1
|
Livia R, Kim H, Emily M, Luise MM, Haiko S, Julia S. "Estrogens and human brain networks: A systematic review of structural and functional neuroimaging studies". Front Neuroendocrinol 2024:101174. [PMID: 39733923 DOI: 10.1016/j.yfrne.2024.101174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/23/2024] [Accepted: 12/22/2024] [Indexed: 12/31/2024]
Abstract
Estrogen fluctuations during the menstrual cycle, puberty, postpartum, or in the menopausal transition are associated with cognitive, affective, and behavioral effects. Additionally, estrogens are essential in hormonal contraception, menopausal hormone therapy, or gender-affirming hormone therapy. This systematic review summarizes findings on the role of estrogens for structure, function, and connectivity of human brain networks. We searched PubMed, Web of Science, and ScienceDirect for neuroimaging articles assessing estrogens published since 2008. We included 54 studies (N = 2,494 participants) on endogenous estrogen, and 28 studies (N = 1740 participants) on exogenous estrogen conditions. Estrogen-related changes were reported for emotion, reward, memory, and resting-state networks, and in regional white and gray matter, with a particular neural plasticity in the hippocampus and amygdala. By examining study designs, imaging measures, and analysis methods, this review highlights the role of neuroimaging in advancing neuroendocrine and neurocognitive research, particularly promoting brain health for women and individuals with ovaries.
Collapse
Affiliation(s)
- Ruehr Livia
- Centre for Integrative Women's Health and Gender Medicine, Medical Faculty & University Hospital Leipzig, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1A, 04103 Leipzig, Germany; Max Planck School of Cognition, Stephanstraße 1A, 04103 Leipzig, Germany; Cognitive Neurology, University Medical Center Leipzig, Liebigstraße 16, 04103 Leipzig, Germany.
| | - Hoffmann Kim
- Centre for Integrative Women's Health and Gender Medicine, Medical Faculty & University Hospital Leipzig, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1A, 04103 Leipzig, Germany; Cognitive Neurology, University Medical Center Leipzig, Liebigstraße 16, 04103 Leipzig, Germany; Humboldt-Universität zu Berlin, Berlin School of Mind and Brain, Unter den Linden 6, 10099 Berlin, Germany.
| | - May Emily
- Centre for Integrative Women's Health and Gender Medicine, Medical Faculty & University Hospital Leipzig, Germany; Max Planck School of Cognition, Stephanstraße 1A, 04103 Leipzig, Germany; Cognitive Neurology, University Medical Center Leipzig, Liebigstraße 16, 04103 Leipzig, Germany.
| | - Münch Marie Luise
- Leipzig Reproductive Health Research Center, Liebigstraße 20A, 04103 Leipzig, Germany.
| | - Schlögl Haiko
- Department of Endocrinology, Nephrology, Rheumatology, Division of Endocrinology, University Hospital Leipzig, Liebigstraße 20, 04103 Leipzig, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Philipp-Rosenthal-Straße 27, 04103 Leipzig, Germany.
| | - Sacher Julia
- Centre for Integrative Women's Health and Gender Medicine, Medical Faculty & University Hospital Leipzig, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1A, 04103 Leipzig, Germany; Max Planck School of Cognition, Stephanstraße 1A, 04103 Leipzig, Germany; Cognitive Neurology, University Medical Center Leipzig, Liebigstraße 16, 04103 Leipzig, Germany; Department of Endocrinology, Nephrology, Rheumatology, Division of Endocrinology, University Hospital Leipzig, Liebigstraße 20, 04103 Leipzig, Germany.
| |
Collapse
|
2
|
Oughourlian TC, Rizvi S, Wang C, Kostiuk A, Salamon N, Holly LT, Ellingson BM. Sex-specific alterations in functional connectivity and network topology in patients with degenerative cervical myelopathy. Sci Rep 2024; 14:16020. [PMID: 38992236 PMCID: PMC11239916 DOI: 10.1038/s41598-024-67084-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 07/08/2024] [Indexed: 07/13/2024] Open
Abstract
Patients with degenerative cervical myelopathy (DCM) experience structural and functional brain reorganization. However, few studies have investigated the influence of sex on cerebral alterations. The present study investigates the role of sex on brain functional connectivity (FC) and global network topology in DCM and healthy controls (HCs). The resting-state functional MRI data was acquired for 100 patients (58 males vs. 42 females). ROI-to-ROI FC and network topological features were characterized for each patient and HC. Group differences in FC and network topological features were examined. Compared to healthy counterparts, DCM males exhibited higher FC between vision-related brain regions, and cerebellum, brainstem, and thalamus, but lower FC between the intracalcarine cortex and frontal and somatosensory cortices, while DCM females demonstrated higher FC between the thalamus and cerebellar and sensorimotor regions, but lower FC between sensorimotor and visual regions. DCM males displayed higher FC within the cerebellum and between the posterior cingulate cortex (PCC) and vision-related regions, while DCM females displayed higher FC between frontal regions and the PCC, cerebellum, and visual regions. Additionally, DCM males displayed significantly greater intra-network connectivity and efficiency compared to healthy counterparts. Results from the present study imply sex-specific supraspinal functional alterations occur in patients with DCM.
Collapse
Affiliation(s)
- Talia C Oughourlian
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, 924 Westwood Blvd, Suite 615, Los Angeles, CA, 90024, USA
- Neuroscience Interdepartmental Graduate Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Shan Rizvi
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Neuroscience Undergraduate Interdepartmental Program, College of Life Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Chencai Wang
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, 924 Westwood Blvd, Suite 615, Los Angeles, CA, 90024, USA
| | - Alex Kostiuk
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, 924 Westwood Blvd, Suite 615, Los Angeles, CA, 90024, USA
- Neuroscience Interdepartmental Graduate Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Noriko Salamon
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, 924 Westwood Blvd, Suite 615, Los Angeles, CA, 90024, USA
| | - Langston T Holly
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, 924 Westwood Blvd, Suite 615, Los Angeles, CA, 90024, USA.
- Neuroscience Interdepartmental Graduate Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Wugalter KA, Schroeder RA, Thurston RC, Wu M, Aizenstein HJ, Cohen AD, Kamboh MI, Karikari TK, Derby CA, Maki PM. Associations of endogenous estrogens, plasma Alzheimer's disease biomarkers, and APOE4 carrier status on regional brain volumes in postmenopausal women. Front Aging Neurosci 2024; 16:1426070. [PMID: 39044806 PMCID: PMC11263297 DOI: 10.3389/fnagi.2024.1426070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/18/2024] [Indexed: 07/25/2024] Open
Abstract
Background Women carrying the APOE4 allele are at greater risk of developing Alzheimer's disease (AD) from ages 65-75 years compared to men. To better understand the elevated risk conferred by APOE4 carrier status among midlife women, we investigated the separate and interactive associations of endogenous estrogens, plasma AD biomarkers, and APOE4 carrier status on regional brain volumes in a sample of late midlife postmenopausal women. Methods Participants were enrolled in MsBrain, a cohort study of postmenopausal women (n = 171, mean age = 59.4 years, mean MoCA score = 26.9; race = 83.2% white, APOE4 carriers = 40). Serum estrone (E1) and estradiol (E2) levels were assessed using liquid chromatography-tandem mass spectrometry. APOE genotype was determined using TaqMan SNP genotyping assays. Plasma AD biomarkers were measured using single molecule array technology. Cortical volume was measured and segmented by FreeSurfer software using individual T1w MPRAGE images. Multiple linear regression models were conducted to determine whether separate and interactive associations between endogenous estrogen levels, plasma AD biomarkers (Aβ42/Aβ40, Aβ42/p-tau181), and APOE4 carrier status predict regional brain volume (21 regions per hemisphere, selected a priori); and, whether significant interactive associations between estrogens and AD biomarkers on brain volume differed by APOE4 carrier status. Results There was no main effect of APOE4 carrier status on regional brain volumes, endogenous estrogen levels, or plasma AD biomarkers. Estrogens did not associate with regional brain volumes, except for positive associations with left caudal middle frontal gyrus and fusiform volumes. The interactive association of estrogens and APOE4 carrier status on brain volume was not significant for any region. The interactive association of estrogens and plasma AD biomarkers predicted brain volume of several regions. Higher E1 and E2 were more strongly associated with greater regional brain volumes among women with a poorer AD biomarker profile (lower Aβ42/40, lower Aβ42/p-tau181 ratios). In APOE4-stratified analyses, these interactions were driven by non-APOE4 carriers. Conclusion We demonstrate that the brain volumes of postmenopausal women with poorer AD biomarker profiles benefit most from higher endogenous estrogen levels. These findings are driven by non-APOE4 carriers, suggesting that APOE4 carriers may be insensitive to the favorable effects of estrogens on brain volume in the postmenopause.
Collapse
Affiliation(s)
- Katrina A. Wugalter
- Department of Psychology, University of Illinois Chicago, Chicago, IL, United States
| | - Rachel A. Schroeder
- Department of Psychology, University of Illinois Chicago, Chicago, IL, United States
| | - Rebecca C. Thurston
- Departments of Psychiatry, Epidemiology, Psychology, and Clinical and Translational Science, University of Pittsburgh, Pittsburgh, PA, United States
| | - Minjie Wu
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Howard J. Aizenstein
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ann D. Cohen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - M. Ilyas Kamboh
- Departments of Psychiatry, Human Genetics, and Epidemiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Thomas K. Karikari
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Carol A. Derby
- The Saul R. Korey Department of Neurology, Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Pauline M. Maki
- Departments of Psychiatry, Psychology and Obstetrics & Gynecology, University of Illinois Chicago, Chicago, IL, United States
| |
Collapse
|
4
|
Bini J. The historical progression of positron emission tomography research in neuroendocrinology. Front Neuroendocrinol 2023; 70:101081. [PMID: 37423505 PMCID: PMC10530506 DOI: 10.1016/j.yfrne.2023.101081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
The rapid and continual development of a number of radiopharmaceuticals targeting different receptor, enzyme and small molecule systems has fostered Positron Emission Tomography (PET) imaging of endocrine system actions in vivo in the human brain for several decades. PET radioligands have been developed to measure changes that are regulated by hormone action (e.g., glucose metabolism, cerebral blood flow, dopamine receptors) and actions within endocrine organs or glands such as steroids (e.g., glucocorticoids receptors), hormones (e.g., estrogen, insulin), and enzymes (e.g., aromatase). This systematic review is targeted to the neuroendocrinology community that may be interested in learning about positron emission tomography (PET) imaging for use in their research. Covering neuroendocrine PET research over the past half century, researchers and clinicians will be able to answer the question of where future research may benefit from the strengths of PET imaging.
Collapse
Affiliation(s)
- Jason Bini
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States.
| |
Collapse
|
5
|
Shigemoto Y, Sato N, Maikusa N, Sone D, Ota M, Kimura Y, Chiba E, Okita K, Yamao T, Nakaya M, Maki H, Arizono E, Matsuda H. Age and Sex-Related Effects on Single-Subject Gray Matter Networks in Healthy Participants. J Pers Med 2023; 13:jpm13030419. [PMID: 36983603 PMCID: PMC10057933 DOI: 10.3390/jpm13030419] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Recent developments in image analysis have enabled an individual’s brain network to be evaluated and brain age to be predicted from gray matter images. Our study aimed to investigate the effects of age and sex on single-subject gray matter networks using a large sample of healthy participants. We recruited 812 healthy individuals (59.3 ± 14.0 years, 407 females, and 405 males) who underwent three-dimensional T1-weighted magnetic resonance imaging. Similarity-based gray matter networks were constructed, and the following network properties were calculated: normalized clustering, normalized path length, and small-world coefficients. The predicted brain age was computed using a support-vector regression model. We evaluated the network alterations related to age and sex. Additionally, we examined the correlations between the network properties and predicted brain age and compared them with the correlations between the network properties and chronological age. The brain network retained efficient small-world properties regardless of age; however, reduced small-world properties were observed with advancing age. Although women exhibited higher network properties than men and similar age-related network declines as men in the subjects aged < 70 years, faster age-related network declines were observed in women, leading to no differences in sex among the participants aged ≥ 70 years. Brain age correlated well with network properties compared to chronological age in participants aged ≥ 70 years. Although the brain network retained small-world properties, it moved towards randomized networks with aging. Faster age-related network disruptions in women were observed than in men among the elderly. Our findings provide new insights into network alterations underlying aging.
Collapse
Affiliation(s)
- Yoko Shigemoto
- Department of Radiology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan
| | - Noriko Sato
- Department of Radiology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan
| | - Norihide Maikusa
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Daichi Sone
- Department of Psychiatry, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Miho Ota
- Department of Neuropsychiatry, University of Tsukuba, Tsukuba 305-8576, Japan
| | - Yukio Kimura
- Department of Radiology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan
| | - Emiko Chiba
- Department of Radiology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan
| | - Kyoji Okita
- Department of Drug Dependence Research, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan
- Department of Psychiatry, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan
| | - Tensho Yamao
- Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University, Fukushima 960-8516, Japan
| | - Moto Nakaya
- Department of Radiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Hiroyuki Maki
- Department of Radiology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan
| | - Elly Arizono
- Department of Radiology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan
| | - Hiroshi Matsuda
- Department of Radiology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan
- Department of Biofunctional Imaging, Fukushima Medical University, Fukushima 960-1295, Japan
- Drug Discovery and Cyclotron Research Center, Southern Tohoku Research Institute for Neuroscience, Fukushima 963-8052, Japan
- Correspondence: ; Tel.: +81-3-6271-8507
| |
Collapse
|
6
|
Effects of exogenous oxytocin and estradiol on resting-state functional connectivity in women and men. Sci Rep 2023; 13:3113. [PMID: 36813823 PMCID: PMC9947123 DOI: 10.1038/s41598-023-29754-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
Possible interactions of the neuropeptide oxytocin and the sex hormone estradiol may contribute to previously observed sex-specific effects of oxytocin on resting-state functional connectivity (rsFC) of the amygdala and hippocampus. Therefore, we used a placebo-controlled, randomized, parallel-group functional magnetic resonance imaging study design and measured amygdala and hippocampus rsFC in healthy men (n = 116) and free-cycling women (n = 111), who received estradiol gel (2 mg) or placebo before the intranasal administration of oxytocin (24 IU) or placebo. Our results reveal significant interaction effects of sex and treatments on rsFC of the amygdala and hippocampus in a seed-to-voxel analysis. In men, both oxytocin and estradiol significantly decreased rsFC between the left amygdala and the right and left lingual gyrus, the right calcarine fissure, and the right superior parietal gyrus compared to placebo, while the combined treatment produced a significant increase in rsFC. In women, the single treatments significantly increased the rsFC between the right hippocampus and the left anterior cingulate gyrus, whereas the combined treatment had the opposite effect. Collectively, our study indicates that exogenous oxytocin and estradiol have different region-specific effects on rsFC in women and men and that the combined treatment may produce antagonistic effects.
Collapse
|
7
|
Noyan H, Hamamci A, Firat Z, Sarsilmaz A, Ucok A. Menstrual Cycle-Related Changes in Women with Schizophrenia: A Resting-State fMRI Study. Neuropsychobiology 2022; 81:296-310. [PMID: 35263751 DOI: 10.1159/000522002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/15/2022] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Different influences of ovarian hormones in schizophrenia (SCZ) have been reported, but no study to date has assessed their effects on the brain dynamics at rest. The present study aimed to examine the hormonal and clinical changes related to the menstrual cycle and alterations in the resting-state functional connectivity (RS-FC) depending on cycle phase and/or hormonal fluctuations in SCZ. METHOD This study was conducted based on both between- and within-subject experimental designs, including 13 clinically stable female patients with SCZ (32 ± 7.7 years) and 13 healthy women (30 ± 7.3 years). RS-functional magnetic resonance imaging (fMRI) scanning, as well as hormonal and clinical assessments, was applied to each participant twice during two cycle phases: early follicular and mid-luteal. RESULTS A difference in mid-luteal progesterone levels was found between groups, with a large effect size (Cohen's d) of 0.8 (p < 0.05). Also, the estradiol levels negatively correlated with the negative symptom severity of the patients during their mid-luteal phase. In the patients, estrogen positively correlated with the auditory network connectivity in the left amygdala during the early follicular phase. In the controls, progesterone had positive correlations with the connectivity of the posterior default mode and the left frontoparietal networks in the bilateral precuneus during the early follicular phase and had a negative correlation with the executive control network connectivity in the mid-luteal phase. CONCLUSION The present study showed hormonal differences between groups and suggested that the levels of cycle-dependent hormones might be associated with the changes in clinical symptom severity and the RS-FC in the groups. Our RS-fMRI findings warrant further investigation.
Collapse
Affiliation(s)
- Handan Noyan
- Department of Psychology, Faculty of Social Sciences, Beykoz University, Istanbul, Turkey.,Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Andac Hamamci
- Department of Biomedical Engineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Zeynep Firat
- Department of Radiology, Yeditepe University Hospitals, Istanbul, Turkey
| | - Aysegul Sarsilmaz
- Department of Radiology, Yeditepe University Hospitals, Istanbul, Turkey
| | - Alp Ucok
- Department of Psychiatry, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
8
|
Andreano JM, Touroutoglou A, Dickerson B, Barrett LF. Hormonal Cycles, Brain Network Connectivity, and Windows of Vulnerability to Affective Disorder. Trends Neurosci 2018; 41:660-676. [PMID: 30274602 DOI: 10.1016/j.tins.2018.08.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/20/2018] [Accepted: 08/08/2018] [Indexed: 12/15/2022]
Abstract
The rate of affective disorder is substantially higher in women than in men, and considerable evidence points to the actions of ovarian hormones in mediating this disparity. In this Opinion, we discuss the hypothesis that cyclic changes in ovarian hormone levels produce cyclic alterations in connectivity between the intrinsic networks of the brain. These alterations produce specific temporal windows within the menstrual cycle when internetwork connectivity is increased, associated with increased stress reactivity and better memory for unpleasant, arousing events, leading to increased negative mood and susceptibility to affective disorder. Our windows of vulnerability model offers insights for both treatment of affective disorder and research on sex differences in the brain.
Collapse
Affiliation(s)
- Joseph M Andreano
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| | - Alexandra Touroutoglou
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown MA 02129, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Brad Dickerson
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown MA 02129, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Lisa Feldman Barrett
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Department of Psychology, Northeastern University, Boston, MA 02115, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| |
Collapse
|
9
|
Keiriz JJG, Zhan L, Ajilore O, Leow AD, Forbes AG. NeuroCave: A web-based immersive visualization platform for exploring connectome datasets. Netw Neurosci 2018; 2:344-361. [PMID: 30294703 PMCID: PMC6145855 DOI: 10.1162/netn_a_00044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/10/2018] [Indexed: 12/11/2022] Open
Abstract
We introduce NeuroCave, a novel immersive visualization system that facilitates the visual inspection of structural and functional connectome datasets. The representation of the human connectome as a graph enables neuroscientists to apply network-theoretic approaches in order to explore its complex characteristics. With NeuroCave, brain researchers can interact with the connectome-either in a standard desktop environment or while wearing portable virtual reality headsets (such as Oculus Rift, Samsung Gear, or Google Daydream VR platforms)-in any coordinate system or topological space, as well as cluster brain regions into different modules on-demand. Furthermore, a default side-by-side layout enables simultaneous, synchronized manipulation in 3D, utilizing modern GPU hardware architecture, and facilitates comparison tasks across different subjects or diagnostic groups or longitudinally within the same subject. Visual clutter is mitigated using a state-of-the-art edge bundling technique and through an interactive layout strategy, while modular structure is optimally positioned in 3D exploiting mathematical properties of platonic solids. NeuroCave provides new functionality to support a range of analysis tasks not available in other visualization software platforms.
Collapse
Affiliation(s)
- Johnson J. G. Keiriz
- Department of Computer Science, University of Illinois at Chicago, Chicago, IL, USA
- Collaborative Neuroimaging Environment for Connectomics, University of Illinois Chicago, Chicago, IL, USA
| | - Liang Zhan
- Department of Engineering and Technology, University of Wisconsin–Stout Menomonie, WI, USA
- Collaborative Neuroimaging Environment for Connectomics, University of Illinois Chicago, Chicago, IL, USA
| | - Olusola Ajilore
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
- Collaborative Neuroimaging Environment for Connectomics, University of Illinois Chicago, Chicago, IL, USA
| | - Alex D. Leow
- Department of Computer Science, University of Illinois at Chicago, Chicago, IL, USA
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
- Collaborative Neuroimaging Environment for Connectomics, University of Illinois Chicago, Chicago, IL, USA
| | - Angus G. Forbes
- Department of Computer Science, University of Illinois at Chicago, Chicago, IL, USA
- Collaborative Neuroimaging Environment for Connectomics, University of Illinois Chicago, Chicago, IL, USA
- Computational Media Department, University of California, Santa Cruz, Santa Cruz, CA, USA
| |
Collapse
|
10
|
Engman J, Sundström Poromaa I, Moby L, Wikström J, Fredrikson M, Gingnell M. Hormonal Cycle and Contraceptive Effects on Amygdala and Salience Resting-State Networks in Women with Previous Affective Side Effects on the Pill. Neuropsychopharmacology 2018; 43:555-563. [PMID: 28741624 PMCID: PMC5770753 DOI: 10.1038/npp.2017.157] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/22/2017] [Accepted: 07/18/2017] [Indexed: 12/16/2022]
Abstract
The mechanisms linking ovarian hormones to negative affect are poorly characterized, but important clues may come from the examination of the brain's intrinsic organization. Here, we studied the effects of both the menstrual cycle and oral contraceptives (OCs) on amygdala and salience network resting-state functional connectivity using a double-blind, randomized, and placebo-controlled design. Hormone levels, depressive symptoms, and resting-state functional connectivity were measured in 35 healthy women (24.9±4.2 years) who had previously experienced OC-related negative affect. All participants were examined in the follicular phase of a baseline cycle and in the third week of the subsequent cycle during treatment with either a combined OC (30 μg ethinyl estradiol/0.15 mg levonorgestrel) or placebo. The latter time point targeted the midluteal phase in placebo users and steady-state ethinyl estradiol and levonorgestrel concentrations in OC users. Amygdala and salience network connectivity generally increased with both higher endogenous and synthetic hormone levels, although amygdala-parietal cortical connectivity decreased in OC users. When in the luteal phase, the naturally cycling placebo users demonstrated higher connectivity in both networks compared with the women receiving OCs. Our results support a causal link between the exogenous administration of synthetic hormones and amygdala and salience network connectivity. Furthermore, they suggest a similar, potentially stronger, association between the natural hormonal variations across the menstrual cycle and intrinsic network connectivity.
Collapse
Affiliation(s)
- Jonas Engman
- Department of Psychology, Uppsala University, Uppsala, Sweden,Department of Psychology, Uppsala University, Box 1225, SE-751 42 Uppsala, Sweden, Tel: +46 18 471 21 07, Fax: +46 18 471 21 23, E-mail:
| | | | - Lena Moby
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
| | - Johan Wikström
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Mats Fredrikson
- Department of Psychology, Uppsala University, Uppsala, Sweden,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Malin Gingnell
- Department of Psychology, Uppsala University, Uppsala, Sweden,Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
| |
Collapse
|
11
|
Moraga‐Amaro R, van Waarde A, Doorduin J, de Vries EFJ. Sex steroid hormones and brain function: PET imaging as a tool for research. J Neuroendocrinol 2018; 30:e12565. [PMID: 29237239 PMCID: PMC5838537 DOI: 10.1111/jne.12565] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/26/2017] [Accepted: 12/06/2017] [Indexed: 12/15/2022]
Abstract
Sex steroid hormones are major regulators of sexual characteristic among species. These hormones, however, are also produced in the brain. Steroidal hormone-mediated signalling via the corresponding hormone receptors can influence brain function at the cellular level and thus affect behaviour and higher brain functions. Altered steroid hormone signalling has been associated with psychiatric disorders, such as anxiety and depression. Neurosteroids are also considered to have a neuroprotective effect in neurodegenerative diseases. So far, the role of steroid hormone receptors in physiological and pathological conditions has mainly been investigated post mortem on animal or human brain tissues. To study the dynamic interplay between sex steroids, their receptors, brain function and behaviour in psychiatric and neurological disorders in a longitudinal manner, however, non-invasive techniques are needed. Positron emission tomography (PET) is a non-invasive imaging tool that is used to quantitatively investigate a variety of physiological and biochemical parameters in vivo. PET uses radiotracers aimed at a specific target (eg, receptor, enzyme, transporter) to visualise the processes of interest. In this review, we discuss the current status of the use of PET imaging for studying sex steroid hormones in the brain. So far, PET has mainly been investigated as a tool to measure (changes in) sex hormone receptor expression in the brain, to measure a key enzyme in the steroid synthesis pathway (aromatase) and to evaluate the effects of hormonal treatment by imaging specific downstream processes in the brain. Although validated radiotracers for a number of targets are still warranted, PET can already be a useful technique for steroid hormone research and facilitate the translation of interesting findings in animal studies to clinical trials in patients.
Collapse
Affiliation(s)
- R. Moraga‐Amaro
- Department of Nuclear Medicine and Molecular ImagingUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - A. van Waarde
- Department of Nuclear Medicine and Molecular ImagingUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - J. Doorduin
- Department of Nuclear Medicine and Molecular ImagingUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - E. F. J. de Vries
- Department of Nuclear Medicine and Molecular ImagingUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
12
|
Conrin SD, Zhan L, Morrissey ZD, Xing M, Forbes A, Maki P, Milad MR, Ajilore O, Langenecker SA, Leow AD. From Default Mode Network to the Basal Configuration: Sex Differences in the Resting-State Brain Connectivity as a Function of Age and Their Clinical Correlates. Front Psychiatry 2018; 9:365. [PMID: 30150944 PMCID: PMC6100484 DOI: 10.3389/fpsyt.2018.00365] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 07/23/2018] [Indexed: 11/13/2022] Open
Abstract
Connectomics is a framework that models brain structure and function interconnectivity as a network, rather than narrowly focusing on select regions-of-interest. MRI-derived connectomes can be structural, usually based on diffusion-weighted MR imaging, or functional, usually formed by examining fMRI blood-oxygen-level-dependent (BOLD) signal correlations. Recently, we developed a novel method for assessing the hierarchical modularity of functional brain networks-the probability associated community estimation (PACE). PACE uniquely permits a dual formulation, thus yielding equivalent connectome modular structure regardless of whether positive or negative edges are considered. This method was rigorously validated using the 1,000 functional connectomes project data set (F1000, RRID:SCR_005361) (1) and the Human Connectome Project (HCP, RRID:SCR_006942) (2, 3) and we reported novel sex differences in resting-state connectivity not previously reported. (4) This study further examines sex differences in regard to hierarchical modularity as a function of age and clinical correlates, with findings supporting a basal configuration framework as a more nuanced and dynamic way of conceptualizing the resting-state connectome that is modulated by both age and sex. Our results showed that differences in connectivity between men and women in the 22-25 age range were not significantly different. However, these same non-significant differences attained significance in both the 26-30 age group (p = 0.003) and the 31-35 age group (p < 0.001). At the most global level, areas of diverging sex difference include parts of the prefrontal cortex and the temporal lobe, amygdala, hippocampus, inferior parietal lobule, posterior cingulate, and precuneus. Further, we identified statistically different self-reported summary scores of inattention, hyperactivity, and anxiety problems between men and women. These self-reports additionally divergently interact with age and the basal configuration between sexes.
Collapse
Affiliation(s)
- Sean D Conrin
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Liang Zhan
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Engineering and Technology, University of Wisconsin-Stout, Menomonie, WI, United States
| | - Zachery D Morrissey
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Mengqi Xing
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States
| | - Angus Forbes
- Department of Computational Media, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Pauline Maki
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Mohammed R Milad
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Olusola Ajilore
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Scott A Langenecker
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Alex D Leow
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
13
|
Ruan Q, D'onofrio G, Wu T, Greco A, Sancarlo D, Yu Z. Sexual dimorphism of frailty and cognitive impairment: Potential underlying mechanisms (Review). Mol Med Rep 2017; 16:3023-3033. [PMID: 28713963 DOI: 10.3892/mmr.2017.6988] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 01/01/2017] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to assess systematically gender differences in susceptibility to frailty and cognitive performance decline, and the underlying mechanisms. A systematic assessment was performed of the identified reviews of cohort, mechanistic and epidemiological studies. The selection criteria of the present study included: i) Sexual dimorphism of frailty, ii) sexual dimorphism of subjective memory decline (impairment) and atrophy of hippocampus during early life, iii) sexual dimorphism of late‑onset Alzheimer's disease and iv) sexual dimorphism mechanisms underlying frailty and cognitive impairment. Males exhibit a susceptibility to poor memory performance and a severe atrophy of the hippocampus during early life and females demonstrate a higher prevalence for frailty and late‑life dementia. The different alterations within the hypothalamic‑pituitary‑gonadal/adrenal axis, particularly with regard to gonadal hormones, cortisol and dehydroepiandrosterone/sulfate‑bound dehydroepiandrosterone prior to and following andropause in males and menopause in females, serve important roles in sexual dimorphism of frailty and cognitive impairment. These endocrine changes may accelerate immunosenescence, weaken neuroprotective and neurotrophic effects, and promote muscle catabolism. The present study suggested that these age‑associated endocrine alterations interact with gender‑specific genetic and epigenetic factors, together with immunosenescence and iron accumulation. Environment factors, including psychological factors, are additional potential causes of the sexual dimorphism of frailty and cognitive impairment.
Collapse
Affiliation(s)
- Qingwei Ruan
- Department of Geriatrics, Shanghai Key Laboratory of Clinical Geriatrics, Shanghai Institute of Geriatrics and Gerontology, Huadong Hospital and Research Center of Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai 200040, P.R. China
| | - Grazia D'onofrio
- Department of Medical Sciences, Geriatric Unit and Laboratory of Gerontology and Geriatrics, The Scientific Institute for Research and Health Care, Home for Relief of the Suffering Hospital, San Giovanni Rotondo, Foggia I‑71013, Italy
| | - Tao Wu
- Department of Geriatrics, Shanghai Key Laboratory of Clinical Geriatrics, Shanghai Institute of Geriatrics and Gerontology, Huadong Hospital and Research Center of Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai 200040, P.R. China
| | - Antonio Greco
- Department of Medical Sciences, Geriatric Unit and Laboratory of Gerontology and Geriatrics, The Scientific Institute for Research and Health Care, Home for Relief of the Suffering Hospital, San Giovanni Rotondo, Foggia I‑71013, Italy
| | - Daniele Sancarlo
- Department of Medical Sciences, Geriatric Unit and Laboratory of Gerontology and Geriatrics, The Scientific Institute for Research and Health Care, Home for Relief of the Suffering Hospital, San Giovanni Rotondo, Foggia I‑71013, Italy
| | - Zhuowei Yu
- Department of Geriatrics, Shanghai Key Laboratory of Clinical Geriatrics, Shanghai Institute of Geriatrics and Gerontology, Huadong Hospital and Research Center of Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
14
|
Schiller CE, Johnson SL, Abate AC, Schmidt PJ, Rubinow DR. Reproductive Steroid Regulation of Mood and Behavior. Compr Physiol 2016; 6:1135-60. [PMID: 27347888 PMCID: PMC6309888 DOI: 10.1002/cphy.c150014] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this article, we examine evidence supporting the role of reproductive steroids in the regulation of mood and behavior in women and the nature of that role. In the first half of the article, we review evidence for the following: (i) the reproductive system is designed to regulate behavior; (ii) from the subcellular to cellular to circuit to behavior, reproductive steroids are powerful neuroregulators; (iii) affective disorders are disorders of behavioral state; and (iv) reproductive steroids affect virtually every system implicated in the pathophysiology of depression. In the second half of the article, we discuss the diagnosis of the three reproductive endocrine-related mood disorders (premenstrual dysphoric disorder, postpartum depression, and perimenopausal depression) and present evidence supporting the relevance of reproductive steroids to these conditions. Existing evidence suggests that changes in reproductive steroid levels during specific reproductive states (i.e., the premenstrual phase of the menstrual cycle, pregnancy, parturition, and the menopause transition) trigger affective dysregulation in susceptible women, thus suggesting the etiopathogenic relevance of these hormonal changes in reproductive mood disorders. Understanding the source of individual susceptibility is critical to both preventing the onset of illness and developing novel, individualized treatments for reproductive-related affective dysregulation. © 2016 American Physiological Society. Compr Physiol 6:1135-1160, 2016e.
Collapse
Affiliation(s)
- Crystal Edler Schiller
- Psychiatry Department, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sarah L. Johnson
- Psychiatry Department, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Anna C. Abate
- Psychiatry Department, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Peter J. Schmidt
- Section on Behavioral Endocrinology, National Institute of Mental Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | - David R. Rubinow
- Psychiatry Department, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
15
|
Chan RW, Ho LC, Zhou IY, Gao PP, Chan KC, Wu EX. Structural and Functional Brain Remodeling during Pregnancy with Diffusion Tensor MRI and Resting-State Functional MRI. PLoS One 2015; 10:e0144328. [PMID: 26658306 PMCID: PMC4675543 DOI: 10.1371/journal.pone.0144328] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/17/2015] [Indexed: 01/25/2023] Open
Abstract
Although pregnancy-induced hormonal changes have been shown to alter the brain at the neuronal level, the exact effects of pregnancy on brain at the tissue level remain unclear. In this study, diffusion tensor imaging (DTI) and resting-state functional MRI (rsfMRI) were employed to investigate and document the effects of pregnancy on the structure and function of the brain tissues. Fifteen Sprague-Dawley female rats were longitudinally studied at three days before mating (baseline) and seventeen days after mating (G17). G17 is equivalent to the early stage of the third trimester in humans. Seven age-matched nulliparous female rats served as non-pregnant controls and were scanned at the same time-points. For DTI, diffusivity was found to generally increase in the whole brain during pregnancy, indicating structural changes at microscopic levels that facilitated water molecular movement. Regionally, mean diffusivity increased more pronouncedly in the dorsal hippocampus while fractional anisotropy in the dorsal dentate gyrus increased significantly during pregnancy. For rsfMRI, bilateral functional connectivity in the hippocampus increased significantly during pregnancy. Moreover, fractional anisotropy increase in the dentate gyrus appeared to correlate with the bilateral functional connectivity increase in the hippocampus. These findings revealed tissue structural modifications in the whole brain during pregnancy, and that the hippocampus was structurally and functionally remodeled in a more marked manner.
Collapse
Affiliation(s)
- Russell W. Chan
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Leon C. Ho
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Iris Y. Zhou
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Patrick P. Gao
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kevin C. Chan
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Ed X. Wu
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- * E-mail:
| |
Collapse
|
16
|
Thurston RC, Maki PM, Derby CA, Sejdić E, Aizenstein HJ. Menopausal hot flashes and the default mode network. Fertil Steril 2015; 103:1572-8.e1. [PMID: 25910572 DOI: 10.1016/j.fertnstert.2015.03.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/12/2015] [Accepted: 03/12/2015] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To test whether more physiologically assessed hot flashes were associated with more connectivity in the default mode network (DMN), the network of brain regions active during rest. We particularly focus on DMN networks supporting the hippocampus as this region is rich in estrogen (E) receptors (ER) and has previously been linked to hot flashes. DESIGN Women underwent 24 hours of physiologic and diary hot flash monitoring, functional magnetic resonance imaging (MRI), 72 hours of sleep actigraphy monitoring, a blood draw, questionnaires, and physical measures. SETTING University medical center. PATIENT(S) Twenty midlife women aged 40-60 years who had their uterus and both ovaries and were not taking hormone therapy (HT). INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) The DMN functional connectivity. RESULT(S) Controlling for age, race, and education, more physiologically-monitored hot flashes were associated with greater DMN connectivity (beta, B [SE] = 0.004 [0.002]), particularly hippocampal DMN connectivity (B [SE] = 0.005 [0.002]). Findings were most pronounced for sleep physiologic hot flashes (with hippocampal DMN, B [SE] = 0.02 [0.007]). Associations also persisted controlling for sleep, depressive symptoms, and serum E2 concentrations. CONCLUSION(S) More physiologically-monitored hot flashes were associated with more DMN connectivity, particularly networks supporting the hippocampus. Findings were most pronounced for sleep hot flashes. Findings underscore the importance of continued investigation of the central nervous system in efforts to understand this classic menopausal phenomenon.
Collapse
Affiliation(s)
- Rebecca C Thurston
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania.
| | - Pauline M Maki
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| | - Carol A Derby
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York
| | - Ervin Sejdić
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Howard J Aizenstein
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
17
|
Zhang H, Hao Y, Manor B, Novak P, Milberg W, Zhang J, Fang J, Novak V. Intranasal insulin enhanced resting-state functional connectivity of hippocampal regions in type 2 diabetes. Diabetes 2015; 64:1025-34. [PMID: 25249577 PMCID: PMC4338591 DOI: 10.2337/db14-1000] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/08/2014] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes mellitus (T2DM) alters brain function and manifests as brain atrophy. Intranasal insulin has emerged as a promising intervention for treatment of cognitive impairment. We evaluated the acute effects of intranasal insulin on resting-state brain functional connectivity in older adults with T2DM. This proof-of-concept, randomized, double-blind, placebo-controlled study evaluated the effects of a single 40 IU dose of insulin or saline in 14 diabetic and 14 control subjects. Resting-state functional connectivity between the hippocampal region and default mode network (DMN) was quantified using functional MRI (fMRI) at 3Tesla. Following insulin administration, diabetic patients demonstrated increased resting-state connectivity between the hippocampal regions and the medial frontal cortex (MFC) as compared with placebo (cluster size: right, P = 0.03) and other DMN regions. On placebo, the diabetes group had lower connectivity between the hippocampal region and the MFC as compared with control subjects (cluster size: right, P = 0.02), but on insulin, MFC connectivity was similar to control subjects. Resting-state connectivity correlated with cognitive performance. A single dose of intranasal insulin increases resting-state functional connectivity between the hippocampal regions and multiple DMN regions in older adults with T2DM. Intranasal insulin administration may modify functional connectivity among brain regions regulating memory and complex cognitive behaviors.
Collapse
Affiliation(s)
- Hui Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Ying Hao
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Bradley Manor
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China Division of Gerontology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Peter Novak
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA
| | - William Milberg
- New England Geriatric Research Education and Clinical Center-Boston Division, VA Boston Healthcare, and Department of Psychiatry, Harvard Medical School, Boston, MA
| | - Jue Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China College of Engineering, Peking University, Beijing, China
| | - Jing Fang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China College of Engineering, Peking University, Beijing, China
| | - Vera Novak
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| |
Collapse
|
18
|
Ebner NC, Kamin H, Diaz V, Cohen RA, MacDonald K. Hormones as "difference makers" in cognitive and socioemotional aging processes. Front Psychol 2015; 5:1595. [PMID: 25657633 PMCID: PMC4302708 DOI: 10.3389/fpsyg.2014.01595] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 12/29/2014] [Indexed: 11/13/2022] Open
Abstract
Aging is associated with well-recognized alterations in brain function, some of which are reflected in cognitive decline. While less appreciated, there is also considerable evidence of socioemotional changes later in life, some of which are beneficial. In this review, we examine age-related changes and individual differences in four neuroendocrine systems-cortisol, estrogen, testosterone, and oxytocin-as "difference makers" in these processes. This suite of interrelated hormonal systems actively coordinates regulatory processes in brain and behavior throughout development, and their level and function fluctuate during the aging process. Despite these facts, their specific impact in cognitive and socioemotional aging has received relatively limited study. It is known that chronically elevated levels of the stress hormone cortisol exert neurotoxic effects on the aging brain with negative impacts on cognition and socioemotional functioning. In contrast, the sex hormones estrogen and testosterone appear to have neuroprotective effects in cognitive aging, but may decrease prosociality. Higher levels of the neuropeptide oxytocin benefit socioemotional functioning, but little is known about the effects of oxytocin on cognition or about age-related changes in the oxytocin system. In this paper, we will review the role of these hormones in the context of cognitive and socioemotional aging. In particular, we address the aforementioned gap in the literature by: (1) examining both singular actions and interrelations of these four hormonal systems; (2) exploring their correlations and causal relationships with aspects of cognitive and socioemotional aging; and (3) considering multilevel internal and external influences on these hormone systems within the framework of explanatory pluralism. We conclude with a discussion of promising future research directions.
Collapse
Affiliation(s)
- Natalie C Ebner
- Department of Psychology, University of Florida Gainesville, FL, USA ; Department of Aging and Geriatric Research, University of Florida Gainesville, FL, USA
| | - Hayley Kamin
- Department of Psychology, University of Florida Gainesville, FL, USA
| | - Vanessa Diaz
- Department of Psychology, University of Florida Gainesville, FL, USA
| | - Ronald A Cohen
- Department of Aging and Geriatric Research, University of Florida Gainesville, FL, USA
| | - Kai MacDonald
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
19
|
Women and memory. Menopause 2015; 22:4-5. [DOI: 10.1097/gme.0000000000000386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Klapwijk ET, Goddings AL, Heyes SB, Bird G, Viner RM, Blakemore SJ. Increased functional connectivity with puberty in the mentalising network involved in social emotion processing. Horm Behav 2013; 64:314-22. [PMID: 23998674 PMCID: PMC4540076 DOI: 10.1016/j.yhbeh.2013.03.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 02/28/2013] [Accepted: 03/18/2013] [Indexed: 11/16/2022]
Abstract
This article is part of a Special Issue "Puberty and Adolescence". There is increasing evidence that puberty plays an important role in the structural and functional brain development seen in adolescence, but little is known of the pubertal influence on changes in functional connectivity. We explored how pubertal indicators (salivary concentrations of testosterone, oestradiol and DHEA; pubertal stage; menarcheal status) relate to functional connectivity between components of a mentalising network identified to be engaged in social emotion processing by our prior work, using psychophysiological interaction (PPI) analysis. Female adolescents aged 11 to 13years were scanned whilst silently reading scenarios designed to evoke either social emotions (guilt and embarrassment) or basic emotions (disgust and fear), of which only social compared to basic emotions require the representation of another person's mental states. Pubertal stage and menarcheal status were used to assign participants to pre/early or mid/late puberty groups. We found increased functional connectivity between the dorsomedial prefrontal cortex (DMPFC) and the right posterior superior temporal sulcus (pSTS) and right temporo-parietal junction (TPJ) during social relative to basic emotion processing. Moreover, increasing oestradiol concentrations were associated with increased functional connectivity between the DMPFC and the right TPJ during social relative to basic emotion processing, independent of age. Our analysis of the PPI data by phenotypic pubertal status showed that more advanced puberty stage was associated with enhanced functional connectivity between the DMPFC and the left anterior temporal cortex (ATC) during social relative to basic emotion processing, also independent of age. Our results suggest increased functional maturation of the social brain network with the advancement of puberty in girls.
Collapse
Affiliation(s)
- Eduard T. Klapwijk
- UCL Institute of Cognitive Neuroscience, London, UK
- Child and Adolescent Psychiatry, Curium-Leiden University Medical Centre, The Netherlands
- Institute of Psychology, Leiden University, The Netherlands
| | - Anne-Lise Goddings
- UCL Institute of Cognitive Neuroscience, London, UK
- UCL Institute of Child Health, London, UK
| | | | - Geoffrey Bird
- UCL Institute of Cognitive Neuroscience, London, UK
- Department of Psychological Sciences, Birkbeck College, London, UK
| | | | - Sarah-Jayne Blakemore
- UCL Institute of Cognitive Neuroscience, London, UK
- Corresponding author at: UCL Institute of Cognitive Neuroscience, 17 Queen Square, London WC1N 3AR, UK. (S.-J. Blakemore)
| |
Collapse
|
21
|
Berent-Spillson A, Persad CC, Love T, Sowers M, Randolph JF, Zubieta JK, Smith YR. Hormonal environment affects cognition independent of age during the menopause transition. J Clin Endocrinol Metab 2012; 97:E1686-94. [PMID: 22730514 PMCID: PMC3431577 DOI: 10.1210/jc.2012-1365] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
CONTEXT Cognitive decline is prevalent in aging populations, and cognitive complaints are common during menopause. However, the extent of hormonal influence is unclear, particularly when considered independent of the aging process. OBJECTIVE We sought to determine differences in cognitive function attributable to menopause, hypothesizing that differences would be associated with reproductive rather than chronological age. DESIGN AND SETTING In this cross-sectional study at a university hospital, we combined neuropsychological measures with functional magnetic resonance imaging to comprehensively assess cognitive function. PARTICIPANTS Sixty-seven menopausal women, aged 42-61 yr, recruited from a population-based menopause study, grouped into menopause stages based on hormonal and cycle criteria (premenopause, perimenopause, and postmenopause), participated in the study. MAIN OUTCOME MEASURES Neuropsychological and functional magnetic resonance imaging measures of verbal, visual, and executive cognitive function. RESULTS We found age-independent menopause effects on verbal function. Menopause groups differed in phonemic verbal fluency (F = 3.58, P < 0.019) and regional brain activation (inferior frontal cortex: corrected P < 0.000 right, P < 0.036 left; left prefrontal cortex: P < 0.012); left temporal pole: P < 0.001). Verbal measures correlated with estradiol and FSH (phonemic fluency: R = 0.249, P < 0.047 estradiol, R = -0.275, P < 0.029 FSH; semantic fluency: R = 0.318, P < 0.011 estradiol, R = -0.321, P < 0.010 FSH; right inferior frontal cortex: R = 0.364, P < 0.008 FSH; left inferior frontal cortex: R = -0.431, P < 0.001 estradiol, left prefrontal cortex: R = 0.279, P < 0.045 FSH; left temporal pole: R = -0.310, P < 0.024 estradiol, R = 0.451, P < 0.001 FSH; left parahippocampal gyrus: R = -0.278, P < 0.044 estradiol; left parietal cortex: R = -0.326, P < 0.017 estradiol). CONCLUSIONS Results suggest that verbal fluency mechanisms are vulnerable during the menopausal transition. Targeted intervention may preserve function of this critical cognitive domain.
Collapse
|
22
|
Yao J, Brinton RD. Estrogen regulation of mitochondrial bioenergetics: implications for prevention of Alzheimer's disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2012; 64:327-71. [PMID: 22840752 PMCID: PMC3970844 DOI: 10.1016/b978-0-12-394816-8.00010-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with a complex and progressive pathological phenotype characterized first by hypometabolism and impaired mitochondrial bioenergetics followed by pathological burden. Increasing evidence indicates an antecedent and potentially causal role of mitochondrial bioenergetic deficits and brain hypometabolism coupled with increased mitochondrial oxidative stress in AD pathogenesis. Compromised aerobic glycolysis pathway coupled with oxidative stress is first accompanied by a shift toward a ketogenic pathway that eventually progresses into fatty acid oxidation (FAO) pathways and leads to white matter degeneration and overproduction and mitochondrial accumulation of β-amyloid. Estrogen-induced signaling pathways converge upon the mitochondria to enhance mitochondrial function and to sustain aerobic glycolysis coupled with citric acid cycle-driven oxidative phosphorylation to potentiate ATP (Adenosine triphosphate) generation. In addition to potentiated mitochondrial bioenergetics, estrogen also enhances neural survival and health through maintenance of calcium homeostasis, promotion of antioxidant defense against free radicals, efficient cholesterol trafficking, and beta amyloid clearance. Significantly, the convergence of E2 mechanisms of action onto mitochondria is also a potential point of vulnerability when activated in diseased neurons that exacerbates degeneration through increased load on dysregulated calcium homeostasis. The "healthy cell bias of estrogen action" hypothesis examines the role that regulating mitochondrial function and bioenergetics play in promoting neural health and the mechanistic crossroads that lead to divergent outcomes following estrogen exposure. As the continuum of neurological health progresses from healthy to unhealthy, so too do the benefits of estrogen or hormone therapy.
Collapse
Affiliation(s)
- Jia Yao
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | | |
Collapse
|
23
|
Peper JS, van den Heuvel MP, Mandl RCW, Hulshoff Pol HE, van Honk J. Sex steroids and connectivity in the human brain: a review of neuroimaging studies. Psychoneuroendocrinology 2011; 36:1101-13. [PMID: 21641727 DOI: 10.1016/j.psyneuen.2011.05.004] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 05/06/2011] [Accepted: 05/06/2011] [Indexed: 01/13/2023]
Abstract
Our brain operates by the way of interconnected networks. Connections between brain regions have been extensively studied at a functional and structural level, and impaired connectivity has been postulated as an important pathophysiological mechanism underlying several neuropsychiatric disorders. Yet the neurobiological mechanisms contributing to the development of functional and structural brain connections remain to be poorly understood. Interestingly, animal research has convincingly shown that sex steroid hormones (estrogens, progesterone and testosterone) are critically involved in myelination, forming the basis of white matter connectivity in the central nervous system. To get insights, we reviewed studies into the relation between sex steroid hormones, white matter and functional connectivity in the human brain, measured with neuroimaging. Results suggest that sex hormones organize structural connections, and activate the brain areas they connect. These processes could underlie a better integration of structural and functional communication between brain regions with age. Specifically, ovarian hormones (estradiol and progesterone) may enhance both cortico-cortical and subcortico-cortical functional connectivity, whereas androgens (testosterone) may decrease subcortico-cortical functional connectivity but increase functional connectivity between subcortical brain areas. Therefore, when examining healthy brain development and aging or when investigating possible biological mechanisms of 'brain connectivity' diseases, the contribution of sex steroids should not be ignored.
Collapse
Affiliation(s)
- Jiska S Peper
- Institute of Psychology, Brain and Development Laboratory, Leiden University, Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
24
|
Alonso-Alonso M, Ziemke F, Magkos F, Barrios FA, Brinkoetter M, Boyd I, Rifkin-Graboi A, Yannakoulia M, Rojas R, Pascual-Leone A, Mantzoros CS. Brain responses to food images during the early and late follicular phase of the menstrual cycle in healthy young women: relation to fasting and feeding. Am J Clin Nutr 2011; 94:377-84. [PMID: 21593494 PMCID: PMC3142717 DOI: 10.3945/ajcn.110.010736] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Food intake fluctuates throughout the menstrual cycle; it is greater during the early follicular and luteal phases than in the late follicular (periovulatory) phase. Ovarian steroids can influence brain areas that process food-related information, but the specific contribution of individual hormones and the importance of the prandial state remain unknown. OBJECTIVE The objective was to examine whether brain activation during food visualization is affected by changes in estradiol concentration in the fasted and fed conditions. DESIGN Nine eumenorrheic, lean young women [mean (±SD) age: 26.2 ± 3.2 y; body mass index (in kg/m(2)): 22.4 ± 1.2] completed 2 visits, one in the early (low estradiol) and one in the late (high estradiol) follicular phase of their menstrual cycle. At each visit, subjects underwent functional magnetic resonance imaging while they viewed food and nonfood images, before and after a standardized meal. Region-of-interest analysis was used to examine the effect of follicular phase and prandial state on brain activation (food > nonfood contrast) and its association with estradiol concentration. RESULTS Differences were identified in the inferior frontal and fusiform gyri. In these areas, visualization of food elicited greater activation in the fed state than during fasting but only in the late follicular phase, when estradiol concentration was high. The change in estradiol concentration across the follicular phase (late minus early) was inversely correlated with the change in fusiform gyrus activation in the fasted state but not in the fed state. CONCLUSION Our findings suggest that estradiol may reduce food intake by decreasing sensitivity to food cues in the ventral visual pathway under conditions of energy deprivation. This trial was registered at clinicaltrials.gov as NCT00130117.
Collapse
Affiliation(s)
- Miguel Alonso-Alonso
- Division of Endocrinology, Diabetes and Metabolism, Harvard Medical School, Boston, MA 02215, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Silverman DHS, Geist CL, Kenna HA, Williams K, Wroolie T, Powers B, Brooks J, Rasgon NL. Differences in regional brain metabolism associated with specific formulations of hormone therapy in postmenopausal women at risk for AD. Psychoneuroendocrinology 2011; 36:502-13. [PMID: 20810219 PMCID: PMC3021636 DOI: 10.1016/j.psyneuen.2010.08.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 06/30/2010] [Accepted: 08/03/2010] [Indexed: 12/24/2022]
Abstract
Differential cerebral metabolic effects of various hormone therapy formulations, and their associations with cognitive status, remain to be established. The principal aim of the current study was to assess relationships between regional cerebral metabolism and estrogen-based hormone therapies. Postmenopausal women (n=53) at elevated risk for Alzheimer's disease (AD) were on estrogen-containing hormone therapy for at least one year prior to enrollment in a prospective, randomized clinical trial. Subjects underwent an FDG-PET scan, along with neuropsychological, medical, and demographic assessments at time of enrollment, to be repeated one year following randomization to hormone therapy continuation versus discontinuation, and results from analyses of the baseline assessments are reported here. Across all subjects, years of endogenous estrogen exposure correlated most closely with metabolism in right superior frontal gyrus (p<0.0005). Women taking 17β-estradiol (E) performed three standard deviations higher in verbal memory than women taking conjugated equine estrogen (CEE), and their verbal memory performance positively correlated with metabolism in Wernicke's (p=0.003) and auditory association (p=0.002) areas. Women taking progesterone-plus-estrogen had lower metabolism than women taking unopposed estrogen within the mesial and inferior lateral temporal regions (p<0.0005) and the inferior frontal cortex, contralateral to Broca's area (p<0.0005). In conclusion, particular areas of relatively preserved metabolism were seen in women with more years of endogenous estrogen exposure, as well as in women taking estradiol-based formulations or estrogen therapies unopposed by progesterone, together suggesting regionally specific neuroprotective estrogenic effects.
Collapse
Affiliation(s)
- Daniel H S Silverman
- UCLA David Geffen School of Medicine, Department of Molecular and Medical Pharmacology, Ahmanson Biological Imaging Clinic, CHS AR-144, University of California, Los Angeles School of Medicine, Los Angeles, CA 90095-6942, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Henderson VW, Brinton RD. Menopause and mitochondria: windows into estrogen effects on Alzheimer's disease risk and therapy. PROGRESS IN BRAIN RESEARCH 2010; 182:77-96. [PMID: 20541661 PMCID: PMC5776041 DOI: 10.1016/s0079-6123(10)82003-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Metabolic derangements and oxidative stress are early events in Alzheimer's disease pathogenesis. Multi-faceted effects of estrogens include improved cerebral metabolic profile and reduced oxidative stress through actions on mitochondria, suggesting that a woman's endogenous and exogenous estrogen exposures during midlife and in the late post-menopause might favourably influence Alzheimer risk and symptoms. This prediction finds partial support in the clinical literature. As expected, early menopause induced by oophorectomy may increase cognitive vulnerability; however, there is no clear link between age at menopause and Alzheimer risk in other settings, or between natural menopause and memory loss. Further, among older post-menopausal women, initiating estrogen-containing hormone therapy increases dementia risk and probably does not improve Alzheimer's disease symptoms. As suggested by the 'critical window' or 'healthy cell' hypothesis, better outcomes might be expected from earlier estrogen exposures. Some observational results imply that effects of hormone therapy on Alzheimer risk are indeed modified by age at initiation, temporal proximity to menopause, or a woman's health. However, potential methodological biases warrant caution in interpreting observational findings. Anticipated results from large, ongoing clinical trials [Early Versus Late Intervention Trial with Estradiol (ELITE), Kronos Early Estrogen Prevention Study (KEEPS)] will help settle whether midlife estrogen therapy improves midlife cognitive skills but not whether midlife estrogen exposures modify late-life Alzheimer risk. Estrogen effects on mitochondria adumbrate the potential relevance of estrogens to Alzheimer's disease. However, laboratory models are inexact embodiments of Alzheimer pathogenesis and progression, making it difficult to surmise net effects of estrogen exposures. Research needs include better predictors of adverse cognitive outcomes, biomarkers for risks associated with hormone therapy, and tools for monitoring brain function and disease progression.
Collapse
Affiliation(s)
- Victor W Henderson
- Department of Health Research & Policy (Epidemiology), Stanford University, Stanford, CA, USA.
| | | |
Collapse
|