1
|
Bauer EA, Laing PAF, Cooper SE, Cisler JM, Dunsmoor JE. Out with the bad, in with the good: A review on augmented extinction learning in humans. Neurobiol Learn Mem 2024; 215:107994. [PMID: 39426561 DOI: 10.1016/j.nlm.2024.107994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/03/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Several leading therapies for anxiety-related disorders rely on the principles of extinction learning. However, despite decades of development and research, many of these treatments remain only moderately effective. Developing techniques to improve extinction learning is an important step towards developing improved and mechanistically-informed exposure-based therapies. In this review, we highlight human research on strategies that might augment extinction learning through reward neurocircuitry and dopaminergic pathways, with an emphasis on counterconditioning and other behaviorally-augmented forms of extinction learning (e.g., novelty-facilitated extinction, positive affect training). We also highlight emerging pharmacological and non-pharmacological methods of augmenting extinction, including L-DOPA and aerobic exercise. Finally, we discuss future directions for augmented extinction learning and memory research, including the need for more work examining the influence of individual differences and psychopathology.
Collapse
Affiliation(s)
- Elizabeth A Bauer
- Department of Psychiatry and Behavioral Sciences, Dell Medical School, University of Texas at Austin, Austin, TX, USA; Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin, TX, USA
| | - Patrick A F Laing
- Department of Psychiatry and Behavioral Sciences, Dell Medical School, University of Texas at Austin, Austin, TX, USA; Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
| | - Samuel E Cooper
- Department of Psychiatry and Behavioral Sciences, Dell Medical School, University of Texas at Austin, Austin, TX, USA
| | - Josh M Cisler
- Department of Psychiatry and Behavioral Sciences, Dell Medical School, University of Texas at Austin, Austin, TX, USA; Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA; Institute for Early Life Adversity Research, University of Texas at Austin, Dell Medical School, Department of Psychiatry and Behavioral Sciences, Austin, TX, USA
| | - Joseph E Dunsmoor
- Department of Psychiatry and Behavioral Sciences, Dell Medical School, University of Texas at Austin, Austin, TX, USA; Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin, TX, USA; Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA; Department of Neuroscience, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
2
|
Zabik NL, Iadipaolo A, Peters CA, Baglot SL, Hill MN, Rabinak CA. Dose-dependent effect of acute THC on extinction memory recall and fear renewal: a randomized, double-blind, placebo-controlled study. Psychopharmacology (Berl) 2024:10.1007/s00213-024-06702-w. [PMID: 39412674 DOI: 10.1007/s00213-024-06702-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/03/2024] [Indexed: 11/06/2024]
Abstract
RATIONALE Prior work from our lab and others demonstrates that the endocannabinoid system is a promising avenue for improving fear memory deficits in posttraumatic stress disorder (PTSD). Specifically, 7.5 mg of delta-9-tetrahydrocannabinol (THC) decreases fear responding in healthy adults and increases prefrontal cortex activation during extinction learning and fear renewal in adults with PTSD. OBJECTIVES The present study will determine whether there is a dose-dependent effect of THC on short-term (24 h) and long-term (one week) fear learning and memory in adults with PTSD. METHODS Using a randomized, double-blind, placebo-controlled design, N = 36 adults with PTSD completed the study and were randomized to receive placebo (PBO, n = 11), 5 mg of THC (n = 11), or 10 mg of THC (n = 14) prior to fear extinction learning. Participants completed a Pavlovian conditioning paradigm with extinction recall and fear renewal occurring 24 h and one week later, where we measured concurrent functional imaging and behavioral responses. RESULTS Twenty-four hours after drug administration, individuals with PTSD given 5 mg of THC exhibited greater anterior cingulate cortex and prefrontal cortex activation during early fear renewal. One week later, individuals given 10 mg of THC exhibited greater hippocampus activation during extinction recall and prefrontal cortex activation during fear renewal. CONCLUSIONS These data suggest that dosing and timing are critical for facilitating fear memory processes in PTSD, and that low-dose oral THC prior to extinction learning can affect brain indices of fear learning and memory both acutely and one week after administration.
Collapse
Affiliation(s)
- Nicole L Zabik
- Translational Neuroscience Program, Wayne State University School of Medicine, Tolan Park Medical Building, Detroit, MI, 48201, USA
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Tolan Park Medical Building, Detroit, MI, 48201, USA
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Allesandra Iadipaolo
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Craig A Peters
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Samantha L Baglot
- Department of Cell Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N4N1, Canada
- Department of Anatomy & Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N4N1, Canada
| | - Matthew N Hill
- Department of Cell Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N4N1, Canada
- Department of Anatomy & Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N4N1, Canada
| | - Christine A Rabinak
- Translational Neuroscience Program, Wayne State University School of Medicine, Tolan Park Medical Building, Detroit, MI, 48201, USA.
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Tolan Park Medical Building, Detroit, MI, 48201, USA.
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA.
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA.
| |
Collapse
|
3
|
Bryant RA, Dawson KS, Azevedo S, Yadav S, Cahill C, Kenny L, Maccallum F, Tran J, Rawson N, Tockar J, Garber B, Keyan D. A pilot study of the role of the BDNF Val66Met polymorphism in response to exercise-augmented exposure therapy for posttraumatic stress disorder. Psychoneuroendocrinology 2024; 167:107106. [PMID: 38943720 DOI: 10.1016/j.psyneuen.2024.107106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 07/01/2024]
Abstract
Brain-Derived Neurotrophic Factor (BDNF) is implicated in extinction learning, which is a primary mechanism of exposure therapy for posttraumatic stress disorder (PTSD). Brief aerobic exercise has been shown to promote BDNF release and augment extinction learning. On the premise that the Val allele of the BDNF Val66Met polymorphism facilitates greater release of BDNF, this study examined the extent to which the Val allele of the BDNF polymorphism predicted treatment response in PTSD patients who underwent exposure therapy combined with aerobic exercise or passive stretching. PTSD patients (N = 85) provided saliva samples in order to extract genomic DNA to identify Val/Val and Met carriers of the BDNF Val66Met genotype, and were assessed for PTSD severity prior to and following a 9-week course of exposure therapy combined with aerobic exercise or stretching. The sample comprised 52 Val/Val carriers and 33 Met carriers. Patients with the BDNF high-expression Val allele display greater reduction of PTSD symptoms at posttreatment than Met carriers. Hierarchical regression analysis indicated that greater PTSD reduction was specifically observed in Val/Val carriers who received exposure therapy in combination with the aerobic exercise. This finding accords with animal and human evidence that the BDNF Val allele promotes greater extinction learning, and that these individuals may benefit more from exercise-augmented extinction. Although preliminary, this result represents a possible avenue for augmented exposure therapy in patients with the BDNF Val allele.
Collapse
Affiliation(s)
- Richard A Bryant
- School of Psychology, University of New South Wales, Sydney, New South Wales, Australia; Brain Dynamics Centre, Westmead Institute for Medical Research, Sydney, New South Wales, Australia.
| | - Katie S Dawson
- School of Psychology, University of New South Wales, Sydney, New South Wales, Australia
| | - Suzanna Azevedo
- School of Psychology, University of New South Wales, Sydney, New South Wales, Australia
| | - Srishti Yadav
- School of Psychology, University of New South Wales, Sydney, New South Wales, Australia
| | - Catherine Cahill
- School of Psychology, University of New South Wales, Sydney, New South Wales, Australia
| | - Lucy Kenny
- School of Psychology, University of New South Wales, Sydney, New South Wales, Australia
| | - Fiona Maccallum
- School of Psychology, University of Queensland, Brisbane, Queensland, Australia
| | - Jenny Tran
- School of Psychology, University of New South Wales, Sydney, New South Wales, Australia
| | - Natasha Rawson
- School of Psychology, University of New South Wales, Sydney, New South Wales, Australia
| | - Julia Tockar
- School of Psychology, University of New South Wales, Sydney, New South Wales, Australia
| | - Benjamin Garber
- School of Psychology, University of New South Wales, Sydney, New South Wales, Australia
| | - Dharani Keyan
- School of Psychology, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
O'Donohue MP, Amir Hamzah K, Nichols D, Ney LJ. Trauma film viewing and intrusive memories: Relationship between salivary alpha amylase, endocannabinoids, and cortisol. Psychoneuroendocrinology 2024; 164:107007. [PMID: 38503195 DOI: 10.1016/j.psyneuen.2024.107007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/14/2024] [Accepted: 02/26/2024] [Indexed: 03/21/2024]
Abstract
The endogenous cannabinoid (ECB) system is a small molecule lipid signalling system that is involved in stress response activation and is associated with PTSD, but it is unclear whether salivary ECBs are part of the sympathetic nervous system response to stress. We conducted an adapted trauma film paradigm, where participants completed a cold pressor test (or control) while watching a 10-minute trauma film. We also collected saliva and hair samples and tested them for ECBs, cortisol, and salivary alpha amylase (sAA). As hypothesised, there were significant positive correlations between sAA activity and salivary ECB levels, particularly 2-arachidonoyl glycerol (2-AG), though ECBs were not correlated with sAA stress reactivity. Participants who had a significant cortisol response to the trauma film/stressor reported less intrusive memories, which were also less distressing and less vivid. This effect was moderated by arachidonoyl ethanolamide (AEA), where decreases in AEA post-stress were associated with more intrusive memories in cortisol non-responders only. This study provides new evidence for the role of ECBs in the sympathetic nervous system.
Collapse
Affiliation(s)
- Matthew P O'Donohue
- School of Psychology and Counselling, Queensland University of Technology, Australia
| | - Khalisa Amir Hamzah
- School of Psychology and Counselling, Queensland University of Technology, Australia
| | - David Nichols
- Central Science Laboratory, University of Tasmania, Australia
| | - Luke J Ney
- School of Psychology and Counselling, Queensland University of Technology, Australia.
| |
Collapse
|
5
|
Schaumberg K, Pictor L, Frank M. Adaptive and Maladaptive Exercise in Eating Disorders. Curr Top Behav Neurosci 2024; 67:223-240. [PMID: 39042250 DOI: 10.1007/7854_2024_499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
While exercise is generally associated with positive health outcomes, in the context of eating disorders, exercise has high potential to become maladaptive. Maladaptive exercise is compelled or compulsive in nature for the purposes of weight and shape control or to obtain/avoid other eating disorder-relevant consequences. A transdiagnostic eating disorder feature with moderate-to-high prevalence across restrictive- and bulimic-spectrum eating disorders, maladaptive exercise is often associated with negative mental and physical health sequalae. Several proposed threat- and reward-related biobehavioral mechanisms may initiate or perpetuate maladaptive exercise. While exercise is generally contraindicated during periods of acute medical concern, adaptive forms of exercise are also present among those with eating disorders, and facilitation of adaptive exercise has potential to promote physical and mental health benefits during eating disorder recovery. Detailed assessment and targeted interventions are needed to address the clinical conundrum of how and when to integrate exercise into eating disorder treatment.
Collapse
Affiliation(s)
| | - Lauren Pictor
- Department of Psychiatry, University of Wisconsin, Madison, WI, USA
| | - Max Frank
- Department of Psychiatry, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
6
|
Antolasic EJ, Jaehne EJ, van den Buuse M. Interaction of Brain-derived Neurotrophic Factor, Exercise, and Fear Extinction: Implications for Post-traumatic Stress Disorder. Curr Neuropharmacol 2024; 22:543-556. [PMID: 37491857 PMCID: PMC10845100 DOI: 10.2174/1570159x21666230724101321] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/16/2023] [Accepted: 02/23/2023] [Indexed: 07/27/2023] Open
Abstract
Brain-Derived Neurotrophic Factor (BDNF) plays an important role in brain development, neural plasticity, and learning and memory. The Val66Met single-nucleotide polymorphism is a common genetic variant that results in deficient activity-dependent release of BDNF. This polymorphism and its impact on fear conditioning and extinction, as well as on symptoms of post-traumatic stress disorder (PTSD), have been of increasing research interest over the last two decades. More recently, it has been demonstrated that regular physical activity may ameliorate impairments in fear extinction and alleviate symptoms in individuals with PTSD via an action on BDNF levels and that there are differential responses to exercise between the Val66Met genotypes. This narrative literature review first describes the theoretical underpinnings of the development and persistence of intrusive and hypervigilance symptoms commonly seen in PTSD and their treatment. It then discusses recent literature on the involvement of BDNF and the Val66Met polymorphism in fear conditioning and extinction and its involvement in PTSD diagnosis and severity. Finally, it investigates research on the impact of physical activity on BDNF secretion, the differences between the Val66Met genotypes, and the effect on fear extinction learning and memory and symptoms of PTSD.
Collapse
Affiliation(s)
- Emily J. Antolasic
- School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Emily J. Jaehne
- School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | | |
Collapse
|
7
|
Kinsman LM, Norrie HJ, Rachor GS, Asmundson GJG. Exercise and PTSD. Curr Top Behav Neurosci 2024; 67:241-262. [PMID: 39112812 DOI: 10.1007/7854_2024_500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Evidence indicating that exercise benefits mental health symptoms across a range of mental health diagnoses spans decades of scientific literature; however, fewer studies have examined the impact of exercise on posttraumatic stress disorder (PTSD). Exercise is an accessible, cost-effective, and scalable treatment option that has the potential to improve both physiological and psychological symptoms among individuals with PTSD. The purpose of this chapter is to review empirical literature on the role of exercise in the treatment of PTSD. Researchers have demonstrated that exercise improves PTSD symptoms as both a stand-alone treatment and as an adjunct to cognitive behavioral and trauma-focused therapies. Additional research is needed to clarify mechanisms that account for the impacts of exercise on PTSD and to identify which components of exercise (e.g., type of exercise, dose, intensity, frequency) are the most beneficial.
Collapse
Affiliation(s)
- Laura M Kinsman
- Department of Psychology, University of Regina, Regina, SK, Canada
| | - Holden J Norrie
- Department of Psychology, University of Regina, Regina, SK, Canada
| | | | | |
Collapse
|
8
|
Azar A, Hubert T, Adams TG, Cisler JM, Crombie KM. Exercise and Fear and Safety Learning. Curr Top Behav Neurosci 2024; 67:125-140. [PMID: 39039358 DOI: 10.1007/7854_2024_494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Fear conditioning paradigms have been studied for over 100 years and are of great interest to the behavioral and clinical sciences given that several safety learning processes (e.g., extinction learning and recall) are thought to be fundamental to the success of exposure-based therapies for anxiety and related disorders. This chapter provides an overview of preclinical and clinical investigations that examined the effects of exercise on initial fear acquisition, fear extinction learning and consolidation, and return of fear outcomes. This chapter highlights the collective body of evidence suggesting that exercise administered after extinction learning enhances the consolidation and subsequent recall of extinction memories to a greater extent than exercise administered prior to extinction learning. This suggests that the addition of exercise after exposure therapy sessions may improve treatment outcomes for people with anxiety and related disorders. Potential mechanisms are discussed in addition to suggestions for future research to improve our understanding of the effects of exercise on fear conditioning and extinction outcomes.
Collapse
Affiliation(s)
- Ameera Azar
- Department of Psychiatry and Behavioral Sciences, The University of Texas at Austin Dell Medical School, Austin, TX, USA
- Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Troy Hubert
- Department of Psychology, University of Kentucky, Lexington, KY, UK
| | - Thomas G Adams
- Department of Psychology, University of Kentucky, Lexington, KY, UK
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Josh M Cisler
- Department of Psychiatry and Behavioral Sciences, The University of Texas at Austin Dell Medical School, Austin, TX, USA
- Institute for Early Life Adversity Research, The University of Texas at Austin Dell Medical School, Austin, TX, USA
| | - Kevin M Crombie
- Department of Psychiatry and Behavioral Sciences, The University of Texas at Austin Dell Medical School, Austin, TX, USA.
- Department of Kinesiology, The University of Alabama, Tuscaloosa, AL, USA.
| |
Collapse
|
9
|
Ney LJ, Nichols DS, Lipp OV. Fear conditioning depends on the nature of the unconditional stimulus and may be related to hair levels of endocannabinoids. Psychophysiology 2023; 60:e14297. [PMID: 36959707 PMCID: PMC10909444 DOI: 10.1111/psyp.14297] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/01/2023] [Accepted: 03/08/2023] [Indexed: 03/25/2023]
Abstract
The replicability of fear conditioning research has come under recent scrutiny, with increasing acknowledgment that the use of differing materials and methods may lead to incongruent results. Direct comparisons between the main two unconditional stimuli used in fear conditioning - an electric shock or a loud scream-are scarce, and yet these stimuli are usually used interchangeably. In the present study, we tested whether a scream, a shock, or an unpredictable combination of the two affected fear acquisition, extinction, and return of fear amongst healthy participants (N = 109, 81 female). We also collected hair samples and tested the relationship between fear conditioning and hair endocannabinoid levels. Our findings suggest that, although subjective ratings of pleasantness, arousal, and anxiety were similar regardless of the unconditional stimuli used, skin conductance responses were significantly lower for stimuli paired with the scream compared to a shock alone. Further, reducing the predictability of the unconditional stimulus reduced habituation of skin conductance responses during acquisition and reacquisition, but did not produce stronger conditioning compared to shock alone. Exploratory analyses suggested that hair endocannabinoids were associated with overall physiological arousal during fear conditioning, as well as higher return of fear to the threat cue, but not to the safety cue. These findings have multiple implications for the design and replicability of fear conditioning research and provide the first evidence for an association between hair levels of endocannabinoids and human fear conditioning.
Collapse
Affiliation(s)
- Luke J. Ney
- School of Psychology and CounsellingQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - David S. Nichols
- Central Science LaboratoryUniversity of TasmaniaHobartTasmaniaAustralia
| | - Ottmar V. Lipp
- School of Psychology and CounsellingQueensland University of TechnologyBrisbaneQueenslandAustralia
| |
Collapse
|
10
|
Crombie KM, Azar A, Botsford C, Heilicher M, Hiser J, Moughrabi N, Gruichich TS, Schomaker CM, Cisler JM. The influence of aerobic exercise on model-based decision making in women with posttraumatic stress disorder. JOURNAL OF MOOD AND ANXIETY DISORDERS 2023; 2:100015. [PMID: 37593142 PMCID: PMC10433398 DOI: 10.1016/j.xjmad.2023.100015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Individuals with PTSD often exhibit deficits in executive functioning. An unexplored aspect of neurocognitive functions associated with PTSD is the type of learning system engaged in during decision-making. A model-free (MF) system is habitual in nature and involves trial-and-error learning that is often updated based on the most recent experience (e.g., repeat action if rewarded). A model-based (MB) system is goal-directed in nature and involves the development of an abstract representation of the environment to facilitate decisions (e.g., choose sequence of actions according to current contextual state and predicted outcomes). The existing neurocognitive literature on PTSD suggests the hypothesis of greater reliance on MF vs MB learning strategies when navigating their environment. While MF systems may be more cognitively efficient, they do not afford flexibility when making prospective predictions about likely outcomes of different decision-tree branches. Emerging research suggests that an acute bout of aerobic exercise improves certain aspects of neurocognition, and thereby could promote the utilization of MB over MF systems during decision making, although prior research has not yet tested this hypothesis. Accordingly, the current study administered a lab-based two-stage Markov decision-making task capable of discriminating MF vs MB decision making, in order to determine if moderate-intensity aerobic exercise (either shortly after or 30-minutes after the exercise bout has ended) promotes greater engagement in MB behavioral strategies compared to light-intensity aerobic exercise in adult women with and without PTSD (N=61). Results revealed that control women generally displayed higher levels of MB behavior that was further increased following immediate exercise, particularly moderate-intensity exercise. By contrast, the PTSD group generally displayed lower levels of MB behavior, and exhibited greater MB behavior when completing the task following moderate-intensity aerobic exercise compared to light-intensity aerobic exercise regardless of whether there was a short or long delay between exercise and the task. Additionally, women with PTSD demonstrated less impairment in MB decision-making compared to controls following moderate-intensity aerobic exercise. These results suggest that an acute bout of moderate-intensity aerobic exercise boosts MB behavior in women with PTSD, and suggests that aerobic exercise may play an important role in enhancing cognitive outcomes for PTSD.
Collapse
Affiliation(s)
- Kevin M. Crombie
- The University of Texas at Austin, Department of Psychiatry and Behavioral Sciences, 1601 Trinity Street, Building B, Austin, Texas, United States of America 78712
- The University of Alabama, Department of Kinesiology, 1003 Wade Hall, Tuscaloosa, Alabama, United States of America 35487
| | - Ameera Azar
- The University of Texas at Austin, Department of Psychiatry and Behavioral Sciences, 1601 Trinity Street, Building B, Austin, Texas, United States of America 78712
| | - Chloe Botsford
- University of Wisconsin – Madison, Department of Psychiatry, 6001 Research Park Boulevard, Madison, Wisconsin, United States of America 53719
| | - Mickela Heilicher
- University of Wisconsin – Madison, Department of Psychiatry, 6001 Research Park Boulevard, Madison, Wisconsin, United States of America 53719
| | - Jaryd Hiser
- University of Wisconsin – Madison, Department of Psychiatry, 6001 Research Park Boulevard, Madison, Wisconsin, United States of America 53719
- The Ohio State University, Department of Psychiatry and Behavioral Health, 1670 Upham Drive, Suite 130, Columbus, Ohio, United States of America 43210
| | - Nicole Moughrabi
- The University of Texas at Austin, Department of Psychiatry and Behavioral Sciences, 1601 Trinity Street, Building B, Austin, Texas, United States of America 78712
| | - Tijana Sagorac Gruichich
- University of Wisconsin – Madison, Department of Psychiatry, 6001 Research Park Boulevard, Madison, Wisconsin, United States of America 53719
| | - Chloe M. Schomaker
- The University of Texas at Austin, Department of Psychiatry and Behavioral Sciences, 1601 Trinity Street, Building B, Austin, Texas, United States of America 78712
| | - Josh M. Cisler
- The University of Texas at Austin, Department of Psychiatry and Behavioral Sciences, 1601 Trinity Street, Building B, Austin, Texas, United States of America 78712
- Institute for Early Life Adversity Research, The University of Texas at Austin Dell Medical School, 1601 Trinity Street, Building B, Austin, Texas, United States of America 78712
| |
Collapse
|
11
|
Vyas CM, Mischoulon D, Chang G, Reynolds CF, Cook NR, Weinberg A, Copeland T, Bubes V, Bradwin G, Lee IM, Buring JE, Mora S, Rifai N, Manson JE, Okereke OI. Relation of serum BDNF to major depression and exploration of mechanistic roles of serum BDNF in a study of vitamin D3 and omega-3 supplements for late-life depression prevention. J Psychiatr Res 2023; 163:357-364. [PMID: 37267732 PMCID: PMC10306120 DOI: 10.1016/j.jpsychires.2023.05.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/11/2023] [Accepted: 05/25/2023] [Indexed: 06/04/2023]
Abstract
This study: 1) examined cross-sectional and longitudinal relations of serum brain-derived neurotrophic factor (BDNF) to late-life depression (LLD); 2) tested effects of vitamin D3 and omega-3s on change in BDNF; 3) explored modifying or mediating roles of BDNF on effects of vitamin D3 and omega-3s for LLD. We selected 400 adults from a completed trial of vitamin D3 and omega-3 supplements for LLD prevention. BDNF was measured using an enzyme-linked immunosorbent assay. We administered semi-structured diagnostic interviews and Patient Health Questionnaire [PHQ]-9 to ascertain outcomes at baseline (depression caseness vs. non-caseness; PHQ-9) and at 2-year follow-up among baseline non-depressed individuals (incident vs. no incident MDD; change in PHQ-9). At baseline, while there were no significant differences in mean serum BDNF comparing depression cases and non-cases, being in the lowest vs. highest serum BDNF quartile was significantly associated with worse depressive symptoms. There were no significant longitudinal associations between serum BDNF and LLD. Neither supplement significantly affected change in BDNF; serum BDNF did not appear to modify or mediate treatment effects on LLD. In conclusion, we observed significant cross-sectional but not longitudinal associations between serum BDNF levels and LLD. Vitamin D3 or omega-3s did not alter serum BDNF over 2 years.
Collapse
Affiliation(s)
- Chirag M Vyas
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - David Mischoulon
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Grace Chang
- Department of Psychiatry, VA Boston Healthcare System and Harvard Medical School, Boston, MA, USA
| | - Charles F Reynolds
- Department of Psychiatry, UPMC and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nancy R Cook
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Alison Weinberg
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Trisha Copeland
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Vadim Bubes
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Gary Bradwin
- Department of Laboratory Medicine, Boston Children's Hospital, Boston, MA, USA
| | - I-Min Lee
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Julie E Buring
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Samia Mora
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nader Rifai
- Department of Laboratory Medicine, Boston Children's Hospital, Boston, MA, USA
| | - JoAnn E Manson
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Olivia I Okereke
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Ney LJ, Akosile W, Davey C, Pitcher L, Felmingham KL, Mayo LM, Hill MN, Strodl E. Challenges and considerations for treating PTSD with medicinal cannabis: the Australian clinician's perspective. Expert Rev Clin Pharmacol 2023; 16:1093-1108. [PMID: 37885234 DOI: 10.1080/17512433.2023.2276309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/24/2023] [Indexed: 10/28/2023]
Abstract
INTRODUCTION Preclinical and experimental research have provided promising evidence that medicinal cannabis may be efficacious in the treatment of posttraumatic stress disorder (PTSD). However, implementation of medicinal cannabis into routine clinical therapies may not be straightforward. AREAS COVERED In this review, we describe some of the clinical, practical, and safety challenges that must be addressed for cannabis-based treatment of PTSD to be feasible in a real-world setting. These issues are especially prevalent if medicinal cannabis is to be combined with trauma-focused psychotherapy. EXPERT OPINION Future consideration of the clinical and practical considerations of cannabis use in PTSD therapy will be essential to both the efficacy and safety of the treatment protocols that are being developed. These issues include dose timing and titration, potential for addiction, product formulation, windows of intervention, and route of administration. In particular, exposure therapy for PTSD involves recall of intense emotions, and the interaction between cannabis use and reliving of trauma memories must be explored in terms of patient safety and impact on therapeutic outcomes.
Collapse
Affiliation(s)
- Luke J Ney
- School of Psychology and Counselling, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Wole Akosile
- Greater Brisbane Clinical School, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Chris Davey
- Department of Psychiatry, Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
| | | | - Kim L Felmingham
- School of Psychological Sciences, Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
| | - Leah M Mayo
- Department of Psychiatry, Mathison Centre for Mental Health Research, and Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Matthew N Hill
- Department of Psychiatry, Mathison Centre for Mental Health Research, and Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Esben Strodl
- School of Psychology and Counselling, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
13
|
Ney LJ, Cooper J, Lam GN, Moffitt K, Nichols DS, Mayo LM, Lipp OV. Hair endocannabinoids predict physiological fear conditioning and salivary endocannabinoids predict subjective stress reactivity in humans. Psychoneuroendocrinology 2023; 154:106296. [PMID: 37216738 DOI: 10.1016/j.psyneuen.2023.106296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023]
Abstract
On the basis of substantial preclinical evidence, the endogenous cannabinoid system has been proposed to be closely involved in stress reactivity and extinction of fear. Existing human research supports this proposal to some extent, but existing studies have used only a narrow range of tools and biomatrices to measure endocannabinoids during stress and fear experiments. In the present study we collected hair and saliva samples from 99 healthy participants who completed a fear conditioning and intrusive memory task. Subjective, physiological and biological stress reactivity to a trauma film, which later served as unconditional stimulus during fear conditioning, was also measured. We found that salivary endocannabinoid concentrations predicted subjective responses to stress, but not cortisol stress reactivity, and replicated previous findings demonstrating a sex dimorphism in hair and salivary endocannabinoid levels. Hair 2-arachidonoyl glycerol levels were significantly associated with better retention of safety learning during extinction and renewal phases of fear conditioning, while hair concentrations of oleoylethanolamide and palmitoylethanolamide were associated with overall physiological arousal, but not conditional learning, during fear conditioning. This study is the first to test the relationship between hair and salivary endocannabinoids and these important psychological processes. Our results suggest that these measures may serve as biomarkers of dysregulation in human fear memory and stress.
Collapse
Affiliation(s)
- Luke J Ney
- School of Psychology and Counselling, Faculty of Health, Queensland University of Technology, Brisbane, Australia.
| | - Jack Cooper
- School of Psychology and Counselling, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Gia Nhi Lam
- School of Psychology and Counselling, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Kaylee Moffitt
- Faculty of Science, Queensland University of Technology, Brisbane, Australia
| | - David S Nichols
- Central Science Laboratory, University of Tasmania, Hobart, Australia
| | - Leah M Mayo
- Department of Psychiatry, Mathison Centre for Mental Health Research, and Hotchkiss Brain Institute, University of Calgary, Canada
| | - Ottmar V Lipp
- School of Psychology and Counselling, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
14
|
On making (and turning adaptive to) maladaptive aversive memories in laboratory rodents. Neurosci Biobehav Rev 2023; 147:105101. [PMID: 36804263 DOI: 10.1016/j.neubiorev.2023.105101] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Fear conditioning and avoidance tasks usually elicit adaptive aversive memories. Traumatic memories are more intense, generalized, inflexible, and resistant to attenuation via extinction- and reconsolidation-based strategies. Inducing and assessing these dysfunctional, maladaptive features in the laboratory are crucial to interrogating posttraumatic stress disorder's neurobiology and exploring innovative treatments. Here we analyze over 350 studies addressing this question in adult rats and mice. There is a growing interest in modeling several qualitative and quantitative memory changes by exposing already stressed animals to freezing- and avoidance-related tests or using a relatively high aversive training magnitude. Other options combine aversive/fearful tasks with post-acquisition or post-retrieval administration of one or more drugs provoking neurochemical or epigenetic alterations reported in the trauma aftermath. It is potentially instructive to integrate these procedures and incorporate the measurement of autonomic and endocrine parameters. Factors to consider when defining the organismic and procedural variables, partially neglected aspects (sex-dependent differences and recent vs. remote data comparison) and suggestions for future research (identifying reliable individual risk and treatment-response predictors) are discussed.
Collapse
|
15
|
Silva BA, Gräff J. Face your fears: attenuating remote fear memories by reconsolidation-updating. Trends Cogn Sci 2023; 27:404-416. [PMID: 36813591 DOI: 10.1016/j.tics.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 02/22/2023]
Abstract
Traumatic events generate some of the most enduring memories, yet little is known about how long-lasting fear memories can be attenuated. In this review, we collect the surprisingly sparse evidence on remote fear memory attenuation from both animal and human research. What is becoming apparent is twofold: although remote fear memories are more resistant to change compared with recent ones, they can nevertheless be attenuated when interventions are targeted toward the period of memory malleability instigated by memory recall, the reconsolidation window. We describe the physiological mechanisms underlying remote reconsolidation-updating approaches and highlight how they can be enhanced through interventions promoting synaptic plasticity. By capitalizing on an intrinsically relevant phase of memory, reconsolidation-updating harbors the potential to permanently alter remote fear memories.
Collapse
Affiliation(s)
- Bianca A Silva
- National Research Council of Italy, Institute of Neuroscience, Milan, Italy; IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Johannes Gräff
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale Lausanne (EPFL), Switzerland.
| |
Collapse
|
16
|
Crombie KM, Adams TG, Dunsmoor JE, Greenwood BN, Smits JA, Nemeroff CB, Cisler JM. Aerobic exercise in the treatment of PTSD: An examination of preclinical and clinical laboratory findings, potential mechanisms, clinical implications, and future directions. J Anxiety Disord 2023; 94:102680. [PMID: 36773486 PMCID: PMC10084922 DOI: 10.1016/j.janxdis.2023.102680] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/19/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
Posttraumatic stress disorder (PTSD) is associated with heightened emotional responding, avoidance of trauma related stimuli, and physical health concerns (e.g., metabolic syndrome, type 2 diabetes, cardiovascular disease). Existing treatments such as exposure-based therapies (e.g., prolonged exposure) aim to reduce anxiety symptoms triggered by trauma reminders, and are hypothesized to work via mechanisms of extinction learning. However, these conventional gold standard psychotherapies do not address physical health concerns frequently presented in PTSD. In addition to widely documented physical and mental health benefits of exercise, emerging preclinical and clinical evidence supports the hypothesis that precisely timed administration of aerobic exercise can enhance the consolidation and subsequent recall of fear extinction learning. These findings suggest that aerobic exercise may be a promising adjunctive strategy for simultaneously improving physical health while enhancing the effects of exposure therapies, which is desirable given the suboptimal efficacy and remission rates. Accordingly, this review 1) encompasses an overview of preclinical and clinical exercise and fear conditioning studies which form the basis for this claim; 2) discusses several plausible mechanisms for enhanced consolidation of fear extinction memories following exercise, and 3) provides suggestions for future research that could advance the understanding of the potential importance of incorporating exercise into the treatment of PTSD.
Collapse
Affiliation(s)
- Kevin M Crombie
- The University of Texas at Austin, Department of Psychiatry and Behavioral Sciences, 1601 Trinity Street, Building B, Austin, TX 78712, United States of America.
| | - Tom G Adams
- University of Kentucky, Department of Psychology, 105 Kastle Hill, Lexington, KY 40506-0044, United States of America; Yale School of Medicine, Department of Psychiatry, 300 George St., New Haven, CT 06511, United States of America
| | - Joseph E Dunsmoor
- The University of Texas at Austin, Department of Psychiatry and Behavioral Sciences, 1601 Trinity Street, Building B, Austin, TX 78712, United States of America
| | - Benjamin N Greenwood
- University of Colorado Denver, Department of Psychology, Campus Box 173, PO Box 173364, Denver, CO 80217-3364, United States of America
| | - Jasper A Smits
- The University of Texas at Austin, Department of Psychology, 108 E Dean Keeton St., Austin, TX 78712, United States of America
| | - Charles B Nemeroff
- The University of Texas at Austin, Department of Psychiatry and Behavioral Sciences, 1601 Trinity Street, Building B, Austin, TX 78712, United States of America; Institute for Early Life Adversity Research, The University of Texas at Austin Dell Medical School, 1601 Trinity Street, Building B, Austin, TX 78712, United States of America
| | - Josh M Cisler
- The University of Texas at Austin, Department of Psychiatry and Behavioral Sciences, 1601 Trinity Street, Building B, Austin, TX 78712, United States of America; Institute for Early Life Adversity Research, The University of Texas at Austin Dell Medical School, 1601 Trinity Street, Building B, Austin, TX 78712, United States of America
| |
Collapse
|
17
|
Crombie KM, Azar A, Botsford C, Heilicher M, Moughrabi N, Gruichich TS, Schomaker CM, Dunsmoor JE, Cisler JM. Aerobic exercise after extinction learning reduces return of fear and enhances memory of items encoded during extinction learning. Ment Health Phys Act 2023; 24:100510. [PMID: 37065640 PMCID: PMC10104454 DOI: 10.1016/j.mhpa.2023.100510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Fear conditioning paradigms are widely used in laboratory settings to discover treatments that enhance memory consolidation and various fear processes (extinction learning, limit return of fear) that are relevant targets of exposure-based therapies. However, traditional lab-based paradigms often use the exact same conditioned stimuli for acquisition and extinction (typically differentiated with a context manipulation), whereas the opposite is true in clinical settings, as exposure therapy rarely (if ever) uses precisely the exact same stimuli from an individual's learning history. Accordingly, this study utilized a novel three-day category-based fear conditioning protocol (that uses categories of non-repeating objects [animals and tools] as conditioned stimuli during fear conditioning and extinction) to determine if aerobic exercise enhances the consolidation of extinction learning (reduces return of fear) and memory (for items encoded during extinction) during subsequent tests of extinction recall. Participants (n=40) completed a fear acquisition (day 1), fear extinction (day 2), and extinction recall (day 3) protocol. On day 1, participants completed a fear acquisition task in which they were trained to associate a category of conditioned stimuli (CS+) with the occurrence of an unconditioned stimulus (US). On day 2, participants were administered a fear extinction procedure during which CS+ and CS- categorical stimuli were presented in absence of the occurrence of the US. After completing the task, participants were randomly assigned to either receive moderate-intensity aerobic exercise (EX) or a light-intensity control (CON) condition. On day 3, participants completed fear recall tests (during which day 1, day 2, and novel CS+ and CS- stimuli were presented). Fear responding was assessed via threat expectancy ratings and skin conductance responses (SCR). During the fear recall tests, the EX group reported significantly lower threat expectancy ratings to the CS+ and CS- and exhibited greater memory of CS+ and CS- stimuli that were previously presented during day 2. There were no significant group differences for SCR. These results suggests that administration of moderate-intensity aerobic exercise following extinction learning contributes to reduced threat expectancies during tests of fear recall and enhanced memory of items encoded during extinction.
Collapse
Affiliation(s)
- Kevin M. Crombie
- The University of Texas at Austin, Department of Psychiatry and Behavioral Sciences, 1601 Trinity Street, Building B, Austin, Texas, United States of America 78712
| | - Ameera Azar
- The University of Texas at Austin, Department of Psychiatry and Behavioral Sciences, 1601 Trinity Street, Building B, Austin, Texas, United States of America 78712
| | - Chloe Botsford
- University of Wisconsin – Madison, Department of Psychiatry, 6001 Research Park Boulevard, Madison, Wisconsin, United States of America, 53719
| | - Mickela Heilicher
- University of Wisconsin – Madison, Department of Psychiatry, 6001 Research Park Boulevard, Madison, Wisconsin, United States of America, 53719
| | - Nicole Moughrabi
- The University of Texas at Austin, Department of Psychiatry and Behavioral Sciences, 1601 Trinity Street, Building B, Austin, Texas, United States of America 78712
| | - Tijana Sagorac Gruichich
- University of Wisconsin – Madison, Department of Psychiatry, 6001 Research Park Boulevard, Madison, Wisconsin, United States of America, 53719
| | - Chloe M. Schomaker
- The University of Texas at Austin, Department of Psychiatry and Behavioral Sciences, 1601 Trinity Street, Building B, Austin, Texas, United States of America 78712
| | - Joseph E. Dunsmoor
- The University of Texas at Austin, Department of Psychiatry and Behavioral Sciences, 1601 Trinity Street, Building B, Austin, Texas, United States of America 78712
| | - Josh M. Cisler
- The University of Texas at Austin, Department of Psychiatry and Behavioral Sciences, 1601 Trinity Street, Building B, Austin, Texas, United States of America 78712
- Institute for Early Life Adversity Research, The University of Texas at Austin Dell Medical School, 1601 Trinity Street, Building B, Austin, Texas, United States of America 78712
| |
Collapse
|
18
|
Shafia S, Nikkhah F, Akhoundzadeh K. Effect of combination fluoxetine and exercise on prefrontal BDNF, anxiety-like behavior and fear extinction in a female rat model of post-traumatic stress disorder (PTSD): a comparison with male animals. Behav Brain Funct 2023; 19:1. [PMID: 36647145 PMCID: PMC9843848 DOI: 10.1186/s12993-023-00204-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/03/2023] [Indexed: 01/17/2023] Open
Abstract
Despite significant differences between men and women in the symptoms of PTSD and the response to therapeutic interventions, most PTSD studies have been done on male subjects. Continuing our previous study in male rats, this study aimed at better understanding the effect of a combination therapy of exercise with fluoxetine on female PTSD rats. The results were then compared with our past findings in male animals. Female adult Wistar rats subjected to PTSD were treated with moderate treadmill exercise or fluoxetine, or a combination of both. PTSD was induced by the single prolonged stress (SPS) model. Elevated plus-maze (EPM), serum and prefrontal BDNF, and fear extinctions were evaluated. The results showed that exercise plus fluoxetine decreased anxiety-like behavior, improved fear extinction, and increased BDNF changes in female rats. The effects of exercise alone were comparable with those of combination therapy except that combination therapy was more effective on OAT (open arm entry). The majority of results in female rats, except for those of prefrontal BDNF, 4th extinction, and OAT, were similar to those of male rats as shown in our previous study. According to our findings, exercise as a safe and cost-effective intervention can be considered as a complementary efficient option for PTSD treatment in both sexes. To achieve better treatment outcomes in PTSD patient, considering sex differences is recommended.
Collapse
Affiliation(s)
- Sakineh Shafia
- grid.411623.30000 0001 2227 0923Immunogenetics Research Center, Department of Physiology, Mazandaran University of Medical Sciences, Sari, Iran
| | - Farkhonde Nikkhah
- grid.411623.30000 0001 2227 0923Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Kobra Akhoundzadeh
- grid.444830.f0000 0004 0384 871XFaculty of Nursing and Midwifery, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
19
|
Provencher J, Cernik R, Marin MF. Impact of Stress and Exercise on Fear Extinction. Curr Top Behav Neurosci 2023; 64:157-178. [PMID: 37498495 DOI: 10.1007/7854_2023_432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
This chapter reviews the literature on the impact of stress and exercise on fear extinction. Given that key brain regions of the fear circuitry (e.g., hippocampus, amygdala and frontal cortex) can be modulated by stress hormones, it is important to investigate how stress influences this process. Laboratory-based studies performed in healthy adults have yielded mixed results, which are most likely attributable to various methodological factors. Among these factors, inter-individual differences modulating the stress response and timing of stressor administration with respect to the task may contribute to this heterogeneity. Given that fear is a core manifestation of various psychopathologies and that exposure-based therapy relies on fear extinction principles, several studies have attempted to assess the role of stress hormones on exposure-based therapy in patients suffering from post-traumatic stress disorder or anxiety disorders. These studies tend to suggest a beneficial impact of stress hormones (through either natural endogenous variations or synthetic administration) on exposure-based therapy as assessed mostly by subjective fear measures. Similar to stress, exercise can have an impact on many physiological and biological systems in humans. Of note, exercise modulates biomarkers such as brain-derived neurotrophic factor (BDNF) and anandamide (EAE) that act on brain regions implicated in the fear circuitry, supporting the importance of studying the impact of exercise on fear extinction. Overall, the results converge and indicate that fear extinction (tested in the laboratory or via exposure-based therapy in clinical populations) can be enhanced with exercise. Further research is needed to understand the mechanisms by which stress and exercise modulate fear learning and extinction processes, as well as to maximize the applicability to clinical contexts.
Collapse
Affiliation(s)
- Jessie Provencher
- Department of Psychology, Université du Québec à Montréal, Montreal, QC, Canada
- Research Centre of the Institut Universitaire en Santé Mentale de Montréal, Montreal, QC, Canada
| | - Rebecca Cernik
- Department of Psychology, Université du Québec à Montréal, Montreal, QC, Canada
- Research Centre of the Institut Universitaire en Santé Mentale de Montréal, Montreal, QC, Canada
| | - Marie-France Marin
- Department of Psychology, Université du Québec à Montréal, Montreal, QC, Canada.
- Research Centre of the Institut Universitaire en Santé Mentale de Montréal, Montreal, QC, Canada.
| |
Collapse
|
20
|
Botsford C, Brellenthin AG, Cisler JM, Hillard CJ, Koltyn KF, Crombie KM. Circulating endocannabinoids and psychological outcomes in women with PTSD. J Anxiety Disord 2023; 93:102656. [PMID: 36469982 PMCID: PMC9839585 DOI: 10.1016/j.janxdis.2022.102656] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/10/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Recent research has attempted to elucidate the relationship between blood-based biomarkers (e.g., endocannabinoids; eCBs: including N-arachidonoylethanolamine [AEA] and 2-arachidonoylglycerol [2-AG]) and mental health outcomes in psychiatric populations such as posttraumatic stress disorder (PTSD). Prior research suggests that adults with PTSD may have altered circulating eCB tone and a blunted mobilization of eCBs (particularly 2-AG) in response to stress (e.g., aerobic exercise), although our understanding has been limited in part due to heterogenous samples and small sample sizes. METHODS A subset of data was pooled from five studies in which women with and without PTSD (N = 98) completed questionnaires related to mood states and a blood draw prior to and following a bout of moderate-intensity aerobic exercise in order to determine: 1) whether circulating eCBs differ between groups and whether depressive and PTSD symptom severity are associated with baseline eCBs, 2) whether a bout of aerobic exercise increases circulating eCBs in adult women with PTSD, and 3) whether circulating eCBs are associated with overall mood states and exercise-induced improvements in mood states in women with and without PTSD. RESULTS PTSD diagnoses were not associated with baseline concentrations of eCBs. Greater depressive symptom severity and PTSD symptom severity within the negative alteration in cognition and mood cluster were associated with lower circulating AEA. Circulating AEA significantly increased following aerobic exercise for both groups, whereas circulating 2-AG only increased in women without PTSD. Greater circulating AEA within the PTSD group was associated with lower depressive mood, confusion, and total mood disturbance. CONCLUSIONS These findings suggest that greater circulating AEA is associated with better overall mood and lower depressive and PTSD symptom severity, and that an acute bout of moderate-intensity aerobic exercise increases circulating AEA (but not 2-AG) in adult women with PTSD. These findings are consistent with the idea that greater eCB tone (particularly AEA) following pharmacological and/or non-pharmacological manipulations may be beneficial for improving psychological outcomes (e.g., mood, cognition) among PTSD, and possibly other psychiatric populations.
Collapse
Affiliation(s)
- Chloe Botsford
- University of Wisconsin - Madison, Department of Psychiatry, 6001 Research Park Boulevard, Madison, WI 53719, United States.
| | - Angelique G Brellenthin
- Iowa State University, Department of Kinesiology, Forker Building, 534 Wallace Road, Ames, IA 50011, United States.
| | - Josh M Cisler
- The University of Texas at Austin, Department of Psychiatry and Behavioral Sciences, 1601 Trinity Street, Building B, Austin, TX 78712, United States; Institute for Early Life Adversity Research, The University of Texas at Austin Dell Medical School & Department of Psychiatry and Behavioral Sciences, 1601 Trinity Street, Building B, Austin, TX 78712, United States.
| | - Cecilia J Hillard
- Medical College of Wisconsin, Neuroscience Research Center, Department of Pharmacology and Toxicology, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA.
| | - Kelli F Koltyn
- University of Wisconsin - Madison, Department of Kinesiology, 1300 University Avenue, Madison, WI 53706, United States.
| | - Kevin M Crombie
- The University of Texas at Austin, Department of Psychiatry and Behavioral Sciences, 1601 Trinity Street, Building B, Austin, TX 78712, United States.
| |
Collapse
|
21
|
Desai S, Borg B, Cuttler C, Crombie KM, Rabinak CA, Hill MN, Marusak HA. A Systematic Review and Meta-Analysis on the Effects of Exercise on the Endocannabinoid System. Cannabis Cannabinoid Res 2022; 7:388-408. [PMID: 34870469 PMCID: PMC9418357 DOI: 10.1089/can.2021.0113] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Introduction: The endocannabinoid (eCB) system plays a key role in maintaining homeostasis, including the regulation of metabolism and stress responses. Chronic stress may blunt eCB signaling, and disruptions in eCB signaling have been linked to stress-related psychiatric disorders and physical health conditions, including anxiety, depression, post-traumatic stress disorder (PTSD), diabetes, and obesity. Pharmacological and nonpharmacological behavioral interventions (e.g., exercise) that target the eCB system may be promising therapeutic approaches for the prevention and treatment of stress-related diseases. In this study, we perform a systematic review and the first meta-analysis to examine the impact of exercise on circulating eCB concentrations. Materials and Methods: We performed a review of the MEDLINE (PubMed) database for original articles examining the impact of exercise on eCBs in humans and animal models. A total of 262 articles were screened for initial inclusion. Results: Thirty-three articles (reporting on 57 samples) were included in the systematic review and 10 were included in the meta-analysis. The majority of samples that measured anandamide (AEA) showed a significant increase in AEA concentrations following acute exercise (74.4%), whereas effects on 2-arachidonoylglycerol (2-AG) were inconsistent. The meta-analysis, however, revealed a consistent increase in both AEA and 2-AG following acute exercise across modalities (e.g., running, cycling), species (e.g., humans, mice), and in those with and without pre-existing health conditions (e.g., PTSD, depression). There was substantial heterogeneity in the magnitude of the effect across studies, which may relate to exercise intensity, physical fitness, timing of measurement, and/or fasted state. Effects of chronic exercise were inconsistent. Conclusions: Potential interpretations and implications of exercise-induced mobilization of eCBs are discussed, including refilling of energy stores and mediating analgesic and mood elevating effects of exercise. We also offer recommendations for future work and discuss therapeutic implications for exercise in the prevention and treatment of stress-related psychopathology.
Collapse
Affiliation(s)
- Shreya Desai
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Breanna Borg
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Carrie Cuttler
- Department of Psychology, Washington State University, Pullman, Washington, USA
| | - Kevin M. Crombie
- Department of Psychiatry and Behavioral Sciences, University of Texas at Austin, Austin, Texas, USA
| | - Christine A. Rabinak
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, Michigan, USA
- Department of Pharmacy Practice and Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
- Merrill Palmer Skillman Institute for Child and Family Development, Wayne State University, Detroit, Michigan, USA
| | - Matthew N. Hill
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Hilary A. Marusak
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, Michigan, USA
- Merrill Palmer Skillman Institute for Child and Family Development, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
22
|
Crombie KM, Privratsky AA, Schomaker CM, Heilicher M, Ross MC, Sartin-Tarm A, Sellnow K, Binder EB, Andrew James G, Cisler JM. The influence of FAAH genetic variation on physiological, cognitive, and neural signatures of fear acquisition and extinction learning in women with PTSD. Neuroimage Clin 2022; 33:102922. [PMID: 34952353 PMCID: PMC8715233 DOI: 10.1016/j.nicl.2021.102922] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 12/14/2022]
Abstract
PTSD is often treated with psychotherapies based on principles of fear acquisition and extinction. Increased AEA has resulted in enhanced extinction learning and recall among healthy adults. These effects have not yet been comprehensively examined in a PTSD population. Results suggest that genetic variation within the FAAH gene affects how fear learning is tuned in women with PTSD.
Background Posttraumatic Stress Disorder (PTSD) is commonly treated with exposure-based cognitive therapies that are based on the principles of fear acquisition and extinction learning. Elevations in one of the major endocannabinoids (anandamide) either via inhibition of the primary degrading enzyme (fatty acid amide hydrolase; FAAH) or via a genetic variation in the FAAH gene (C385A; rs324420) has resulted in accelerated extinction learning and enhanced extinction recall among healthy adults. These results suggest that targeting FAAH may be a promising therapeutic approach for PTSD. However, these effects have not yet been comprehensively examined in a PTSD population. Methods The current study examined whether genetic variation in the FAAH gene (CC [n = 49] vs AA/AC [n = 36] allele carriers) influences physiological (skin conductance), cognitive (threat expectancy), and neural (network and voxel-wise activation) indices of fear acquisition and extinction learning among a sample of adult women with PTSD (N = 85). Results The physiological, cognitive, and neural signatures of fear acquisition and extinction learning varied as a function of whether or not individuals possess the FAAH C385A polymorphism. For instance, we report divergent responding between CC and AA/AC allele carriers to CS + vs CS- in limbic and striatum networks and overall greater activation throughout the task among AA/AC allele carriers in several regions [e.g., inferior frontal, middle frontal, parietal] that are highly consistent with a frontoparietal network involved in higher-order executive functions. Conclusions These results suggest that genetic variation within the FAAH gene influences physiological, cognitive, and neural signatures of fear learning in women with PTSD. In order to advance our understanding of the efficacy of FAAH inhibition as a treatment for PTSD, future clinical trials in this area should assess genetic variation in the FAAH gene in order to fully depict and differentiate the acute effects of a drug manipulation (FAAH inhibition) from more chronic (genetic) influences on fear extinction processes.
Collapse
Affiliation(s)
- Kevin M Crombie
- The University of Texas at Austin, Department of Psychiatry and Behavioral Sciences, Health Discovery Building, 1601 Trinity St., Building B, Austin, TX 78712, USA.
| | - Anthony A Privratsky
- University of Arkansas for Medical Sciences, Brain Imaging Research Center, 4301 W. Markham Street #554, Little Rock, AR 72205, USA
| | - Chloe M Schomaker
- The University of Texas at Austin, Department of Psychiatry and Behavioral Sciences, Health Discovery Building, 1601 Trinity St., Building B, Austin, TX 78712, USA
| | - Mickela Heilicher
- University of Wisconsin - Madison, Department of Psychiatry, 6001 Research Park Boulevard, Madison, WI 53719-1176608-262-6375, USA
| | - Marisa C Ross
- University of Wisconsin - Madison, Department of Psychiatry, 6001 Research Park Boulevard, Madison, WI 53719-1176608-262-6375, USA
| | - Anneliis Sartin-Tarm
- University of Wisconsin - Madison, Department of Psychiatry, 6001 Research Park Boulevard, Madison, WI 53719-1176608-262-6375, USA
| | - Kyrie Sellnow
- University of Wisconsin - Madison, Department of Psychiatry, 6001 Research Park Boulevard, Madison, WI 53719-1176608-262-6375, USA
| | - Elisabeth B Binder
- Max Planck Institute of Psychiatry, Department of Translational Psychiatry, Kraepelinstr. 2-10, 80804, Munchen, Germany; Emory University, Department of Psychiatry and Behavioral Sciences, 12 Executive Park Dr NE #200, Atlanta, GA 30329, USA
| | - G Andrew James
- University of Arkansas for Medical Sciences, Brain Imaging Research Center, 4301 W. Markham Street #554, Little Rock, AR 72205, USA
| | - Josh M Cisler
- The University of Texas at Austin, Department of Psychiatry and Behavioral Sciences, Health Discovery Building, 1601 Trinity St., Building B, Austin, TX 78712, USA
| |
Collapse
|
23
|
Ney LJ, Crombie KM, Mayo LM, Felmingham KL, Bowser T, Matthews A. Translation of animal endocannabinoid models of PTSD mechanisms to humans: Where to next? Neurosci Biobehav Rev 2021; 132:76-91. [PMID: 34838529 DOI: 10.1016/j.neubiorev.2021.11.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022]
Abstract
The endocannabinoid system is known to be involved in mechanisms relevant to PTSD aetiology and maintenance, though this understanding is mostly based on animal models of the disorder. Here we review how human paradigms can successfully translate animal findings to human subjects, with the view that substantially increased insight into the effect of endocannabinoid signalling on stress responding, emotional and intrusive memories, and fear extinction can be gained using modern paradigms and methods for assessing the state of the endocannabinoid system in PTSD.
Collapse
Affiliation(s)
- Luke J Ney
- School of Psychological Sciences, University of Tasmania, Australia; School of Psychology and Counselling, Queensland University of Technology, Australia.
| | - Kevin M Crombie
- Department of Psychiatry and Behavioral Sciences, University of Texas at Austin, United States
| | - Leah M Mayo
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Science, Linköping University, Sweden
| | - Kim L Felmingham
- Department of Psychological Sciences, University of Melbourne, Australia
| | | | - Allison Matthews
- School of Psychological Sciences, University of Tasmania, Australia
| |
Collapse
|
24
|
de Melo Reis RA, Isaac AR, Freitas HR, de Almeida MM, Schuck PF, Ferreira GC, Andrade-da-Costa BLDS, Trevenzoli IH. Quality of Life and a Surveillant Endocannabinoid System. Front Neurosci 2021; 15:747229. [PMID: 34776851 PMCID: PMC8581450 DOI: 10.3389/fnins.2021.747229] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/01/2021] [Indexed: 12/11/2022] Open
Abstract
The endocannabinoid system (ECS) is an important brain modulatory network. ECS regulates brain homeostasis throughout development, from progenitor fate decision to neuro- and gliogenesis, synaptogenesis, brain plasticity and circuit repair, up to learning, memory, fear, protection, and death. It is a major player in the hypothalamic-peripheral system-adipose tissue in the regulation of food intake, energy storage, nutritional status, and adipose tissue mass, consequently affecting obesity. Loss of ECS control might affect mood disorders (anxiety, hyperactivity, psychosis, and depression), lead to drug abuse, and impact neurodegenerative (Alzheimer's, Parkinson, Huntington, Multiple, and Amyotrophic Lateral Sclerosis) and neurodevelopmental (autism spectrum) disorders. Practice of regular physical and/or mind-body mindfulness and meditative activities have been shown to modulate endocannabinoid (eCB) levels, in addition to other players as brain-derived neurotrophic factor (BDNF). ECS is involved in pain, inflammation, metabolic and cardiovascular dysfunctions, general immune responses (asthma, allergy, and arthritis) and tumor expansion, both/either in the brain and/or in the periphery. The reason for such a vast impact is the fact that arachidonic acid, a precursor of eCBs, is present in every membrane cell of the body and on demand eCBs synthesis is regulated by electrical activity and calcium shifts. Novel lipid (lipoxins and resolvins) or peptide (hemopressin) players of the ECS also operate as regulators of physiological allostasis. Indeed, the presence of cannabinoid receptors in intracellular organelles as mitochondria or lysosomes, or in nuclear targets as PPARγ might impact energy consumption, metabolism and cell death. To live a better life implies in a vigilant ECS, through healthy diet selection (based on a balanced omega-3 and -6 polyunsaturated fatty acids), weekly exercises and meditation therapy, all of which regulating eCBs levels, surrounded by a constructive social network. Cannabidiol, a diet supplement has been a major player with anti-inflammatory, anxiolytic, antidepressant, and antioxidant activities. Cognitive challenges and emotional intelligence might strengthen the ECS, which is built on a variety of synapses that modify human behavior. As therapeutically concerned, the ECS is essential for maintaining homeostasis and cannabinoids are promising tools to control innumerous targets.
Collapse
Affiliation(s)
- Ricardo Augusto de Melo Reis
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alinny Rosendo Isaac
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hércules Rezende Freitas
- Laboratory of Neuroenergetics and Inborn Errors of Metabolism, Institute of Medical Biochemistry Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana Macedo de Almeida
- Laboratory of Molecular Endocrinology, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia Fernanda Schuck
- Laboratory of Neuroenergetics and Inborn Errors of Metabolism, Institute of Medical Biochemistry Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gustavo Costa Ferreira
- Laboratory of Neuroenergetics and Inborn Errors of Metabolism, Institute of Medical Biochemistry Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Isis Hara Trevenzoli
- Laboratory of Molecular Endocrinology, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|