1
|
Ye Z, Yang S, Lu L, Zong M, Fan L, Kang C. Unlocking the potential of the 3-hydroxykynurenine/kynurenic acid ratio: a promising biomarker in adolescent major depressive disorder. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01815-x. [PMID: 38819463 DOI: 10.1007/s00406-024-01815-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 04/19/2024] [Indexed: 06/01/2024]
Abstract
Metabolites disruptions in tryptophan (TRP) and kynurenine pathway (KP) are believed to disturb neurotransmitter homeostasis and contribute to depressive symptoms. This study aims to investigate serum levels of KP metabolites in adolescent major depressive disorder (AMDD), and examine their relationship with depression severities. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to analyze serum levels of TRP, kynurenic acid (KYNA), kynurenine (KYN), and 3-hydroxy-kynurenine (3-HK) in 143 AMDD participants and 98 healthy controls (HC). Clinical data, including Children's Depression Inventory (CDI) scores, were collected and analyzed using statistical methods, such as ANOVA, logistic regression, Receiver operating characteristic curve analysis and a significance level of p < 0.05 was used for all analyses. AMDD showed significantly decreased serum levels of KYNA (-25.5%), KYN (-14.2%), TRP (-11.0%) and the KYNA/KYN ratio (-11.9%) compared to HC (p < 0.01). Conversely, significant increases were observed in 3-HK levels (+50.4%), the 3-HK/KYNA ratio (+104.3%) and the 3-HK/KYN ratio (+93.0%) (p < 0.01). Logistic regression analysis identified increased level of 3-HK as a contributing factor to AMDD, while increased level of KYNA acted as a protective factor against AMDD. The 3-HK/KYNA ratio demonstrated an area under the curve (AUC) of 0.952. This study didn't explore AMDD's inflammatory status and its metabolites relationship explicitly. These findings indicate that metabolites of TRP and KP may play a crucial role in the pathogenesis of AMDD, emphasizing the potential of the 3-HK/KYNA ratio as a laboratory biomarker for early detection and diagnosis of AMDD.
Collapse
Affiliation(s)
- Zhihan Ye
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, 150 Ji Mo Road, Shanghai, 200120, China
| | - Shuran Yang
- Department of Psychosomatic Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Ji Mo Road, Shanghai, 200120, China
| | - Liu Lu
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, 150 Ji Mo Road, Shanghai, 200120, China
| | - Ming Zong
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, 150 Ji Mo Road, Shanghai, 200120, China
| | - Lieying Fan
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, 150 Ji Mo Road, Shanghai, 200120, China
| | - Chuanyuan Kang
- Department of Psychosomatic Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Ji Mo Road, Shanghai, 200120, China.
| |
Collapse
|
2
|
Nguyen TML, Jollant F, Tritschler L, Colle R, Corruble E, Gardier AM. [Ketamine and suicidal behavior: Contribution of animal models of aggression-impulsivity to understanding its mechanism of action]. ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:3-14. [PMID: 37890717 DOI: 10.1016/j.pharma.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
More than two-thirds of suicides occur during a major depressive episode. Acting out prevention measures and therapeutic options to manage the suicidal crisis are limited. The impulsive-aggressive dimensions are vulnerability factors associated with suicide in patients suffering from a characterized depressive episode: this can be a dimension involved in animals. Impulsive and aggressive rodent models can help analyze, at least in part, the neurobiology of suicide and the beneficial effects of treatments. Ketamine, a glutamatergic antagonist, by rapidly improving the symptoms of depressive episodes, would help reduce suicidal thoughts in the short term. Animal models share with humans impulsive and aggressive endophenotypes modulated by the serotonergic system (5-HTB receptor, MAO-A enzyme), neuroinflammation or the hypothalamic-pituitary-adrenal axis and stress. Significant effects of ketamine on these endophenotypes remain to be demonstrated.
Collapse
Affiliation(s)
- Thi Mai Loan Nguyen
- Inserm CESP/UMR 1018, équipe MOODS, faculté de pharmacie, université Paris-Saclay, 91400 Orsay, France
| | - Fabrice Jollant
- Inserm CESP/UMR 1018, équipe MOODS, faculté de médecine, université Paris-Saclay, 94270 Le Kremin-Bicêtre, France; Service hospitalo-universitaire de psychiatrie, hôpital de Bicêtre, hôpitaux universitaires Paris-Saclay, Assistance publique-Hôpitaux de Paris (AP-HP), 94275 Le Kremlin-Bicêtre, France; Pôle de psychiatrie, CHU de Nîmes, Nîmes, France; Département de psychiatrie, Université McGill et Groupe McGill d'études sur le suicide, Montréal, Canada
| | - Laurent Tritschler
- Inserm CESP/UMR 1018, équipe MOODS, faculté de pharmacie, université Paris-Saclay, 91400 Orsay, France
| | - Romain Colle
- Inserm CESP/UMR 1018, équipe MOODS, faculté de médecine, université Paris-Saclay, 94270 Le Kremin-Bicêtre, France; Service hospitalo-universitaire de psychiatrie, hôpital de Bicêtre, hôpitaux universitaires Paris-Saclay, Assistance publique-Hôpitaux de Paris (AP-HP), 94275 Le Kremlin-Bicêtre, France
| | - Emmanuelle Corruble
- Inserm CESP/UMR 1018, équipe MOODS, faculté de médecine, université Paris-Saclay, 94270 Le Kremin-Bicêtre, France; Service hospitalo-universitaire de psychiatrie, hôpital de Bicêtre, hôpitaux universitaires Paris-Saclay, Assistance publique-Hôpitaux de Paris (AP-HP), 94275 Le Kremlin-Bicêtre, France
| | - Alain M Gardier
- Inserm CESP/UMR 1018, équipe MOODS, faculté de pharmacie, université Paris-Saclay, 91400 Orsay, France.
| |
Collapse
|
3
|
Ou W, Chen Y, Ju Y, Ma M, Qin Y, Bi Y, Liao M, Liu B, Liu J, Zhang Y, Li L. The kynurenine pathway in major depressive disorder under different disease states: A systematic review and meta-analysis. J Affect Disord 2023; 339:624-632. [PMID: 37467793 DOI: 10.1016/j.jad.2023.07.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/27/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND A disruption of the kynurenine (KYN) pathway may exist in major depressive disorder (MDD). However, the changing pattern of the KYN pathway across the different disease states in MDD is unclear. Herein, we performed a meta-analysis to examine the differences in KYN metabolites between patients in the current episode of MDD (cMDD) and patients in remission (rMDD), as well as the changes after treatments. METHODS Literature was systematically searched from electronic databases, from inception up to September 2022. Random-effect models were used to quantify the differences in KYN metabolites between patients with MDD across acute depressive episode and remission phases, as well as the changes after treatments. RESULTS Fifty-one studies involving 7056 participants were included. Tryptophan (TRP), KYN, kynurenic acid (KYNA), KYNA/quinolinic acid (QA), KYNA/3-hydroxykynurenine (3-HK), and KYNA/KYN were significantly lower, while KYN/TRP was significantly higher in patients with cMDD. Moreover, these effect sizes were generally larger in medication-free patients. No significant differences were found between patients with rMDD and HCs. Additionally, KYNA was found negatively correlated with depression severity and significantly increased after treatments, while the alteration was not found in QA. LIMITATIONS The number of included studies of patients with rMDD and longitudinal studies investigating the change of the KYN metabolites after treatment with antidepressants was limited. In addition, the heterogeneity across included studies was relatively high. CONCLUSIONS These findings showed a comprehensive image of the unique dysfunction pattern of the KYN pathway across different MDD states and highlighted KYNA as a potentially sensitive biomarker of MDD.
Collapse
Affiliation(s)
- Wenwen Ou
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yihua Chen
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yumeng Ju
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Mohan Ma
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yaqi Qin
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Ying Bi
- Xiangya Medical School, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mei Liao
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Bangshan Liu
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jin Liu
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| | - Yan Zhang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| | - Lingjiang Li
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| |
Collapse
|
4
|
Stepaniuk A, Baran A, Flisiak I. Kynurenine Pathway in Psoriasis-a Promising Link? Dermatol Ther (Heidelb) 2023:10.1007/s13555-023-00958-4. [PMID: 37326759 PMCID: PMC10366053 DOI: 10.1007/s13555-023-00958-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023] Open
Abstract
Psoriasis is a common dermatosis which affects the patient's skin and general well-being because of its link to diseases such as depression, kidney disease and metabolic syndrome. Pathogenesis remains unknown; however, genetic, environmental and immunological factors seem to play a role in the development of the disease. Due to a lack of complete understanding of the psoriasis pathology, effective treatment is yet to be developed. The kynurenine pathway is one of the ways amino acid tryptophan is metabolised. In comorbidities typical for psoriasis such as chronic kidney disease, depression and atherosclerotic alterations in the activation of the kynurenine pathway were observed, which were mainly characterised by higher activity compared to that in healthy individuals. However, the kynurenine pathway has not been thoroughly studied among patients with psoriasis even though increased levels of L-kynurenine, one of the enzymes in the kynurenine pathway, were found in psoriatic skin lesions. Given the unknown pathogenesis of the disease, this finding seems to be a potential new field of study and shows a possible link between psoriasis and its comorbidities that could also lead to novel effective treatment for this chronic condition.
Collapse
Affiliation(s)
- A Stepaniuk
- Department of Dermatology and Venerology, Medical University of Bialystok, Zurawia 14, 15-540, Bialystok, Poland.
| | - A Baran
- Department of Dermatology and Venerology, Medical University of Bialystok, Zurawia 14, 15-540, Bialystok, Poland
| | - I Flisiak
- Department of Dermatology and Venerology, Medical University of Bialystok, Zurawia 14, 15-540, Bialystok, Poland
| |
Collapse
|
5
|
Nguyen TML, Jollant F, Tritschler L, Colle R, Corruble E, Gardier AM. Pharmacological Mechanism of Ketamine in Suicidal Behavior Based on Animal Models of Aggressiveness and Impulsivity: A Narrative Review. Pharmaceuticals (Basel) 2023; 16:ph16040634. [PMID: 37111391 PMCID: PMC10146327 DOI: 10.3390/ph16040634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Around 700,000 people die from suicide each year in the world. Approximately 90% of suicides have a history of mental illness, and more than two-thirds occur during a major depressive episode. Specific therapeutic options to manage the suicidal crisis are limited and measures to prevent acting out also remain limited. Drugs shown to reduce the risk of suicide (antidepressants, lithium, or clozapine) necessitate a long delay of onset. To date, no treatment is indicated for the treatment of suicidality. Ketamine, a glutamate NMDA receptor antagonist, is a fast-acting antidepressant with significant effects on suicidal ideation in the short term, while its effects on suicidal acts still need to be demonstrated. In the present article, we reviewed the literature on preclinical studies in order to identify the potential anti-suicidal pharmacological targets of ketamine. Impulsive-aggressive traits are one of the vulnerability factors common to suicide in patients with unipolar and bipolar depression. Preclinical studies in rodent models with impulsivity, aggressiveness, and anhedonia may help to analyze, at least in part, suicide neurobiology, as well as the beneficial effects of ketamine/esketamine on reducing suicidal ideations and preventing suicidal acts. The present review focuses on disruptions in the serotonergic system (5-HTB receptor, MAO-A enzyme), neuroinflammation, and/or the HPA axis in rodent models with an impulsive/aggressive phenotype, because these traits are critical risk factors for suicide in humans. Ketamine can modulate these endophenotypes of suicide in human as well as in animal models. The main pharmacological properties of ketamine are then summarized. Finally, numerous questions arose regarding the mechanisms by which ketamine may prevent an impulsive-aggressive phenotype in rodents and suicidal ideations in humans. Animal models of anxiety/depression are important tools to better understand the pathophysiology of depressed patients, and in helping develop novel and fast antidepressant drugs with anti-suicidal properties and clinical utility.
Collapse
Affiliation(s)
- Thi Mai Loan Nguyen
- Université Paris-Saclay, Faculté de Pharmacie, Inserm CESP/UMR 1018, MOODS Team, F-91400 Orsay, France
| | - Fabrice Jollant
- Université Paris-Saclay, Faculté de Médecine, Inserm CESP/UMR 1018, MOODS Team, F-94270 Le Kremin-Bicêtre, France
- Service Hospitalo-Universitaire de Psychiatrie, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Paris-Saclay, Hôpital de Bicêtre, F-94275 Le Kremlin Bicêtre, France
- Pôle de Psychiatrie, CHU Nîmes, 30900 Nîmes, France
- Department of Psychiatry, McGill University and McGill Group for Suicide Studies, Montréal, QC H3A 0G4, Canada
| | - Laurent Tritschler
- Université Paris-Saclay, Faculté de Pharmacie, Inserm CESP/UMR 1018, MOODS Team, F-91400 Orsay, France
| | - Romain Colle
- Université Paris-Saclay, Faculté de Médecine, Inserm CESP/UMR 1018, MOODS Team, F-94270 Le Kremin-Bicêtre, France
- Service Hospitalo-Universitaire de Psychiatrie, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Paris-Saclay, Hôpital de Bicêtre, F-94275 Le Kremlin Bicêtre, France
| | - Emmanuelle Corruble
- Université Paris-Saclay, Faculté de Médecine, Inserm CESP/UMR 1018, MOODS Team, F-94270 Le Kremin-Bicêtre, France
- Service Hospitalo-Universitaire de Psychiatrie, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Paris-Saclay, Hôpital de Bicêtre, F-94275 Le Kremlin Bicêtre, France
| | - Alain M Gardier
- Université Paris-Saclay, Faculté de Pharmacie, Inserm CESP/UMR 1018, MOODS Team, F-91400 Orsay, France
| |
Collapse
|
6
|
Linking nervous and immune systems in psychiatric illness: A meta-analysis of the kynurenine pathway. Brain Res 2023; 1800:148190. [PMID: 36463958 DOI: 10.1016/j.brainres.2022.148190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/13/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022]
Abstract
Tryptophan is an essential amino acid absorbed by the gut depending on a homoeostatic microbiome. Up to 95% of unbound tryptophan is converted into tryptophan catabolites (TRYCATs) through the kynurenine system. Recent studies identified conflicting associations between altered levels of TRYCATs and genetic polymorphisms in major depressive disorder (MDD), schizophrenia (SCZ), and bipolar disorder (BD). This meta-analysis aimed to understand how tryptophan catabolic pathways are altered in MDD, SCZ, and BD. When compared to healthy controls, participants with MDD had moderately lower levels of tryptophan associated with a moderate increase of kynurenine/tryptophan ratios and no differences in kynurenine. While significant differences were found in SCZ for any of the TRYCATs, studies on kynurenic acid found opposing directions of effect sizes depending on the sample source. Unique changes in levels of TRYCATs were also observed in BD. Dynamic changes in levels of cytokines and other immune/inflammatory elements modulate the transcription and activity of kynurenine system enzymes, which lastly seems to be impacting glutamatergic neurotransmission via N-methyl-D-aspartate and α-7 nicotine receptors.
Collapse
|
7
|
Is depression the missing link between inflammatory mediators and cancer? Pharmacol Ther 2022; 240:108293. [PMID: 36216210 DOI: 10.1016/j.pharmthera.2022.108293] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022]
Abstract
Patients with cancer are at greater risk of developing depression in comparison to the general population and this is associated with serious adverse effects, such as poorer quality of life, worse prognosis and higher mortality. Although the relationship between depression and cancer is now well established, a common underlying pathophysiological mechanism between the two conditions is yet to be elucidated. Existing theories of depression, based on monoamine neurotransmitter system dysfunction, are insufficient as explanations of the disorder. Recent advances have implicated neuroinflammatory mechanisms in the etiology of depression and it has been demonstrated that inflammation at a peripheral level may be mirrored centrally in astrocytes and microglia serving to promote chronic levels of inflammation in the brain. Three major routes to depression in cancer in which proinflammatory mediators are implicated, seem likely. Activation of the kynurenine pathway involving cytokines, increases tryptophan catabolism, resulting in diminished levels of serotonin which is widely acknowledged as being the hallmark of depression. It also results in neurotoxic effects on brain regions thought to be involved in the evolution of major depression. Proinflammatory mediators also play a crucial role in impairing regulatory glucocorticoid mediated feedback of the hypothalamic-pituitary-adrenal axis, which is activated by stress and considered to be involved in both depression and cancer. The third route is via the glutamatergic pathway, whereby glutamate excitotoxicity may lead to depression associated with cancer. A better understanding of the mechanisms underlying these dysregulated and other newly emerging pathways may provide a rationale for therapeutic targeting, serving to improve the care of cancer patients.
Collapse
|
8
|
Almulla AF, Thipakorn Y, Vasupanrajit A, Abo Algon AA, Tunvirachaisakul C, Hashim Aljanabi AA, Oxenkrug G, Al-Hakeim HK, Maes M. The tryptophan catabolite or kynurenine pathway in major depressive and bipolar disorder: A systematic review and meta-analysis. Brain Behav Immun Health 2022; 26:100537. [PMID: 36339964 PMCID: PMC9630622 DOI: 10.1016/j.bbih.2022.100537] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 10/09/2022] [Indexed: 11/09/2022] Open
Abstract
Background There is now evidence that affective disorders including major depressive disorder (MDD) and bipolar disorder (BD) are mediated by immune-inflammatory and nitro-oxidative pathways. Activation of these pathways may be associated with activation of the tryptophan catabolite (TRYCAT) pathway by inducing indoleamine 2,3-dioxygenase (IDO, the rate-limiting enzyme) leading to depletion of tryptophan (TRP) and increases in tryptophan catabolites (TRYCATs). Aims To systematically review and meta-analyze central and peripheral (free and total) TRP levels, its competing amino-acids (CAAs) and TRYCATs in MDD and BD. Methods This review searched PubMed, Google Scholar and SciFinder and included 121 full-text articles and 15470 individuals, including 8024 MDD/BD patients and 7446 healthy controls. Results TRP levels (either free and total) and the TRP/CAAs ratio were significantly decreased (p < 0.0001) in MDD/BD as compared with controls with a moderate effect size (standardized mean difference for TRP: SMD = -0.513, 95% confidence interval, CI: -0.611; -0.414; and TRP/CAAs: SMD = -0.558, CI: -0.758; -0.358). Kynurenine (KYN) levels were significantly decreased in patients as compared with controls with a small effect size (p < 0.0001, SMD = -0.213, 95%CI: -0.295; -0.131). These differences were significant in plasma (p < 0.0001, SMD = -0.304, 95%CI: -0.415, -0.194) but not in serum (p = 0.054) or the central nervous system (CNS, p = 0.771). The KYN/TRP ratio, frequently used as an index of IDO activity, and neurotoxicity indices based on downstream TRYCATs were unaltered or even lowered in MDD/BD. Conclusions Our findings suggest that MDD and BD are accompanied by TRP depletion without IDO and TRYCAT pathway activation. Lowered TRP availability is probably the consequence of lowered serum albumin during the inflammatory response in affective disorders.
Collapse
Affiliation(s)
- Abbas F. Almulla
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Yanin Thipakorn
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Asara Vasupanrajit
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Chavit Tunvirachaisakul
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Cognitive Impairment and Dementia Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Gregory Oxenkrug
- Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, 02111, USA
| | | | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
- Department of Psychiatry, IMPACT Strategic Research Centre, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
9
|
Stone TW, Clanchy FIL, Huang YS, Chiang NY, Darlington LG, Williams RO. An integrated cytokine and kynurenine network as the basis of neuroimmune communication. Front Neurosci 2022; 16:1002004. [PMID: 36507331 PMCID: PMC9729788 DOI: 10.3389/fnins.2022.1002004] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
Two of the molecular families closely associated with mediating communication between the brain and immune system are cytokines and the kynurenine metabolites of tryptophan. Both groups regulate neuron and glial activity in the central nervous system (CNS) and leukocyte function in the immune system, although neither group alone completely explains neuroimmune function, disease occurrence or severity. This essay suggests that the two families perform complementary functions generating an integrated network. The kynurenine pathway determines overall neuronal excitability and plasticity by modulating glutamate receptors and GPR35 activity across the CNS, and regulates general features of immune cell status, surveillance and tolerance which often involves the Aryl Hydrocarbon Receptor (AHR). Equally, cytokines and chemokines define and regulate specific populations of neurons, glia or immune system leukocytes, generating more specific responses within restricted CNS regions or leukocyte populations. In addition, as there is a much larger variety of these compounds, their homing properties enable the superimposition of dynamic variations of cell activity upon local, spatially limited, cell populations. This would in principle allow the targeting of potential treatments to restricted regions of the CNS. The proposed synergistic interface of 'tonic' kynurenine pathway affecting baseline activity and the superimposed 'phasic' cytokine system would constitute an integrated network explaining some features of neuroimmune communication. The concept would broaden the scope for the development of new treatments for disorders involving both the CNS and immune systems, with safer and more effective agents targeted to specific CNS regions.
Collapse
Affiliation(s)
- Trevor W. Stone
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom,*Correspondence: Trevor W. Stone,
| | - Felix I. L. Clanchy
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Yi-Shu Huang
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Nien-Yi Chiang
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - L. Gail Darlington
- Department of Internal Medicine, Ashtead Hospital, Ashtead, United Kingdom
| | - Richard O. Williams
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
10
|
Almulla AF, Thipakorn Y, Vasupanrajit A, Tunvirachaisakul C, Oxenkrug G, Al-Hakeim HK, Maes M. The Tryptophan Catabolite or Kynurenine Pathway in a Major Depressive Episode with Melancholia, Psychotic Features and Suicidal Behaviors: A Systematic Review and Meta-Analysis. Cells 2022; 11:3112. [PMID: 36231075 PMCID: PMC9563030 DOI: 10.3390/cells11193112] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/28/2022] [Indexed: 11/25/2022] Open
Abstract
Major depressive disorder (MDD) and bipolar disorder (BD) with melancholia and psychotic features and suicidal behaviors are accompanied by activated immune-inflammatory and oxidative pathways, which may stimulate indoleamine 2,3-dioxygenase (IDO), the first and rate-limiting enzyme of the tryptophan catabolite (TRYCAT) pathway resulting in increased tryptophan degradation and elevated tryptophan catabolites (TRYCTAs). The purpose of the current study is to systematically review and meta-analyze levels of TRP, its competing amino acids (CAAs) and TRYCATs in patients with severe affective disorders. Methods: PubMed, Google Scholar and SciFinder were searched in the present study and we recruited 35 studies to examine 4647 participants including 2332 unipolar (MDD) and bipolar (BD) depressed patients and 2315 healthy controls. Severe patients showed significant lower (p < 0.0001) TRP (standardized mean difference, SMD = -0.517, 95% confidence interval, CI: -0.735; -0.299) and TRP/CAAs (SMD = -0.617, CI: -0.957; -0.277) levels with moderate effect sizes, while no significant difference in CAAs were found. Kynurenine (KYN) levels were unaltered in severe MDD/BD phenotypes, while the KYN/TRP ratio showed a significant increase only in patients with psychotic features (SMD = 0.224, CI: 0.012; 0.436). Quinolinic acid (QA) was significantly increased (SMD = 0.358, CI: 0.015; 0.701) and kynurenic acid (KA) significantly decreased (SMD = -0.260, CI: -0.487; -0.034) in severe MDD/BD. Patients with affective disorders with melancholic and psychotic features and suicidal behaviors showed normal IDO enzyme activity but a lowered availability of plasma/serum TRP to the brain, which is probably due to other processes such as low albumin levels.
Collapse
Affiliation(s)
- Abbas F. Almulla
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf 31001, Iraq
| | - Yanin Thipakorn
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Asara Vasupanrajit
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chavit Tunvirachaisakul
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Cognitive Impairment and Dementia Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Gregory Oxenkrug
- Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, MA 02111, USA
| | - Hussein K. Al-Hakeim
- Department of Chemistry, College of Science, University of Kufa, Kufa 54002, Iraq
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Psychiatry, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- School of Medicine, Barwon Health, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3217, Australia
| |
Collapse
|
11
|
Effect of repetitive transcranial magnetic stimulation on the kynurenine pathway in stroke patients. Neuroreport 2021; 31:629-636. [PMID: 32427708 DOI: 10.1097/wnr.0000000000001438] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Repetitive transcranial magnetic stimulation (rTMS) improves depressive symptoms and motor function in stroke patients. While metabolic derangement of the kynurenine pathway has been reported in stroke patients, the effect of rTMS on this pathway remains unknown. This study was performed to investigate the effect of rTMS on serum levels of kynurenine and tryptophan in stroke patients. METHODS Sixty-two stroke patients received rTMS in addition to intensive rehabilitation and 33 stroke patients received intensive rehabilitation alone for 14 days. The rTMS involved low-frequency stimulation (at 1 Hz) of the primary motor cortex on the unaffected side of the cerebrum. The depressive state of the patients was evaluated with the Beck Depression Inventory (BDI) before and after treatment. Motor function of the patients was evaluated with Fugl-Meyer Assessment (FMA). Serum levels of kynurenine and tryptophan levels were also measured before and after treatment. RESULTS The serum tryptophan level decreased in the group receiving rTMS to the right brain and increased in the group receiving rTMS to the left brain. The serum kynurenine/tryptophan ratio was elevated in the group receiving rTMS to the right brain. The BDI indicated improvement of depressive symptoms in the rehabilitation alone group and the group receiving rTMS to the right brain plus rehabilitation. The FMA improved in all groups. CONCLUSIONS The effect of low-frequency rTMS on the kynurenine pathway may differ depending on whether it is applied to the right or left cerebral hemisphere.
Collapse
|
12
|
Marx W, McGuinness AJ, Rocks T, Ruusunen A, Cleminson J, Walker AJ, Gomes-da-Costa S, Lane M, Sanches M, Diaz AP, Tseng PT, Lin PY, Berk M, Clarke G, O'Neil A, Jacka F, Stubbs B, Carvalho AF, Quevedo J, Soares JC, Fernandes BS. The kynurenine pathway in major depressive disorder, bipolar disorder, and schizophrenia: a meta-analysis of 101 studies. Mol Psychiatry 2021; 26:4158-4178. [PMID: 33230205 DOI: 10.1038/s41380-020-00951-9] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/29/2020] [Accepted: 11/02/2020] [Indexed: 12/29/2022]
Abstract
The importance of tryptophan as a precursor for neuroactive compounds has long been acknowledged. The metabolism of tryptophan along the kynurenine pathway and its involvement in mental disorders is an emerging area in psychiatry. We performed a meta-analysis to examine the differences in kynurenine metabolites in major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SZ). Electronic databases were searched for studies that assessed metabolites involved in the kynurenine pathway (tryptophan, kynurenine, kynurenic acid, quinolinic acid, 3-hydroxykynurenine, and their associate ratios) in people with MDD, SZ, or BD, compared to controls. We computed the difference in metabolite concentrations between people with MDD, BD, or SZ, and controls, presented as Hedges' g with 95% confidence intervals. A total of 101 studies with 10,912 participants were included. Tryptophan and kynurenine are decreased across MDD, BD, and SZ; kynurenic acid and the kynurenic acid to quinolinic acid ratio are decreased in mood disorders (i.e., MDD and BD), whereas kynurenic acid is not altered in SZ; kynurenic acid to 3-hydroxykynurenine ratio is decreased in MDD but not SZ. Kynurenic acid to kynurenine ratio is decreased in MDD and SZ, and the kynurenine to tryptophan ratio is increased in MDD and SZ. Our results suggest that there is a shift in the tryptophan metabolism from serotonin to the kynurenine pathway, across these psychiatric disorders. In addition, a differential pattern exists between mood disorders and SZ, with a preferential metabolism of kynurenine to the potentially neurotoxic quinolinic acid instead of the neuroprotective kynurenic acid in mood disorders but not in SZ.
Collapse
Affiliation(s)
- Wolfgang Marx
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia.
| | - Amelia J McGuinness
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Tetyana Rocks
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Anu Ruusunen
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia.,Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland.,Department of Psychiatry, Kuopio University Hospital, Kuopio, Finland
| | - Jasmine Cleminson
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Adam J Walker
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Susana Gomes-da-Costa
- Bipolar and Depression Disorders Unit, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - Melissa Lane
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Marsal Sanches
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Alexandre P Diaz
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Ping-Tao Tseng
- Institute of Biomedical Sciences and Prospect Clinic for Otorhinolaryngology & Neurology, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Pao-Yen Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Institute for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Adrienne O'Neil
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Felice Jacka
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Brendon Stubbs
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK.,South London and Maudsley NHS Foundation Trust, London, UK
| | - André F Carvalho
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - João Quevedo
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Jair C Soares
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Brisa S Fernandes
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA. .,Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
| |
Collapse
|
13
|
Kim J, Yang GS, Lyon D, Kelly DL, Stechmiller J. Metabolomics: Impact of Comorbidities and Inflammation on Sickness Behaviors for Individuals with Chronic Wounds. Adv Wound Care (New Rochelle) 2021; 10:357-369. [PMID: 32723226 PMCID: PMC8165460 DOI: 10.1089/wound.2020.1215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/24/2020] [Indexed: 12/11/2022] Open
Abstract
Significance: Approximately 6.5 million people in the United States suffer from chronic wounds. The chronic wound population is typically older and is characterized by a number of comorbidities associated with inflammation. In addition to experiencing wound-related pain, individuals with chronic wounds commonly experience multiple concurrent psychoneurological symptoms such as fatigue and depression, which delay wound healing. However, these distressing symptoms have been relatively overlooked in this population, although their adverse effects on morbidity are well established in other chronic disease populations. Recent Advances: Inflammation is involved in multiple pathways, which activate brain endothelial and innate immune cells that release proinflammatory cytokines, which produce multiple symptoms known as sickness behaviors. Inflammation-based activation of the kynurenine (KYN) pathway and its metabolites is a mechanism associated with chronic illnesses. Critical Issues: Although putative humoral and neuronal routes have been identified, the specific metabolic variations involved in sickness behaviors in chronic wound patients remain unclear. To improve health outcomes in the chronic wound population, clinicians need to have better understanding of the mechanisms underlying sickness behaviors to provide appropriate treatments. Future Directions: This article presents a synthesis of studies investigating associations between inflammation, metabolic pathways, and sickness behaviors in multiple chronic diseases. The presentation of a theoretical framework proposes a mechanism underlying sickness behaviors in the chronic wound population. By mediating the immune system response, dysregulated metabolites in the KYN pathway may play an important role in sickness behaviors in chronic inflammatory conditions. This framework may guide researchers in developing new treatments to reduce the disease burden in the chronic wound population.
Collapse
Affiliation(s)
- Junglyun Kim
- Adult and Gerontological Health Cooperative, University of Minnesota School of Nursing, Minneapolis, Minnesota, USA
| | - Gee Su Yang
- Department of Biobehavioral Nursing Science, University of Florida College of Nursing, Gainesville, Florida, USA
| | - Debra Lyon
- Department of Biobehavioral Nursing Science, University of Florida College of Nursing, Gainesville, Florida, USA
| | - Debra L. Kelly
- Department of Biobehavioral Nursing Science, University of Florida College of Nursing, Gainesville, Florida, USA
| | - Joyce Stechmiller
- Department of Biobehavioral Nursing Science, University of Florida College of Nursing, Gainesville, Florida, USA
| |
Collapse
|
14
|
Zádor F, Joca S, Nagy-Grócz G, Dvorácskó S, Szűcs E, Tömböly C, Benyhe S, Vécsei L. Pro-Inflammatory Cytokines: Potential Links between the Endocannabinoid System and the Kynurenine Pathway in Depression. Int J Mol Sci 2021; 22:ijms22115903. [PMID: 34072767 PMCID: PMC8199129 DOI: 10.3390/ijms22115903] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
Substance use/abuse is one of the main causes of depressive symptoms. Cannabis and synthetic cannabinoids in particular gained significant popularity in the past years. There is an increasing amount of clinical data associating such compounds with the inflammatory component of depression, indicated by the up-regulation of pro-inflammatory cytokines. Pro-inflammatory cytokines are also well-known to regulate the enzymes of the kynurenine pathway (KP), which is responsible for metabolizing tryptophan, a precursor in serotonin synthesis. Enhanced pro-inflammatory cytokine levels may over-activate the KP, leading to tryptophan depletion and reduced serotonin levels, which can subsequently precipitate depressive symptoms. Therefore, such mechanism might represent a possible link between the endocannabinoid system (ECS) and the KP in depression, via the inflammatory and dysregulated serotonergic component of the disorder. This review will summarize the data regarding those natural and synthetic cannabinoids that increase pro-inflammatory cytokines. Furthermore, the data on such cytokines associated with KP activation will be further reviewed accordingly. The interaction of the ECS and the KP has been postulated and demonstrated in some studies previously. This review will further contribute to this yet less explored connection and propose the KP to be the missing link between cannabinoid-induced inflammation and depressive symptoms.
Collapse
Affiliation(s)
- Ferenc Zádor
- Institute of Biochemistry, Biological Research Center, H-6726 Szeged, Hungary; (F.Z.); (S.D.); (E.S.); (C.T.); (S.B.)
| | - Sâmia Joca
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark;
| | - Gábor Nagy-Grócz
- Faculty of Health Sciences and Social Studies, University of Szeged, H-6726 Szeged, Hungary;
- Albert Szent-Györgyi Clinical Center, Department of Neurology, Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary
| | - Szabolcs Dvorácskó
- Institute of Biochemistry, Biological Research Center, H-6726 Szeged, Hungary; (F.Z.); (S.D.); (E.S.); (C.T.); (S.B.)
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Hungary
| | - Edina Szűcs
- Institute of Biochemistry, Biological Research Center, H-6726 Szeged, Hungary; (F.Z.); (S.D.); (E.S.); (C.T.); (S.B.)
- Doctoral School of Theoretical Medicine, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary
| | - Csaba Tömböly
- Institute of Biochemistry, Biological Research Center, H-6726 Szeged, Hungary; (F.Z.); (S.D.); (E.S.); (C.T.); (S.B.)
| | - Sándor Benyhe
- Institute of Biochemistry, Biological Research Center, H-6726 Szeged, Hungary; (F.Z.); (S.D.); (E.S.); (C.T.); (S.B.)
| | - László Vécsei
- Albert Szent-Györgyi Clinical Center, Department of Neurology, Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary
- MTA-SZTE Neuroscience Research Group, University of Szeged, H-6725 Szeged, Hungary
- Department of Neurology, Interdisciplinary Excellence Center, University of Szeged, H-6725 Szeged, Hungary
- Correspondence: ; Tel.: +36-62-545-351
| |
Collapse
|
15
|
The kynurenine pathway in major depression: What we know and where to next. Neurosci Biobehav Rev 2021; 127:917-927. [PMID: 34029552 DOI: 10.1016/j.neubiorev.2021.05.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/27/2022]
Abstract
Major depression is a serious psychiatric disorder, occurring in up to 20 % of the population. Despite its devastating burden, the neurobiological changes associated with depression are not fully understood. A growing body of evidence suggests the kynurenine pathway is implicated in the pathophysiology of depression. In this review, we bring together the literature examining elements of the kynurenine pathway in depression and explore the implications for the pathophysiology and treatment of depression, while highlighting the gaps in the current knowledge. Current research indicates an increased potential for neurotoxic activity of the kynurenine pathway in peripheral blood samples but an increased activation of the putative neuroprotective arm in some brain regions in depression. The disconnect between these findings requires further investigation, with a greater research effort on elucidating the central effects of the kynurenine pathway in driving depression symptomology. Research investigating the benefits of targeting the kynurenine pathway centred on human brain findings and the heterogenous subtypes of depression will help guide the identification of effective drug targets in depression.
Collapse
|
16
|
Öztürk M, Yalın Sapmaz Ş, Kandemir H, Taneli F, Aydemir Ö. The role of the kynurenine pathway and quinolinic acid in adolescent major depressive disorder. Int J Clin Pract 2021; 75:e13739. [PMID: 32997876 DOI: 10.1111/ijcp.13739] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/23/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The biological mechanisms underlying major depressive disorder (MDD) are not yet sufficiently understood. The kynurenine pathway has been proposed to play a key role between peripheral inflammation and alterations in the central nervous system. This is because of reduced usability of tryptophan (TRP) and production of oxygen radicals and highly potent neurotoxic agents in this pathway. OBJECTIVE In this study, we aimed to compare the metabolites of the serum kynurenine pathway (tryptophan, kynurenine, quinolinic acid and kynurenic acid) and IFN-γ, IL-6, IL-1β and high-sensitivity C-reactive protein (hsCRP) levels in patients with major depressive disorder and in healthy controls and to evaluate the relationship between cytokine levels and the functioning of the kynurenine pathway. METHODS Clinical and biochemical data from the patients were obtained and assessed in a cross-sectional design. Serum samples were analysed for IL-6, IL-1β, interferon (IFN)-γ, tryptophan (TRP), quinolinic acid (QUIN), kynurenic acid (KYNA) and kynurenine (Kyn) levels by the enzyme-linked immunosorbent assay. hsCRP test was analysed by the immunoturbidimetric method. RESULTS In total, 48 adolescent patients with major depressive disorder (no drug use) and 31 healthy controls were included in the study. TRP levels were observed to be significantly lower in patients with MDD than in healthy controls (P = .046); the Kyn/TRP ratio was significantly higher in patients with MDD than in healthy controls (P = .032); the levels of QUIN were significantly higher in patients with MDD than in healthy controls (P = .003). No significant difference was found between the groups in terms of other kynurenine metabolites and cytokines levels. CONCLUSION These results suggest that the Kyn and related molecular pathways may play a role in the pathophysiology of MDD. The most important finding was the increased level of QUIN, which has a neurotoxic effect, in the kynurenine pathway.
Collapse
Affiliation(s)
- Masum Öztürk
- Department of Child and Adolescent Psychiatry, Kızıltepe State Hospital, Mardin, Turkey
| | - Şermin Yalın Sapmaz
- Faculty of Medicine, Department of Child and Adolescent Psychiatry, Manisa Celal Bayar University, Manisa, Turkey
| | - Hasan Kandemir
- Faculty of Medicine, Department of Child and Adolescent Psychiatry, Manisa Celal Bayar University, Manisa, Turkey
| | - Fatma Taneli
- Faculty of Medicine, Department of Biochemistry, Manisa Celal Bayar University, Manisa, Turkey
| | - Ömer Aydemir
- Faculty of Medicine, Department of Psychiatry, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
17
|
Ormstad H, Simonsen CS, Broch L, Maes DM, Anderson G, Celius EG. Chronic fatigue and depression due to multiple sclerosis: Immune-inflammatory pathways, tryptophan catabolites and the gut-brain axis as possible shared pathways. Mult Scler Relat Disord 2020; 46:102533. [PMID: 33010585 DOI: 10.1016/j.msard.2020.102533] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/03/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023]
Abstract
Chronic fatigue and major depression (MDD)-like symptoms are common manifestations of multiple sclerosis (MS), both with huge impact on quality of life. Depression can manifest itself as fatigue, and depressive symptoms are often mistaken for fatigue, and vice versa. The two conditions are sometimes difficult to differentiate, and their relationship is unclear. Whether chronic fatigue and depression occur primarily, secondarily or coincidentally with activated immune-inflammatory pathways in MS is still under debate. We have carried out a descriptive review aiming to gain a deeper understanding of the relationship between chronic fatigue and depression in MS, and the shared pathways that underpin both conditions. This review focuses on immune-inflammatory pathways, the kynurenine pathway and the gut-brain axis. It seems likely that proinflammatory cytokines, tryptophan catabolites (the KYN pathway) and the gut-brain axis are involved in the mechanisms causing chronic fatigue and MDD-like symptoms in MS. However, the evidence base is weak, and more research is needed. In order to advance our understanding of the underlying pathological mechanisms, MS-related fatigue and depression should be examined using a longitudinal design and both immune-inflammatory and KYN pathway biomarkers should be measured, relevant clinical characteristics judiciously registered, and self-report instruments for both fatigue and depression should be used.
Collapse
Affiliation(s)
- Heidi Ormstad
- University of South-Eastern Norway and University Oslo Metropolitan University.
| | | | | | - Dr Michael Maes
- Chulalongkorn University, Bangkok, Thailand; Medical University of Plovdiv, Plovdiv, Bulgaria; IMPACT Strategic Center, Deakin University, Australia
| | - George Anderson
- CRC Scotland & London, Eccleston Square, London, United Kingdom
| | | |
Collapse
|
18
|
van den Ameele S, van Nuijs AL, Lai FY, Schuermans J, Verkerk R, van Diermen L, Coppens V, Fransen E, de Boer P, Timmers M, Sabbe B, Morrens M. A mood state-specific interaction between kynurenine metabolism and inflammation is present in bipolar disorder. Bipolar Disord 2020; 22:59-69. [PMID: 31398273 DOI: 10.1111/bdi.12814] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Cytokines are thought to contribute to the pathogenesis of psychiatric symptoms by kynurenine pathway activation. Kynurenine metabolites affect neurotransmission and can cause neurotoxicity. We measured inflammatory markers in patients with bipolar disorder (BD) and studied their relation to kynurenine metabolites and mood. METHODS Patients with BD suffering from an acute mood episode were assigned to the depressive (n = 35) or (hypo)manic (n = 32) subgroup. Plasma levels of inflammatory markers [cytokines, C-reactive protein] and kynurenine metabolites [tryptophan (TRP), kynurenine (KYN), 3-hydroxykynurenine (3-HK), quinolinic acid (QA), kynurenic acid (KYNA)] were measured on 6 time points during 8 months follow-up. Biological marker levels in patients were compared to controls (n = 35) and correlated to scores on mood scales. Spearman correlations and linear mixed models were used for statistical analysis. RESULTS Twenty patients of the manic subgroup, 29 of the depressive subgroup, and 30 controls completed the study. The manic subgroup had a rapid remission of mood symptoms, but in the depressive subgroup subsyndromal symptoms persisted. No differences in inflammation were found between groups. A strong correlation between tumor necrosis factor-α and KYN, KYN/TRP, 3-HK and QA (ρ > 0.60) was specific for the manic group, but only at baseline (during mania). The depressive subgroup had a lower neuroprotective ratio (KYNA/3-HK, P = .0004) and a strong association between interferon-y and kynurenine pathway activation (P < .0001). KYNA was low in both patient groups versus controls throughout the whole follow-up (P = .0008). CONCLUSIONS Mania and chronic depressive symptoms in BD are accompanied by a strong interaction between inflammation and a potentially neurotoxic kynurenine metabolism.
Collapse
Affiliation(s)
- Seline van den Ameele
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Scientific Institute for Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Psychiatric Hospital Duffel - VZW Emmaüs, Duffel, Belgium.,Department of Psychiatry, CHU Brugmann, Brussels, Belgium
| | - Alexander Ln van Nuijs
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Foon Yin Lai
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium.,Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Jeroen Schuermans
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Scientific Institute for Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Psychiatric Hospital Duffel - VZW Emmaüs, Duffel, Belgium
| | - Robert Verkerk
- Laboratory of Medical Biochemistry, University of Antwerp, Antwerp, Belgium
| | - Linda van Diermen
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Scientific Institute for Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Psychiatric Hospital Duffel - VZW Emmaüs, Duffel, Belgium
| | - Violette Coppens
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Scientific Institute for Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Psychiatric Hospital Duffel - VZW Emmaüs, Duffel, Belgium
| | - Erik Fransen
- StatUa Centre for Statistics, University of Antwerp, Antwerp, Belgium
| | - Peter de Boer
- Janssen Research and Development, A Division of Janssen Pharmaceutica N.V., Beerse, Belgium
| | - Maarten Timmers
- Janssen Research and Development, A Division of Janssen Pharmaceutica N.V., Beerse, Belgium.,Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Bernard Sabbe
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Scientific Institute for Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Psychiatric Hospital Duffel - VZW Emmaüs, Duffel, Belgium
| | - Manuel Morrens
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Scientific Institute for Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Psychiatric Hospital Duffel - VZW Emmaüs, Duffel, Belgium
| |
Collapse
|
19
|
Baharikhoob P, Kolla NJ. Microglial Dysregulation and Suicidality: A Stress-Diathesis Perspective. Front Psychiatry 2020; 11:781. [PMID: 32848946 PMCID: PMC7432264 DOI: 10.3389/fpsyt.2020.00781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022] Open
Abstract
According to the stress-diathesis model of suicidal behavior, completed suicide depends on the interaction between psychosocial stressors and a trait-like susceptibility. While there are likely multiple biological processes at play in suicidal behavior, recent findings point to over-activation of microglia, the resident macrophages of the central nervous system, as implicated in stress-induced suicidal behavior. However, it remains unclear how microglial dysregulation can be integrated into a clinical model of suicidal behavior. Therefore, this narrative review aims to (1) examine the findings from human post-mortem and neuroimaging studies that report a relationship between microglial activation and suicidal behavior, and (2) update the clinical model of suicidal behavior to integrate the role of microglia. A systematic search of SCOPUS, PubMed, PsycINFO, and Embase databases revealed evidence of morphological alterations in microglia and increased translocator protein density in the brains of individuals with suicidality, pointing to a positive relationship between microglial dysregulation and suicidal behavior. The studies also suggested several pathological mechanisms leading to suicidal behavior that may involve microglial dysregulation, namely (1) enhanced metabolism of tryptophan to quinolinic acid through the kynurenine pathway and associated serotonin depletion; (2) increased quinolinic acid leading to excessive N-methyl-D-aspartate-signaling, resulting in potential disruption of the blood brain barrier; (3) increased quinolinic acid resulting in higher neurotoxicity, and; (4) elevated interleukin 6 contributing to loss of inhibition of glutamatergic neurons, causing heightened glutamate release and excitotoxicity. Based on these pathways, we reconceptualized the stress-diathesis theory of suicidal behavior to incorporate the role of microglial activity.
Collapse
Affiliation(s)
- Paria Baharikhoob
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Centre for Addiction and Mental Health (CAMH) Research Imaging Centre and Campbell Family Mental Health Research Institute, Toronto, ON, Canada.,Violence Prevention Neurobiological Research Unit, CAMH, Toronto, ON, Canada
| | - Nathan J Kolla
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Centre for Addiction and Mental Health (CAMH) Research Imaging Centre and Campbell Family Mental Health Research Institute, Toronto, ON, Canada.,Violence Prevention Neurobiological Research Unit, CAMH, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Waypoint Centre for Mental Health Care, Waypoint Research Institute, Penetanguishene, ON, Canada
| |
Collapse
|
20
|
Sforzini L, Nettis MA, Mondelli V, Pariante CM. Inflammation in cancer and depression: a starring role for the kynurenine pathway. Psychopharmacology (Berl) 2019; 236:2997-3011. [PMID: 30806743 PMCID: PMC6820591 DOI: 10.1007/s00213-019-05200-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/13/2019] [Indexed: 12/13/2022]
Abstract
Depression is a common comorbidity in cancer cases, but this is not only due to the emotional distress of having a life-threatening disease. A common biological mechanism, involving a dysregulated immune system, seems to underpin this comorbidity. In particular, the activation of the kynurenine pathway of tryptophan degradation due to inflammation may play a key role in the development and persistence of both diseases. As a consequence, targeting enzymes involved in this pathway offers a unique opportunity to develop new strategies to treat cancer and depression at once. In this work, we provide a systematic review of the evidence up to date on the kynurenine pathway role in linking depression and cancer and on clinical implications of this evidence. In particular, complications due to chemotherapy are discussed, as well as the potential antidepressant efficacy of novel immunotherapies for cancer.
Collapse
Affiliation(s)
- Luca Sforzini
- Psychiatry Unit, Department of Biomedical and Clinical Sciences, ASST Fatebenefratelli-Sacco University Hospital, Università di Milano, Milan, Italy
- Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King's College London, London, UK
| | - Maria Antonietta Nettis
- Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King's College London, London, UK.
- National Institute for Health and Research Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, London, UK.
| | - Valeria Mondelli
- Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King's College London, London, UK
- National Institute for Health and Research Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| | - Carmine Maria Pariante
- Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King's College London, London, UK
- National Institute for Health and Research Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| |
Collapse
|
21
|
The effect of electroconvulsive therapy (ECT) on serum tryptophan metabolites. Brain Stimul 2019; 12:1135-1142. [PMID: 31176607 DOI: 10.1016/j.brs.2019.05.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/09/2019] [Accepted: 05/28/2019] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Prior studies suggest that activation of the tryptophan catabolism via the kynurenine pathway by proinflammatory cytokines may be involved in the pathophysiology of depression. Electroconvulsive therapy (ECT) is an effective treatment for major depression (MD) with immunomodulation as one of the proposed modes of action. OBJECTIVE The aim of this study was to investigate serum concentrations of tryptophan and kynurenine pathway metabolites in MD patients and healthy controls, and to explore the effect of ECT on components of the kynurenine pathway. METHODS The study included 27 moderately to severely depressed patients referred to ECT. Blood samples were collected prior to treatment and after the completed ECT-series. Baseline samples were also collected from 14 healthy, age- and sex-matched controls. Serum concentrations of tryptophan, kynurenine, 3-hydroxykynurenine (HK), kynurenic acid (KA), xanthurenic acid (XA), anthranilic acid (AA), 3-hydroxyanthranilic acid (HAA), quinolinic acid (QA), picolinic acid (Pic), pyridoxal 5'-phosphat (PLP), riboflavin, neopterin and cotinine were measured. RESULTS Patients with MD had lower levels of neuroprotective kynurenine-pathway metabolites (KA, XA and Pic) and lower metabolite ratios (KA/Kyn and KA/QA) reflecting reduced neuroprotection compared to controls. The concentration of the inflammatory marker neopterin was increased after ECT, along with Pic and the redox active and immunosuppressive metabolite HAA. CONCLUSION In this pilot study, we found increased concentrations of inflammatory marker neopterin and putative neuroprotective kynurenine metabolites HAA and Pic in MD patients after ECT. Further research in larger cohorts is required to conclude whether ECT exerts its therapeutic effects via changes in the kynurenine pathway.
Collapse
|
22
|
Reininghaus EZ, Dalkner N, Riedrich K, Fuchs D, Gostner JM, Reininghaus B. Sex Specific Changes in Tryptophan Breakdown Over a 6 Week Treatment Period. Front Psychiatry 2019; 10:74. [PMID: 30846946 PMCID: PMC6393336 DOI: 10.3389/fpsyt.2019.00074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/01/2019] [Indexed: 11/25/2022] Open
Abstract
Introduction: Despite the knowledge of sex differences concerning neurobiological parameters as well as clinical course of illness in individuals with mood disorders, the literature concerning tryptophan (Trp) breakdown, specific for women and men, is sparse to date. The current study aimed to evaluate sex differences in Trp, kynurenine (Kyn) and Kyn/Trp concentrations in general, as well as differences in changes of those concentrations over the course of a 6-week rehabilitation program in individuals with life-time unipolar affective disorder. For this purpose changes in Trp and Kyn as well as the Kyn/Trp concentrations between the time of admission (t1) and discharge (t2) were analyzed in dependence of sex. Furthermore, correlations between Trp and Kyn levels and clinical parameters were performed separately for male and female participants. Material and Methods: Results: For the current analysis 426 individuals with lifetime affective disorder completing a 6-week rehabilitation program were included. In both sexes, psychiatric symptoms decreased significantly over time. There was a significant difference between women (n = 242) and men (n = 184) regarding the changes in Trp, Kyn, and Kyn/Trp over time even if controlled for relevant covariates [multivariate: F (3, 380) = 2.663, η2 = 0.021, p = 0.048]. Kyn as well as Kyn/Trp concentrations increased significantly in men over time (Kyn F = 4.809, η2 = 0.012, p = 0.029; Kyn/Trp F = 7.923, η2 = 0.020, p = 0.005). Results remained the same when controlled for psychiatric symptoms. Discussion: The main finding of the present study is the significant difference between women and men regarding the change in Trp, Kyn, and Kyn/Trp over a 6-week psychiatric treatment period, while the depression severity scores as well as general psychiatric symptoms decreased. Sex specific changes in Trp-Kyn pathways have only been explored to a very small extent to date in the literature but are of high clinical relevance in the context of personalized medicine.
Collapse
Affiliation(s)
- Eva Z Reininghaus
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Nina Dalkner
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Karin Riedrich
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria.,TZ-Justus Park Bad Hall, Bad Hall, Austria
| | - Dietmar Fuchs
- Division of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.,Division of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Johanna M Gostner
- Division of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.,Division of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Bernd Reininghaus
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria.,TZ-Justus Park Bad Hall, Bad Hall, Austria
| |
Collapse
|
23
|
Arnone D, Saraykar S, Salem H, Teixeira AL, Dantzer R, Selvaraj S. Role of Kynurenine pathway and its metabolites in mood disorders: A systematic review and meta-analysis of clinical studies. Neurosci Biobehav Rev 2018; 92:477-485. [PMID: 29940237 PMCID: PMC6686193 DOI: 10.1016/j.neubiorev.2018.05.031] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 12/16/2022]
Abstract
Activation of the kynurenine pathway is one of the described mechanisms by which inflammation can induce depression. It involves multiple pathways including interference with the bioavailability of tryptophan central to the synthesis of the neurotransmitter serotonin. In this systematic review, we examine the relationship between kynurenine metabolites (kynurenine, kynurenic acid, tryptophan, quinolinic acid, the ratio of kynurenine and tryptophan) and mood disorders by conducting a meta-analysis. Fifty-six studies were identified, 21 met inclusion criteria and 14 were deemed suitable (9 investigating unipolar depression and 5 bipolar disorder). We found decreased levels of kynurenine in unipolar major depression vs. healthy controls but studies were significantly heterogeneous in nature. No significant differences were found in tryptophan levels or kynurenine/tryptophan ratios. Kynurenine metabolites are likely to play a role in major depression but an exact etiological role in mood disorder seem complex and requires further research.
Collapse
Affiliation(s)
- Danilo Arnone
- Department of Psychological Medicine, Centre for Affective Disorders, Institute of Psychiatry, Psychology & Neuroscience, King's College London, and South London and Maudsley NHS Foundation Trust, London, UK
| | - Smita Saraykar
- The University of Texas Health Science Center at Houston, Department of Psychiatry and Behavioral Sciences, 1941 East Rd., Houston, TX 77054, United States
| | - Haitham Salem
- The University of Texas Health Science Center at Houston, Department of Psychiatry and Behavioral Sciences, 1941 East Rd., Houston, TX 77054, United States
| | - Antonio L Teixeira
- The University of Texas Health Science Center at Houston, Department of Psychiatry and Behavioral Sciences, 1941 East Rd., Houston, TX 77054, United States
| | - Robert Dantzer
- The University of Texas MD Anderson Cancer Center, Department of Symptom Research, 1515 Holcombe Blvd, Unit # 1450, Houston, TX 77030, United States
| | - Sudhakar Selvaraj
- The University of Texas Health Science Center at Houston, Department of Psychiatry and Behavioral Sciences, 1941 East Rd., Houston, TX 77054, United States; The University of Texas MD Anderson Cancer Center, Department of Symptom Research, 1515 Holcombe Blvd, Unit # 1450, Houston, TX 77030, United States.
| |
Collapse
|
24
|
Reininghaus B, Riedrich K, Dalkner N, Bengesser SA, Birner A, Platzer M, Hamm C, Gostner JM, Fuchs D, Reininghaus EZ. Changes in the tryptophan-kynurenine axis in association to therapeutic response in clinically depressed patients undergoing psychiatric rehabilitation. Psychoneuroendocrinology 2018; 94:25-30. [PMID: 29753175 DOI: 10.1016/j.psyneuen.2018.04.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 11/30/2022]
Abstract
INTRODUCTION In recent decades a number of studies have shown an association between the Tryptophan (Trp)-Kynurenine (Kyn) axis and neuropsychiatric disorders. However, the role of the Trp-Kyn pathway on the affective status in a general psychiatric cohort requires clarification. This study aimed to measure peripheral changes in Trp, Kyn and the Kyn/Trp-ratio as well as in the inflammatory markers high sensitive C-reactive protein (hsCRP) and interleukine-6 (IL-6) in individuals undergoing a six-week course of intensive treatment program comparing subgroups of treatment responders and non-responders. METHODS In this investigation 87 currently depressed individuals with a life-time history of depressive disorders were divided into treatment responders (n = 48) and non-responders (n = 39). The individuals were selected for an extreme group comparison out of 598 patients undergoing a 6-week psychiatric rehabilitation program in Austria. Responders were defined according to great changes in Becks Depression Inventory (BDI-II) between time of admission and discharge (BDI-II > 29 to BDI-II <14), while non-responders had no or minimal changes (BDI >20, max. 4 points change over time). Differences in the levels of Trp, Kyn, and the Kyn/Trp ratio as well as levels of hsCRP and IL-6, were compared between groups. Differences were analyzed at the time of admission as well as at discharge. RESULTS A significant group x time interaction was found for Kyn [F(1.82) = 5.79; p = 0.018] and the Kyn/Trp ratio [F(1.85) = 4.01, p = 0.048]. Importantly, Kyn increased significantly in the non-responder group, while the Kyn/Trp ratio decreased significantly in the responder group over time. Furthermore, changes in Kyn as well as hsCRP levels correlated significantly with changes in the body mass index over time (Kyn: r=0.24, p = 0.030; hsCRP: r=0.25, p = 0.021). No significant interactions were found for Trp and hsCRP, although they increased significantly over time. DISCUSSION Given the limitations of the study, we could show that the therapeutic response to a multimodal treatment in clinically depressed patients not receiving cytokine treatment is associated with changes in Kyn levels and the Kyn/Trp ratio as well as with hsCRP. However, it is too early to draw any causal conclusion. Future research should clarify relevant clinical and neurobiological parameters associated with changes in Kyn levels and Kyn/Trp ratio, especially in regard to clinical response.
Collapse
Affiliation(s)
- B Reininghaus
- Therapie Zentrum-Justuspark Bad Hall, Austria; Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Auenbruggerplatz 31, 8036, Graz, Austria
| | - K Riedrich
- Therapie Zentrum-Justuspark Bad Hall, Austria; Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Auenbruggerplatz 31, 8036, Graz, Austria
| | - N Dalkner
- Therapie Zentrum-Justuspark Bad Hall, Austria; Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Auenbruggerplatz 31, 8036, Graz, Austria.
| | - S A Bengesser
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Auenbruggerplatz 31, 8036, Graz, Austria
| | - A Birner
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Auenbruggerplatz 31, 8036, Graz, Austria
| | - M Platzer
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Auenbruggerplatz 31, 8036, Graz, Austria
| | - C Hamm
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Auenbruggerplatz 31, 8036, Graz, Austria
| | - J M Gostner
- Division of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - D Fuchs
- Division of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria; Division of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - E Z Reininghaus
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Auenbruggerplatz 31, 8036, Graz, Austria
| |
Collapse
|
25
|
Kynurenine pathway in depression: A systematic review and meta-analysis. Neurosci Biobehav Rev 2018; 90:16-25. [DOI: 10.1016/j.neubiorev.2018.03.023] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/16/2018] [Accepted: 03/22/2018] [Indexed: 12/19/2022]
|
26
|
Cho HJ, Savitz J, Dantzer R, Teague TK, Drevets WC, Irwin MR. Sleep disturbance and kynurenine metabolism in depression. J Psychosom Res 2017; 99:1-7. [PMID: 28712413 PMCID: PMC5526094 DOI: 10.1016/j.jpsychores.2017.05.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/19/2017] [Accepted: 05/21/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Although the interrelationships between sleep disturbance, inflammation, and depression have been found, molecular mechanisms that link these conditions are largely unknown. Kynurenine metabolism is hypothesized to be a key mechanism that links inflammation and depression. Inflammation activates the kynurenine pathway, leading to increases in 3-hydroxykynurenine (3HK) and quinolinic acid (QA), potentially neurotoxic metabolites, and decreases in kynurenic acid (KynA), a potentially neuroprotective compound. This relative neurotoxic shift in the balance of kynurenine metabolites has been associated with depression, but never been examined regarding sleep disturbance. We tested the association between sleep disturbance and this relative neurotoxic shift in 68 currently depressed, 26 previously depressed, and 66 never depressed subjects. METHODS Sleep disturbance was assessed using the Pittsburgh Sleep Quality Index. Serum concentrations of kynurenine metabolites were measured using high performance liquid chromatography. Putative neuroprotective indices reflecting the relative activity of neuroprotective and neurotoxic kynurenine metabolites were calculated as KynA/QA and KynA/3HK (primary outcomes). RESULTS Sleep disturbance was associated with reduced KynA/QA in the currently depressed group only (unadjusted beta -0.43, p<0.001). This association remained significant even after controlling for age, sex, analysis batch, body-mass index, and depressive symptoms in currently depressed subjects (adjusted beta -0.30, p=0.02). There was no significant association between sleep disturbance and KynA/3HK in any of the groups. Sleep disturbance was associated with increased C-reactive protein in currently depressed subjects only (unadjusted beta 0.38, p=0.007; adjusted beta 0.33, p=0.02). CONCLUSION These data support the hypothesis that altered kynurenine metabolism may molecularly link sleep disturbance and depression.
Collapse
Affiliation(s)
- Hyong Jin Cho
- Cousins Center for Psychoneuroimmunology, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.
| | - Jonathan Savitz
- Laureate Institute for Brain Research, Tulsa, OK,Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK
| | - Robert Dantzer
- Department of Symptom Research, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX
| | - T. Kent Teague
- Department of Surgery, University of Oklahoma College of Medicine, Tulsa OK
| | | | - Michael R. Irwin
- Cousins Center for Psychoneuroimmunology, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA
| |
Collapse
|
27
|
Umehara H, Numata S, Watanabe SY, Hatakeyama Y, Kinoshita M, Tomioka Y, Nakahara K, Nikawa T, Ohmori T. Altered KYN/TRP, Gln/Glu, and Met/methionine sulfoxide ratios in the blood plasma of medication-free patients with major depressive disorder. Sci Rep 2017; 7:4855. [PMID: 28687801 PMCID: PMC5501805 DOI: 10.1038/s41598-017-05121-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 05/24/2017] [Indexed: 12/19/2022] Open
Abstract
Capillary electrophoresis-time-of-flight mass spectrometry (CE-TOFMS) is a comprehensive, quantitative, and high throughput tool used to analyze metabolite profiles. In the present study, we used CE-TOFMS to profile metabolites found in the blood plasma of 33 medication-free patients with major depressive disorder (MDD) and 33 non-psychiatric control subjects. We then investigated changes which occurred in the metabolite levels during an 8-week treatment period. The medication-free MDD patients and control subjects showed significant differences in their mean levels of 33 metabolites, including kynurenine (KYN), glutamate (Glu), glutamine (Gln), methionine sulfoxide, and methionine (Met). In particular, the ratios of KYN to tryptophan (TRP), Gln to Glu, and Met to methionine sulfoxide were all significantly different between the two groups. Among the 33 metabolites with altered levels in MDD patients, the levels of KYN and Gln, as well as the ratio of Gln to Glu, were significantly normalized after treatment. Our findings suggest that imbalances in specific metabolite levels may be involved in the pathogenesis of MDD, and provide insight into the mechanisms by which antidepressant agents work in MDD patients.
Collapse
Affiliation(s)
- Hidehiro Umehara
- Department of Psychiatry, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Shusuke Numata
- Department of Psychiatry, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan.
| | - Shin-Ya Watanabe
- Department of Psychiatry, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yutaka Hatakeyama
- Center of Medical Information Science, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Japan
| | - Makoto Kinoshita
- Department of Psychiatry, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yukiko Tomioka
- Department of Psychiatry, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Kiyoshi Nakahara
- Research Institute, Kochi University of Technology, 185 Miyanokuchi, Tosayamada-cho, Kami-shi, Kochi, Japan
| | - Takeshi Nikawa
- Department of Nutritional Physiology, Institute of Medical Nutrition, Tokushima University Graduate School, Tokushima, Japan
| | - Tetsuro Ohmori
- Department of Psychiatry, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
28
|
Jiang J, Wang J, Li C. Potential Mechanisms Underlying the Therapeutic Effects of Electroconvulsive Therapy. Neurosci Bull 2017; 33:339-347. [PMID: 28032314 PMCID: PMC5567510 DOI: 10.1007/s12264-016-0094-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/23/2016] [Indexed: 01/01/2023] Open
Abstract
In spite of the extensive application of electroconvulsive therapy (ECT), how it works remains unclear. So far, researchers have made great efforts in figuring out the mechanisms underlying the effect of ECT treatment via determining the levels of neurotransmitters and cytokines and using genetic and epigenetic tools, as well as structural and functional neuroimaging. To help address this question and provide implications for future research, relevant clinical trials and animal experiments are reviewed.
Collapse
Affiliation(s)
- Jiangling Jiang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, China
- Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China.
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, China.
- Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, 200030, China.
| |
Collapse
|
29
|
Gould TD, Georgiou P, Brenner LA, Brundin L, Can A, Courtet P, Donaldson ZR, Dwivedi Y, Guillaume S, Gottesman II, Kanekar S, Lowry CA, Renshaw PF, Rujescu D, Smith EG, Turecki G, Zanos P, Zarate CA, Zunszain PA, Postolache TT. Animal models to improve our understanding and treatment of suicidal behavior. Transl Psychiatry 2017; 7:e1092. [PMID: 28398339 PMCID: PMC5416692 DOI: 10.1038/tp.2017.50] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 01/16/2017] [Accepted: 02/01/2017] [Indexed: 02/08/2023] Open
Abstract
Worldwide, suicide is a leading cause of death. Although a sizable proportion of deaths by suicide may be preventable, it is well documented that despite major governmental and international investments in research, education and clinical practice suicide rates have not diminished and are even increasing among several at-risk populations. Although nonhuman animals do not engage in suicidal behavior amenable to translational studies, we argue that animal model systems are necessary to investigate candidate endophenotypes of suicidal behavior and the neurobiology underlying these endophenotypes. Animal models are similarly a critical resource to help delineate treatment targets and pharmacological means to improve our ability to manage the risk of suicide. In particular, certain pathophysiological pathways to suicidal behavior, including stress and hypothalamic-pituitary-adrenal axis dysfunction, neurotransmitter system abnormalities, endocrine and neuroimmune changes, aggression, impulsivity and decision-making deficits, as well as the role of critical interactions between genetic and epigenetic factors, development and environmental risk factors can be modeled in laboratory animals. We broadly describe human biological findings, as well as protective effects of medications such as lithium, clozapine, and ketamine associated with modifying risk of engaging in suicidal behavior that are readily translatable to animal models. Endophenotypes of suicidal behavior, studied in animal models, are further useful for moving observed associations with harmful environmental factors (for example, childhood adversity, mechanical trauma aeroallergens, pathogens, inflammation triggers) from association to causation, and developing preventative strategies. Further study in animals will contribute to a more informed, comprehensive, accelerated and ultimately impactful suicide research portfolio.
Collapse
Affiliation(s)
- T D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - P Georgiou
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - L A Brenner
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Rocky Mountain Mental Illness Research Education and Clinical Center, Denver, CO, USA
- Military and Veteran Microbiome Consortium for Research and Education, U.S. Department of Veterans Affairs, Washington, DC, USA
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - L Brundin
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - A Can
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Psychology, Notre Dame of Maryland University, Baltimore, MD, USA
| | - P Courtet
- Department of Emergency Psychiatry and Post Acute Care, CHU Montpellier, Montpellier, France
- Université Montpellier, Inserm U1061, Montpellier, France
| | - Z R Donaldson
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- Department of Psychology, University of Colorado, Boulder, Boulder, CO, USA
- Department of Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Y Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - S Guillaume
- Department of Emergency Psychiatry and Post Acute Care, CHU Montpellier, Montpellier, France
- Université Montpellier, Inserm U1061, Montpellier, France
| | - I I Gottesman
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
| | - S Kanekar
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | - C A Lowry
- Rocky Mountain Mental Illness Research Education and Clinical Center, Denver, CO, USA
- Military and Veteran Microbiome Consortium for Research and Education, U.S. Department of Veterans Affairs, Washington, DC, USA
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
- Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - P F Renshaw
- Rocky Mountain Mental Illness Research Education and Clinical Center, Denver, CO, USA
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | - D Rujescu
- Department of Psychiatry, University of Halle-Wittenberg, Halle, Germany
| | - E G Smith
- Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA, USA
| | - G Turecki
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - P Zanos
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - C A Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - P A Zunszain
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - T T Postolache
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
- Rocky Mountain Mental Illness Research Education and Clinical Center, Denver, CO, USA
- Military and Veteran Microbiome Consortium for Research and Education, U.S. Department of Veterans Affairs, Washington, DC, USA
- VISN 5 Mental Illness Research Education and Clinical Center, Baltimore MD, USA
| |
Collapse
|
30
|
Brundin L, Bryleva EY, Thirtamara Rajamani K. Role of Inflammation in Suicide: From Mechanisms to Treatment. Neuropsychopharmacology 2017; 42:271-283. [PMID: 27377015 PMCID: PMC5143480 DOI: 10.1038/npp.2016.116] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/31/2016] [Accepted: 06/28/2016] [Indexed: 01/01/2023]
Abstract
Suicidal behavior is complex and manifests because of a confluence of diverse factors. One such factor involves dysregulation of the immune system, which has been linked to the pathophysiology of suicidal behavior. This review will provide a brief description of suicidality and discuss the contribution of upstream and downstream factors in the etiology of suicidal behavior, within the contextual framework of inflammation. The contribution of inflammatory conditions such as traumatic brain injury, autoimmune disorders, and infections to neuropsychiatric symptoms and suicidality is only beginning to be explored. We will summarize studies of inflammation in the etiology of suicide, and provide a neurobiological basis for different mechanisms by which inflammation might contribute to the pathophysiology. Finally, we will review treatments that affect upstream and downstream pathways related to inflammation in suicidality.
Collapse
Affiliation(s)
- Lena Brundin
- Laboratory of Behavioral Medicine, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Elena Y Bryleva
- Laboratory of Behavioral Medicine, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Keerthi Thirtamara Rajamani
- Laboratory of Behavioral Medicine, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA,Department of Behavioral Medicine, Laboratory of Behavioral Medicine, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA, Tel:+1 616 234 5321, Fax: +1 616 234 5180, E-mail:
| |
Collapse
|
31
|
Clark SM, Pocivavsek A, Nicholson JD, Notarangelo FM, Langenberg P, McMahon RP, Kleinman JE, Hyde TM, Stiller J, Postolache TT, Schwarcz R, Tonelli LH. Reduced kynurenine pathway metabolism and cytokine expression in the prefrontal cortex of depressed individuals. J Psychiatry Neurosci 2016; 41:386-394. [PMID: 27070351 PMCID: PMC5082509 DOI: 10.1503/jpn.150226] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Neuroinflammatory processes are increasingly believed to participate in the pathophysiology of a number of major psychiatric diseases, including depression. Immune activation stimulates the conversion of the amino acid tryptophan to kynurenine, leading to the formation of neuroactive metabolites, such as quinolinic acid and kynurenic acid. These compounds affect glutamatergic neurotransmission, which plays a prominent role in depressive pathology. Increased tryptophan degradation along the kynurenine pathway (KP) has been proposed to contribute to disease etiology. METHODS We used postmortem brain tissue from the ventrolateral prefrontal cortex (VLPFC) to assess tissue levels of tryptophan and KP metabolites, the expression of several KP enzymes and a series of cytokines as well as tissue pathology, including microglial activation. Tissue samples came from nonpsychiatric controls (n = 36) and individuals with depressive disorder not otherwise specified (DD-NOS, n = 45) who died of natural causes, homicide, accident, or suicide. RESULTS We found a reduction in the enzymatic conversion of tryptophan to kynurenine, determined using the kynurenine:tryptophan ratio, and reduced messenger RNA expression of the enzymes indoleamine-2,3-dioxygenase 1 and 2 and tryptophan-2,3-dioxygenase in depressed individuals irrespective of the cause of death. These findings correlated with reductions in the expression of several cytokines, including interferon-γ and tumour necrosis factor-α. Notably, quinolinic acid levels were also lower in depressed individuals than controls. LIMITATIONS Information on the use of antidepressants and other psychotropic medications was insufficient for statistical comparisons. CONCLUSION Contrary to expectations, the present results indicate that depression, in the absence of medical illness or an overt inflammatory process, is associated with compromised, rather than increased, KP metabolism in the VLPFC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Leonardo H. Tonelli
- Correspondence to: L.H. Tonelli, Laboratory of Behavioral Neuroimmunology, Department of Psychiatry, University of Maryland School of Medicine, 655 W. Baltimore St. Baltimore MD, 21201, USA;
| |
Collapse
|
32
|
Coccaro EF, Lee R, Fanning JR, Fuchs D, Goiny M, Erhardt S, Christensen K, Brundin L, Coussons-Read M. Tryptophan, kynurenine, and kynurenine metabolites: Relationship to lifetime aggression and inflammatory markers in human subjects. Psychoneuroendocrinology 2016; 71:189-96. [PMID: 27318828 PMCID: PMC5744870 DOI: 10.1016/j.psyneuen.2016.04.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/10/2016] [Accepted: 04/27/2016] [Indexed: 11/26/2022]
Abstract
Inflammatory proteins are thought to be causally involved in the generation of aggression, possibly due to direct effects of cytokines in the central nervous system and/or by generation of inflammatory metabolites along the tryptophan-kynurenine (TRP/KYN) pathway, including KYN and its active metabolites kynurenic acid (KA), quinolinic acid (QA), and picolinic acid (PA). We examined plasma levels of TRP, KYN, KA, QA, and PA in 172 medication-free, medically healthy, human subjects to determine if plasma levels of these substances are altered as a function of trait aggression, and if they correlate with current plasma levels of inflammatory markers. Plasma levels of C-reactive protein (CRP), interleukin-6 (IL-6), and soluble interleukin-1 receptor-II (sIL-1RII) protein were also available in these subjects. We found normal levels of TRP but reduced plasma levels of KYN (by 48%), QA (by 6%), and a QA/KA (by 5%) ratio in subjects with Intermittent Explosive Disorder (IED) compared to healthy controls and psychiatric controls. Moreover, the metabolites were not associated with any of the inflammatory markers studied. These data do not support the hypothesis that elevated levels of KYN metabolites would be present in plasma of subjects with IED, and associated with plasma inflammation. However, our data do point to a dysregulation of the KYN pathway metabolites in these subjects. Further work will be necessary to replicate these findings and to understand their role in inflammation and aggression in these subjects.
Collapse
Affiliation(s)
- Emil F. Coccaro
- Clinical Neuroscience Research Unit, Department of Psychiatry and Behavioral Neuroscience, Pritzker School of Medicine, The University of Chicago, Chicago, IL, United States,Corresponding author at: Clinical Neuroscience Research Unit, Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, United States. (E.F. Coccaro)
| | - Royce Lee
- Clinical Neuroscience Research Unit, Department of Psychiatry and Behavioral Neuroscience, Pritzker School of Medicine, The University of Chicago, Chicago, IL, United States
| | - Jennifer R. Fanning
- Clinical Neuroscience Research Unit, Department of Psychiatry and Behavioral Neuroscience, Pritzker School of Medicine, The University of Chicago, Chicago, IL, United States
| | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter, Medical University, Innsbruck, Austria
| | - Michel Goiny
- Department of Physiology & Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Sophie Erhardt
- Department of Physiology & Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Kyle Christensen
- Division of Psychiatry and Behavioral Medicine, College of Human Medicine, Michigan State University, United States,Laboratory of Behavioral Medicine, Van Andel Research Institute, Grand Rapids, MI, United States
| | - Lena Brundin
- Division of Psychiatry and Behavioral Medicine, College of Human Medicine, Michigan State University, United States,Laboratory of Behavioral Medicine, Van Andel Research Institute, Grand Rapids, MI, United States
| | - Mary Coussons-Read
- Department of Psychology, University of Colorado, Colorado Springs, CO, United States
| |
Collapse
|
33
|
Ormstad H, Dahl J, Verkerk R, Andreassen OA, Maes M. Increased plasma levels of competing amino acids, rather than lowered plasma tryptophan levels, are associated with a non-response to treatment in major depression. Eur Neuropsychopharmacol 2016; 26:1286-96. [PMID: 27237997 DOI: 10.1016/j.euroneuro.2016.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/12/2016] [Accepted: 05/08/2016] [Indexed: 12/30/2022]
Abstract
Lowered plasma tryptophan (TRP) and TRP/competing amino acid (CAA) ratio may be involved in the pathophysiology of major depression (MDD). Increased cortisol and immune-inflammatory mediators in MDD may affect the availability of TRP to the brain. We investigated whether baseline or post-treatment TRP, CAAs and TRP/CAA ratio are associated with a treatment response in MDD and whether these effects may be mediated by cortisol or immune biomarkers. We included 50 medication-free MDD patients with a depressive episode (DSM diagnosis) and assessed symptom severity with the Inventory of Depressive Symptomatology (IDS) before and after treatment as usual for 12 weeks (endpoint). Plasma levels of TRP, CAAs, the ratio, cortisol, CRP and 6 selected cytokines were assayed. The primary outcome was a 50% reduction in the IDS, while the secondary was a remission of the depressive episode. In IDS non-responders, CAAs increased and the TRP/CAA ratio decreased, while in IDS responders CAAs decreased and the TRP/CAA ratio increased from baseline to endpoint. In patients who were still depressed at endpoint TRP and CAAs levels had increased from baseline, while in remitted patients no such effects were found. Increases in CAAs were inversely correlated with changes in interleukin-1 receptor antagonist levels. The results show that increased CAA levels from baseline to endpoint are associated with a non-response to treatment in MDD patients. This suggests that the mechanism underpinning the CAA-related treatment resistance may be related to changes in immune pathways. CAA levels and amino acid metabolism may be new drug targets in depression.
Collapse
Affiliation(s)
- Heidi Ormstad
- Faculty of Health Sciences, University College of Southeast Norway, Drammen, Norway.
| | - Johan Dahl
- Ringerike Psychiatric Center, Vestre Viken Hospital Trust, Drammen, Norway
| | - Robert Verkerk
- Laboratory of Medical Biochemistry, University of Antwerp, Antwerp, Belgium
| | - Ole A Andreassen
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; IMPACT Research Center, Deakin University, Geelong, Australia; Department of Psychiatry, Faculty of Medicine, State University of Londrina, Londrina, Brazil; Department of Psychiatry, Medical University Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
34
|
Salivary Melatonin in Relation to Depressive Symptom Severity in Young Adults. PLoS One 2016; 11:e0152814. [PMID: 27042858 PMCID: PMC4820122 DOI: 10.1371/journal.pone.0152814] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/19/2016] [Indexed: 12/24/2022] Open
Abstract
Reduced levels of melatonin have been associated with severe depression. The aim was to investigate the correlation between salivary melatonin and dimensional measures of depressive symptom severity in young adult psychiatric patients. Levels of melatonin were analyzed in six saliva samples during waking hours from 119 young adult patients under outpatient psychiatric care. Melatonin levels were tested for association with the severity of depressive symptoms using the self-rating version of the Montgomery Åsberg Depression Rating Scale (MADRS-S). Where possible, depressive symptoms were assessed again after 6±2 months of treatment. Response was defined as decrease in MADRS-S by ≥50% between baseline and follow-up. Patients with levels of melatonin in the lowest quartile at bedtime had an increased probability of a high MADRS-S score compared to those with the highest levels of melatonin (odds ratio 1.39, 95% CI 1.15-1.69, p<0.01). A post hoc regression analysis found that bedtime melatonin levels predicted response (odds ratio 4.4, 95% CI 1.06-18.43, p<0.05). A negative relationship between salivary melatonin and dimensional measures of depressive symptom severity was found in young patients under outpatient psychiatric care. Bedtime salivary melatonin levels may have prognostic implications.
Collapse
|
35
|
Remus JL, Dantzer R. Inflammation Models of Depression in Rodents: Relevance to Psychotropic Drug Discovery. Int J Neuropsychopharmacol 2016; 19:pyw028. [PMID: 27026361 PMCID: PMC5043641 DOI: 10.1093/ijnp/pyw028] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/23/2016] [Indexed: 01/06/2023] Open
Abstract
Inflammation and depression are closely inter-related; inflammation induces symptoms of depression and, conversely, depressed mood and stress favor an inflammatory phenotype. The mechanisms that mediate the ability of inflammation to induce symptoms of depression are intensively studied at the preclinical level. This review discusses how it has been possible to build animal models of inflammation-induced depression based on clinical data and to explore critical mechanisms downstream of inflammation. Namely, we focus on the ability of inflammation to increase the activity of the tryptophan-degrading enzyme, indoleamine 2,3 dioxygenase, which leads to the production of kynurenine and downstream neuroactive metabolites. By acting on glutamatergic neurotransmission, these neuroactive metabolites play a key role in the development of depression-like behaviors. An important outcome of the preclinical research on inflammation-induced depression is the identification of potential novel targets for antidepressant treatments, which include targeting the kynurenine system and production of downstream metabolites, altering transport of kynurenine into the brain, and modulating glutamatergic transmission.
Collapse
Affiliation(s)
- Jennifer L Remus
- Laboratory of Neuroimmunology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Robert Dantzer
- Laboratory of Neuroimmunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
36
|
Hughes MM, Connor TJ, Harkin A. Stress-Related Immune Markers in Depression: Implications for Treatment. Int J Neuropsychopharmacol 2016; 19:pyw001. [PMID: 26775294 PMCID: PMC4926799 DOI: 10.1093/ijnp/pyw001] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/11/2016] [Indexed: 12/19/2022] Open
Abstract
Major depression is a serious psychiatric disorder; however, the precise biological basis of depression still remains elusive. A large body of evidence implicates a dysregulated endocrine and inflammatory response system in the pathogenesis of depression. Despite this, given the heterogeneity of depression, not all depressed patients exhibit dysregulation of the inflammatory and endocrine systems. Evidence suggests that inflammation is associated with depression in certain subgroups of patients and that those who have experienced stressful life events such as childhood trauma or bereavement may be at greater risk of developing depression. Consequently, prolonged exposure to stress is thought to be a key trigger for the onset of a depressive episode. This review assesses the relationship between stress and the immune system, with a particular interest in the mechanisms by which stress impacts immune function, and how altered immune functioning, in turn, may lead to a feed forward cascade of multiple systems dysregulation and the subsequent manifestation of depressive symptomology. The identification of stress-related immune markers and potential avenues for advances in therapeutic intervention is vital. Changes in specific biological markers may be used to characterize or differentiate depressive subtypes or specific symptoms and may predict treatment response, in turn facilitating a more effective, targeted, and fast-acting approach to treatment.
Collapse
Affiliation(s)
| | | | - Andrew Harkin
- Neuroimmunology Research Group, Department of Physiology, School of Medicine & Trinity College Institute of Neuroscience (Drs Hughes and Connor), and Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences & Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland (Dr Harkin).
| |
Collapse
|
37
|
Ormstad H, Eilertsen G. A biopsychosocial model of fatigue and depression following stroke. Med Hypotheses 2015; 85:835-41. [DOI: 10.1016/j.mehy.2015.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/02/2015] [Indexed: 11/28/2022]
|
38
|
Brundin L, Erhardt S, Bryleva EY, Achtyes ED, Postolache TT. The role of inflammation in suicidal behaviour. Acta Psychiatr Scand 2015; 132:192-203. [PMID: 26256862 PMCID: PMC4531386 DOI: 10.1111/acps.12458] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/01/2015] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Over the past decade, clinical data have accumulated showing that inflammation might contribute to the pathophysiology of suicide. To evaluate the associations and to identify the support for pathways linking inflammatory processes with suicidal behaviour, a comprehensive review of the literature was undertaken. METHOD The search terms 'cytokine', 'risk factors', 'kynurenine', 'asthma', 'allergy', 'autoimmunity', 'traumatic brain injury', 'infection' along with the terms 'inflammation' and 'suicide' were entered into PubMed, and a thorough analysis of the publications and their reference lists was performed. RESULTS The effects of inflammation on mood and behaviour could partially be mediated by kynurenine pathway metabolites, modulating neuroinflammation and glutamate neurotransmission. At the same time, the triggers of the inflammatory changes documented in suicidal patients may be attributed to diverse mechanisms such as autoimmunity, neurotropic pathogens, stress or traumatic brain injury. CONCLUSION Targeting the inflammatory system might provide novel therapeutic approaches as well as potential biomarkers to identify patients at increased risk. For the goal of improved detection and treatment of suicidal individuals to be achieved, we need to develop a detailed understanding of the origin, mechanisms and outcomes of inflammation in suicidal behaviour.
Collapse
Affiliation(s)
- L. Brundin
- Division of Psychiatry and Behavioral Medicine College of Human Medicine Michigan State University Grand Rapids MI USA
- Laboratory of Behavioral Medicine Center for Neurodegenerative Science Van Andel Research Institute Grand Rapids MI USA
| | - S. Erhardt
- Department of Physiology & Pharmacology Karolinska Institute Stockholm Sweden
| | - E. Y. Bryleva
- Laboratory of Behavioral Medicine Center for Neurodegenerative Science Van Andel Research Institute Grand Rapids MI USA
| | - E. D. Achtyes
- Division of Psychiatry and Behavioral Medicine College of Human Medicine Michigan State University Grand Rapids MI USA
| | - T. T. Postolache
- Department of Psychiatry University of Maryland School of Medicine Baltimore MD USA
- Veterans Integrated Service Network 19 Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC) Denver CO USA
- Veterans Integrated Service Network 5 MIRECC Baltimore MD USA
| |
Collapse
|
39
|
Parrott JM, O'Connor JC. Kynurenine 3-Monooxygenase: An Influential Mediator of Neuropathology. Front Psychiatry 2015; 6:116. [PMID: 26347662 PMCID: PMC4542134 DOI: 10.3389/fpsyt.2015.00116] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/03/2015] [Indexed: 12/13/2022] Open
Abstract
Mounting evidence demonstrates that kynurenine metabolism may play an important pathogenic role in the development of multiple neurological and neuropsychiatric disorders. The kynurenine pathway consists of two functionally distinct branches that generate both neuroactive and oxidatively reactive metabolites. In the brain, the rate-limiting enzyme for one of these branches, kynurenine 3-monooxygenase (KMO), is predominantly expressed in microglia and has emerged as a pivotal point of metabolic regulation. KMO substrate and expression levels are upregulated by pro-inflammatory cytokines and altered by functional genetic mutations. Increased KMO metabolism results in the formation of metabolites that activate glutamate receptors and elevate oxidative stress, while recent evidence has revealed neurodevelopmental consequences of reduced KMO activity. Together, the evidence suggests that KMO is positioned at a critical metabolic junction to influence the development or trajectory of a myriad of neurological diseases. Understanding the mechanism(s) by which alterations in KMO activity are able to impair neuronal function, and viability will enhance our knowledge of related disease pathology and provide insight into novel therapeutic opportunities. This review will discuss the influence of KMO on brain kynurenine metabolism and the current understanding of molecular mechanisms by which altered KMO activity may contribute to neurodevelopment, neurodegenerative, and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Jennifer M Parrott
- Department of Pharmacology, School of Medicine, University of Texas Health Science Center at San Antonio , San Antonio, TX , USA ; Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio , San Antonio, TX , USA
| | - Jason C O'Connor
- Department of Pharmacology, School of Medicine, University of Texas Health Science Center at San Antonio , San Antonio, TX , USA ; Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio , San Antonio, TX , USA ; Mood Disorders Translational Research Core, University of Texas Health Science Center at San Antonio , San Antonio, TX , USA ; Audie L. Murphy Memorial VA Hospital, South Texas Veterans Health System , San Antonio, TX , USA
| |
Collapse
|