1
|
Seddon AR, MacArthur CP, Hampton MB, Stevens AJ. Inflammation and DNA methylation in Alzheimer's disease: mechanisms of epigenetic remodelling by immune cell oxidants in the ageing brain. Redox Rep 2024; 29:2428152. [PMID: 39579010 PMCID: PMC11587723 DOI: 10.1080/13510002.2024.2428152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024] Open
Abstract
Alzheimer's disease is a neurodegenerative disease involving memory impairment, confusion, and behavioural changes. The disease is characterised by the accumulation of amyloid beta plaques and neurofibrillary tangles in the brain, which disrupt normal neuronal function. There is no known cure for Alzheimer's disease and due to increasing life expectancy, occurrence is projected to rise over the coming decades. The causes of Alzheimer's disease are multifactorial with inflammation, oxidative stress, genetic and epigenetic variation, and cerebrovascular abnormalities among the strongest contributors. We review the current literature surrounding inflammation and epigenetics in Alzheimer's disease, with a focus on how oxidants from infiltrating immune cells have the potential to alter DNA methylation profiles in the ageing brain.
Collapse
Affiliation(s)
- A. R. Seddon
- Mātai Hāora – Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
- Department of Pathology and Molecular Medicine, University of Otago, Wellington, New Zealand
| | - C. P. MacArthur
- Department of Pathology and Molecular Medicine, University of Otago, Wellington, New Zealand
| | - M. B. Hampton
- Mātai Hāora – Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - A. J. Stevens
- Department of Pathology and Molecular Medicine, University of Otago, Wellington, New Zealand
| |
Collapse
|
2
|
Badini F, Mirshekar MA, Shahraki S, Fanaei H, Bayrami A. Neuroprotective effects of levothyroxine on cognition deficits and memory in an experimental model of Huntington's disease in rats: An electrophysiological study. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5939-5951. [PMID: 38372755 DOI: 10.1007/s00210-024-03006-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/10/2024] [Indexed: 02/20/2024]
Abstract
Huntington's disease (HD) is a neurodegenerative disorder characterized by cognitive deficits and motor function. Levothyroxine (L-T4) is a synthetic form of Thyroxine (T4), which can improve cognitive ability. The aim of the present study was to determine the neuroprotective effect of L-T4 administration in rats with 3-nitropropionic acid (3-NP)-induced Huntington's disease. Forty-eight Wistar male rats were divided into six groups (n = 8): Group 1 control group that received physiological saline, Group 2 and 3: which received L-T4 (30 and 100 μg/kg), Group 4: HD group that received 3-NP and Groups 5 and 6: The treatment of the HD rats with L-T4 (30 and 100 μg/kg). Spatial memory, locomotor activity, and frequency of neuronal firing were assessed. After decapitation, the Brain-Derived Neurotrophic Factor (BDNF) and Total antioxidant capacity (TAC) levels in the striatum was measured. The results showed that the indices of spatial memory (mean path length and latency time) and motor dysfunction (immobility time) significantly increased, while time spent in the goal quadrant, swimming speed, spike rate, and striatum levels of BDNF significantly decreased in the HD group compared to the control group. L-T4 treatment significantly enhanced time spent in the goal quadrant, swimming speed, motor activity (number of line crossing and rearing), spike rate and striatal BDNF level. This research showed that L-T4 prevented the disruption of motor activity and cognitive deficiencies induced by 3-NP. The beneficial effects of L-T4 may be due to an increase in the concentration of BDNF and enhancement of the spike rate in the striatum.
Collapse
Affiliation(s)
- Fereshteh Badini
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mohammad Ali Mirshekar
- Clinical Immunology Research Center, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Samira Shahraki
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
- Cellular and Molecular Research Center, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Hamed Fanaei
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
- Pregnancy Health Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Abolfazl Bayrami
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran.
| |
Collapse
|
3
|
Gendron WH, Fertan E, Roddick KM, Wong AA, Maliougina M, Hiani YE, Anini Y, Brown RE. Intranasal insulin treatment ameliorates spatial memory, muscular strength, and frailty deficits in 5xFAD mice. Physiol Behav 2024; 281:114583. [PMID: 38750806 DOI: 10.1016/j.physbeh.2024.114583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
The 5xFAD mouse model shows age-related weight loss as well as cognitive and motor deficits. Metabolic dysregulation, especially impaired insulin signaling, is also present in AD. This study examined whether intranasal delivery of insulin (INI) at low (0.875 U) or high (1.750 U) doses would ameliorate these deficits compared to saline in 10-month-old female 5xFAD and B6SJL wildtype (WT) mice. INI increased forelimb grip strength in the wire hang test in 5xFAD mice in a dose-dependent manner but did not improve the performance of 5xFAD mice on the balance beam. High INI doses reduced frailty scores in 5xFAD mice and improved spatial memory in both acquisition and reversal probe trials in the Morris water maze. INI increased swim speed in 5xFAD mice but had no effect on object recognition memory or working memory in the spontaneous alternation task, nor did it improve memory in the contextual or cued fear memory tasks. High doses of insulin increased the liver, spleen, and kidney weights and reduced brown adipose tissue weights. P-Akt signaling in the hippocampus was increased by insulin in a dose-dependent manner. Altogether, INI increased strength, reduced frailty scores, and improved visual spatial memory. Hypoglycemia was not present after INI, however alterations in tissue and organ weights were present. These results are novel and important as they indicate that intra-nasal insulin can reverse cognitive, motor and frailty deficits found in this mouse model of AD.
Collapse
Affiliation(s)
- William H Gendron
- Departments of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Emre Fertan
- Departments of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Kyle M Roddick
- Departments of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Aimée A Wong
- Departments of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Maria Maliougina
- Departments of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Yassine El Hiani
- Departments of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Younes Anini
- Departments of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Departments of Obstetrics and Gynecology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Richard E Brown
- Departments of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Departments of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|
4
|
Ghaderi S, Fatehi F, Kalra S, Mohammadi S, Zemorshidi F, Ramezani M, Hesami O, Pezeshgi S, Batouli SAH. Volume loss in the left anterior-superior subunit of the hypothalamus in amyotrophic lateral sclerosis. CNS Neurosci Ther 2024; 30:e14801. [PMID: 38887187 PMCID: PMC11183167 DOI: 10.1111/cns.14801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/11/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Amyotrophic lateral sclerosis (ALS) causes motor neuron loss and progressive paralysis. While traditionally viewed as motor neuron disease (MND), ALS also affects non-motor regions, such as the hypothalamus. This study aimed to quantify the hypothalamic subregion volumes in patients with ALS versus healthy controls (HCs) and examine their associations with demographic and clinical features. METHODS Forty-eight participants (24 ALS patients and 24 HCs) underwent structural MRI. A deep convolutional neural network was used for the automated segmentation of the hypothalamic subunits, including the anterior-superior (a-sHyp), anterior-inferior (a-iHyp), superior tuberal (supTub), inferior tuberal (infTub), and posterior (posHyp). The neural network was validated using FreeSurfer v7.4.1, with individual head size variations normalized using total intracranial volume (TIV) normalization. Statistical analyses were performed for comparisons using independent sample t-tests. Correlations were calculated using Pearson's and Spearman's tests (p < 0.05). The standard mean difference (SMD) was used to compare the mean differences between parametric variables. RESULTS The volume of the left a-sHyp hypothalamic subunit was significantly lower in ALS patients than in HCs (p = 0.023, SMD = -0.681). No significant correlation was found between the volume of the hypothalamic subunits, body mass index (BMI), and ALSFRS-R in patients with ALS. However, right a-sHyp (r = 0.420, p = 0.041) was correlated with disease duration, whereas right supTub (r = -0.471, p = 0.020) and left postHyp (r = -0.406, p = 0.049) were negatively correlated with age. There was no significant difference in the volume of hypothalamic subunits between males and females, and no significant difference was found between patients with revised ALS Functional Rating Scale (ALSFRS-R) scores ≤41 and >41 and those with a disease duration of 9 months or less. DISCUSSION AND CONCLUSION The main finding suggests atrophy of the left a-sHyp hypothalamic subunit in patients with ALS, which is supported by previous research as an extra-motor neuroimaging finding for ALS.
Collapse
Affiliation(s)
- Sadegh Ghaderi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in MedicineTehran University of Medical SciencesTehranIran
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
| | - Farzad Fatehi
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
- Neurology DepartmentUniversity Hospitals of Leicester NHS TrustLeicesterUK
| | - Sanjay Kalra
- Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonAlbertaCanada
- Division of Neurology, Department of MedicineUniversity of AlbertaEdmontonAlbertaCanada
| | - Sana Mohammadi
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
| | - Fariba Zemorshidi
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
- Department of NeurologyMashhad University of Medical SciencesMashhadIran
| | - Mahtab Ramezani
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
| | - Omid Hesami
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
- Department of NeurologyShahid Beheshti University of Medical SciencesTehranIran
| | - Saharnaz Pezeshgi
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
| | - Seyed Amir Hossein Batouli
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in MedicineTehran University of Medical SciencesTehranIran
| |
Collapse
|
5
|
Brown RE. Sex Differences in Neurodevelopment and Its Disorders. NEURODEVELOPMENTAL PEDIATRICS 2023:179-212. [DOI: 10.1007/978-3-031-20792-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Loss of body weight in old 5xFAD mice and the alteration of gut microbiota composition. Exp Gerontol 2022; 166:111885. [DOI: 10.1016/j.exger.2022.111885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 11/24/2022]
|
7
|
Basso L, Boecking B, Neff P, Brueggemann P, Mazurek B, Peters EMJ. Psychological Treatment Effects Unrelated to Hair-Cortisol and Hair-BDNF Levels in Chronic Tinnitus. Front Psychiatry 2022; 13:764368. [PMID: 35250657 PMCID: PMC8895295 DOI: 10.3389/fpsyt.2022.764368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/04/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Currently, there are no objective markers to measure treatment efficacy in chronic (distressing) tinnitus. This study explores whether stress-related biomarkers cortisol and brain-derived neurotrophic factor (BDNF) measured in hair samples of chronic tinnitus patients change after compact multimodal tinnitus-specific cognitive behavioral therapy. METHODS In this longitudinal study, hair-cortisol and hair-BDNF levels, self-reported tinnitus-related distress (Tinnitus Questionnaire; TQ), and perceived stress (Perceived Stress Questionnaire; PSQ-20) were assessed before and 3 months after 5 days of treatment in N = 80 chronic tinnitus patients. Linear mixed-effects models with backward elimination were used to assess treatment-induced changes, and a cross-lagged panel model (structural equation model) was used for additional exploratory analysis of the temporal associations between TQ and hair-BDNF. RESULTS At follow-up, a reduction in TQ (p < 0.001) and PSQ-20 scores (p = 0.045) was observed, which was not influenced by baseline hair-cortisol or hair-BDNF levels. No changes in biomarker levels were observed after treatment. The exploratory analysis tentatively suggests that a directional effect of baseline TQ scores on hair-BDNF levels at follow-up (trend; p = 0.070) was more likely than the opposite directional effect of baseline hair-BDNF levels on TQ scores at follow-up (n.s.). DISCUSSION While the treatment effectively reduced tinnitus-related distress and perceived stress in chronic tinnitus patients, this effect was not mirrored in biological changes. However, the lack of changes in hair-cortisol and hair-BDNF levels might have been influenced by the treatment duration, follow-up interval, or confounding medical factors, and therefore must be interpreted with caution. The relationship between tinnitus-related distress and hair-BDNF levels should be explored further to obtain a better understanding of stress-related effects in chronic tinnitus.
Collapse
Affiliation(s)
- Laura Basso
- Tinnitus Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Benjamin Boecking
- Tinnitus Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Patrick Neff
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany.,University Research Priority Program "Dynamics of Healthy Aging", University of Zurich, Zurich, Switzerland.,Centre for Cognitive Neuroscience and Department of Psychology, University of Salzburg, Salzburg, Austria
| | - Petra Brueggemann
- Tinnitus Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Birgit Mazurek
- Tinnitus Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Eva M J Peters
- Psychoneuroimmunology Laboratory, Department of Psychosomatic Medicine and Psychotherapy, Justus-Liebig University Giessen, Giessen, Germany.,Psychosomatics and Psychotherapy, Charité Center 12 Internal Medicine and Dermatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
8
|
D’Amico E, Grosso G, Nieves JW, Zanghì A, Factor-Litvak P, Mitsumoto H. Metabolic Abnormalities, Dietary Risk Factors and Nutritional Management in Amyotrophic Lateral Sclerosis. Nutrients 2021; 13:nu13072273. [PMID: 34209133 PMCID: PMC8308334 DOI: 10.3390/nu13072273] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a devastating progressive neurodegenerative disease that affects motor neurons, leading to a relentless paralysis of skeletal muscles and eventual respiratory failure. Although a small percentage of patients may have a longer survival time (up to 10 years), in most cases, the median survival time is from 20 to 48 months. The pathogenesis and risk factors for ALS are still unclear: among the various aspects taken into consideration, metabolic abnormalities and nutritional factors have been the focus of recent interests. Although there are no consistent findings regarding prior type-2 diabetes, hypercholesterolemia and ALS incidence, abnormalities in lipid and glucose metabolism may be linked to disease progression, leading to a relatively longer survival (probably as a result of counteract malnutrition and cachexia in the advanced stages of the disease). Among potential dietary risk factors, a higher risk of ALS has been associated with an increased intake of glutamate, while the consumption of antioxidant and anti-inflammatory compounds, such as vitamin E, n-3 polyunsaturated fatty acids, and carotenoids, has been related to lower incidence. Poor nutritional status and weight loss in ALS resulting from poor oral intake, progressive muscle atrophy, and the potential hypermetabolic state have been associated with rapid disease progression. It seems important to routinely perform a nutritional assessment of ALS patients at the earliest referral: weight maintenance (if adequate) or gain (if underweight) is suggested from the scientific literature; evidence of improved diet quality (in terms of nutrients and limits for pro-inflammatory dietary factors) and glucose and lipid control is yet to be confirmed, but it is advised. Further research is warranted to better understand the role of nutrition and the underlying metabolic abnormalities in ALS, and their contribution to the pathogenic mechanisms leading to ALS initiation and progression.
Collapse
Affiliation(s)
- Emanuele D’Amico
- Department G.F. Ingrassia, University of Catania, 95123 Catania, Italy; (E.D.); (A.Z.)
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Correspondence: ; Tel.: +39-0954-781-187
| | - Jeri W. Nieves
- Mailman School of Public Health and Institute of Human Nutrition, Columbia University, New York, NY 10032, USA; (J.W.N.); (P.F.-L.)
| | - Aurora Zanghì
- Department G.F. Ingrassia, University of Catania, 95123 Catania, Italy; (E.D.); (A.Z.)
| | - Pam Factor-Litvak
- Mailman School of Public Health and Institute of Human Nutrition, Columbia University, New York, NY 10032, USA; (J.W.N.); (P.F.-L.)
| | - Hiroshi Mitsumoto
- Eleanor and Lou Gehrig ALS Center, The Neurological Institute of New York Columbia University Medical Center, New York, NY 10032, USA;
| |
Collapse
|
9
|
Mendonça DCB, Fernandes DR, Hernandez SS, Soares FDG, Figueiredo KD, Coelho FGDM. Physical exercise is effective for neuropsychiatric symptoms in Alzheimer's disease: a systematic review. ARQUIVOS DE NEURO-PSIQUIATRIA 2021; 79:447-456. [PMID: 34161531 DOI: 10.1590/0004-282x-anp-2020-0284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Neuropsychiatric symptoms are disorders frequently seen in Alzheimer's disease. These symptoms contribute to reduction of brain reserve capacity and, in addition, they present unfavorable implications, such as: poor prognosis for the disease, increased functional decline, increased burden on the caregiver and institutionalization. This scenario makes neuropsychiatric symptoms one of the biggest problems in Alzheimer's disease, and gives rise to a need for treatments focused on improving these symptoms. Sow progress in drug trials has led to interest in exploring non-pharmacological measures for improving the neuropsychiatric symptoms of Alzheimer's disease, such as physical exercise. OBJECTIVE To ascertain the effect of exercise on the neuropsychiatric symptoms of Alzheimer's disease and its implications. METHODS This was a systematic review of effective longitudinal research, conducted by searching for articles in the PubMed, Web of Science, CINAHL and Scopus electronic databases, from 2009 to 2019. Studies in which the sample consisted of elderly people aged 65 years old or over with a diagnosis of Alzheimer's disease were included. Initially 334 articles were identified. After exclusions, 21 articles remained to be read in full. From these, five articles fitted the eligibility criteria, and a further two articles were added through manual searches in the references of the articles found. RESULTS Out of the seven articles analyzed in this review, five studies revealed that physical exercise had a positive effect on the neuropsychiatric symptoms of Alzheimer's disease. CONCLUSION This systematic review indicated that physical exercise is a favorable non-pharmacological means for attenuating the neuropsychiatric symptoms of elderly people with Alzheimer's disease, with special attention to aerobic exercises.
Collapse
Affiliation(s)
| | - Denise Rodrigues Fernandes
- Universidade Federal de Uberlândia, Programa de Pós-Graduação em Ciências da Saúde, Uberlândia MG, Brazil
| | - Salma Soleman Hernandez
- Universidade do Estado de Santa Catarina, Programa de Pós-Graduação em Ciências do Movimento Humano, Florianópolis SC, Brazil
| | | | - Karina de Figueiredo
- Universidade Federal do Triângulo Mineiro, Programa de Pós-Graduação em Educação Física, Uberaba MG, Brazil
| | | |
Collapse
|
10
|
Gendron WH, Fertan E, Pelletier S, Roddick KM, O'Leary TP, Anini Y, Brown RE. Age related weight loss in female 5xFAD mice from 3 to 12 months of age. Behav Brain Res 2021; 406:113214. [PMID: 33677013 DOI: 10.1016/j.bbr.2021.113214] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/04/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023]
Abstract
In addition to cognitive decline, patients with Alzheimer's disease (AD) exhibit sensory, motor, and neuropsychiatric deficits. Many AD patients also show weight loss, suggesting that AD may involve a metabolic syndrome. The 5xFAD mouse model shows age-related weight loss compared to wildtype controls, and thus may exhibit metabolic dysfunction. This longitudinal study measured age-related weight loss in female 5xFAD and B6SJL/JF2 wild-type mice from 3 to 12 months of age, and examines some of the behavioural and physiological phenotypes in these mice that have been proposed to contribute to this weight loss. Because some mice had to be singly housed during the study, we also examined genotype by housing interactions. The 5xFAD mice weighed less and ate less than WT littermates starting at 6 months of age, exhibited less home cage activity, had higher frailty scores, less white adipose tissue, and lower leptin expression. At 9 and 12 months of age, heavier 5xFAD mice performed better on the rotarod, suggesting that metabolic deficits which begin between 6 and 9 months of age may exacerbate the behavioural deficits in 5xFAD mice. These results indicate that the 5xFAD mouse is a useful model to study the behavioural and metabolic changes in AD.
Collapse
Affiliation(s)
- William H Gendron
- Departments of Psychology and Neuroscience, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Emre Fertan
- Departments of Psychology and Neuroscience, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Stephanie Pelletier
- Departments of Psychology and Neuroscience, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Kyle M Roddick
- Departments of Psychology and Neuroscience, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Timothy P O'Leary
- Departments of Psychology and Neuroscience, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Younes Anini
- Departments of Physiology and Biophysics, Halifax, Nova Scotia, B3H 4R2, Canada; Departments of Obstetrics and Gynecology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Richard E Brown
- Departments of Psychology and Neuroscience, Halifax, Nova Scotia, B3H 4R2, Canada; Departments of Physiology and Biophysics, Halifax, Nova Scotia, B3H 4R2, Canada.
| |
Collapse
|
11
|
Stewart CA, Finger EC. The supraoptic and paraventricular nuclei in healthy aging and neurodegeneration. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:105-123. [PMID: 34225924 DOI: 10.1016/b978-0-12-820107-7.00007-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The supraoptic (SON) and paraventricular (PVN) nuclei of the hypothalamus undergo structural and functional changes over the course of healthy aging. These nuclei and their connections are also heterogeneously affected by several different neurodegenerative diseases. This chapter reviews the involvement of the SON and PVN, the hypothalamic-pituitary axes, and the peptide hormones produced in both nuclei in healthy aging and in neurodegeneration, with a focus on Alzheimer's disease (AD), frontotemporal dementia (FTD), amyotrophic lateral sclerosis, progressive supranuclear palsy, Parkinson's disease (PD), dementia with Lewy bodies (DLB), multiple system atrophy, and Huntington's disease. Although age-related changes occur in several regions of the hypothalamus, the SON and PVN are relatively preserved during aging and in many neurodegenerative disorders. With aging, these nuclei do undergo some sexually dimorphic changes including changes in size and levels of vasopressin and corticotropin-releasing hormone, likely due to age-related changes in sex hormones. In contrast, oxytocinergic cells and circulating levels of thyrotropin-releasing hormone remain stable. A relative resistance to many forms of neurodegenerative pathology is also observed, in comparison to other hypothalamic and brain regions. Mirroring the pattern observed in aging, pathologic hallmarks of AD, and some subtypes of FTD are observed in the PVN, though to a milder degree than are observed in other brain regions, while the SON is relatively spared. In contrast, the SON appears more vulnerable to alpha-synuclein pathology of DLB and PD. The consequences of these alterations may help to inform several of the physiologic changes observed in aging and neurodegenerative disease.
Collapse
Affiliation(s)
- Chloe A Stewart
- Department of Clinical Neurological Sciences, Lawson Health Research Institute, London, ON, Canada; Graduate Program in Neuroscience, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Elizabeth C Finger
- Department of Clinical Neurological Sciences, Lawson Health Research Institute, London, ON, Canada; Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
12
|
Dipeptide repeat protein and TDP-43 pathology along the hypothalamic-pituitary axis in C9orf72 and non-C9orf72 ALS and FTLD-TDP cases. Acta Neuropathol 2020; 140:777-781. [PMID: 32862270 DOI: 10.1007/s00401-020-02216-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 10/23/2022]
|