1
|
Zakowicz P, Narozna B, Kozlowski T, Bargiel W, Grabarczyk M, Terczynska M, Pilecka J, Wasicka-Przewozna K, Pawlak J, Skibinska M. Peripheral Brain-Derived Neurotrophic Factor (BDNF) and Its Regulatory miRNAs as Biological Correlates of Impulsivity in Young Adults. Metabolites 2024; 14:529. [PMID: 39452910 PMCID: PMC11509573 DOI: 10.3390/metabo14100529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Background: Impulsivity assessment may serve as a valuable clinical tool in the stratification of suicide risk. Acting without forethought is a crucial feature in the psychopathology of many psychiatric disturbances and corresponds with suicidal ideations, behaviors, and attempts. Methods: We present data on biological and psychological correlates of impulsivity among young adults (n = 47). Psychological analysis included both the self-description questionnaire-Barratt Impulsiveness Scale (BIS-11)-and neuropsychological behavioral tests, including the Iowa Gambling Task (IGT), the Simple Response Time task (SRT), and the Continuous Performance Test (CPT). mRNA and micro-RNA were isolated from peripheral blood mononuclear cells (PBMC). Expression levels of Brain-Derived Neurotrophic Factor (BDNF) mRNA and its regulatory micro RNAs, mir-1-3p, mir-15a-5p, mir-26a-5p, mir-26b-5p, and mir-195-5p, were analyzed using the quantitative reverse transcription polymerase chain reaction (RT-qPCR) method. proBDNF and BDNF plasma protein levels were quantified using enzyme-linked immunosorbent assay (ELISA). Results: Significant correlations between BDNF mRNA and mir-15a-5p as well as proBDNF levels and mir-1-3p were detected. proBDNF protein levels correlated with motor and perseverance, while mir-26b correlated with cognitive complexity subdimensions of the BIS-11 scale. Correlations between BDNF, miRNAs, and the results of neuropsychological tests were also detected. Conclusions: The BDNF pathway shows a clinical potential in searching for biomarkers of impulse-control impairment. BDNF-regulatory micro-RNAs are detectable and related to clinical parameters in the studied population, which needs further research.
Collapse
Affiliation(s)
- Przemyslaw Zakowicz
- Collegium Medicum, University of Zielona Gora, 65-417 Zielona Gora, Poland
- Center for Children and Adolescent Treatment in Zabor, 66-003 Zabor, Poland
| | - Beata Narozna
- Molecular and Cell Biology Unit, Department of Paediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Tomasz Kozlowski
- Student’s Research Group “Biology of the Neuron”, Department of Psychiatric Genetics, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Weronika Bargiel
- Student’s Research Group “Biology of the Neuron”, Department of Psychiatric Genetics, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Maksymilian Grabarczyk
- Student’s Research Group “Biology of the Neuron”, Department of Psychiatric Genetics, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Maria Terczynska
- Student’s Research Group “Biology of the Neuron”, Department of Psychiatric Genetics, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Julia Pilecka
- Student’s Research Group “Biology of the Neuron”, Department of Psychiatric Genetics, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Karolina Wasicka-Przewozna
- Student’s Research Group “Biology of the Neuron”, Department of Psychiatric Genetics, Poznan University of Medical Sciences, 60-806 Poznan, Poland
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Joanna Pawlak
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Maria Skibinska
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| |
Collapse
|
2
|
Zangerolamo L, Carvalho M, Velloso LA, Barbosa HCL. Endocrine FGFs and their signaling in the brain: Relevance for energy homeostasis. Eur J Pharmacol 2024; 963:176248. [PMID: 38056616 DOI: 10.1016/j.ejphar.2023.176248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/10/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Since their discovery in 2000, there has been a continuous expansion of studies investigating the physiology, biochemistry, and pharmacology of endocrine fibroblast growth factors (FGFs). FGF19, FGF21, and FGF23 comprise a subfamily with attributes that distinguish them from typical FGFs, as they can act as hormones and are, therefore, referred to as endocrine FGFs. As they participate in a broad cross-organ endocrine signaling axis, endocrine FGFs are crucial lipidic, glycemic, and energetic metabolism regulators during energy availability fluctuations. They function as powerful metabolic signals in physiological responses induced by metabolic diseases, like type 2 diabetes and obesity. Pharmacologically, FGF19 and FGF21 cause body weight loss and ameliorate glucose homeostasis and energy expenditure in rodents and humans. In contrast, FGF23 expression in mice and humans has been linked with insulin resistance and obesity. Here, we discuss emerging concepts in endocrine FGF signaling in the brain and critically assess their putative role as therapeutic targets for treating metabolic disorders.
Collapse
Affiliation(s)
- Lucas Zangerolamo
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil
| | - Marina Carvalho
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil
| | - Licio A Velloso
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil
| | - Helena C L Barbosa
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil.
| |
Collapse
|
3
|
Jiang M, Yan W, Li X, Zhao L, Lu T, Zhang D, Li J, Wang L. Calcium Homeostasis and Psychiatric Disorders: A Mendelian Randomization Study. Nutrients 2023; 15:4051. [PMID: 37764834 PMCID: PMC10535008 DOI: 10.3390/nu15184051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Observational studies have investigated the impact of calcium homeostasis on psychiatric disorders; however, the causality of associations is yet to be established. Bidirectional Mendelian randomization (MR) analysis of calcium homeostasis hormones was conducted on nine psychiatric disorders. Calcium, serum 25-hydroxyvitamin D levels (25OHD), parathyroid hormone, and fibroblast growth factor 23 are the major calcium homeostasis hormones. The causality was evaluated by the inverse variance weighted method (IVW) and the MR Steiger test, while Cochran's Q test, the MR-Egger intercept test, funnel plot, and the leave-one-out method were used for sensitivity analyses. Bonferroni correction was used to determine the causative association features (p < 6.94 × 10-4). Schizophrenia (SCZ) was significantly associated with decreased 25OHD concentrations with an estimated effect of -0.0164 (Prandom-effect IVW = 2.39 × 10-7). In the Multivariable MR (MVMR) analysis adjusting for potentially confounding traits including body mass index, obesity, mineral supplements (calcium, fish oil, and vitamin D) and outdoor time (winter and summer), the relationship between SCZ and 25OHD remained. The genetically predicted autism spectrum disorder and bipolar disorder were also nominally associated with decreased 25OHD. This study provided evidence for a causal effect of psychiatric disorders on calcium homeostasis. The clinical monitoring of 25OHD levels in patients with psychiatric disorders is beneficial.
Collapse
Affiliation(s)
- Miaomiao Jiang
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health, Peking University Sixth Hospital, Peking University Institute of Mental Health, Peking University, Beijing 100191, China
| | - Weiheng Yan
- Children's Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100020, China
| | - Xianjing Li
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health, Peking University Sixth Hospital, Peking University Institute of Mental Health, Peking University, Beijing 100191, China
| | - Liyang Zhao
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health, Peking University Sixth Hospital, Peking University Institute of Mental Health, Peking University, Beijing 100191, China
| | - Tianlan Lu
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health, Peking University Sixth Hospital, Peking University Institute of Mental Health, Peking University, Beijing 100191, China
| | - Dai Zhang
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health, Peking University Sixth Hospital, Peking University Institute of Mental Health, Peking University, Beijing 100191, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Institute for Brain Research and Rehabilitation (IBRR), South China Normal University, Guangzhou 510631, China
| | - Jun Li
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health, Peking University Sixth Hospital, Peking University Institute of Mental Health, Peking University, Beijing 100191, China
| | - Lifang Wang
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health, Peking University Sixth Hospital, Peking University Institute of Mental Health, Peking University, Beijing 100191, China
| |
Collapse
|
4
|
Ursem SR, Diepenbroek C, Bacic V, Unmehopa UA, Eggels L, Maya‐Monteiro CM, Heijboer AC, la Fleur SE. Localization of fibroblast growth factor 23 protein in the rat hypothalamus. Eur J Neurosci 2021; 54:5261-5271. [PMID: 34184338 PMCID: PMC8456796 DOI: 10.1111/ejn.15375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 11/29/2022]
Abstract
Fibroblast growth factor 23 (FGF23) is an endocrine growth factor and known to play a pivotal role in phosphate homeostasis. Interestingly, several studies point towards a function of FGF23 in the hypothalamus. FGF23 classically activates the FGF receptor 1 in the presence of the co-receptor αKlotho, of both gene expression in the brain was previously established. However, studies on gene and protein expression of FGF23 in the brain are scarce and have been inconsistent. Therefore, our aim was to localise FGF23 gene and protein expression in the rat brain with focus on the hypothalamus. Also, we investigated the protein expression of αKlotho. Adult rat brains were used to localise and visualise FGF23 and αKlotho protein in the hypothalamus by immunofluorescence labelling. Furthermore, western blots were used for assessing hypothalamic FGF23 protein expression. FGF23 gene expression was investigated by qPCR in punches of the arcuate nucleus, lateral hypothalamus, paraventricular nucleus, choroid plexus, ventrolateral thalamic nucleus and the ventromedial hypothalamus. Immunoreactivity for FGF23 and αKlotho protein was found in the hypothalamus, third ventricle lining and the choroid plexus. Western blot analysis of the hypothalamus confirmed the presence of FGF23. Gene expression of FGF23 was not detected, suggesting that the observed FGF23 protein is not brain-derived. Several FGF receptors are known to be present in the brain. Therefore, we conclude that the machinery for FGF23 signal transduction is present in several brain areas, indeed suggesting a role for FGF23 in the brain.
Collapse
Affiliation(s)
- Stan R. Ursem
- Endocrine Laboratory, Department of Clinical Chemistry, Amsterdam Gastroenterology & MetabolismAmsterdam UMC, Vrije Universiteit Amsterdam and University of AmsterdamAmsterdamThe Netherlands
| | - Charlene Diepenbroek
- Department of Endocrinology and Metabolism and Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam NeuroscienceAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward Group, Netherlands Institute for NeuroscienceAn Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| | - Vesna Bacic
- Department of Endocrinology and Metabolism and Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam NeuroscienceAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward Group, Netherlands Institute for NeuroscienceAn Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| | - Unga A. Unmehopa
- Department of Endocrinology and Metabolism and Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam NeuroscienceAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward Group, Netherlands Institute for NeuroscienceAn Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| | - Leslie Eggels
- Department of Endocrinology and Metabolism and Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam NeuroscienceAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward Group, Netherlands Institute for NeuroscienceAn Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| | - Clarissa M. Maya‐Monteiro
- Department of Endocrinology and Metabolism and Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam NeuroscienceAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward Group, Netherlands Institute for NeuroscienceAn Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC)Oswaldo Cruz Foundation (FIOCRUZ)Rio de JaneiroBrazil
| | - Annemieke C. Heijboer
- Endocrine Laboratory, Department of Clinical Chemistry, Amsterdam Gastroenterology & MetabolismAmsterdam UMC, Vrije Universiteit Amsterdam and University of AmsterdamAmsterdamThe Netherlands
| | - Susanne E. la Fleur
- Department of Endocrinology and Metabolism and Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam NeuroscienceAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward Group, Netherlands Institute for NeuroscienceAn Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| |
Collapse
|
5
|
Cardoso AL, Fernandes A, Aguilar-Pimentel JA, de Angelis MH, Guedes JR, Brito MA, Ortolano S, Pani G, Athanasopoulou S, Gonos ES, Schosserer M, Grillari J, Peterson P, Tuna BG, Dogan S, Meyer A, van Os R, Trendelenburg AU. Towards frailty biomarkers: Candidates from genes and pathways regulated in aging and age-related diseases. Ageing Res Rev 2018; 47:214-277. [PMID: 30071357 DOI: 10.1016/j.arr.2018.07.004] [Citation(s) in RCA: 303] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Use of the frailty index to measure an accumulation of deficits has been proven a valuable method for identifying elderly people at risk for increased vulnerability, disease, injury, and mortality. However, complementary molecular frailty biomarkers or ideally biomarker panels have not yet been identified. We conducted a systematic search to identify biomarker candidates for a frailty biomarker panel. METHODS Gene expression databases were searched (http://genomics.senescence.info/genes including GenAge, AnAge, LongevityMap, CellAge, DrugAge, Digital Aging Atlas) to identify genes regulated in aging, longevity, and age-related diseases with a focus on secreted factors or molecules detectable in body fluids as potential frailty biomarkers. Factors broadly expressed, related to several "hallmark of aging" pathways as well as used or predicted as biomarkers in other disease settings, particularly age-related pathologies, were identified. This set of biomarkers was further expanded according to the expertise and experience of the authors. In the next step, biomarkers were assigned to six "hallmark of aging" pathways, namely (1) inflammation, (2) mitochondria and apoptosis, (3) calcium homeostasis, (4) fibrosis, (5) NMJ (neuromuscular junction) and neurons, (6) cytoskeleton and hormones, or (7) other principles and an extensive literature search was performed for each candidate to explore their potential and priority as frailty biomarkers. RESULTS A total of 44 markers were evaluated in the seven categories listed above, and 19 were awarded a high priority score, 22 identified as medium priority and three were low priority. In each category high and medium priority markers were identified. CONCLUSION Biomarker panels for frailty would be of high value and better than single markers. Based on our search we would propose a core panel of frailty biomarkers consisting of (1) CXCL10 (C-X-C motif chemokine ligand 10), IL-6 (interleukin 6), CX3CL1 (C-X3-C motif chemokine ligand 1), (2) GDF15 (growth differentiation factor 15), FNDC5 (fibronectin type III domain containing 5), vimentin (VIM), (3) regucalcin (RGN/SMP30), calreticulin, (4) PLAU (plasminogen activator, urokinase), AGT (angiotensinogen), (5) BDNF (brain derived neurotrophic factor), progranulin (PGRN), (6) α-klotho (KL), FGF23 (fibroblast growth factor 23), FGF21, leptin (LEP), (7) miRNA (micro Ribonucleic acid) panel (to be further defined), AHCY (adenosylhomocysteinase) and KRT18 (keratin 18). An expanded panel would also include (1) pentraxin (PTX3), sVCAM/ICAM (soluble vascular cell adhesion molecule 1/Intercellular adhesion molecule 1), defensin α, (2) APP (amyloid beta precursor protein), LDH (lactate dehydrogenase), (3) S100B (S100 calcium binding protein B), (4) TGFβ (transforming growth factor beta), PAI-1 (plasminogen activator inhibitor 1), TGM2 (transglutaminase 2), (5) sRAGE (soluble receptor for advanced glycosylation end products), HMGB1 (high mobility group box 1), C3/C1Q (complement factor 3/1Q), ST2 (Interleukin 1 receptor like 1), agrin (AGRN), (6) IGF-1 (insulin-like growth factor 1), resistin (RETN), adiponectin (ADIPOQ), ghrelin (GHRL), growth hormone (GH), (7) microparticle panel (to be further defined), GpnmB (glycoprotein nonmetastatic melanoma protein B) and lactoferrin (LTF). We believe that these predicted panels need to be experimentally explored in animal models and frail cohorts in order to ascertain their diagnostic, prognostic and therapeutic potential.
Collapse
|