < 0.01). VPA was significantly effective only after 1 month (p < 0.01). All the three receptors are involved in BUT + VPA effects (p < 0.001). BUT and BUT + VPA decreased the expression of NFkB and enhanced glutathione reductase (p < 0.01); protein oxidation (carbonylation) was reduced (p < 0.01). No effect was reported with VPA. In conclusion BUT, alone or in coadministration with VPA, is a valuable candidate for managing the epilepsy-related persistent pain.
Collapse
Affiliation(s)
- Carmen De Caro
- Department of Pharmacy, University of Naples Federico II, Naples, Italy.,Department of Science of Health, School of Medicine and Surgery, University of Catanzaro, Catanzaro, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health-Neurofarba-Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Jacopo Junio Valerio Branca
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, Florence, Italy
| | - Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health-Neurofarba-Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Rita Citraro
- Department of Science of Health, School of Medicine and Surgery, University of Catanzaro, Catanzaro, Italy
| | - Emilio Russo
- Department of Science of Health, School of Medicine and Surgery, University of Catanzaro, Catanzaro, Italy
| | - Giovambattista De Sarro
- Department of Science of Health, School of Medicine and Surgery, University of Catanzaro, Catanzaro, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health-Neurofarba-Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Antonio Calignano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Roberto Russo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
15
|
Varela RB, Resende WR, Dal-Pont GC, Gava FF, Tye SJ, Quevedo J, Valvassori SS. HDAC inhibitors reverse mania-like behavior and modulate epigenetic regulatory enzymes in an animal model of mania induced by Ouabain. Pharmacol Biochem Behav 2020; 193:172917. [PMID: 32222371 DOI: 10.1016/j.pbb.2020.172917] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND The etiology of bipolar disorder (BD) is multifactorial, involving both environmental and genetic factors. Current pharmacological treatment is associated with several side effects, which are the main reason patients discontinue treatment. Epigenetic alterations have been studied for their role in the pathophysiology of BD, as they bridge the gap between gene and environment. OBJECTIVE Evaluate the effects of histone deacetylase inhibitors on behavior and epigenetic enzymes activity in a rat model of mania induced by ouabain. METHODS Adult male rats were subjected to a single intracerebroventricular injection of ouabain (10-3 M) followed by 7 days of valproate (200 mg/kg) or sodium butyrate (600 mg/kg) administration. Locomotor and exploratory activities were evaluated in the open-field test. Histone deacetylase, DNA methyltransferase, and histone acetyltransferase activity were assessed in the frontal cortex, hippocampus, and striatum. RESULTS Ouabain induced hyperactivity in rats, which was reversed by valproate and sodium butyrate treatment. Ouabain did not alter the activity of any of the enzymes evaluated. However, valproate and sodium butyrate decreased the activity of histone deacetylase and DNA methyltransferase. Moreover, there was a positive correlation between these two enzymes. CONCLUSION These results suggest that targeting epigenetic mechanisms may play an important role in mania-like behavior management.
Collapse
Affiliation(s)
- Roger B Varela
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia; Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC) -, Criciúma, SC, Brazil
| | - Wilson R Resende
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC) -, Criciúma, SC, Brazil
| | - Gustavo C Dal-Pont
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC) -, Criciúma, SC, Brazil
| | - Fernanda F Gava
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC) -, Criciúma, SC, Brazil
| | - Susannah J Tye
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia; Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC) -, Criciúma, SC, Brazil; Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth) -, Houston, TX, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth) -, Houston, TX, USA; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences -, Houston, TX, USA
| | - Samira S Valvassori
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC) -, Criciúma, SC, Brazil.
| |
Collapse
|
16
|
Silva YP, Bernardi A, Frozza RL. The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication. Front Endocrinol (Lausanne) 2020; 11:25. [PMID: 32082260 PMCID: PMC7005631 DOI: 10.3389/fendo.2020.00025] [Citation(s) in RCA: 1269] [Impact Index Per Article: 317.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022] Open
Abstract
A substantial body of evidence supports that the gut microbiota plays a pivotal role in the regulation of metabolic, endocrine and immune functions. In recent years, there has been growing recognition of the involvement of the gut microbiota in the modulation of multiple neurochemical pathways through the highly interconnected gut-brain axis. Although amazing scientific breakthroughs over the last few years have expanded our knowledge on the communication between microbes and their hosts, the underpinnings of microbiota-gut-brain crosstalk remain to be determined. Short-chain fatty acids (SCFAs), the main metabolites produced in the colon by bacterial fermentation of dietary fibers and resistant starch, are speculated to play a key role in neuro-immunoendocrine regulation. However, the underlying mechanisms through which SCFAs might influence brain physiology and behavior have not been fully elucidated. In this review, we outline the current knowledge about the involvement of SCFAs in microbiota-gut-brain interactions. We also highlight how the development of future treatments for central nervous system (CNS) disorders can take advantage of the intimate and mutual interactions of the gut microbiota with the brain by exploring the role of SCFAs in the regulation of neuro-immunoendocrine function.
Collapse
Affiliation(s)
- Ygor Parladore Silva
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Andressa Bernardi
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Rudimar Luiz Frozza
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- *Correspondence: Rudimar Luiz Frozza
| |
Collapse
|
17
|
Dal-Pont GC, Resende WR, Bianchini G, Gava FF, Peterle BR, Trajano KS, Varela RB, Quevedo J, Valvassori SS. Tamoxifen has an anti-manic effect but not protect the brain against oxidative stress in an animal model of mania induced by ouabain. J Psychiatr Res 2019; 113:181-189. [PMID: 30981159 DOI: 10.1016/j.jpsychires.2019.03.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/15/2019] [Accepted: 03/21/2019] [Indexed: 11/18/2022]
Abstract
Studies have suggested the involvement of oxidative stress in the physiopathology of bipolar disorder. Preclinical data have shown that PKC inhibitors may act as mood-stabilizing agents and protect the brain in animal models of mania. The present study aimed to evaluate the effects of Lithium (Li) or tamoxifen (TMX) on behavioral changes and oxidative stress parameters in an animal model of mania induced by ouabain (OUA). Wistar rats received a single intracerebroventricular (ICV) injection of OUA or artificial cerebrospinal fluid (ACSF). From the day following ICV injection, the rats were treated for seven days with intraperitoneal injections of saline, Li or TMX twice a day. On the 7th day after OUA injection, locomotor activity was measured using the open-field test, and the oxidative stress parameters were evaluated in the hippocampus and frontal cortex of rats. The results showed that OUA induced hyperactivity in rats, which is considered a manic-like behavior. Also, OUA increased lipid peroxidation and oxidative damage to proteins, as well as causing alterations to antioxidant enzymes in the frontal cortex and hippocampus of rats. The Li or TMX treatment reversed the manic-like behavior induced by OUA. Besides, Li, but not TMX, reversed the oxidative damage caused by OUA. These results suggest that the manic-like effects induced by OUA and the antimanic effects of TMX seem not to be related to the oxidative stress.
Collapse
Affiliation(s)
- Gustavo C Dal-Pont
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Wilson R Resende
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Guilherme Bianchini
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Fernanda F Gava
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Bruna R Peterle
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Kerolen S Trajano
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Roger B Varela
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA; Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Samira S Valvassori
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
18
|
Maruani J, Anderson G, Etain B, Lejoyeux M, Bellivier F, Geoffroy PA. The neurobiology of adaptation to seasons: Relevance and correlations in bipolar disorders. Chronobiol Int 2018; 35:1335-1353. [DOI: 10.1080/07420528.2018.1487975] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Julia Maruani
- Inserm, U1144, Paris, France
- Université Paris Descartes, UMR-S 1144, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, UMR-S 1144, Paris, France
- AP-HP, GH Saint-Louis – Lariboisière – F. Widal, Pôle de Psychiatrie et de Médecine Addictologique, Paris, France
- Fondation FondaMental, Créteil, France
| | | | - Bruno Etain
- Inserm, U1144, Paris, France
- Université Paris Descartes, UMR-S 1144, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, UMR-S 1144, Paris, France
- AP-HP, GH Saint-Louis – Lariboisière – F. Widal, Pôle de Psychiatrie et de Médecine Addictologique, Paris, France
- Fondation FondaMental, Créteil, France
| | - Michel Lejoyeux
- Université Paris Diderot, Sorbonne Paris Cité, UMR-S 1144, Paris, France
- Department of Epidemiology, Paris Hospital Group – Psychiatry & Neurosciences, Paris, France
- Department of Psychiatry and Addictive Medicine, Assistance Publique-Hôpitaux de Paris (AP-HP), University Hospital Bichat-Claude Bernard, Paris, France
- Paris Diderot University – Paris VII, Paris, France
| | - Frank Bellivier
- Inserm, U1144, Paris, France
- Université Paris Descartes, UMR-S 1144, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, UMR-S 1144, Paris, France
- AP-HP, GH Saint-Louis – Lariboisière – F. Widal, Pôle de Psychiatrie et de Médecine Addictologique, Paris, France
- Fondation FondaMental, Créteil, France
| | - Pierre A. Geoffroy
- Inserm, U1144, Paris, France
- Université Paris Descartes, UMR-S 1144, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, UMR-S 1144, Paris, France
- AP-HP, GH Saint-Louis – Lariboisière – F. Widal, Pôle de Psychiatrie et de Médecine Addictologique, Paris, France
- Fondation FondaMental, Créteil, France
| |
Collapse
|
19
|
Peedicayil J, Kumar A. Epigenetic Drugs for Mood Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 157:151-174. [PMID: 29933949 DOI: 10.1016/bs.pmbts.2018.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
There is increasing evidence that changes in epigenetic mechanisms of gene expression are involved in the pathogenesis of mood disorders. Such evidence stems from studies conducted on postmortem brain tissues and peripheral cells or tissues of patients with mood disorders. This article describes and discusses the epigenetic changes in the mood disorders (major depressive disorder and bipolar disorder) found to date. The article also describes and discusses preclinical drug trials of epigenetic drugs for treating mood disorders. In addition, nonrandomized and randomized controlled trials of nutritional drugs with effects on epigenetic mechanisms of gene expression in patients with major depressive disorder and bipolar disorder are discussed. Trials of epigenetic drugs and nutritional drugs with epigenetic effects are showing promising results for the treatment of mood disorders. Thus, epigenetic drugs and nutritional drugs with epigenetic effects could be useful in the treatment of patients with these disorders.
Collapse
|
20
|
Hodes A, Lifschytz T, Rosen H, Cohen Ben-Ami H, Lichtstein D. Reduction in endogenous cardiac steroids protects the brain from oxidative stress in a mouse model of mania induced by amphetamine. Brain Res Bull 2018; 137:356-362. [PMID: 29374602 DOI: 10.1016/j.brainresbull.2018.01.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/10/2018] [Accepted: 01/19/2018] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Bipolar disorder (BD) is a severe mental illness characterized by episodes of mania and depression. Numerous studies have implicated the involvement of endogenous cardiac steroids (CS), and their receptor, Na+, K+ -ATPase, in BD. The aim of the present study was to examine the role of brain oxidative stress in the CS-induced behavioral effects in mice. METHODS Amphetamine (AMPH)-induced hyperactivity, assessed in the open-field test, served as a model for manic-like behavior in mice. A reduction in brain CS was obtained by specific and sensitive anti-ouabain antibodies. The level of oxidative stress was tested in the hippocampus and frontal cortex by measuring the activity of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), as well as the levels of antioxidant non-protein thiols (NPSH) and oxidative damage biomarkers thiobarbituric acid reactive substances (TBARS) and protein carbonyl (PC). RESULTS AMPH administration resulted in a marked hyperactivity and increased oxidative stress, as manifested by increased SOD activity, decreased activities of CAT and GPx, reduced levels of NPSH and increased levels of TBARS and PC. The administration of anti-ouabain antibodies, which reduced the AMPH-induced hyperactivity, protected against the concomitant oxidative stress in the brain. CONCLUSIONS Our results demonstrate that oxidative stress participates in the effects of endogenous CS on manic-like behavior induced by AMPH. These finding support the notion that CS and oxidative stress may be associated with the pathophysiology of mania and BD.
Collapse
Affiliation(s)
- Anastasia Hodes
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Tzuri Lifschytz
- Department of Psychiatry, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Haim Rosen
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Hagit Cohen Ben-Ami
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - David Lichtstein
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| |
Collapse
|
21
|
de Queiroz AIG, Chaves Filho AJM, Araújo TDS, Lima CNC, Machado MDJS, Carvalho AF, Vasconcelos SMM, de Lucena DF, Quevedo J, Macedo D. Antimanic activity of minocycline in a GBR12909-induced model of mania in mice: Possible role of antioxidant and neurotrophic mechanisms. J Affect Disord 2018; 225:40-51. [PMID: 28783519 DOI: 10.1016/j.jad.2017.07.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/27/2017] [Accepted: 07/31/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Mania/hypomania is the cardinal feature of bipolar disorder. Recently, single administration of the dopamine transporter (DAT) inhibitor, GBR12909, was related to mania-like alterations. In the present study we aimed at testing behavioral and brain oxidant/neurotrophic alterations induced by the repeated administration of GBR12909 and its prevention/reversal by the mood stabilizing drugs, lithium (Li) and valproate (VAL) as well as by the neuroprotective drug, minocycline (Mino). METHODS Adult Swiss mice were submitted to 14 days protocols namely prevention and reversal. In the reversal protocol mice were given GBR12909 or saline and between days 8 and 14 received Li, VAL, Mino (25 or 50mg/kg) or saline. In the prevention treatment, mice were pretreated with Li, VAL, Mino or saline prior to GBR12909. RESULTS GBR12909 repeated administration induced hyperlocomotion and increased risk taking behavior that were prevented and reversed by the mood stabilizers and both doses of Mino. Li, VAL or Mino were more effective in the reversal of striatal GSH alterations induced by GBR12909. Regarding lipid peroxidation Mino was more effective in the prevention and reversal of lipid peroxidation in the hippocampus whereas Li and VAL prevented this alteration in the striatum and PFC. Li, VAL and Mino25 reversed the decrease in BDNF levels induced by GBR12909. CONCLUSION GBR12909 repeated administration resembles manic phenotype. Similarly to classical mood-stabilizing agents, Mino prevented and reversed GBR12909 manic-like behavior in mice. Thus, our data provide preclinical support to the design of trials investigating Mino's possible antimanic effects.
Collapse
Affiliation(s)
- Ana Isabelle G de Queiroz
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Adriano José Maia Chaves Filho
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Tatiane da Silva Araújo
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Camila Nayane Carvalho Lima
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Michel de Jesus Souza Machado
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - André F Carvalho
- Translational Psychiatry Research Group and the Department of Clinical Medicine, Faculty of Medicine, Fortaleza, CE, Brazil
| | - Silvania Maria Mendes Vasconcelos
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - David Freitas de Lucena
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - João Quevedo
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA; Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Danielle Macedo
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
22
|
The histone deacetylase inhibitor sodium butyrate protects against noise-induced hearing loss in Guinea pigs. Neurosci Lett 2017; 660:140-146. [DOI: 10.1016/j.neulet.2017.09.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 09/11/2017] [Accepted: 09/15/2017] [Indexed: 12/15/2022]
|
23
|
Tabeshmehr P, Husnain HK, Salmannejad M, Sani M, Hosseini SM, Khorraminejad Shirazi MH. Nicorandil potentiates sodium butyrate induced preconditioning of neurons and enhances their survival upon subsequent treatment with H 2O 2. Transl Neurodegener 2017; 6:29. [PMID: 29093814 PMCID: PMC5662071 DOI: 10.1186/s40035-017-0097-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 10/02/2017] [Indexed: 12/27/2022] Open
Abstract
Background Extensive loss of donor neural stem cell (NSCs) due to ischemic stress and low rate of differentiation at the site of cell graft are two of the major issues that hamper optimal outcome in NSCs transplantation studies. Given that histone deacetylases (HDACs) modulate various cellular processes by deacetylating histones and non-histone proteins, we hypothesized that combined treatment with small molecules, sodium butyrate (NaB; a known HDAC inhibitor) and nicorandil, will enhance the rate neuronal differentiation of NSCs besides their preconditioning to resist oxidative stress. Methods NSCs derived from 14-day old Sprague Dawley rat ganglion eminence were characterized for tri-lineage differentiation. Treatment with 1 mM NaB significantly changed their culture characteristics while continuous treatment for 10 days enhanced their neural differentiation. NaB treatment also preconditioned the cells for their resistance to oxidative stress. Results The highest rate of neural differentiation and preconditioning effect was achieved when the NSCs were treated concomitantly with NaB and nicorandil. Cell proliferation assay showed that concomitant treatment with NaB and nicorandil retarded their rate of proliferation. Conclusion These data conclude that preconditioning of NSCs with NaB and nicorandil effectively enhances their differentiation capacity besides preconditioning the cells to support their survival under ischemic conditions. Electronic supplementary material The online version of this article (10.1186/s40035-017-0097-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Parisa Tabeshmehr
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.,Cell & Molecular Medicine Student Research Group, Medical Faculty, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mahin Salmannejad
- Stem Cell Laboratory, Department of Anatomy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Sani
- Stem Cell Laboratory, Department of Anatomy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mojtaba Hosseini
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.,Cell & Molecular Medicine Student Research Group, Medical Faculty, Shiraz University of Medical Sciences, Shiraz, Iran.,Stem Cell Laboratory, Department of Anatomy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hossein Khorraminejad Shirazi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.,Cell & Molecular Medicine Student Research Group, Medical Faculty, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
24
|
Kong G, Huang Z, Ji W, Wang X, Liu J, Wu X, Huang Z, Li R, Zhu Q. The Ketone Metabolite β-Hydroxybutyrate Attenuates Oxidative Stress in Spinal Cord Injury by Suppression of Class I Histone Deacetylases. J Neurotrauma 2017; 34:2645-2655. [PMID: 28683591 DOI: 10.1089/neu.2017.5192] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The ketone metabolite β-hydroxybutyrate (βOHB), is reported to be neuroprotective after spinal cord injury (SCI) in rats, but the underlying mechanism remains unknown. The present study aims to investigate effects of βOHB on suppression of oxidative stress and inhibition of class I histone deacetylases (HDACs) in in vivo and in vitro models. Rats were fed with ketogenic diet (KD) or standard diet (SD) for 3 weeks. A C5 hemi-contusion injury was applied to these animals on the 14th day of experiment, and spinal cord samples were harvested on the 1st, 3rd and 7th days after SCI, respectively. The blood ketone levels were significantly higher in the KD groups. KD reduced oxidative stress markers and reactive oxygen species (ROS) products, downregulated the expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX)2 and NOX4, and upregulated the expression of forkhead box group O (FOXO)3a, mitochondrial superoxide dismutase (MnSOD), and catalase after SCI. The in vitro study, performed on PC12 cells, indicated that βOHB inhibited H2O2-induced ROS production, decreased NOX2 and NOX4 protein levels, and upregulated FOXO3a, MnSOD, and catalase levels in a dose-dependent manner, which was consistent with the in vivo results. The ketone metabolite βOHB inhibited HDAC1, HDAC2, and HDAC3 activity, but not HDAC8 in SCI rats and PC12 cells. Depletion of HDAC1 or HDAC2 with small interfering RNA (siRNA) attenuated H2O2-induced ROS production and protein carbonylation and elevated FOXO3a protein levels, meanwhile reducing NOX2 and NOX4 protein expression in PC12 cells. Our results indicate that the ketone metabolite βOHB attenuates oxidative stress in SCI by inhibition of class I HDACs, and selected suppression of HDAC1 or HDAC2 regulates FOXO3a, NOX2, and NOX4 expression. Therefore, the ketone metabolite βOHB may be a novel promising therapeutic agent for SCI.
Collapse
Affiliation(s)
- Ganggang Kong
- 1 Department of Spinal Surgery, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Zucheng Huang
- 1 Department of Spinal Surgery, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Wei Ji
- 1 Department of Spinal Surgery, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Xiaomeng Wang
- 2 Department of Spinal Surgery, Longyan First Hospital , Fujian, China
| | - Junhao Liu
- 1 Department of Spinal Surgery, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Xiuhua Wu
- 1 Department of Spinal Surgery, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Zhiping Huang
- 1 Department of Spinal Surgery, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Rong Li
- 1 Department of Spinal Surgery, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Qingan Zhu
- 1 Department of Spinal Surgery, Nanfang Hospital, Southern Medical University , Guangzhou, China
| |
Collapse
|
25
|
Amodeo DA, Grospe G, Zang H, Dwivedi Y, Ragozzino ME. Cognitive flexibility impairment and reduced frontal cortex BDNF expression in the ouabain model of mania. Neuroscience 2017; 345:229-242. [PMID: 27267245 PMCID: PMC5136525 DOI: 10.1016/j.neuroscience.2016.05.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/25/2016] [Accepted: 05/27/2016] [Indexed: 11/26/2022]
Abstract
Central infusion of the Na+/K+-ATPase inhibitor, ouabain in rats serves as an animal model of mania because it leads to hyperactivity, as well as reproduces ion dysregulation and reduced brain-derived neurotrophic factor (BDNF) levels similar to that observed in bipolar disorder. Bipolar disorder is also associated with cognitive inflexibility and working memory deficits. It is unknown whether ouabain treatment in rats leads to similar cognitive flexibility and working memory deficits. The present study examined the effects of an intracerebral ventricular infusion of ouabain in rats on spontaneous alternation, probabilistic reversal learning and BDNF expression levels in the frontal cortex. Ouabain treatment significantly increased locomotor activity, but did not affect alternation performance in a Y-maze. Ouabain treatment selectively impaired reversal learning in a spatial discrimination task using an 80/20 probabilistic reinforcement procedure. The reversal learning deficit in ouabain-treated rats resulted from an impaired ability to maintain a new choice pattern (increased regressive errors). Ouabain treatment also decreased sensitivity to negative feedback during the initial phase of reversal learning. Expression of BDNF mRNA and protein levels was downregulated in the frontal cortex which also negatively correlated with regressive errors. These findings suggest that the ouabain model of mania may be useful in understanding the neuropathophysiology that contributes to cognitive flexibility deficits and test potential treatments to alleviate cognitive deficits in bipolar disorder.
Collapse
Affiliation(s)
- Dionisio A Amodeo
- Department of Psychology, University of Illinois at Chicago, Chicago, IL 60607, United States
| | - Gena Grospe
- Department of Psychology, University of Illinois at Chicago, Chicago, IL 60607, United States
| | - Hui Zang
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60608, United States
| | - Yogesh Dwivedi
- Department of Psychiatry, University of Alabama at Birmingham, Birmingham, AL 35209, United States
| | - Michael E Ragozzino
- Department of Psychology, University of Illinois at Chicago, Chicago, IL 60607, United States.
| |
Collapse
|
26
|
Di Cerbo A, Sechi S, Canello S, Guidetti G, Fiore F, Cocco R. Behavioral Disturbances: An Innovative Approach to Monitor the Modulatory Effects of a Nutraceutical Diet. J Vis Exp 2017. [PMID: 28117795 PMCID: PMC5407696 DOI: 10.3791/54878] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In dogs, diets are often used to modulate behavioral disturbances related to chronic anxiety and stress caused by intense and restless activity. However, the traditional ways to monitor behavioral changes in dogs are complicated and not efficient. In the current clinical evaluation, a new, simple monitoring system was used to assess the effectiveness of a specific diet in positively modulating the intense and restless activity of 24 dogs of different ages and breeds. This protocol describes how to easily and rapidly evaluate improvement in a set of symptoms related to generalized anxiety by using a specific sensor, a mobile phone app, a wireless router, and a computer. The results showed that dogs treated with specific diets showed significant improvement in the times spent active and at rest after 10 days (p < 0.01 and p < 0.05, respectively). These dogs also showed an overall significant improvement in clinical and behavioral symptoms. A specific sensor, along with its related hardware, was demonstrated to successfully monitor behavioral changes relating to movement in dogs.
Collapse
Affiliation(s)
- Alessandro Di Cerbo
- School of Specialization in Clinical Biochemistry, "G. d'Annunzio" University;
| | - Sara Sechi
- Department of Veterinary Medicine, Pathology and Veterinary Clinic Section, University of Sassari
| | | | | | - Filippo Fiore
- Department of Veterinary Medicine, Pathology and Veterinary Clinic Section, University of Sassari
| | - Raffaella Cocco
- Department of Veterinary Medicine, Pathology and Veterinary Clinic Section, University of Sassari
| |
Collapse
|
27
|
Sechi S, Di Cerbo A, Canello S, Guidetti G, Chiavolelli F, Fiore F, Cocco R. Effects in dogs with behavioural disorders of a commercial nutraceutical diet on stress and neuroendocrine parameters. Vet Rec 2016; 180:18. [PMID: 27885066 PMCID: PMC5284471 DOI: 10.1136/vr.103865] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2016] [Indexed: 02/07/2023]
Abstract
The well-being of dogs can be affected by changes in human lifestyle, eating habits and increased stressors that lead to behavioural disorders including fear, hyperactivity and anxiety, followed by negative affective moods and poor welfare. This randomised, controlled clinical evaluation involved 69 dogs, 38 males and 31 females, of different breeds, with behavioural disorders related to anxiety and chronic stress. They were fed a control diet or a nutraceutical diet (ND group) for 45 days. Neuroendocrine (serotonin, dopamine, β-endorphins, noradrenaline and cortisol) and stress (derivatives of reactive oxygen metabolites (dROMs) and biological antioxidant potential (BAP)) parameters related to behavioural disorders were evaluated at the beginning and end of the study period. Results showed a significant increase in serotonin, dopamine and β-endorphins plasma concentrations (*P<0.05, *P<0.05 and **P<0.01, respectively) and a significant decrease in noradrenaline and cortisol plasma concentrations in the ND group (*P<0.05). dROMs significantly decreased in the ND group (*P<0.05) while BAP was not affected. This study demonstrated for the first time that a specific diet significantly and positively affected neuroendocrine parameters and dROMs. These results open significant perspectives concerning the use of diet and nutraceuticals in the treatment of behavioural disorders.
Collapse
Affiliation(s)
- S Sechi
- Department of Veterinary Medicine, Pathology and Veterinary Clinic Section, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - A Di Cerbo
- Department of Biomedical Sciences, School of Specialization in Clinical Biochemistry, "G. d'Annunzio" University, Via dei Vestini 31, 66100 Chieti, Italy
| | - S Canello
- Research and Development Department, Forza10 USA Corp., 10142 Canopy Tree Ct. 32836 Orlando, Florida, USA
| | - G Guidetti
- Research and Development Department, Forza10 USA Corp., 10142 Canopy Tree Ct. 32836 Orlando, Florida, USA
| | - F Chiavolelli
- Department of Diagnostic Medicine, Clinical and Public Health, University of Modena and Reggio Emilia, Via Campi 213/A, 41125 Modena, Italy
| | - F Fiore
- Department of Veterinary Medicine, Pathology and Veterinary Clinic Section, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - R Cocco
- Department of Veterinary Medicine, Pathology and Veterinary Clinic Section, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| |
Collapse
|
28
|
Oxidative Stress Implications in the Affective Disorders: Main Biomarkers, Animal Models Relevance, Genetic Perspectives, and Antioxidant Approaches. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:3975101. [PMID: 27563374 PMCID: PMC4983669 DOI: 10.1155/2016/3975101] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 01/12/2023]
Abstract
The correlation between the affective disorders and the almost ubiquitous pathological oxidative stress can be described in a multifactorial way, as an important mechanism of central nervous system impairment. Whether the obvious changes which occur in oxidative balance of the affective disorders are a part of the constitutive mechanism or a collateral effect yet remains as an interesting question. However it is now clear that oxidative stress is a component of these disorders, being characterized by different aspects in a disease-dependent manner. Still, there are a lot of controversies regarding the relevance of the oxidative stress status in most of the affective disorders and despite the fact that most of the studies are showing that the affective disorders development can be correlated to increased oxidative levels, there are various studies stating that oxidative stress is not linked with the mood changing tendencies. Thus, in this minireview we decided to describe the way in which oxidative stress is involved in the affective disorders development, by focusing on the main oxidative stress markers that could be used mechanistically and therapeutically in these deficiencies, the genetic perspectives, some antioxidant approaches, and the relevance of some animal models studies in this context.
Collapse
|