1
|
Mashimo A, Oshida R, Oka Y, Kawabata S, Takasu C, Nihei K, Kojima T, Kanemura N, Murata K. Hormonal fluctuations in rodent models using 4-vinylcyclohexene diepoxide: A systematic review and meta-analysis. Horm Behav 2025; 168:105680. [PMID: 39826372 DOI: 10.1016/j.yhbeh.2025.105680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/01/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
An animal model of 4-vinylcyclohexene diepoxide (VCD)-induced premature ovarian failure was developed to mimic menopause; this model has been used in various field studies. However, detailed reports on the rodent model using VCD are lacking, and the animal species used, administration methods, and hormonal fluctuations in the creation of the VCD model have not been comprehensively elucidated. The aim of this study was to systematically review these aspects of the rodent model using VCD and elucidate its characteristics. Thirty-two studies were extracted; rats and mice (66 %/44 %) are the most commonly used animal species. In most of the studies involving mice, a dose of 160 mg/kg was administered, whereas in most rat studies, doses of 80 mg/kg and 160 mg/kg were administered. On most mice studies (70 %), the most frequently applied dosage duration was 15 days. In most rat studies (63 %), the most frequently applied duration was 25 days, followed by 14 and 15 days in 30 % of the studies. Meta-analysis indicated that the mouse model using VCD simulates significant hormonal changes, such as estradiol (E2), anti-Müllerian hormone (AMH), and follicle stimulating hormone (FSH) changes. In conclusion, although the VCD model has demonstrated significant promise in replicating menopausal hormonal conditions, further systematic studies are required to fully understand its potential applications and refine its methodologies. This comprehensive review of existing literature highlights the need for continued research to expand the use of the VCD model in diverse medical fields.
Collapse
Affiliation(s)
- Aoi Mashimo
- Department of Health and Social Services, Health and Social Services, Graduate School of Saitama Prefectural University, Saitama, Japan
| | - Ryuga Oshida
- Department of Health and Social Services, Health and Social Services, Graduate School of Saitama Prefectural University, Saitama, Japan
| | - Yuichiro Oka
- Graduate School of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Sora Kawabata
- Department of Health and Social Services, Health and Social Services, Graduate School of Saitama Prefectural University, Saitama, Japan
| | - Chiharu Takasu
- Department of Health and Social Services, Health and Social Services, Graduate School of Saitama Prefectural University, Saitama, Japan
| | - Kota Nihei
- Department of Health and Social Services, Health and Social Services, Graduate School of Saitama Prefectural University, Saitama, Japan
| | - Takuma Kojima
- Department of Health and Social Services, Health and Social Services, Graduate School of Saitama Prefectural University, Saitama, Japan
| | - Naohiko Kanemura
- Department of Physical Therapy, School of Health and Social Services, Saitama Prefectural University, Saitama, Japan
| | - Kenji Murata
- Department of Physical Therapy, School of Health and Social Services, Saitama Prefectural University, Saitama, Japan.
| |
Collapse
|
2
|
Zanini BM, de Avila BM, Garcia DN, Hense JD, Veiga GB, Barreto MM, Ashiqueali S, Mason JB, Yadav H, Masternak M, Schneider A. Dynamics of serum exosome microRNA profile altered by chemically induced estropause and rescued by estrogen therapy in female mice. GeroScience 2024; 46:5891-5909. [PMID: 38499957 PMCID: PMC11493931 DOI: 10.1007/s11357-024-01129-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/09/2024] [Indexed: 03/20/2024] Open
Abstract
The decline in the ovarian reserve leads to menopause and reduced serum estrogens. MicroRNAs are small non-coding RNAs, which can regulate gene expression and be secreted by cells and trafficked in serum via exosomes. Serum miRNAs regulate tissue function and disease development. Therefore, the aim of this study was to identify miRNA profiles in serum exosomes of mice induced to estropause and treated with 17β-estradiol (E2). Female mice were divided into three groups including control (CTL), injected with 4-Vinylcyclohexene diepoxide (VCD), and injected with VCD plus E2 (VCD + E2). Estropause was confirmed by acyclicity and a significant reduction in the number of ovarian follicles (p < 0.05). Body mass gain during estropause was higher in VCD and VCD + E2 compared to CTL females (p = 0.02). Sequencing of miRNAs was performed from exosomes extracted from serum, and 402 miRNAs were detected. Eight miRNAs were differentially regulated between CTL and VCD groups, seven miRNAs regulated between CTL and VCD + E2 groups, and ten miRNAs regulated between VCD and VCD + E2 groups. Only miR-200a-3p and miR-200b-3p were up-regulated in both serum exosomes and ovarian tissue in both VCD groups, suggesting that these exosomal miRNAs could be associated with ovarian activity. In the hepatic tissue, only miR-370-3p (p = 0.02) was up-regulated in the VCD + E2 group, as observed in serum. Our results suggest that VCD-induced estropause and E2 replacement have an impact on the profile of serum exosomal miRNAs. The miR-200 family was increased in serum exosomes and ovarian tissue and may be a candidate biomarker of ovarian function.
Collapse
Affiliation(s)
| | | | | | - Jéssica Damé Hense
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | | | | | - Sarah Ashiqueali
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Jeffrey B Mason
- College of Veterinary Medicine, Department of Veterinary Clinical and Life Sciences, Center for Integrated BioSystems, Utah State University, Logan, UT, USA
| | - Hariom Yadav
- USF Center for Microbiome Research, and Department of Neurosurgery and Brain Repair, Microbiomes Institute, University of South Florida, Tampa, FL, USA
| | - Michal Masternak
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
3
|
Knox N, Yasrebi A, Caramico D, Wiersielis K, Samuels BA, Roepke TA. The Interaction Of Diet-Induced Obesity And Chronic Stress In A Mouse Model Of Menopause. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.622997. [PMID: 39605499 PMCID: PMC11601223 DOI: 10.1101/2024.11.11.622997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Menopause is characterized by the cessation of ovarian hormone production. During postmenopause, cisgender women face increased risks of obesity, cognitive decline, and mood disorder. Mood disorders are associated with exposure to chronic stress. We investigated the combined effects of a high-fat diet (HFD) and chronic stress exposure in a mouse model of menopause using 4-vinylcyclohexene diepoxide (VCD), a selective ovotoxicant that gradually depletes ovarian follicles and hormones. Starting at 6 months, 82 female WT C57BL/6J mice received saline or VCD (130 mg/kg i.p.) 5 days per week for 3 weeks. One month after injection, mice were fed either low-fat diet (LFD) or HFD for 8 weeks followed by 6 weeks of chronic variable mild stress (CVMS). Post-CVMS, mice were either processed for gene expression of the anterodorsal BNST or behavior tests to assess cognitive and anxiety-related behaviors. Plasma samples were collected to analyze metabolic hormones and corticosterone levels. VCD-treated HFD-fed mice had higher fat and body mass, and elevated fasting glucose levels compared to controls and more pronounced avoidance behaviors and cognitive impairments. LFD-fed, VCD-treated mice exhibited less exploration of novel objects and open spaces compared to OIL and HFD counterparts. VCD elevated corticosterone levels on LFD and increased BNST Pacap gene expression on HFD. These findings highlight cognitive repercussions of estrogen deficiency and suggest a potential protective effect of a HFD against some of the adverse outcomes associated with menopause. Our study emphasizes the importance of considering dietary and hormonal interactions in the development of therapeutic strategies.
Collapse
|
4
|
Sgobbi RF, Incrocci RM, Paliarin F, Nobre MJ. The modulatory role of serotonin-1A receptors of the basolateral amygdala and dorsal periaqueductal gray on the impact of hormonal variation on the conditioned fear response. Neuroscience 2024; 554:118-127. [PMID: 39019393 DOI: 10.1016/j.neuroscience.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/07/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
Despite significant advances in the study of fear and fear memory formation, little is known about fear learning and expression in females. This omission has been proven surprising, as normal and pathological behaviors are highly influenced by ovarian hormones, particularly estradiol and progesterone. In the current study, we investigated the joint influence of serotonin (5-HT) neurotransmission and estrous cycle phases (low or high levels of estradiol and progesterone) on the expression of conditioned fear in a group of female rats that were previously divided according to their response to stressful stimuli into low or high anxiety-like subjects. The baseline amplitude of the unconditioned acoustic startle responses was high in high-anxiety female rats, with no effect on the estrous cycle observed. Data collected during the proestrus-estrus phase revealed that low-anxiety rats had startle amplitudes similar to those of high-anxiety rats. It is supposed that high-anxiety female rats benefit from increased estradiol and progesterone levels to achieve comparable potentiated startle amplitudes. In contrast, female rats experienced a significant decrease in hormone levels during the Diestrus phase. This decrease is believed to play a role in preventing them from displaying a heightened startle response when faced with strongly aversive stimuli. Data collected after 5-HT and 8-OH-DPAT were administered into the basolateral nuclei and dorsal periaqueductal gray suggest that 5-HT neurotransmission works with progesterone and estrogen to reduce startle potentiation, most likely by activating the serotonin-1A receptor subtype.
Collapse
Affiliation(s)
- R F Sgobbi
- Departamento de Psicologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP), 14040-901 Ribeirão Preto, SP, Brasil
| | - R M Incrocci
- Departamento de Psicologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP), 14040-901 Ribeirão Preto, SP, Brasil
| | - F Paliarin
- Departamento de Psicologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP), 14040-901 Ribeirão Preto, SP, Brasil
| | - M J Nobre
- Departamento de Psicologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP), 14040-901 Ribeirão Preto, SP, Brasil; Departamento de Psicologia, Uni-FACEF, 14401-135, Franca, SP, Brasil.
| |
Collapse
|
5
|
Herrera-Pérez JJ, Hernández-Hernández OT, Flores-Ramos M, Cueto-Escobedo J, Rodríguez-Landa JF, Martínez-Mota L. The intersection between menopause and depression: overview of research using animal models. Front Psychiatry 2024; 15:1408878. [PMID: 39081530 PMCID: PMC11287658 DOI: 10.3389/fpsyt.2024.1408878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024] Open
Abstract
Menopausal women may experience symptoms of depression, sometimes even progressing clinical depression requiring treatment to improve quality of life. While varying levels of estrogen in perimenopause may contribute to an increased biological vulnerability to mood disturbances, the effectiveness of estrogen replacement therapy (ERT) in the relief of depressive symptoms remains controversial. Menopausal depression has a complex, multifactorial etiology, that has limited the identification of optimal treatment strategies for the management of this psychiatric complaint. Nevertheless, clinical evidence increasingly supports the notion that estrogen exerts neuroprotective effects on brain structures related to mood regulation. Indeed, research using preclinical animal models continues to improve our understanding of menopause and the effectiveness of ERT and other substances at treating depression-like behaviors. However, questions regarding the efficacy of ERT in perimenopause have been raised. These questions may be answered by further investigation using specific animal models of reduced ovarian function. This review compares and discusses the advantages and pitfalls of different models emulating the menopausal stages and their relationship with the onset of depressive-like signs, as well as the efficacy and mechanisms of conventional and novel ERTs in treating depressive-like behavior. Ovariectomized young rats, middle-to-old aged intact rats, and females treated with reprotoxics have all been used as models of menopause, with stages ranging from surgical menopause to perimenopause. Additionally, this manuscript discusses the impact of organistic and therapeutic variables that may improve or reduce the antidepressant response of females to ERT. Findings from these models have revealed the complexity of the dynamic changes occurring in brain function during menopausal transition, reinforcing the idea that the best approach is timely intervention considering the opportunity window, in addition to the careful selection of treatment according to the presence or absence of reproductive tissue. Additionally, data from animal models has yielded evidence to support new promising estrogens that could be considered as ERTs with antidepressant properties and actions in endocrine situations in which traditional ERTs are not effective.
Collapse
Affiliation(s)
- José Jaime Herrera-Pérez
- Laboratorio de Farmacología Conductual, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Olivia Tania Hernández-Hernández
- Consejo Nacional de Humanidades, Ciencias y Tecnologías Research Fellow. Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Mónica Flores-Ramos
- Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Jonathan Cueto-Escobedo
- Departamento de Investigación Clínica, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa-Enríquez, Mexico
| | | | - Lucía Martínez-Mota
- Laboratorio de Farmacología Conductual, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| |
Collapse
|
6
|
Lee HJ, Park MJ, Heo JD, Joo BS, Joo JK. Timing of hormone therapy and its association with cardiovascular risk and metabolic parameters in 4-vinylcyclohexene diepoxide-induced primary ovarian insufficiency mouse model. Gynecol Endocrinol 2023; 39:2247094. [PMID: 37599578 DOI: 10.1080/09513590.2023.2247094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/14/2022] [Accepted: 08/07/2023] [Indexed: 08/22/2023] Open
Abstract
OBJECTIVE To evaluate the effects of various initiation time points and durations of hormone therapy (HT) on cardiovascular and metabolic parameters of premenarche, primary ovarian insufficiency (POI) mouse model, induced by 4-vinylcyclohexene diepoxide. METHODS A total of 50 mice at 4 weeks of age were developed into POI mouse model, further randomly categorized into 5 groups: control group without any intervention; no HT group with only high-fat diet (NT); group 1 with delayed estradiol treatment (T1); group 2 with on-time, continuous estradiol treatment (T2); and group 3 with on-time estradiol treatment but early stop (T3). Cardiovascular risk and metabolic parameters were measured. RESULTS Presenting with similar body weights, blood glucose levels of T1, T2, and T3 were all significantly lower than NT (p < .001). Serum total cholesterol and insulin were also significantly lower in all HT groups than in NT, especially in T2 (p < .001). For serum low-density lipoprotein-cholesterol, only T2 resulted in the statically lower level than those of NT, T1, and T3 (p < .001). Aortic thickness was significantly increased with aggravated fibrotic change of the intima in NT, and such consequence was significantly ameliorated in HT groups, mostly lowered in T2 (p < .05). Last, serum pro-inflammatory cytokines were significantly low in the HT groups than in NT, especially in T2 with the lowest level (p < .05). . CONCLUSIONS On-time, continuous E2 treatment immediately after a biologic estrogen deprivation event significantly reduced metabolic and cardiovascular risks in young, pre-menarche female mouse models of POI, confirming decreased serum levels of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Hyun Joo Lee
- Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Min Jung Park
- The Korea Institute for Public Sperm Bank, Busan, Republic of Korea
| | - Jeong-Doo Heo
- Korea Institute of Toxicology, Gyeongnam Branch Institute, Jinju, Gyeongsangnam-do, Republic of Korea
| | - Bo Sun Joo
- The Korea Institute for Public Sperm Bank, Busan, Republic of Korea
| | - Jong Kil Joo
- Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| |
Collapse
|
7
|
Yu S, Zhang L, Wang Y, Yan J, Wang Q, Bian H, Huang L. Mood, hormone levels, metabolic and sleep across the menopausal transition in VCD-induced ICR mice. Physiol Behav 2023; 265:114178. [PMID: 37001841 DOI: 10.1016/j.physbeh.2023.114178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 02/27/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
AIMS Menopausal transition is the transitional period before menopause in women, often accompanied by abnormal fluctuations in hormone levels that increase the risk of aging-related diseases. 4-vinylcyclohexene dioxide (VCD) is a chemical agent that induces gradual depletion of ovarian follicles, which can mimic the natural human process of transition from menopausal transition to post-menopause. Previous studies have shown that the onset of menopausal transition or menopause in VCD-injected mice is associated with a specific strain, even in inbred animals. Institute of Cancer Research (ICR) mice constitute general purpose outbred population, which has not been well-characterized in the VCD-induced model. Thus, the current study aimed to explore the characteristic features, including sleep, mood, and metabolism, of the model by examining the effect of timing of VCD injection in ICR mice to extend the applications of this model. MATERIALS AND METHODS ICR mice were randomly divided into six groups: 20d VCD and 20d Control, 35d VCD and 35d Control, 52d VCD and 52d Control. VCD mice were intraperitoneally injected with VCD (160 mg/kg), while Control mice were injected intraperitoneally with sesame oil for 4 consecutive weeks, five times a week daily. A vaginal smear was used to observe the estrous cycle of the mice. On the 20th, 35th, and 52nd day after VCD or sesame oil injection, the ovarian morphology, the number of atretic cells, hormone levels, anxiety, depression-like behaviors, sleep phase, and energy metabolism were observed. KEY FINDINGS The menopausal transition model was successfully replicated by injecting VCD into ICR mice. On the specific days after VCD treatment, the number of atretic follicles increased, the level of E2 decreased and FSH increased, the depressive- and anxiety-like behavior increased, the time of REM and NREM sleep time decreased, and energy metabolism was reduced. SIGNIFICANCE These results suggested that the ICR mice model has human-like characteristics during the menopause transition. Moreover, the ICR model has a long menopausal transition duration.
Collapse
Affiliation(s)
- Shuang Yu
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Harbin 150040, China
| | - Lixin Zhang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Harbin 150040, China
| | - Yanyan Wang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Harbin 150040, China
| | - Jinming Yan
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Harbin 150040, China
| | - Qi Wang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Harbin 150040, China
| | - Hongsheng Bian
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Harbin 150040, China
| | - Lili Huang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Harbin 150040, China.
| |
Collapse
|
8
|
Song W, Li A, Sha QQ, Liu SY, Zhou Y, Zhou CY, Zhang X, Li XZ, Jiang JX, Li F, Li C, Schatten H, Ou XH, Sun QY. Maternal exposure to 4-vinylcyclohexene diepoxide during pregnancy induces subfertility and birth defects of offspring in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160431. [PMID: 36423845 DOI: 10.1016/j.scitotenv.2022.160431] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/13/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
4-vinylcyclohexene diepoxide (VCD), widely used in industry, is a hazardous compound that can cause premature ovarian failure, but whether maternal VCD exposure affects the health and reproduction of offspring is unknown. Here we focused on the effects of VCD on fertility and physical health of F1 and F2 offspring in mice. The pregnant mice were injected intraperitoneally with different dosages of VCD once every day from 6.5 to 18.5 days post-coitus (dpc). We showed that maternal exposure to VCD during pregnancy significantly reduced the litter size and ovarian reserve, while increasing microtia occurrences of F1 mice. The cytospread staining showed a significant inhibition of meiotic prophase I progression from the zygotene stage to the pachytene stage. Mechanistically, the expression level of DNA damage marker (γ-H2AX) and BAX/BCL2 ratios were significantly increased, and RAD51 and DMC1 were extensively recruited to DNA double strand breaks sites in the oocytes of offspring from VCD-exposed mothers. Overall, our results provide solid evidence showing that maternal exposure to VCD during pregnancy has intergenerational deleterious effects on the offspring.
Collapse
Affiliation(s)
- Wei Song
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou 510317, China; College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Ang Li
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Qian-Qian Sha
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Shao-Yuan Liu
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Yong Zhou
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Chang-Yin Zhou
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Xue Zhang
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Xiao-Zhen Li
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Jia-Xin Jiang
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Fei Li
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Chao Li
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Xiang-Hong Ou
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou 510317, China.
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou 510317, China; College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
9
|
Zhao FY, Zheng Z, Fu QQ, Conduit R, Xu H, Wang HR, Huang YL, Jiang T, Zhang WJ, Kennedy GA. Acupuncture for comorbid depression and insomnia in perimenopause: A feasibility patient-assessor-blinded, randomized, and sham-controlled clinical trial. Front Public Health 2023; 11:1120567. [PMID: 36815166 PMCID: PMC9939459 DOI: 10.3389/fpubh.2023.1120567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/11/2023] [Indexed: 02/09/2023] Open
Abstract
Background and objective Whilst acupuncture is widely used for treating psychosomatic diseases, there is little high-quality evidence supporting its application in comorbid perimenopausal depression (PMD) and insomnia (PMI) which are common complaints during climacteric. This feasibility, patient-assessor-blinded, randomized, sham-controlled clinical trial addresses this gap by investigating the efficacy and safety of acupuncture on depressed mood and poor sleep in women with comorbid PMD and PMI. Methods Seventy eligible participants were randomly assigned to either real-acupuncture (RA) or sham-acupuncture (SA) groups. Either RA or SA treatment were delivered in 17 sessions over 8 weeks. The primary outcomes for mood and sleep were changes on 17-items Hamilton Depression Rating Scale (HAM-D17) and Pittsburgh Sleep Quality Index (PSQI) scores, from baseline to 16-week follow-up. Secondary outcome measures involved anxiety symptoms, perimenopausal symptoms, quality of life, participants' experience of and satisfaction with the acupuncture treatment. Blood samples were taken to measure reproductive hormone levels. Intention-To-Treat and Per-Protocol analyses were conducted with linear mixed-effects models. The James' and Bang's blinding indices were used to assess the adequacy of blinding. Results Sixty-five participants completed all treatment sessions, and 54 and 41 participants completed the eight- and 16-week follow-ups, respectively. At post-treatment and 8-week follow-up, the RA group showed a significantly greater reduction in PSQI scores than the SA group did; although the reduction of HAM-D17 scores in RA group was significant, the change was not statistically different from that of SA. There were no significant mean differences between baseline and 16-week follow-up in either HAM-D17 or PSQI in either group. There were no significant between-group differences in serum reproductive hormone levels. All treatments were tolerable and no serious adverse events were reported, and the blinding was successful. Conclusion Acupuncture is safe and can contribute to clinically relevant improvements in comorbid PMD and PMI, with satisfactory short-and medium-term effects. Whether the anti-depressive benefit of acupuncture is specific or non-specific remains to be determined. No evidence was found for any longer-term benefit of acupuncture compared to sham at 16 weeks. Further research is required to elucidate mechanisms underlying the short to medium term effects of acupuncture.
Collapse
Affiliation(s)
- Fei-Yi Zhao
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia,Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Department of Nursing, School of International Medical Technology, Shanghai Sanda University, Shanghai, China
| | - Zhen Zheng
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia,*Correspondence: Zhen Zheng ✉
| | - Qiang-Qiang Fu
- Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Russell Conduit
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia,Institute for Breathing and Sleep, Austin Health, Heidelberg, VIC, Australia
| | - Hong Xu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hui-Ru Wang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu-Ling Huang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ting Jiang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen-Jing Zhang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Wen-Jing Zhang ✉
| | - Gerard A. Kennedy
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia,Institute for Breathing and Sleep, Austin Health, Heidelberg, VIC, Australia,Institute of Health and Wellbeing, Federation University, Mount Helen, VIC, Australia
| |
Collapse
|
10
|
Miao Y, Wan W, Zhu K, Pan M, Zhao X, Ma B, Wei Q. Effects of 4-vinylcyclohexene diepoxide on the cell cycle, apoptosis, and steroid hormone secretion of goat ovarian granulosa cells. In Vitro Cell Dev Biol Anim 2022; 58:220-231. [PMID: 35386089 DOI: 10.1007/s11626-022-00663-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/24/2022] [Indexed: 12/19/2022]
Abstract
4-Vinylcyclohexene diepoxide (VCD) is a potentially hazardous industrial chemical that may enter a goat's body in various ways during industrial breeding. Ovarian granulosa cells (GCs) play a critical role in supporting follicle development and hormone synthesis. However, there are few studies on the effect of VCD on goat ovarian GCs. In this study, goat ovarian GCs were isolated and treated with VCD. The results showed that treatment with VCD increased the proportion of S phase and G2/M cells, but decreased the proportion of G1 phase. VCD treatment significantly inhibited the expression of cyclin A and cyclin-dependent kinase 2 (CDK2). But the expression levels of p21 and p27 were increased. VCD could induce an apparent increase in the proportion of apoptosis and the level of cleaved caspase 3. Treatment with VCD significantly reduced the progesterone and estrogen concentration in the medium in which goat ovarian GCs were cultured. Correspondingly, the expression level of steroidogenic acute regulatory protein (STAR) was significantly downregulated. Treatment with 0.25 and 0.5 mM VCD, the protein expression level of insulin-like growth factor 1 receptor (IGF1R) and Akt were significantly decreased. Moreover, treatment with 0.25 mM VCD significantly inhibited the phosphorylation of Akt. In conclusion, VCD exposure had cytotoxic effects such as decreased cell viability, disordered cell cycle, increased apoptosis, and interference with steroid hormone synthesis on goat GCs. These cytotoxic effects of VCD on goat GCs may be due to the downregulation of IGF1R and the inhibition of IGF1R/Akt signaling pathway.
Collapse
Affiliation(s)
- Yuyang Miao
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- College of Veterinary Medicine, Northwest A&F University, Shaanxi, 712100, Yangling, China
| | - Wenjing Wan
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- College of Veterinary Medicine, Northwest A&F University, Shaanxi, 712100, Yangling, China
| | - Kunyuan Zhu
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- College of Veterinary Medicine, Northwest A&F University, Shaanxi, 712100, Yangling, China
| | - Menghao Pan
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- College of Veterinary Medicine, Northwest A&F University, Shaanxi, 712100, Yangling, China
| | - Xiaoe Zhao
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- College of Veterinary Medicine, Northwest A&F University, Shaanxi, 712100, Yangling, China
| | - Baohua Ma
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- College of Veterinary Medicine, Northwest A&F University, Shaanxi, 712100, Yangling, China.
| | - Qiang Wei
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- College of Veterinary Medicine, Northwest A&F University, Shaanxi, 712100, Yangling, China.
| |
Collapse
|
11
|
Chandankhede M, Gupta M, Pakhmode S. Assessment of Psychological Status and Oxidative Stress in Postmenopausal Women: A Cross-Sectional Study. J Menopausal Med 2022; 27:155-161. [PMID: 34989189 PMCID: PMC8738848 DOI: 10.6118/jmm.20035] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 07/12/2021] [Accepted: 08/08/2021] [Indexed: 11/16/2022] Open
Abstract
Objectives During menopause, women may experience some physical changes that can affect their psychological status. Oxidative stress also increases with menopause, as decreasing levels of estrogen reinforce the deterioration of antioxidant status. To assess total antioxidative capacity, malondialdehyde, superoxide dismutase, and glutathione peroxidase and the correlation between psychological status and oxidative stress in postmenopausal women. Methods This cross-sectional study was undertaken on 100 postmenopausal women (40–59 years). Blood malondialdehyde, superoxide dismutase, glutathione peroxidase, and total antioxidative capacity were analyzed, and psychological status was assessed using Rosenberg's self-esteem test, Zung's self-rating anxiety scale, and Zung's self-rating depression scale. Results Of the women, 38.0% had mild to moderate symptoms of anxiety (mean ± standard deviation, 50.15 ± 4.89), 21.0% showed depression, and 19.0% had low self-esteem. Twelve percent of the study population had mild to moderate symptoms of all three disorders. A statistically significant difference was found in the scores of anxiety and self-esteem (P = 0.001 and P < 0.001 in women with and without psychological disturbances, respectively). With regard to oxidative stress parameters, only superoxide dismutase levels showed a statistically significant difference (P = 0.001), with lower levels found in women with psychological disturbance. Conclusions Women with depression, anxiety, and low self-esteem are in an oxidative challenge, which might be associated with estrogen depletion. A lower superoxide dismutase level is associated with higher depression and anxiety scores in postmenopausal women.
Collapse
Affiliation(s)
- Manju Chandankhede
- Department of Biochemistry, Datta Meghe Institute of Medical Sciences, Nagpur, India.
| | - Madhur Gupta
- Department of Biochemistry, N.K.P. Salve Institute of Medical Sciences & Research Centre and Lata Mangeshkar Hospital, Nagpur, India
| | - Smita Pakhmode
- Department of Biochemistry, N.K.P. Salve Institute of Medical Sciences & Research Centre and Lata Mangeshkar Hospital, Nagpur, India
| |
Collapse
|
12
|
Rodrigues-Santos I, Kalil-Cutti B, Anselmo-Franci JA. Low Corticosterone Response to Stress in a Perimenopausal Rat Model Is Associated with the Hypoactivation of PaMP Region of the Paraventricular Nucleus and Can Be Corrected by Exogenous Progesterone Supplementation. Neuroendocrinology 2022; 112:467-480. [PMID: 34348338 DOI: 10.1159/000518336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 06/30/2021] [Indexed: 12/30/2022]
Abstract
INTRODUCTION The transition to menopause is characterized by mood, behavioral and metabolic changes. However, little is known about the changes in adrenal response to stress. AIMS The aim of the study was to evaluate, in an animal model of perimenopause induced by 4-vinylcyclohexene diepoxide (VCD), (1) the endocrine and neuronal stress system activity in response to acute restraint stress and (2) the effect of hormonal therapy in this response. METHODS Prepubertal female Wistar rats received daily injections (s.c) of oil or VCD (160 mg/kg) for 15 days. On 56th-66th days after treatment onset, the groups to be stressed received s.c implants containing placebo (PL), 17β-estradiol (E2), progesterone (P4), or E2P4. At 80 ± 5 days after VCD/oil injections, stress was applied for 30 min. Blood samples were collected immediately after and 60 min after the end of stress session from the tail tip followed by transcardial perfusion with PFA 4% for the assessment of c-Fos expression in the medial and posterior parvocellular (PaMP and PaPo) subdivisions of the paraventricular nucleus (PVN) and c-Fos/tyrosine hydroxylase in the locus coeruleus (LC) using immunohistochemistry. Control groups were not stressed nor received hormone therapy. RESULTS While basal corticosterone levels were similar between VCD-periestropausal and control rats, the secretion in response to stress in the VCD group was lower. This effect was prevented by P4 therapy. Inversely, basal levels of P4 were lower in VCD-periestropausal rats than in the controls, and no differences were found in response to stress between the groups. As expected, 30-min restraint stress increased c-Fos immunoreactivity in all brain areas studied in both control and VCD-periestropausal rats. However, the c-Fos increase in the PaMP region was attenuated. In all areas examined, there were no significant differences in the number of c-Fos-positive neurons across hormonal therapies. DISCUSSION/CONCLUSION This is the first study to demonstrate in a perimenopausal rat model that reproductive aging is accompanied by inadequate secretion of corticosterone in response to acute stress in association with the hypoactivation of the PaMP region of the PVN, while adrenal P4 response is preserved. Moreover, P4 therapy was shown to attenuate the effects of progressive ovarian failure on adrenal functioning during stress.
Collapse
Affiliation(s)
- Isabelle Rodrigues-Santos
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil,
| | - Bruna Kalil-Cutti
- Department of Physiology, Institute of Biomedical Science, Federal University of Alfenas, Alfenas, São Paulo, Brazil
| | - Janete Aparecida Anselmo-Franci
- Department of Basic and Oral Biology of Dentistry School of Ribeirão Preto, Laboratory of Neuroendocrinology, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
13
|
Arikawe AP, Rorato RC, Gomes N, Elias LL, Anselmo-Franci J. Hormonal and neural responses to restraint stress in an animal model of perimenopause in female rats. J Neuroendocrinol 2021; 33:e12976. [PMID: 33900672 DOI: 10.1111/jne.12976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/23/2021] [Accepted: 03/28/2021] [Indexed: 01/21/2023]
Abstract
The present study investigated the hormonal and neural responses to stress in a perimenopause animal model induced by 4-vinylcyclohexene diepoxide (VCD), which induces progressive follicular depletion in rodents, allowing studies on the transition to ovarian failure. Female rats, aged 28 days old, were s.c. injected for 15 consecutive days with corn oil or VCD. At 85 ± 5 days after the onset of treatment, the jugular vein was cannulated in the afternoon of metoestrus and in next morning (dioestrus) at 10.00 am, rats were subjected to 30 minutes of restraint stress. Blood samples were withdrawn before (-5 minutes), during (2, 5, 15 and 30 minutes) and after (45, 60 and 90 minutes) stress and plasma prolactin, progesterone and corticosterone levels were measured. Animals were perfused, brains processed for c-Fos/tyrosine hydroxylase (TH) in the locus coeruleus (LC) and c-Fos/corticotrophin-releasing factor (CRF) in the paraventricular nucleus (PVN). In unstressed rats the density of β-endorphin fibres was assessed in LC and PVN. In VCD-treated rats, stress-induced prolactin peak was higher, basal and peak progesterone levels were lower, and both levels of corticosterone were similar to controls. However, the recovery period was longer for both adrenal hormones. In VCD-treated rats the number of c-Fos/TH and c-Fos/CRF-immunoreactive neurones was higher whereas the density of β-endorphin fibres was lower in LC and PVN. We surmise that the hyperactivity of the LC and PVN neurones in VCD-treated rats may be a result of the lower progesterone levels that resulted in the decrease of β-endorphin content in both nuclei, thus impairing the negative-feedback mechanism in the recovery period.
Collapse
Affiliation(s)
- Adesina Paul Arikawe
- Laboratory of Neuroendocrinology, Department of Basic and Oral Biology Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Rodrigo César Rorato
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
- Departmento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Nathali Gomes
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Lucila Leico Elias
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Janete Anselmo-Franci
- Laboratory of Neuroendocrinology, Department of Basic and Oral Biology Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
Pestana-Oliveira N, Carolino ROG, Kalil-Cutti B, Leite CM, Dalpogeto LC, De Paula BB, Collister JP, Anselmo-Franci J. Development of a Chemical Reproductive Aging Model in Female Rats. Bio Protoc 2021; 11:e3994. [PMID: 34124295 DOI: 10.21769/bioprotoc.3994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/05/2021] [Accepted: 02/15/2021] [Indexed: 11/02/2022] Open
Abstract
Women are born with an abundant but finite pool of ovarian follicles, which naturally and progressively decreased during their reproductive years until menstrual periods stop permanently (menopause). Perimenopause represents the transition from reproductive to non-reproductive life. It is usually characterized by neuroendocrine, metabolic and behavioral changes, which result from a follicular depletion and reduced number of ovarian follicles. During this period, around 45-50 years old, women are more likely to express mood disorders, anxiety, irritability and vasomotor symptoms. The current animal models of reproductive aging do not successfully replicate human perimenopause and the gradual changes that occur in this phase. While the traditional rat model of menopause involves ovariectomy or surgical menopause consisting of the rapid and definitive removal of the ovaries resulting in a complete loss of all ovarian hormones, natural or transitional menopause is achieved by the selective loss of ovarian follicles (perimenopause period). However, the natural aging rodent (around 18-24 months) model fails to reach very low estrogen concentrations and overlaps the processes of somatic and reproductive aging. The chronic exposure of young rodents to 4-vinylcyclohexene diepoxide (VCD) is a well-established experimental model for perimenopause and menopause studies. VCD induces loss of ovarian small follicles (primary and primordial) in mice and rats by accelerating the natural process of atresia (apoptosis). The VCD, ovary-intact or accelerated ovarian failure (AOF) model is the experimental model that most closely matches natural human progression to menopause mimicking both hormonal and behavioral changes typically manifested by women in perimenopause. Graphical abstract: The female reproductive system is regulated by a series of neuroendocrine events controlled by central and peripheral components. (A). The mechanisms involved in this control are extremely complex and have not yet been fully clarified. In female mammals whose ovulation (the most important event in a reproductive cycle) occurs spontaneously, reproductive success is achieved through the precise functional and temporal integration of the hypothalamus-pituitary-ovary (HPO) axis. (B). In women, loss of fertility appears to be primarily associated with exhaustion of ovarian follicles, and this process occurs progressively until complete follicular exhaustion marked by the final menstrual period (FMP). (C). While in female rodents, reproductive aging seems to begin as a neuroendocrine process, in which changes in hypothalamic/pituitary function appear independently of follicular atresia. The traditional rat model of menopause, ovariectomy or surgical menopause consists of the rapid and definitive removal of the ovaries resulting in a complete loss of all ovarian hormones. (D). The chronic exposure (15-30 days) to the chemical compound 4-vinylcyclehexene diepoxide (VCD) in young rodents accelerates gradual failure of ovarian function by progressive depletion of primordial and primary follicles, but retains residual ovarian tissue before brain alterations that occurs in women in perimenopause. Low doses of VCD cause the selective destruction of the small preantral follicles of the ovary without affecting other peripheral tissues.
Collapse
Affiliation(s)
- Nayara Pestana-Oliveira
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA.,Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ruither O G Carolino
- Department of Basic and Oral Science, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Bruna Kalil-Cutti
- Department of Physiology, Institute of Biomedical Science, Federal University of Alfenas, Alfenas, MG, Brazil
| | | | - Litamara C Dalpogeto
- Department of Basic and Oral Science, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Bruna Balbino De Paula
- Department of Psychology, School of Philosophy, Science and Letter of Ribeirão Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - John P Collister
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA
| | - Janete Anselmo-Franci
- Department of Basic and Oral Science, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| |
Collapse
|
15
|
Cao LB, Leung CK, Law PWN, Lv Y, Ng CH, Liu HB, Lu G, Ma JL, Chan WY. Systemic changes in a mouse model of VCD-induced premature ovarian failure. Life Sci 2020; 262:118543. [PMID: 33038381 DOI: 10.1016/j.lfs.2020.118543] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023]
Abstract
AIMS Premature ovarian failure (POF) is a phenomenon in which the ovaries fail before the age of 40 years. Prior research has used a wide range of mouse models designed to reflect different causes of POF, including genetic factors, iatrogenic factors, and immune factors. The current study employed a mouse model of POF induced by 4-vinylcyclohexene diepoxide (VCD). VCD can specifically kill primordial and primary ovarian follicles, which destroys the follicular reserve and causes POF. The current study sought to specify and extend the applications of this model by examining the effect of timing and VCD dose and by exploring the effect of the model on systems outside of the ovaries. MATERIALS AND METHODS A VCD-induced mouse model of POF was constructed using established methods (VCD injected continuously at a concentration of 160 mg/kg for 15 days). Evidence for a graded effect of VCD was observed using a range of concentrations, and the best windows for examining VCD's effects on follicles and associated tissues were identified. KEY FINDINGS The mouse model used here successfully simulated two common complications of POF - emotional changes and decreased bone density. The model's application was then extended to examine the links between disease and intestinal microorganisms, and evidence was found linking POF to the reproductively relevant composition of the gut microbiota. SIGNIFICANCE These findings provide novel methodological guidance for future research, and they significantly extend the applications and scope of VCD-induced POF mouse models.
Collapse
Affiliation(s)
- Lian Bao Cao
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250001, China; CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, Shandong 250001, China
| | - Chi Kwan Leung
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250001, China; CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, Shandong 250001, China; SDIVF R&D Centre, Hong Kong Science and Technology Parks, Shatin, Hong Kong, China
| | - Patrick Wai-Nok Law
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, Shandong 250001, China
| | - Yue Lv
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250001, China; CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, Shandong 250001, China
| | - Cheuk-Hei Ng
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250001, China; CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, Shandong 250001, China; SDIVF R&D Centre, Hong Kong Science and Technology Parks, Shatin, Hong Kong, China
| | - Hong Bin Liu
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250001, China; CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, Shandong 250001, China; SDIVF R&D Centre, Hong Kong Science and Technology Parks, Shatin, Hong Kong, China
| | - Gang Lu
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, Shandong 250001, China.
| | - Jin Long Ma
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250001, China; CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, Shandong 250001, China; SDIVF R&D Centre, Hong Kong Science and Technology Parks, Shatin, Hong Kong, China
| | - Wai Yee Chan
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, Shandong 250001, China.
| |
Collapse
|
16
|
Abolaji AO, Omozokpia MU, Oluwamuyide OJ, Akintola TE, Farombi EO. Rescue role of hesperidin in 4-vinylcyclohexene diepoxide-induced toxicity in the brain, ovary and uterus of wistar rats. J Basic Clin Physiol Pharmacol 2020; 31:/j/jbcpp.ahead-of-print/jbcpp-2018-0115/jbcpp-2018-0115.xml. [PMID: 32160159 DOI: 10.1515/jbcpp-2018-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/20/2019] [Indexed: 06/10/2023]
Abstract
Background The ovotoxicity of 4-vinylcyclohexene diepoxide (VCD) has been established in several experimental models. Hesperidin (HSD) is a bi-flavonoid found in citrus fruits and has been reported to be a potent antioxidant and anti-inflammatory agent. Here, we have evaluated the rescue role of hesperidin on VCD-induced toxicity in the brain, ovary, and uterus of rats. Methods Six groups of rats containing ten rats in each group were orally given corn oil (control), hesperidin (100 mg/kg), hesperidin (200 mg/kg), VCD (250 mg/kg), VCD [(250 mg/kg)+hesperidin (100 mg/kg)] and VCD [(250 mg/kg)+hesperidin (200 mg/kg)] once a day for 30 days, respectively. Thereafter, we determined the selected biomarkers of oxidative damage, inflammation, endocrine balance, and histology of the reproductive organs. Results The data showed that hesperidin rescued VCD-induced increase in oxidative stress (hydrogen peroxide and malondialdehyde) and inflammatory (nitric oxide) biomarkers. In addition, hesperidin restored the reduction in antioxidant enzymes (catalase, glutathione S-transferase, glutathione peroxidase) activities and glutathione level in the brain, ovary, and uterus of rats (p<0.05). Lastly, hesperidin preserved the histological structure of the ovary and uterus of rats exposed to VCD. Conclusions Overall, the rescue role of hesperidin on VCD-induced toxicity in the brain and reproductive organs of female rats may be due to its antioxidative and anti-inflammatory properties.
Collapse
Affiliation(s)
- Amos O Abolaji
- Drug Metabolism and Molecular Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria, Phone: +2348068614194
| | - Marvis U Omozokpia
- Drug Metabolism and Molecular Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olajide J Oluwamuyide
- Drug Metabolism and Molecular Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Temidayo E Akintola
- Drug Metabolism and Molecular Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ebenezer O Farombi
- Drug Metabolism and Molecular Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria, Phone: +2348023470333
| |
Collapse
|
17
|
Carolino ROG, Barros PT, Kalil B, Anselmo-Franci J. Endocrine profile of the VCD-induced perimenopausal model rat. PLoS One 2019; 14:e0226874. [PMID: 31887176 PMCID: PMC6936812 DOI: 10.1371/journal.pone.0226874] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 12/06/2019] [Indexed: 11/19/2022] Open
Abstract
During the transition to menopause, women experience a variety of physical and psychological symptoms that are directly or indirectly linked to changes in hormone secretion. Establishing animal models with intact ovaries is essential for understanding these interactions and finding new therapeutic targets. In this study, we assessed the endocrine profile, as well as the estrous cycle, in the 4-vinylcyclohexene diepoxide (VCD)-induced follicular depletion rat model in 10-day intervals over 1 month to accurately establish the best period for studies of the transition period. Twenty-eight-day-old female rats were injected daily with VCD or oil s.c. for 15 days and euthanized in the diestrus phase approximately 70, 80, 90 and 100 days after the onset of treatment. The percentage of rats showing irregular cycles and the plasma level of FSH increased only in the 100-day VCD group. Plasma anti-Müllerian hormone (AMH) and progesterone were lower in all VCD groups compared to control groups, while estradiol remained unchanged or higher. As in control groups, dihydrotestosterone (DHT) progressively decreased in the 70-90-day VCD groups; however, it was followed by a sharp increase only in the 100-day VCD group. No changes were found in plasma corticosterone, prolactin, thyroid hormones or luteinizing hormone. Based on the estrous cycle and endocrine profile, we conclude that 1) the time window from 70 to 100 days is suitable to study a perimenopause-like state in this model, and 2) regular cycles with low progesterone and AMH and normal FSH can be used as markers of the early/mid-transition period, whereas irregular cycles associated with higher FSH and DHT can be used as markers of the late transition period to estropause.
Collapse
Affiliation(s)
- Ruither O. G. Carolino
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Paulo T. Barros
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Bruna Kalil
- Department of Physiology, Institute of Biomedical Science, Federal University of Alfenas, Alfenas, MG, Brazil
| | - Janete Anselmo-Franci
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
18
|
Reduced serotonin impairs long-term depression in basolateral amygdala complex and causes anxiety-like behaviors in a mouse model of perimenopause. Exp Neurol 2019; 321:113030. [DOI: 10.1016/j.expneurol.2019.113030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 07/07/2019] [Accepted: 07/31/2019] [Indexed: 11/19/2022]
|
19
|
Ovarian failure induced by 4-vinylcyclohexene diepoxide worsens the autonomic cardiovascular response to chronic unpredictable stress in rats. Life Sci 2019; 226:130-139. [DOI: 10.1016/j.lfs.2019.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 11/24/2022]
|
20
|
Liu T, Ma Y, Zhang R, Zhong H, Wang L, Zhao J, Yang L, Fan X. Resveratrol ameliorates estrogen deficiency-induced depression- and anxiety-like behaviors and hippocampal inflammation in mice. Psychopharmacology (Berl) 2019; 236:1385-1399. [PMID: 30607478 DOI: 10.1007/s00213-018-5148-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/11/2018] [Indexed: 12/22/2022]
Abstract
RATIONALE Resveratrol (RSV) has been indicated to exhibit beneficial effects on depression and anxiety treatment by suppression of inflammatory processes. Depression triggered by deficiency of estrogen and anxiety-like behaviors are associated with inflammation. The role of RSV in ovariectomized mice is unclear. OBJECTIVES We examine whether the RSV, a Sirt1 activator, alleviates ovariectomy-induced anxiety- and depression-like behaviors through the inhibition of inflammatory processes. METHODS Female C57BL/6J mice (6-8 weeks of age, 17-20 g) were ovariectomized and treated with RSV at a dose of 20 mg/kg for 2 weeks. Depression- and anxiety-like behaviors were compared with vehicle-injected control animals. Immunohistochemistry and qPCR were used to detect inflammation in the hippocampal region. RESULTS Ovariectomized mice were observed to suffer from anxiety- and depression-like behaviors. These effects were attenuated by treatment with RSV. Immunohistochemical staining results showed that RSV could reverse the increase of microglial activation in the hippocampal dentate gyrus. At a molecular level, RSV inhibited the activation of NLRP3 and NF-κB in the hippocampal region caused by deficiency of estrogen. CONCLUSIONS RSV suppressed the production of inflammatory cytokines by enhancing Sirt1 levels. Our findings indicated that RSV-induced Sirt1 activation counteracted estrogen deficiency-induced psychobehavioral changes via inhibition of inflammatory processes in the hippocampus. In anxiety and depression disorders, RSV is supposed to be an effective treatment for postmenopausal changes.
Collapse
Affiliation(s)
- Tianyao Liu
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
- Department of Histology and Embryology, Third Military Medical University, Chongqing, China
| | - Yuanyuan Ma
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
| | - Ruiyu Zhang
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
- Department of Histology and Embryology, Third Military Medical University, Chongqing, China
| | - Hongyu Zhong
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
| | - Lian Wang
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
| | - Jinghui Zhao
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
| | - Ling Yang
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
| | - Xiaotang Fan
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
21
|
Prefrontal cortex-dependent innate behaviors are altered by selective knockdown of Gad1 in neuropeptide Y interneurons. PLoS One 2018; 13:e0200809. [PMID: 30024942 PMCID: PMC6053188 DOI: 10.1371/journal.pone.0200809] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 06/09/2018] [Indexed: 12/23/2022] Open
Abstract
GABAergic dysfunction has been implicated in a variety of neurological and psychiatric disorders, including anxiety disorders. Anxiety disorders are the most common type of psychiatric disorder during adolescence. There is a deficiency of GABAergic transmission in anxiety, and enhancement of GABA transmission through pharmacological means reduces anxiety behaviors. GAD67—the enzyme responsible for GABA production–has been linked to anxiety disorders. One class of GABAergic interneurons, Neuropeptide Y (NPY) expressing cells, is abundantly found in brain regions associated with anxiety and fear learning, including prefrontal cortex, hippocampus and amygdala. Additionally, NPY itself has been shown to have anxiolytic effects, and loss of NPY+ interneurons enhances anxiety behaviors. A previous study showed that knockdown of Gad1 from NPY+ cells led to reduced anxiety behaviors in adult mice. However, the role of GABA release from NPY+ interneurons in adolescent anxiety is unclear. Here we used a transgenic mouse that reduces GAD67 in NPY+ cells (NPYGAD1-TG) through Gad1 knockdown and tested for effects on behavior in adolescent mice. Adolescent NPYGAD1-TG mice showed enhanced anxiety-like behavior and sex-dependent changes in locomotor activity. We also found enhancement in two other innate behavioral tasks, nesting construction and social dominance. In contrast, fear learning was unchanged. Because we saw changes in behavioral tasks dependent upon prefrontal cortex and hippocampus, we investigated the extent of GAD67 knockdown in these regions. Immunohistochemistry revealed a 40% decrease in GAD67 in NPY+ cells in prefrontal cortex, indicating a significant but incomplete knockdown of GAD67. In contrast, there was no decrease in GAD67 in NPY+ cells in hippocampus. Consistent with this, there was no change in inhibitory synaptic transmission in hippocampus. Our results show the behavioral impact of cell-specific interneuron dysfunction and suggest that GABA release by NPY+ cells is important for regulating innate prefrontal cortex-dependent behavior in adolescents.
Collapse
|
22
|
Effects of Estrogen Therapy on the Serotonergic System in an Animal Model of Perimenopause Induced by 4-Vinylcyclohexen Diepoxide (VCD). eNeuro 2018; 5:eN-NWR-0247-17. [PMID: 29362726 PMCID: PMC5777542 DOI: 10.1523/eneuro.0247-17.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 12/07/2017] [Accepted: 12/16/2017] [Indexed: 01/05/2023] Open
Abstract
Chronic exposure to 4-vinylcycloxene diepoxide (VCD) in rodents accelerates the natural process of ovarian follicular atresia modelling perimenopause in women. We investigated why estrogen therapy is beneficial for symptomatic women despite normal or high estrogen levels during perimenopause. Female rats (28 d) were injected daily with VCD or oil for 15 d; 55-65 d after the first injection, pellets of 17β-estradiol or oil were inserted subcutaneously. Around 20 d after, the rats were euthanized (control rats on diestrus and estradiol-treated 21 d after pellets implants). Blood was collected for hormone measurement, the brains were removed and dorsal raphe nucleus (DRN), hippocampus (HPC), and amygdala (AMY) punched out for serotonin (5-HT), estrogen receptor β (ERβ), and progesterone receptor (PR) mRNA level measurements. Another set of rats was perfused for tryptophan hydroxylase (TPH) immunohistochemistry in the DRN. Periestropausal rats exhibited estradiol levels similar to controls and a lower progesterone level, which was restored by estradiol. The DRN of periestropausal rats exhibited lower expression of PR and ERβ mRNA and a lower number of TPH cells. Estradiol restored the ERβ mRNA levels and number of serotonergic cells in the DRN caudal subregion. The 5-HT levels were lower in the AMY and HPC in peristropausal rats, and estradiol treatment increased the 5-HT levels in the HPC and also increased ERβ expression in this area. In conclusion, estradiol may improve perimenopause symptoms by increasing progesterone and boosting serotonin pathway from the caudal DRN to the dorsal HPC potentially through an increment in ERβ expression in the DRN.
Collapse
|
23
|
Martínez-Domínguez SJ, Lajusticia H, Chedraui P, Pérez-López FR. The effect of programmed exercise over anxiety symptoms in midlife and older women: a meta-analysis of randomized controlled trials. Climacteric 2018; 21:123-131. [PMID: 29309207 DOI: 10.1080/13697137.2017.1415321] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We aimed to perform a systematic review and meta-analysis in order to clarify the effect of programmed exercise over mild-to-moderate anxiety symptoms (ASs) in midlife and older women. A structured search of PubMed, Medline, Web of Science, Scopus, Embase, Cochrane Library, Scielo, and the US, UK and Australian Clinical Trials databases (from inception through July 27, 2017) was performed, with no language restriction using the following terms: 'anxiety', 'anxiety symptoms', 'exercise', 'physical activity', 'menopause', and 'randomized controlled trial' (RCTs) in mid-aged and older women. We assessed RCTs that compared the effect of exercise for at least 6 weeks versus no intervention over ASs as outcome (as defined by trial authors). Exercise was classified according to duration as 'mid-term exercise intervention' (MTEI; for 12 weeks to 4 months), and 'long-term exercise intervention' (LTEI; for 6-14 months). Mean ± standard deviations of changes for ASs, as assessed with different questionnaires, were extracted to calculate Hedges' g and then used as effect size for meta-analyses. Standardized mean differences (SMDs) of ASs after intervention were pooled using a random-effects model. Ten publications were included for analysis related to 1463 midlife and older women (minimum age 54.2 ± 3.5 and maximum age 77.6 ± 5.4 years). Eight MTEIs were associated with a significant reduction of ASs (SMD = -0.42; 95% CI -0.81 to -0.02) as compared to controls. There was no reduction of ASs in seven LTEIs (SMD = -0.03; 95% CI -0.18 to 0.13). It can be concluded that MTEIs of low-to-moderate intensity seem to improve mild-moderate ASs in midlife and older women.
Collapse
Affiliation(s)
- S J Martínez-Domínguez
- a Facultad de Medicina , Universidad de Zaragoza & Instituto Aragonés de Ciencias de la Salud (IACS) , Zaragoza , Spain
| | - H Lajusticia
- a Facultad de Medicina , Universidad de Zaragoza & Instituto Aragonés de Ciencias de la Salud (IACS) , Zaragoza , Spain
| | - P Chedraui
- b Institute of Biomedicine, Research Area for Women's Health, Facultad de Ciencias Médicas , Universidad Católica de Santiago de Guayaquil , Guayaquil , Ecuador.,c Facultad de Ciencias de la Salud , Universidad Católica 'Nuestra Señora de la Asunción' , Asunción , Paraguay
| | - F R Pérez-López
- a Facultad de Medicina , Universidad de Zaragoza & Instituto Aragonés de Ciencias de la Salud (IACS) , Zaragoza , Spain.,d Department of Obstetrics and Gynecology , Lozano-Blesa University Hospital , Zaragoza , Spain
| | | |
Collapse
|
24
|
Huber DA, Bazilio D, Lorenzon F, Sehnem S, Pacheco L, Anselmo-Franci JA, Lima FB. Cardiovascular Autonomic Responses in the VCD Rat Model of Menopause: Effects of Short- and Long-Term Ovarian Failure. Reprod Sci 2017; 25:1093-1105. [PMID: 29025323 DOI: 10.1177/1933719117734318] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
After menopause, hypertension elevates the risk of cardiac diseases, one of the major causes of women's morbidity. The gradual depletion of ovarian follicles in rats, induced by 4-vinylcyclohexene diepoxide (VCD), is a model for studying the physiology of menopause. 4-Vinylcyclohexene diepoxide treatment leads to early ovarian failure (OF) and a hormonal profile comparable to menopause in humans. We have hypothesized that OF can compromise the balance between sympathetic and parasympathetic tones of the cardiovascular system, shifting toward dominance of the former. We aimed to study the autonomic modulation of heart and blood vessels and the cardiovascular reflexes in rats presenting short-term (80 days) or long-term (180 days) OF induced by VCD. Twenty-eight-day-old Wistar rats were submitted to VCD treatment (160 mg/kg, intraperitoneally) or vehicle (control) for 15 consecutive days and experiments were conducted at 80 or 180 days after the onset of treatment. Long-term OF led to an increase in the sympathetic activity to blood vessels and an impairment in the baroreflex control of the heart, evoked by physiological changes in arterial pressure. Despite that, long-term OF did not cause hypertension during the 180 days of exposure. Short-term OF did not cause any deleterious effect on the cardiovascular parameters analyzed. These data indicate that long-term OF does not disrupt the maintenance of arterial pressure homeostasis in rats but worsens the autonomic cardiovascular control. In turn, this can lead to cardiovascular complications, especially when associated with the aging process seen during human menopause.
Collapse
Affiliation(s)
- Domitila A Huber
- 1 Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade, Federal de Santa Catarina-UFSC, Florianópolis, Santa Catarina, Brazil.,2 Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina-UFSC, Florianópolis, Santa Catarina, Brazil
| | - Darlan Bazilio
- 1 Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade, Federal de Santa Catarina-UFSC, Florianópolis, Santa Catarina, Brazil
| | - Flaviano Lorenzon
- 2 Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina-UFSC, Florianópolis, Santa Catarina, Brazil
| | - Sibele Sehnem
- 2 Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina-UFSC, Florianópolis, Santa Catarina, Brazil
| | - Lucas Pacheco
- 1 Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade, Federal de Santa Catarina-UFSC, Florianópolis, Santa Catarina, Brazil
| | - Janete A Anselmo-Franci
- 3 Departamento de Morfologia, Estomatologia e Fisiologia, Faculdade de Odontologia de Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Fernanda B Lima
- 1 Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade, Federal de Santa Catarina-UFSC, Florianópolis, Santa Catarina, Brazil.,2 Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina-UFSC, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
25
|
Association between anxiety and severe quality-of-life impairment in postmenopausal women: analysis of a multicenter Latin American cross-sectional study. Menopause 2017; 24:645-652. [DOI: 10.1097/gme.0000000000000813] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
26
|
Seyyedi F, Kopaei MR, Miraj S. Comparison between vaginal royal jelly and vaginal estrogen effects on quality of life and vaginal atrophy in postmenopausal women: a clinical trial study. Electron Physician 2017; 8:3184-3192. [PMID: 28070251 PMCID: PMC5217810 DOI: 10.19082/3184] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 09/04/2016] [Indexed: 11/25/2022] Open
Abstract
Objective This study was conducted to evaluate the therapeutic effects of vaginal royal jelly and vaginal estrogen on quality of life and vaginal atrophy in postmenopausal women. Methods This double-blind randomized controlled clinical trial was carried out at gynecology and obstetrics clinics of Hajar Hospital of Shahrekord University of Medical Sciences (Iran) from January 2013 to January 2014. The study was conducted on married postmenopausal women between 50 and 65 years old. Of 120 patients, 30 individuals were excluded based on the exclusion criteria, and 90 women were randomly distributed into three groups of 30 royal jelly vaginal cream 15%, vaginal Premarin, and placebo (lubricant), for three months. At the beginning and the end of the study, quality of life and vaginal cytology assay were evaluated. Data were analyzed by SPSS Version 11. Results Vaginal cream of royal jelly is significantly more effective than vaginal cream of Premarin and lubricant in improvement of quality of life in postmenopausal women (p<0.05). Moreover, Pap smear results showed that vaginal atrophy in vaginal Premarin group was lower than the other groups (p<0.001), and there was no significant difference between lubricant and royal jelly groups (p=0.89). Conclusion Administration of vaginal royal jelly was effective in quality-of-life improvement of postmenopausal women. Given to the various properties of royal jelly and its effectiveness on quality of life and vaginal atrophy in postmenopausal women, further studies are recommended for using =royal jelly in improving menopausal symptoms. Clinical trial registration The trial was registered at the Iranian Registry of Clinical Trials (http://www.irct.ir) with the IRCT code: 2014112220043n1. Funding Shahrekord University of Medical Sciences supported this research (project no. 1440).
Collapse
Affiliation(s)
- Fatemeh Seyyedi
- Resident of Gynecology, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahmoud Rafiean Kopaei
- Ph.D. of Pharmacology, Full professor, Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sepideh Miraj
- M.D., Gynecologist, Fellowship of Infertility, Assistant Professor, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
27
|
Battiston FG, Dos Santos C, Barbosa AM, Sehnem S, Leonel ECR, Taboga SR, Anselmo-Franci JA, Lima FB, Rafacho A. Glucose homeostasis in rats treated with 4-vinylcyclohexene diepoxide is not worsened by dexamethasone treatment. J Steroid Biochem Mol Biol 2017; 165:170-181. [PMID: 27264932 DOI: 10.1016/j.jsbmb.2016.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 12/19/2022]
Abstract
4-vinilcyclohexene diepoxide (4-VCD) causes premature ovarian failure and may result in estrogen deficiency, characterizing the transition to estropause in rodents (equivalent to menopause in women). Estropause/menopause is associated with metabolic derangements such as glucose intolerance and insulin resistance. Glucocorticoids (GCs) are known to exert diabetogenic effects. Thus, we aimed to investigate whether rats with premature ovarian failure are more prone to the diabetogenic effects of GC. For this, immature female rats received daily injections of 4-VCD [160mg/kg body weight (b.w.), intraperitoneally (i.p.)] for 15 consecutive days, whereas control rats received vehicle. After 168days of the completion of 4-VCD administration, rats were divided into 4 groups: CTL-received daily injections of saline (1mL/kg, b.w., i.p.) for 5days; DEX-received daily injections of dexamethasone (1mg/kg, b.w., i.p.) for 5days; VCD-treated as CTL group; VCD+DEX-treated as DEX group. Experiments and euthanasia occurred one day after the last dexamethasone injection. 4-VCD-treated rats exhibited ovary hypotrophy and reduced number of preantral follicles (p<0.05). Premature ovarian failure had no impact on the body weight gain or food intake, but both were reduced by the effects of dexamethasone. The increase in blood glucose, plasma insulin and triacylglycerol levels as well as the reduction in insulin sensitivity caused by dexamethasone treatment was not exacerbated in the VCD+DEX group of rats. Premature ovarian failure did change neither the hepatic content of glycogen and triacylglycerol nor the glycerol release from perigonadal adipose tissue. Glucose intolerance was observed in the VCD group after an ipGTT (p<0.05), but not after an oral glucose challenge. Glucose intolerance and compensatory pancreatic β-cell mass caused by GC were not modified by ovarian failure in the VCD+DEX group. We conclude that reduced ovarian function has no major implications on the diabetogenic effects promoted by GC treatment, indicating that other factors related to aging may make rats more vulnerable to GC side effects on glucose metabolism.
Collapse
Affiliation(s)
- Francielle Garghetti Battiston
- Department of Physiological Sciences and Multicenter Graduate Program in Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina-UFSC, Florianópolis, Brazil
| | - Cristiane Dos Santos
- Department of Physiological Sciences and Multicenter Graduate Program in Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina-UFSC, Florianópolis, Brazil
| | - Amanda Marreiro Barbosa
- Department of Physiological Sciences and Multicenter Graduate Program in Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina-UFSC, Florianópolis, Brazil
| | - Sibele Sehnem
- Department of Physiological Sciences and Multicenter Graduate Program in Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina-UFSC, Florianópolis, Brazil
| | - Ellen Cristina Rivas Leonel
- Department of Biology, Institute of Biosciences, Letters and Exact Sciences, Univ. Estadual Paulista-IBILCE/UNESP, São José do Rio Preto, SP, Brazil
| | - Sebastião Roberto Taboga
- Department of Biology, Institute of Biosciences, Letters and Exact Sciences, Univ. Estadual Paulista-IBILCE/UNESP, São José do Rio Preto, SP, Brazil
| | - Janete A Anselmo-Franci
- Department of Morphology, Center of Biological Sciences, School of Dentistry of Ribeirão Preto, São Paulo University-USP, Ribeirão Preto, SP, Brazil
| | - Fernanda Barbosa Lima
- Department of Physiological Sciences and Multicenter Graduate Program in Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina-UFSC, Florianópolis, Brazil
| | - Alex Rafacho
- Department of Physiological Sciences and Multicenter Graduate Program in Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina-UFSC, Florianópolis, Brazil.
| |
Collapse
|
28
|
Abolaji AO, Adedara IA, Abajingin AO, Fatunmibi OJ, Ladipo EO, Farombi EO. Evidence of oxidative damage and reproductive dysfunction accompanying 4-vinylcyclohexene diepoxide exposure in female Wistar rats. Reprod Toxicol 2016; 66:10-19. [DOI: 10.1016/j.reprotox.2016.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 09/02/2016] [Accepted: 09/15/2016] [Indexed: 12/20/2022]
|
29
|
Abstract
OBJECTIVE Our overall aim-through a narrative review-is to critically profile key extant evidence of menopause-related sleep, mostly from studies published in the last decade. METHODS We searched the database PubMed using selected Medical Subject Headings for sleep and menopause (n = 588 articles). Using similar headings, we also searched the Cochrane Library (n = 1), Embase (n = 449), Cumulative Index to Nursing and Allied Health Literature (n = 163), Web of Science (n = 506), and PsycINFO (n = 58). Articles deemed most related to the purpose were reviewed. RESULTS Results were articulated with interpretive comments according to evidence of sleep quality (self-reported) and sleep patterns (polysomnography and actigraphy) impact as related to reproductive aging and in the context of vasomotor symptoms (VMS; self-reported), vasomotor activity (VMA) events (recorded skin conductance), depressed mood, and ovarian hormones. CONCLUSIONS Predominantly, the menopausal transition conveys poor sleep beyond anticipated age effects. Perceptions of sleep are not necessarily translatable from detectable physical sleep changes and are probably affected by an emotional overlay on symptoms reporting. Sleep quality and pattern changes are mostly manifest in wakefulness indicators, but sleep pattern changes are not striking. Likely contributing are VMS of sufficient frequency/severity and bothersomeness, probably with a sweating component. VMA events influence physical sleep fragmentation but not necessarily extensive sleep loss or sleep architecture changes. Lack of robust connections between perceived and recorded sleep (and VMA) could be influenced by inadequate detection. There is a need for studies of women in well-defined menopausal transition stages who have no sleep problems, accounting for sleep-related disorders, mood, and other symptoms, with attention to VMS dimensions, distribution of VMS during night and day, and advanced measurement of symptoms and physiologic manifestations.
Collapse
|
30
|
Liu W, Wang LY, Xing XX, Fan GW. Conditions and possible mechanisms of VCD-induced ovarian failure. Altern Lab Anim 2016; 43:385-92. [PMID: 26753941 DOI: 10.1177/026119291504300606] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Perimenopause is an important period in women's lives, in which they experience a series of physiological changes. Current animal models of perimenopause fail to adequately replicate this particular stage in female life, while current in vitro models are too simplistic and cannot account for systemic effects. Neither the naturally-ageing animal model, nor the ovariectomised animal model, mimic the natural transitional process that is the menopause. In vivo and in vitro studies have confirmed that the occupational chemical, 4-vinylcyclohexene diepoxide (VCD), can cause selective destruction of the ovarian primordial and primary follicles of rats and mice by accelerating the apoptotic process, which successfully mimics the perimenopausal state in women. However, it is the in vivo VCD-induced rodent perimenopausal models that are currently the most widely used in research, rather than any of the available in vitro models. Studies on the mechanisms involved have found that VCD induces ovotoxicity via interference with the c-kit/kit ligand and apoptotic signalling pathways, among others. Overall, the VCD-induced perimenopausal animal models have provided some insight into female perimenopause, but they are far from ideal models of the human situation.
Collapse
Affiliation(s)
- Wei Liu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ling-Yan Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiao-Xue Xing
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guan-Wei Fan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
31
|
Koebele SV, Bimonte-Nelson HA. Modeling menopause: The utility of rodents in translational behavioral endocrinology research. Maturitas 2016; 87:5-17. [PMID: 27013283 DOI: 10.1016/j.maturitas.2016.01.015] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 01/25/2016] [Indexed: 01/31/2023]
Abstract
The human menopause transition and aging are each associated with an increase in a variety of health risk factors including, but not limited to, cardiovascular disease, osteoporosis, cancer, diabetes, stroke, sexual dysfunction, affective disorders, sleep disturbances, and cognitive decline. It is challenging to systematically evaluate the biological underpinnings associated with the menopause transition in the human population. For this reason, rodent models have been invaluable tools for studying the impact of gonadal hormone fluctuations and eventual decline on a variety of body systems. While it is essential to keep in mind that some of the mechanisms associated with aging and the transition into a reproductively senescent state can differ when translating from one species to another, animal models provide researchers with opportunities to gain a fundamental understanding of the key elements underlying reproduction and aging processes, paving the way to explore novel pathways for intervention associated with known health risks. Here, we discuss the utility of several rodent models used in the laboratory for translational menopause research, examining the benefits and drawbacks in helping us to better understand aging and the menopause transition in women. The rodent models discussed are ovary-intact, ovariectomy, and 4-vinylcylohexene diepoxide for the menopause transition. We then describe how these models may be implemented in the laboratory, particularly in the context of cognition. Ultimately, we aim to use these animal models to elucidate novel perspectives and interventions for maintaining a high quality of life in women, and to potentially prevent or postpone the onset of negative health consequences associated with these significant life changes during aging.
Collapse
Affiliation(s)
- Stephanie V Koebele
- Department of Psychology, Arizona State University, Tempe, AZ 85287, United States; Arizona Alzheimer's Consortium, Phoenix, AZ 85006, United States
| | - Heather A Bimonte-Nelson
- Department of Psychology, Arizona State University, Tempe, AZ 85287, United States; Arizona Alzheimer's Consortium, Phoenix, AZ 85006, United States.
| |
Collapse
|
32
|
Mate preference for dominant vs. subordinate males in young female Syrian hamsters (Mesocricetus auratus) following chemically-accelerated ovarian follicle depletion. Physiol Behav 2015; 152:41-6. [PMID: 26335038 DOI: 10.1016/j.physbeh.2015.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 08/07/2015] [Accepted: 08/27/2015] [Indexed: 11/23/2022]
Abstract
Life history theory predicts that selectivity for mates generally declines as females age. We previously demonstrated this phenomenon in Syrian hamsters (Mesocricetus auratus), in that older females showed reduced preference for dominant over subordinate males. To test the hypothesis that decreased reproductive quality due to aging reduces mate preference, we decoupled reproductive and chronological age by treating young female hamsters with 4-vinylcyclohexene diepoxide (VCD), which destroys ovarian follicles and functionally accelerates ovarian follicle depletion without compromising the general health of rodents. In this study, VCD effectively reduced follicle numbers in young Syrian hamsters. VCD-treated and control females were allowed to choose between a dominant and a subordinate male in a Y-maze on the day of proestrus. Both VCD-treated and control females demonstrated preference for the dominant male by leaving a greater proportion of vaginal scent marks near him, which is a behavior that females display when soliciting prospective mates. However, there was no effect of treatment on the proportion of vaginal scent marks left for the dominant male. Furthermore, ovarian follicle numbers were not significantly correlated with any behaviors in either group. We conclude that accelerated ovarian follicle depletion does not reduce mate preference in young female hamsters.
Collapse
|
33
|
Spontaneous failure of the estrous cycle induces anxiogenic-related behaviors in middle-aged female mice. Physiol Behav 2015; 147:319-23. [DOI: 10.1016/j.physbeh.2015.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 04/17/2015] [Accepted: 05/13/2015] [Indexed: 01/06/2023]
|