1
|
Ravel S, Ségard A, Mollo BG, Mahamat MH, Argiles-Herrero R, Bouyer J, Rayaisse JB, Solano P, Pèka M, Darnas J, Belem AMG, Yoni W, Noûs C, de Meeûs T. Limited impact of vector control on the population genetic structure of Glossina fuscipes fuscipes from the sleeping sickness focus of Maro, Chad. Parasite 2024; 31:13. [PMID: 38450719 PMCID: PMC10918643 DOI: 10.1051/parasite/2024013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/13/2024] [Indexed: 03/08/2024] Open
Abstract
Tsetse flies (genus Glossina) transmit deadly trypanosomes to human populations and domestic animals in sub-Saharan Africa. Some foci of Human African Trypanosomiasis due to Trypanosoma brucei gambiense (g-HAT) persist in southern Chad, where a program of tsetse control was implemented against the local vector Glossina fuscipes fuscipes in 2018 in Maro. We analyzed the population genetics of G. f. fuscipes from the Maro focus before control (T0), one year (T1), and 18 months (T2) after the beginning of control efforts. Most flies captured displayed a local genetic profile (local survivors), but a few flies displayed outlier genotypes. Moreover, disturbance of isolation by distance signature (increase of genetic distance with geographic distance) and effective population size estimates, absence of any genetic signature of a bottleneck, and an increase of genetic diversity between T0 and T2 strongly suggest gene flows from various origins, and a limited impact of the vector control efforts on this tsetse population. Continuous control and surveillance of g-HAT transmission is thus recommended in Maro. Particular attention will need to be paid to the border with the Central African Republic, a country where the entomological and epidemiological status of g-HAT is unknown.
Collapse
Affiliation(s)
- Sophie Ravel
- Intertryp, Université de Montpellier, Cirad, IRD Montpellier France
| | - Adeline Ségard
- Intertryp, Université de Montpellier, Cirad, IRD Montpellier France
| | | | | | - Rafael Argiles-Herrero
- Insect Pest Control Laboratory, Joint Food and Agriculture Organization of the United Nations/International Atomic Energy Agency Program of Nuclear Techniques in Food and Agriculture A-1400 Vienna Austria
| | - Jérémy Bouyer
- Insect Pest Control Laboratory, Joint Food and Agriculture Organization of the United Nations/International Atomic Energy Agency Program of Nuclear Techniques in Food and Agriculture A-1400 Vienna Austria
- UMR Astre, Cirad, Plateforme Cyroi 2 rue Maxime Rivière 97491 Sainte-Clotilde La Réunion France
| | - Jean-Baptiste Rayaisse
- Centre International de Recherche Développement sur l’Élevage en zone Subhumide (Cirdes) Bobo-Dioulasso Burkina Faso
| | - Philippe Solano
- Intertryp, Université de Montpellier, Cirad, IRD Montpellier France
| | - Mallaye Pèka
- Programme National de Lutte contre la THA (PNLTHA) Ndjaména Chad
| | - Justin Darnas
- Programme National de Lutte contre la THA (PNLTHA) Ndjaména Chad
| | | | - Wilfrid Yoni
- Centre International de Recherche Développement sur l’Élevage en zone Subhumide (Cirdes) Bobo-Dioulasso Burkina Faso
| | - Camille Noûs
- Cogitamus Laboratory France, https://www.cogitamus.fr/
| | - Thierry de Meeûs
- Intertryp, Université de Montpellier, Cirad, IRD Montpellier France
| |
Collapse
|
2
|
Gstöttenmayer F, Moyaba P, Rodriguez M, Mulandane FC, Mucache HN, Neves L, De Beer C, Ravel S, De Meeûs T, Mach RL, Vreysen MJB, Abd-Alla AM. Development and characterization of microsatellite markers for the tsetse species Glossina brevipalpis and preliminary population genetics analyses. Parasite 2023; 30:34. [PMID: 37712836 PMCID: PMC10503490 DOI: 10.1051/parasite/2023038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/23/2023] [Indexed: 09/16/2023] Open
Abstract
Tsetse flies, the vectors of African trypanosomes are of key medical and economic importance and one of the constraints for the development of Africa. Tsetse fly control is one of the most effective and sustainable strategies used for controlling the disease. Knowledge about population structure and level of gene flow between neighbouring populations of the target vector is of high importance to develop appropriate strategies for implementing effective management programmes. Microsatellites are commonly used to identify population structure and assess dispersal of the target populations and have been developed for several tsetse species but were lacking for Glossina brevipalpis. In this study, we screened the genome of G. brevipalpis to search for suitable microsatellite markers and nine were found to be efficient enough to distinguish between different tsetse populations. The availability of these novel microsatellite loci will help to better understand the population biology of G. brevipalpis and to assess the level of gene flow between different populations. Such information will help with the development of appropriate strategies to implement the sterile insect technique (SIT) in the framework of an area-wide integrated pest management (AW-IPM) approach to manage tsetse populations and ultimately address the trypanosomoses problem in these targeted areas.
Collapse
Affiliation(s)
- Fabian Gstöttenmayer
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Vienna International Centre P.O. Box 100 1400 Vienna Austria
| | - Percy Moyaba
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Vienna International Centre P.O. Box 100 1400 Vienna Austria
- Epidemiology, Parasites and Vectors, Agricultural Research Council-Onderstepoort Veterinary Research 100 Soutpan Road Private Bag X05 Onderstepoort 0110 South Africa
| | - Montse Rodriguez
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Vienna International Centre P.O. Box 100 1400 Vienna Austria
| | - Fernando C. Mulandane
- University Eduardo Mondlane, Centro de Biotecnologia Av. de Moçambique Km 1.5 Maputo Mozambique
| | - Hermógenes N. Mucache
- University Eduardo Mondlane, Centro de Biotecnologia Av. de Moçambique Km 1.5 Maputo Mozambique
| | - Luis Neves
- University Eduardo Mondlane, Centro de Biotecnologia Av. de Moçambique Km 1.5 Maputo Mozambique
- University of Pretoria, Department of Veterinary Tropical Diseases Private Bag X04 Onderstepoort 0110 South Africa
| | - Chantel De Beer
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Vienna International Centre P.O. Box 100 1400 Vienna Austria
| | - Sophie Ravel
- University of Montpellier, Cirad, IRD, Intertryp Campus International de Baillarguet 34398 Montpellier Cedex 5 France
| | - Thierry De Meeûs
- University of Montpellier, Cirad, IRD, Intertryp Campus International de Baillarguet 34398 Montpellier Cedex 5 France
| | - Robert L. Mach
- Institute of Chemical, Environmental, and Bioscience Engineering, Vienna University of Technology Gumpendorfer Straße 1a 1060 Vienna Austria
| | - Marc J. B. Vreysen
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Vienna International Centre P.O. Box 100 1400 Vienna Austria
| | - Adly M.M. Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Vienna International Centre P.O. Box 100 1400 Vienna Austria
| |
Collapse
|
3
|
Lee MH, Medina Munoz M, Rio RVM. The Tsetse Metabolic Gambit: Living on Blood by Relying on Symbionts Demands Synchronization. Front Microbiol 2022; 13:905826. [PMID: 35756042 PMCID: PMC9218860 DOI: 10.3389/fmicb.2022.905826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Tsetse flies have socioeconomic significance as the obligate vector of multiple Trypanosoma parasites, the causative agents of Human and Animal African Trypanosomiases. Like many animals subsisting on a limited diet, microbial symbiosis is key to supplementing nutrient deficiencies necessary for metabolic, reproductive, and immune functions. Extensive studies on the microbiota in parallel to tsetse biology have unraveled the many dependencies partners have for one another. But far less is known mechanistically on how products are swapped between partners and how these metabolic exchanges are regulated, especially to address changing physiological needs. More specifically, how do metabolites contributed by one partner get to the right place at the right time and in the right amounts to the other partner? Epigenetics is the study of molecules and mechanisms that regulate the inheritance, gene activity and expression of traits that are not due to DNA sequence alone. The roles that epigenetics provide as a mechanistic link between host phenotype, metabolism and microbiota (both in composition and activity) is relatively unknown and represents a frontier of exploration. Here, we take a closer look at blood feeding insects with emphasis on the tsetse fly, to specifically propose roles for microRNAs (miRNA) and DNA methylation, in maintaining insect-microbiota functional homeostasis. We provide empirical details to addressing these hypotheses and advancing these studies. Deciphering how microbiota and host activity are harmonized may foster multiple applications toward manipulating host health, including identifying novel targets for innovative vector control strategies to counter insidious pests such as tsetse.
Collapse
Affiliation(s)
- Mason H Lee
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV, United States
| | - Miguel Medina Munoz
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV, United States.,Department of Bacteriology, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Rita V M Rio
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
4
|
Kimenyi KM, Abry MF, Okeyo W, Matovu E, Masiga D, Kulohoma BW. Detecting bracoviral orthologs distribution in five tsetse fly species and the housefly genomes. BMC Res Notes 2020; 13:318. [PMID: 32616010 PMCID: PMC7331153 DOI: 10.1186/s13104-020-05161-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/27/2020] [Indexed: 01/22/2023] Open
Abstract
Objective Mutualism between endogenous viruses and eukaryotes is still poorly understood. Several endogenous double-stranded polydnaviruses, bracoviruses, homologous to those present in parasitic braconid wasp genomes were detected in the tsetse fly (Glossina morsitans morsitans). This is peculiar since tsetse flies do not share a reproductive lifestyle similar to wasps, but deliver fully developed larvae that pupate within minutes of exiting their mothers. The objective of this study is to investigate genomic distribution of bracoviral sequences in five tsetse fly species and the housefly, and examine its value as a potential vector control strategy target point. We use comparative genomics to determine the presence, distribution across Glossina species genomes, and evolutionary relationships of bracoviruses of five tsetse fly species and the housefly. Results We report on homologous bracoviruses in multiple Dipteran genomes. Phylogenetic reconstruction using within-species concatenated bracoviral orthologs shows great congruence with previously reconstructed insect species phylogenies. Our findings suggest that bracoviruses present in Diptera originate from a single integration event of the viral genome that occurred in an ancestor insect before the evolutionary radiation of different insect orders.
Collapse
|
5
|
Ravel S, Séré M, Manangwa O, Kagbadouno M, Mahamat MH, Shereni W, Okeyo WA, Argiles-Herrero R, De Meeûs T. Developing and quality testing of microsatellite loci for four species of Glossina. INFECTION GENETICS AND EVOLUTION 2020; 85:104515. [PMID: 32861909 DOI: 10.1016/j.meegid.2020.104515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/29/2020] [Accepted: 08/24/2020] [Indexed: 11/15/2022]
Abstract
Microsatellite loci still represent valuable resources for the study of the population biology of non-model organisms. Discovering or adapting new suitable microsatellite markers in species of interest still represents a useful task, especially so for non-model organisms as tsetse flies (genus Glossina), which remain a serious threat to the health of humans and animals in sub-Saharan Africa. In this paper, we present the development of new microsatellite loci for four species of Glossina: two from the Morsitans group, G. morsitans morsitans (Gmm) from Zimbabwe, G. pallidipes (Gpalli) from Tanzania; and the other two from the Palpalis group, G. fuscipes fuscipes (Gff) from Chad, and G. palpalis gambiensis (Gpg) from Guinea. We found frequent short allele dominance and null alleles. Stuttering could also be found and amended when possible. Cryptic species seemed to occur frequently in all taxa but Gff. This explains why it may be difficult finding ecumenical primers, which thus need adaptation according to each taxonomic and geographic context. Amplification problems occurred more often in published old markers, and Gmm and Gpg were the most affected (stronger heterozygote deficits). Trinucleotide markers displayed selection signature in some instances (Gmm). Combining old and new loci, for Gmm, eight loci can be safely used (with correction for null alleles); and five seem particularly promising; for Gpalli, only five to three loci worked well, depending on the clade, which means that the use of loci from other species (four morsitans loci seemed to work well), or other new primers will need to be used; for Gff, 14 loci behaved well, but with null alleles, seven of which worked very well; and for G. palpalis sl, only four loci, needing null allele and stuttering corrections seem to work well, and other loci from the literature are thus needed, including X-linked markers, five of which seem to work rather well (in females only), but new markers will probably be needed. Finally, the high proportion of X-linked markers (around 30%) was explained by the non-Y DNA quantity and chromosome structure of tsetse flies studied so far.
Collapse
Affiliation(s)
- Sophie Ravel
- Intertryp, IRD, Cirad, Univ Montpellier, Montpellier, France
| | - Modou Séré
- University of Dédougou, Dédougou B.P. 176, Burkina Faso
| | - Oliver Manangwa
- Vector and Vector Borne Disease Research Institute, P.O.Box 1026, Tanga, Tanzania
| | - Moise Kagbadouno
- Programme National de Lutte contre la THA (PNLTHA), Conakry, Guinea
| | | | - William Shereni
- Ministry of Lands, Agriculture, Water and Rural Resettlement, Harare, Zimbabwe
| | | | - Rafael Argiles-Herrero
- Insect Pest Control Sub-Programme, Joint Food and Agriculture Organization of the United Nations/International Atomic Energy Agency Programme of Nuclear Techniques in Food and Agriculture, Vienna A-1400, Austria
| | | |
Collapse
|
6
|
Single-strand conformation polymorphism (SSCP) of mitochondrial genes helps to estimate genetic differentiation, demographic parameters and phylogeny of Glossina palpalis palpalis populations from West and Central Africa. INFECTION GENETICS AND EVOLUTION 2020; 82:104303. [PMID: 32247869 DOI: 10.1016/j.meegid.2020.104303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 03/22/2020] [Accepted: 03/23/2020] [Indexed: 11/22/2022]
Abstract
A good understanding of tsetse fly population structure and migration is essential to optimize the control of sleeping sickness. This can be done by studying the genetics of tsetse fly populations. In this work, we estimated the genetic differentiation within and among geographically separated Glossina palpalis palpalis populations from Cameroon, the Democratic Republic of the Congo and Ivory Coast. We determined the demographic history of these populations and assessed phylogenetic relationships among individuals of this sub-species. A total of 418 tsetse flies were analysed: 258 were collected in four locations in Cameroon (Bipindi, Campo, Fontem and Bafia), 100 from Azaguié and Nagadoua in Ivory Coast and 60 from Malanga in the Democratic Republic of the Congo. We examined genetic variation at three mitochondrial loci: COI, COII-TLII, and 16S2. 34 haplotypes were found, of which 30 were rare, since each was present in <5% of the total number of individuals. No haplotype was shared among Cameroon, Ivory Coast and the Democratic Republic of the Congo populations. The fixation index FST of 0.88 showed a high genetic distance between Glossina palpalis palpalis populations from the three countries. That genetic distance was correlated to the geographic distance between populations. We also found that there is substantial gene flow between flies from locations separated by over 100 km in Cameroon and between flies from locations separated by over 200 km in Ivory Coast. Demographic parameters suggest that the tsetse flies from Fontem (Cameroon) had reduced in population size in the recent past. Phylogenetic analysis confirms that Glossina palpalis palpalis originating from the Democratic Republic of the Congo are genetically divergent from the two other countries as already published in previous studies.
Collapse
|
7
|
Bateta R, Saarman NP, Okeyo WA, Dion K, Johnson T, Mireji PO, Okoth S, Malele I, Murilla G, Aksoy S, Caccone A. Phylogeography and population structure of the tsetse fly Glossina pallidipes in Kenya and the Serengeti ecosystem. PLoS Negl Trop Dis 2020; 14:e0007855. [PMID: 32092056 PMCID: PMC7058365 DOI: 10.1371/journal.pntd.0007855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/05/2020] [Accepted: 10/17/2019] [Indexed: 02/06/2023] Open
Abstract
Glossina pallidipes is the main vector of animal African trypanosomiasis and a potential vector of human African trypanosomiasis in eastern Africa where it poses a large economic burden and public health threat. Vector control efforts have succeeded in reducing infection rates, but recent resurgence in tsetse fly population density raises concerns that vector control programs require improved strategic planning over larger geographic and temporal scales. Detailed knowledge of population structure and dispersal patterns can provide the required information to improve planning. To this end, we investigated the phylogeography and population structure of G. pallidipes over a large spatial scale in Kenya and northern Tanzania using 11 microsatellite loci genotyped in 600 individuals. Our results indicate distinct genetic clusters east and west of the Great Rift Valley, and less distinct clustering of the northwest separate from the southwest (Serengeti ecosystem). Estimates of genetic differentiation and first-generation migration indicated high genetic connectivity within genetic clusters even across large geographic distances of more than 300 km in the east, but only occasional migration among clusters. Patterns of connectivity suggest isolation by distance across genetic breaks but not within genetic clusters, and imply a major role for river basins in facilitating gene flow in G. pallidipes. Effective population size (Ne) estimates and results from Approximate Bayesian Computation further support that there has been recent G. pallidipes population size fluctuations in the Serengeti ecosystem and the northwest during the last century, but also suggest that the full extent of differences in genetic diversity and population dynamics between the east and the west was established over evolutionary time periods (tentatively on the order of millions of years). Findings provide further support that the Serengeti ecosystem and northwestern Kenya represent independent tsetse populations. Additionally, we present evidence that three previously recognized populations (the Mbeere-Meru, Central Kenya and Coastal "fly belts") act as a single population and should be considered as a single unit in vector control.
Collapse
Affiliation(s)
- Rosemary Bateta
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Nairobi, Kenya
| | - Norah P. Saarman
- Department of Ecology and Evolutionary Biology, Yale University, Connecticut, United States of America
| | - Winnie A. Okeyo
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Nairobi, Kenya
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno, Kisumu, Kenya
| | - Kirstin Dion
- Department of Ecology and Evolutionary Biology, Yale University, Connecticut, United States of America
| | - Thomas Johnson
- Department of Ecology and Evolutionary Biology, Yale University, Connecticut, United States of America
| | - Paul O. Mireji
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Nairobi, Kenya
- Centre for Geographic Medicine Research Coast, Kenya Medical Research Institute, Kilifi, Kenya
| | - Sylvance Okoth
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Nairobi, Kenya
| | - Imna Malele
- Vector and Vector Borne Diseases Research Institute, Tanzania Veterinary Laboratory Agency, Tanga, Tanzania
| | - Grace Murilla
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Nairobi, Kenya
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Connecticut, United States of America
| | - Adalgisa Caccone
- Department of Ecology and Evolutionary Biology, Yale University, Connecticut, United States of America
| |
Collapse
|
8
|
Berté D, De Meeûs T, Kaba D, Séré M, Djohan V, Courtin F, N'Djetchi Kassi M, Koffi M, Jamonneau V, Ta BTD, Solano P, N'Goran EK, Ravel S. Population genetics of Glossina palpalis palpalis in sleeping sickness foci of Côte d'Ivoire before and after vector control. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2019; 75:103963. [PMID: 31301424 PMCID: PMC6853165 DOI: 10.1016/j.meegid.2019.103963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 10/26/2022]
Abstract
Glossina palpalis palpalis remains the major vector of sleeping sickness in Côte d'Ivoire. The disease is still active at low endemic levels in Bonon and Sinfra foci in the western-central part of the country. In this study, we investigated the impact of a control campaign on G. p. palpalis population structure in Bonon and Sinfra foci in order to adapt control strategies. Genetic variation at microsatellite loci was used to examine the population structure of different G. p. palpalis cohorts before and after control campaigns. Isolation by distance was observed in our sampling sites. Before control, effective population size was high (239 individuals) with dispersal at rather short distance (731 m per generation). We found some evidence that some of the flies captured after treatment come from surrounding sites, which increased the genetic variance. One Locus, GPCAG, displayed a 1000% increase of subdivision measure after control while other loci only exhibited a substantial increase in variance of subdivision. Our data suggested a possible trap avoidance behaviour in G. p. palpalis. It is important to take into account and better understand the possible reinvasion from neighboring sites and trap avoidance for the sake of sustainability of control campaigns effects.
Collapse
Affiliation(s)
- Djakaridja Berté
- Institut Pierre Richet/Institut National de Santé Publique, Bouaké, Côte d'Ivoire; Université Felix Houphouët-Boigny, Abidjan, Côte d'Ivoire
| | | | - Dramane Kaba
- Institut Pierre Richet/Institut National de Santé Publique, Bouaké, Côte d'Ivoire
| | - Modou Séré
- Université de Dédougou (UDDG), Dédougou, Burkina Faso
| | - Vincent Djohan
- Institut Pierre Richet/Institut National de Santé Publique, Bouaké, Côte d'Ivoire; Université Felix Houphouët-Boigny, Abidjan, Côte d'Ivoire
| | - Fabrice Courtin
- Intertryp, IRD, Cirad, Univ Montpellier, Montpellier, France
| | - Martial N'Djetchi Kassi
- Laboratoire des Interactions Hôte-Microorganisme-Environnement et Evolution, Unité de Formation et de Recherche Environnement, Université Jean Lorougnon Guédé, Daloa, Côte d'Ivoire
| | - Mathurin Koffi
- Laboratoire des Interactions Hôte-Microorganisme-Environnement et Evolution, Unité de Formation et de Recherche Environnement, Université Jean Lorougnon Guédé, Daloa, Côte d'Ivoire
| | | | - Bi Tra Dieudonné Ta
- Institut Pierre Richet/Institut National de Santé Publique, Bouaké, Côte d'Ivoire; Université Felix Houphouët-Boigny, Abidjan, Côte d'Ivoire
| | - Philippe Solano
- Intertryp, IRD, Cirad, Univ Montpellier, Montpellier, France
| | | | - Sophie Ravel
- Intertryp, IRD, Cirad, Univ Montpellier, Montpellier, France
| |
Collapse
|
9
|
De Meeûs T. Revisiting FIS, FST, Wahlund Effects, and Null Alleles. J Hered 2019; 109:446-456. [PMID: 29165594 DOI: 10.1093/jhered/esx106] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 11/17/2017] [Indexed: 11/12/2022] Open
Abstract
Null alleles and Wahlund effects are well known causes of heterozygote deficits in empirical population genetics studies as compared to Hardy-Weinberg genotypic expectations. Some authors have theoretically studied the relationship of Wright's FIS computed from subsamples displaying a Wahlund effect and FST before the Wahlund effect, as can occasionally be obtained from populations of long-lived organisms. In the 2 subsample case, a positive relationship between these 2 parameters across loci would represent a signature of Wahlund effects. Nevertheless, for most organisms, getting 2 independent subsamples of the same cohort and population, one with a Wahlund effect and the other without, is almost never achieved and most of the time, empirical population geneticists only collect a single sample, with or without a Wahlund effect, or with or without null alleles. Another issue is that null allele increase FIS and FST altogether and thus may also create such correlation. In this article, I show that, for organisms collected in a single sample, which corresponds to the most common situation, Wahlund effects and null alleles affect the values of both FIS and FST though in the opposite direction. I also show that Wahlund effect produces no or weak positive correlation between the 2 F-statistics, while null alleles generate a strong positive correlation between them. Variation of these F-statistics is small and even minimized for FST under Wahlund effects as compared to null alleles. I finally propose a determination key to interpret data with heterozygote deficits.
Collapse
Affiliation(s)
- Thierry De Meeûs
- IRD, UMR Interactions hôtes-vecteurs-parasites dans les infections par des trypanosomatidae-(INTERTRYP) IRD/CIRAD 177, TA A-17/G, Campus International de Baillarguet, France
| |
Collapse
|
10
|
De Meeûs T, Ravel S, Solano P, Bouyer J. Negative Density-dependent Dispersal in Tsetse Flies: A Risk for Control Campaigns? Trends Parasitol 2019; 35:615-621. [PMID: 31201131 DOI: 10.1016/j.pt.2019.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 12/13/2022]
Abstract
Tsetse flies are vectors of parasites that cause diseases responsible for significant economic losses and health issues in sub-Saharan Africa, including sleeping sickness in humans and nagana in domestic animals. Efficient vector-control campaigns require good knowledge of the demographic parameters of the targeted populations. In the last decade, population genetics emerged as a convenient way to measure population densities and dispersal in tsetse flies. Here, by revealing a strong negative density-dependent dispersal in two dimensions, we suggest that control campaigns might unleash dispersal from untreated areas. If confirmed by direct measurement of dispersal before and after control campaigns, area-wide and/or sequential treatments of neighboring sites will be necessary to prevent this issue.
Collapse
Affiliation(s)
| | - Sophie Ravel
- Intertryp, IRD, Cirad, Univ Montpellier, Montpellier, France
| | - Philippe Solano
- Intertryp, IRD, Cirad, Univ Montpellier, Montpellier, France
| | - Jérémy Bouyer
- Intertryp, IRD, Cirad, Univ Montpellier, Montpellier, France; Astre, Cirad, Inra, Montpellier, France; Insect Pest Control Laboratory, Joint Food and Agriculture Organization of the United Nations/International Atomic Energy Agency Program of Nuclear Techniques in Food and Agriculture, A-1400, Vienna, Austria
| |
Collapse
|
11
|
Okeyo WA, Saarman NP, Bateta R, Dion K, Mengual M, Mireji PO, Ouma C, Okoth S, Murilla G, Aksoy S, Caccone A. Genetic Differentiation of Glossina pallidipes Tsetse Flies in Southern Kenya. Am J Trop Med Hyg 2018; 99:945-953. [PMID: 30105964 PMCID: PMC6159567 DOI: 10.4269/ajtmh.18-0154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 06/15/2018] [Indexed: 11/07/2022] Open
Abstract
The tsetse fly Glossina pallidipes, the major vector of the parasite that causes animal African trypanosomiasis in Kenya, has been subject to intense control measures with only limited success. The G. pallidipes population dynamics and dispersal patterns that underlie limited success in vector control campaigns remain unresolved, and knowledge on genetic connectivity can provide insights, and thereby improve control and monitoring efforts. We therefore investigated the population structure and estimated migration and demographic parameters in G. pallidipes using genotypic data from 11 microsatellite loci scored in 250 tsetse flies collected from eight localities in Kenya. Clustering analysis identified two genetically distinct eastern and western clusters (mean between-cluster F ST = 0.202) separated by the Great Rift Valley. We also found evidence of admixture and migration between the eastern and western clusters, isolation by distance, and a widespread signal of inbreeding. We detected differences in population dynamics and dispersal patterns between the western and eastern clusters. These included lower genetic diversity (allelic richness; 7.48 versus 10.99), higher relatedness (percent related individuals; 21.4% versus 9.1%), and greater genetic differentiation (mean within-cluster F ST; 0.183 versus 0.018) in the western than the eastern cluster. Findings are consistent with the presence of smaller, less well-connected populations in Western relative to eastern Kenya. These data suggest that recent anthropogenic influences such as land use changes and vector control programs have influenced population dynamics in G. pallidipes in Kenya, and that vector control efforts should include some region-specific strategies to effectively control this disease vector.
Collapse
Affiliation(s)
- Winnie A. Okeyo
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Kisumu, Kenya
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Nairobi, Kenya
- Yale School of Public Health, Yale University, New Haven, Connecticut
| | - Norah P. Saarman
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, Connecticut
| | - Rosemary Bateta
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Nairobi, Kenya
| | - Kirstin Dion
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, Connecticut
| | - Michael Mengual
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, Connecticut
| | - Paul O. Mireji
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Nairobi, Kenya
- Yale School of Public Health, Yale University, New Haven, Connecticut
- Center for Geographic Medicine Research Coast, Kenya Medical Research Institute, Kilifi, Kenya
| | - Collins Ouma
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Kisumu, Kenya
| | - Sylvance Okoth
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Nairobi, Kenya
| | - Grace Murilla
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Nairobi, Kenya
- Yale School of Public Health, Yale University, New Haven, Connecticut
| | - Serap Aksoy
- Yale School of Public Health, Yale University, New Haven, Connecticut
| | - Adalgisa Caccone
- Yale School of Public Health, Yale University, New Haven, Connecticut
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, Connecticut
| |
Collapse
|
12
|
Krafsur ES, Maudlin I. Tsetse fly evolution, genetics and the trypanosomiases - A review. INFECTION GENETICS AND EVOLUTION 2018; 64:185-206. [PMID: 29885477 DOI: 10.1016/j.meegid.2018.05.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 01/27/2023]
Abstract
This reviews work published since 2007. Relative efforts devoted to the agents of African trypanosomiasis and their tsetse fly vectors are given by the numbers of PubMed accessions. In the last 10 years PubMed citations number 3457 for Trypanosoma brucei and 769 for Glossina. The development of simple sequence repeats and single nucleotide polymorphisms afford much higher resolution of Glossina and Trypanosoma population structures than heretofore. Even greater resolution is offered by partial and whole genome sequencing. Reproduction in T. brucei sensu lato is principally clonal although genetic recombination in tsetse salivary glands has been demonstrated in T. b. brucei and T. b. rhodesiense but not in T. b. gambiense. In the past decade most genetic attention was given to the chief human African trypanosomiasis vectors in subgenus Nemorhina e.g., Glossina f. fuscipes, G. p. palpalis, and G. p. gambiense. The chief interest in Nemorhina population genetics seemed to be finding vector populations sufficiently isolated to enable efficient and long-lasting suppression. To this end estimates were made of gene flow, derived from FST and its analogues, and Ne, the size of a hypothetical population equivalent to that under study. Genetic drift was greater, gene flow and Ne typically lesser in savannah inhabiting tsetse (subgenus Glossina) than in riverine forms (Nemorhina). Population stabilities were examined by sequential sampling and genotypic analysis of nuclear and mitochondrial genomes in both groups and found to be stable. Gene frequencies estimated in sequential samplings differed by drift and allowed estimates of effective population numbers that were greater for Nemorhina spp than Glossina spp. Prospects are examined of genetic methods of vector control. The tsetse long generation time (c. 50 d) is a major contraindication to any suggested genetic method of tsetse population manipulation. Ecological and modelling research convincingly show that conventional methods of targeted insecticide applications and traps/targets can achieve cost-effective reduction in tsetse densities.
Collapse
Affiliation(s)
- E S Krafsur
- Department of Entomology, Iowa State University, Ames, IA 50011, USA.
| | - Ian Maudlin
- School of Biomedical Sciences, The University of Edinburgh, Scotland, UK
| |
Collapse
|
13
|
Okeyo WA, Saarman NP, Mengual M, Dion K, Bateta R, Mireji PO, Okoth S, Ouma JO, Ouma C, Ochieng J, Murilla G, Aksoy S, Caccone A. Temporal genetic differentiation in Glossina pallidipes tsetse fly populations in Kenya. Parasit Vectors 2017; 10:471. [PMID: 29017572 PMCID: PMC5635580 DOI: 10.1186/s13071-017-2415-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 10/01/2017] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Glossina pallidipes is a major vector of both Human and Animal African Trypanosomiasis (HAT and AAT) in Kenya. The disease imposes economic burden on endemic regions in Kenya, including south-western Kenya, which has undergone intense but unsuccessful tsetse fly control measures. We genotyped 387 G. pallidipes flies at 13 microsatellite markers to evaluate levels of temporal genetic variation in two regions that have been subjected to intensive eradication campaigns from the 1960s to the 1980s. One of the regions, Nguruman Escarpment, has been subject to habitat alteration due to human activities, while the other, Ruma National Park, has not. In addition, Nguruman Escarpment is impacted by the movement of grazing animals into the area from neighboring regions during the drought season. We collected our samples from three geographically close sampling sites for each of the two regions. Samples were collected between the years 2003 and 2015, spanning ~96 tsetse fly generations. RESULTS We established that allelic richness averaged 3.49 and 3.63, and temporal Ne estimates averaged 594 in Nguruman Escarpment and 1120 in Ruma National Park. This suggests that genetic diversity is similar to what was found in previous studies of G. pallidipes in Uganda and Kenya, implying that we could not detect a reduction in genetic diversity following the extensive control efforts during the 1960s to the 1980s. However, we did find differences in temporal patterns of genetic variation between the two regions, indicated by clustering analysis, pairwise FST, and Fisher's exact tests for changes in allele and genotype frequencies. In Nguruman Escarpment, findings indicated differentiation among samples collected in different years, and evidence of local genetic bottlenecks in two locations previous to 2003, and between 2009 and 2015. In contrast, there was no consistent evidence of differentiation among samples collected in different years, and no evidence of local genetic bottlenecks in Ruma National Park. CONCLUSION Our findings suggest that, despite extensive control measures especially between the 1960s and the 1980s, tsetse flies in these regions persist with levels of genetic diversity similar to that found in populations that did not experience extensive control measures. Our findings also indicate temporal genetic differentiation in Nguruman Escarpment detected at a scale of > 80 generations, and no similar temporal differentiation in Ruma National Park. The different level of temporal differentiation between the two regions indicates that genetic drift is stronger in Nugruman Escarpment, for as-yet unknown reasons, which may include differences in land management. This suggests land management may have an impact on G. pallidipes population genetics, and reinforces the importance of long term monitoring of vector populations in estimates of parameters needed to model and plan effective species-specific control measures.
Collapse
Affiliation(s)
- Winnie A. Okeyo
- Yale School of Public Health, Yale University, New Haven, CT USA
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Nairobi, Kikuyu Kenya
- Department of Biomedical Science and Technology, School of Public Health and Community Development, Maseno University, Kisumu, Maseno Kenya
| | - Norah P. Saarman
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT USA
| | - Michael Mengual
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT USA
| | - Kirstin Dion
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT USA
| | - Rosemary Bateta
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Nairobi, Kikuyu Kenya
| | - Paul O. Mireji
- Yale School of Public Health, Yale University, New Haven, CT USA
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Nairobi, Kikuyu Kenya
- Centre for Geographic Medicine Research Coast, Kenya Medical Research Institute, Kilifi, Kenya
| | - Sylvance Okoth
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Nairobi, Kikuyu Kenya
| | - Johnson O. Ouma
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Nairobi, Kikuyu Kenya
- Africa Technical Research Center, Vector Health International, Arusha, Tanzania
| | - Collins Ouma
- Department of Biomedical Science and Technology, School of Public Health and Community Development, Maseno University, Kisumu, Maseno Kenya
| | - Joel Ochieng
- Centre for Biotechnology and Bioinformatics, University of Nairobi, Nairobi, Kenya
| | - Grace Murilla
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Nairobi, Kikuyu Kenya
| | - Serap Aksoy
- Yale School of Public Health, Yale University, New Haven, CT USA
| | - Adalgisa Caccone
- Yale School of Public Health, Yale University, New Haven, CT USA
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT USA
| |
Collapse
|
14
|
Aksoy S, Buscher P, Lehane M, Solano P, Van Den Abbeele J. Human African trypanosomiasis control: Achievements and challenges. PLoS Negl Trop Dis 2017; 11:e0005454. [PMID: 28426685 PMCID: PMC5398477 DOI: 10.1371/journal.pntd.0005454] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Sleeping sickness, also known as human African trypanosomiasis (HAT), is a neglected disease that impacts 70 million people living in 1.55 million km2 in sub-Saharan Africa. Since the beginning of the 20th century, there have been multiple HAT epidemics in sub-Saharan Africa, with the most recent epidemic in the 1990s resulting in about half a million HAT cases reported between 1990 and 2015. Here we review the status of HAT disease at the current time and the toolbox available for its control. We also highlight future opportunities under development towards novel or improved interventions.
Collapse
Affiliation(s)
- Serap Aksoy
- Department of Epidemiology of Microbial Diseases, School of Public Health, Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| | - Phillipe Buscher
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Mike Lehane
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Philippe Solano
- Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - Jan Van Den Abbeele
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| |
Collapse
|
15
|
Holt HR, Selby R, Mumba C, Napier GB, Guitian J. Assessment of animal African trypanosomiasis (AAT) vulnerability in cattle-owning communities of sub-Saharan Africa. Parasit Vectors 2016; 9:53. [PMID: 26825496 PMCID: PMC4733274 DOI: 10.1186/s13071-016-1336-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/21/2016] [Indexed: 11/10/2022] Open
Abstract
Background Animal African trypanosomiasis (AAT) is one of the biggest constraints to livestock production and a threat to food security in sub-Saharan Africa. In order to optimise the allocation of resources for AAT control, decision makers need to target geographic areas where control programmes are most likely to be successful and sustainable and select control methods that will maximise the benefits obtained from resources invested. Methods The overall approach to classifying cattle-owning communities in terms of AAT vulnerability was based on the selection of key variables collected through field surveys in five sub-Saharan Africa countries followed by a formal Multiple Correspondence Analysis (MCA) to identify factors explaining the variations between areas. To categorise the communities in terms of AAT vulnerability profiles, Hierarchical Cluster Analysis (HCA) was performed. Results Three clusters of community vulnerability profiles were identified based on farmers’ beliefs with respect to trypanosomiasis control within the five countries studied. Cluster 1 communities, mainly identified in Cameroon, reported constant AAT burden, had large trypanosensitive (average herd size = 57) communal grazing cattle herds. Livestock (cattle and small ruminants) were reportedly the primary source of income in the majority of these cattle-owning households (87.0 %). Cluster 2 communities identified mainly in Burkina Faso and Zambia, with some Ethiopian communities had moderate herd sizes (average = 16) and some trypanotolerant breeds (31.7 %) practicing communal grazing. In these communities there were some concerns regarding the development of trypanocide resistance. Crops were the primary income source while communities in this cluster incurred some financial losses due to diminished draft power. The third cluster contained mainly Ugandan and Ethiopian communities which were mixed farmers with smaller herd sizes (average = 8). The costs spent diagnosing and treating AAT were moderate here. Conclusions Understanding how cattle-owners are affected by AAT and their efforts to manage the disease is critical to the design of suitable locally-adapted control programmes. It is expected that the results could inform priority setting and the development of tailored recommendations for AAT control strategies.
Collapse
Affiliation(s)
- H R Holt
- London Centre for Neglected Tropical Disease Research, London, UK. .,Department of Production and Population Health, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire, AL9 7TA, UK.
| | - R Selby
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | - C Mumba
- School of Veterinary Medicine, University of Zambia, Great East Road Campus, P.O. Box 32379, Lusaka, Zambia.
| | - G B Napier
- Global Alliance for Livestock Veterinary Medicines (GALVmed), Doherty Building, Pentlands Science Park, Bush Loan, Edinburgh, EH26 0PZ, UK.
| | - J Guitian
- London Centre for Neglected Tropical Disease Research, London, UK. .,Department of Production and Population Health, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire, AL9 7TA, UK.
| |
Collapse
|
16
|
Berthier D, Peylhard M, Dayo GK, Flori L, Sylla S, Bolly S, Sakande H, Chantal I, Thevenon S. A comparison of phenotypic traits related to trypanotolerance in five west african cattle breeds highlights the value of shorthorn taurine breeds. PLoS One 2015; 10:e0126498. [PMID: 25954819 PMCID: PMC4425517 DOI: 10.1371/journal.pone.0126498] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 04/02/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Animal African Trypanosomosis particularly affects cattle and dramatically impairs livestock development in sub-Saharan Africa. African Zebu (AFZ) or European taurine breeds usually die of the disease in the absence of treatment, whereas West African taurine breeds (AFT), considered trypanotolerant, are able to control the pathogenic effects of trypanosomosis. Up to now, only one AFT breed, the longhorn N'Dama (NDA), has been largely studied and is considered as the reference trypanotolerant breed. Shorthorn taurine trypanotolerance has never been properly assessed and compared to NDA and AFZ breeds. METHODOLOGY/PRINCIPAL FINDINGS This study compared the trypanotolerant/susceptible phenotype of five West African local breeds that differ in their demographic history. Thirty-six individuals belonging to the longhorn taurine NDA breed, two shorthorn taurine Lagune (LAG) and Baoulé (BAO) breeds, the Zebu Fulani (ZFU) and the Borgou (BOR), an admixed breed between AFT and AFZ, were infected by Trypanosoma congolense IL1180. All the cattle were genetically characterized using dense SNP markers, and parameters linked to parasitaemia, anaemia and leukocytes were analysed using synthetic variables and mixed models. We showed that LAG, followed by NDA and BAO, displayed the best control of anaemia. ZFU showed the greatest anaemia and the BOR breed had an intermediate value, as expected from its admixed origin. Large differences in leukocyte counts were also observed, with higher leukocytosis for AFT. Nevertheless, no differences in parasitaemia were found, except a tendency to take longer to display detectable parasites in ZFU. CONCLUSIONS We demonstrated that LAG and BAO are as trypanotolerant as NDA. This study highlights the value of shorthorn taurine breeds, which display strong local adaptation to trypanosomosis. Thanks to further analyses based on comparisons of the genome or transcriptome of the breeds, these results open up the way for better knowledge of host-pathogen interactions and, furthermore, for identifying key biological pathways.
Collapse
Affiliation(s)
| | - Moana Peylhard
- CIRAD, UMR INTERTRYP, F-34398, Montpellier, France
- CIRDES, 01 BP 454 Bobo-Dioulasso 01, Burkina Faso
| | | | - Laurence Flori
- CIRAD, UMR INTERTRYP, F-34398, Montpellier, France
- INRA, UMR 1313 GABI, F-78350, Jouy-en-Josas, France
| | | | - Seydou Bolly
- CIRDES, 01 BP 454 Bobo-Dioulasso 01, Burkina Faso
| | | | | | | |
Collapse
|
17
|
Mélachio TTT, Njiokou F, Ravel S, Simo G, Solano P, De Meeûs T. Effect of sampling methods, effective population size and migration rate estimation in Glossina palpalis palpalis from Cameroon. INFECTION GENETICS AND EVOLUTION 2015; 33:150-7. [PMID: 25917495 DOI: 10.1016/j.meegid.2015.04.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 04/22/2015] [Accepted: 04/24/2015] [Indexed: 11/30/2022]
Abstract
Human and animal trypanosomiases are two major constraints to development in Africa. These diseases are mainly transmitted by tsetse flies in particular by Glossina palpalis palpalis in Western and Central Africa. To set up an effective vector control campaign, prior population genetics studies have proved useful. Previous studies on population genetics of G. p. palpalis using microsatellite loci showed high heterozygote deficits, as compared to Hardy-Weinberg expectations, mainly explained by the presence of null alleles and/or the mixing of individuals belonging to several reproductive units (Wahlund effect). In this study we implemented a system of trapping, consisting of a central trap and two to four satellite traps around the central one to evaluate a possible role of the Wahlund effect in tsetse flies from three Cameroon human and animal African trypanosomiases foci (Campo, Bipindi and Fontem). We also estimated effective population sizes and dispersal. No difference was observed between the values of allelic richness, genetic diversity and Wright's FIS, in the samples from central and from satellite traps, suggesting an absence of Wahlund effect. Partitioning of the samples with Bayesian methods showed numerous clusters of 2-3 individuals as expected from a population at demographic equilibrium with two expected offspring per reproducing female. As previously shown, null alleles appeared as the most probable factor inducing these heterozygote deficits in these populations. Effective population sizes varied from 80 to 450 individuals while immigration rates were between 0.05 and 0.43, showing substantial genetic exchanges between different villages within a focus. These results suggest that the "suppression" with establishment of physical barriers may be the best strategy for a vector control campaign in this forest context.
Collapse
Affiliation(s)
| | - Flobert Njiokou
- University of Yaounde I, Laboratory of Parasitology and Ecology, Faculty of Science, BP 812 Yaounde, Cameroon
| | - Sophie Ravel
- Institut de Recherche pour le Développement (IRD), UMR IRD/CIRAD 177 INTERTRYP, TA A-17/G, Campus International de Baillarguet, 34398 Montpellier Cedex 5, France
| | - Gustave Simo
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Philippe Solano
- Institut de Recherche pour le Développement (IRD), UMR IRD/CIRAD 177 INTERTRYP, TA A-17/G, Campus International de Baillarguet, 34398 Montpellier Cedex 5, France; UMR 177 IRD/CIRAD INTERTRYP, Centre International de Recherche-Développement sur l'Elevage en zone Subhumide (CIRDES), 01 BP 454 Bobo-Dioulasso 01, Burkina Faso
| | - Thierry De Meeûs
- Institut de Recherche pour le Développement (IRD), UMR IRD/CIRAD 177 INTERTRYP, TA A-17/G, Campus International de Baillarguet, 34398 Montpellier Cedex 5, France; UMR 177 IRD/CIRAD INTERTRYP, Centre International de Recherche-Développement sur l'Elevage en zone Subhumide (CIRDES), 01 BP 454 Bobo-Dioulasso 01, Burkina Faso.
| |
Collapse
|
18
|
De Meeûs T, Bouyer J, Ravel S, Solano P. Ecotype evolution in Glossina palpalis subspecies, major vectors of sleeping sickness. PLoS Negl Trop Dis 2015; 9:e0003497. [PMID: 25775377 PMCID: PMC4361538 DOI: 10.1371/journal.pntd.0003497] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/23/2014] [Indexed: 11/18/2022] Open
Abstract
Background The role of environmental factors in driving adaptive trajectories of living organisms is still being debated. This is even more important to understand when dealing with important neglected diseases and their vectors. Methodology/Principal Findings In this paper, we analysed genetic divergence, computed from seven microsatellite loci, of 614 tsetse flies (Glossina palpalis gambiensis and Glossina palpalis palpalis, major vectors of animal and human trypanosomes) from 28 sites of West and Central Africa. We found that the two subspecies are so divergent that they deserve the species status. Controlling for geographic and time distances that separate these samples, which have a significant effect, we found that G. p. gambiensis from different landscapes (Niayes of Senegal, savannah and coastal environments) were significantly genetically different and thus represent different ecotypes or subspecies. We also confirm that G. p. palpalis from Ivory Coast, Cameroon and DRC are strongly divergent. Conclusions/Significance These results provide an opportunity to examine whether new tsetse fly ecotypes might display different behaviour, dispersal patterns, host preferences and vectorial capacities. This work also urges a revision of taxonomic status of Glossina palpalis subspecies and highlights again how fast ecological divergence can be, especially in host-parasite-vector systems. The role of environmental factors in driving adaptive trajectories of living organisms is still being debated. This is even more important to understand when dealing with important and /or neglected diseases and their vectors. In this paper, we analysed genetic divergence, computed from several genetic markers, of 614 tsetse flies (Glossina palpalis gambiensis and Glossina palpalis palpalis, major vectors of animal and human trypanosomes) from 28 sites of West and Central Africa. We found that the two subspecies are so divergent that they deserve the species status. We found that G. p. gambiensis from different landscapes (Niayes of Senegal, savannah and coastal environments) were significantly genetically different, and thus represent different adaptive entities or even subspecies. We also confirm that G. p. palpalis from Ivory Coast, Cameroon and DRC are strongly divergent. These results provide an opportunity to examine whether these different types of tsetse fly might display different behaviour, dispersal patterns, host preferences and vectorial capacities. This work also urges a revision of taxonomic status of Glossina palpalis subspecies and highlights again how fast ecological divergence can be, especially in host-parasite-vector systems.
Collapse
Affiliation(s)
- Thierry De Meeûs
- IRD (INTERTRYP), UMR 177 IRD-CIRAD, Centre International de Recherche-Développement sur l'Elevage en zone Subhumide (CIRDES), Bobo-Dioulasso, Burkina-Faso
- IRD (INTERTRYP), UMR177 IRD-CIRAD, TA A-17/G, Campus International de Baillarguet, Montpellier, France
- * E-mail:
| | - Jérémy Bouyer
- IRD (INTERTRYP), UMR177 IRD-CIRAD, TA A-17/G, Campus International de Baillarguet, Montpellier, France
- Unité Mixte de Recherche Contrôle des Maladies Animales Exotiques et Emergentes, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Montpellier, France
- Unité Mixte de Recherche 1309 Contrôle des Maladies Animales Exotiques et Emergentes, Institut national de la recherche agronomique (INRA), Montpellier, France
- Institut Sénégalais de Recherches Agricoles, Laboratoire National d'Elevage et de Recherches Vétérinaires, Dakar—Hann, Sénégal
| | - Sophie Ravel
- IRD (INTERTRYP), UMR177 IRD-CIRAD, TA A-17/G, Campus International de Baillarguet, Montpellier, France
| | - Philippe Solano
- IRD (INTERTRYP), UMR 177 IRD-CIRAD, Centre International de Recherche-Développement sur l'Elevage en zone Subhumide (CIRDES), Bobo-Dioulasso, Burkina-Faso
- IRD (INTERTRYP), UMR177 IRD-CIRAD, TA A-17/G, Campus International de Baillarguet, Montpellier, France
| |
Collapse
|
19
|
De Meeûs T, Ravel S, Rayaisse JB, Kaba D, Courtin F, Bouyer J, Dayo GK, Camara M, Solano P. Genetic correlations within and between isolated tsetse populations: what can we learn? Acta Trop 2014; 138 Suppl:S6-11. [PMID: 24657846 DOI: 10.1016/j.actatropica.2014.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 02/24/2014] [Accepted: 03/10/2014] [Indexed: 11/16/2022]
Abstract
Isolated tsetse populations constitute a target for tsetse control programmes in endemic countries, since their isolation, if demonstrated, allows control without reinvasion risk from neighbouring populations. Population genetic parameters, such as the fixation index, have proven useful to assess isolation status, and should also give important information on the divergence time since isolation. We gathered results obtained from different datasets regarding several examples of putatively totally isolated tsetse populations of different tsetse species: Glossina palpalis gambiensis in Guinea, in the Niayes of Senegal, and in the sacred wood of Bama in Burkina Faso; G. tachinoides from Bitou and Pama in South-East Burkina Faso. The different levels of isolation were compared to differentiation between the two subspecies G. p. gambiensis and G. p. palpalis which both occur allopatrically along the Comoe River in Ivory Coast. We also use some historical evidence to calibrate differentiation speed and give estimates of time since separation for the different cases studied. Discrepancies mostly come from underestimate of effective population sizes, and we propose improving sampling design and genetic markers quality to circumvent such caveats.
Collapse
Affiliation(s)
- Thierry De Meeûs
- Institut de Recherche pour le Développement (IRD)/Centre International de Recherche-Développement sur l'Elevage en zone Subhumide (CIRDES), UMR 177 INTERTRYP IRD-CIRAD, CIRDES, 01 BP 454 Bobo-Dioulasso 01, Burkina Faso.
| | - Sophie Ravel
- Institut de Recherche pour le Développement (IRD), UMR 177 INTERTRYP IRD-CIRAD, Campus International de Baillarguet, 34398 Montpellier Cedex 5, France
| | - Jean-Baptiste Rayaisse
- Centre International de Recherche-Développement sur l'Elevage en zone Subhumide (CIRDES), 01 BP 454 Bobo-Dioulasso 01, Burkina Faso
| | - Dramane Kaba
- Institut Pierre Richet/Institut National de Santé Publique, BP V 47 Abidjan, Cote d'Ivoire
| | - Fabrice Courtin
- Institut de Recherche pour le Développement (IRD)/Centre International de Recherche-Développement sur l'Elevage en zone Subhumide (CIRDES), UMR 177 INTERTRYP IRD-CIRAD, CIRDES, 01 BP 454 Bobo-Dioulasso 01, Burkina Faso
| | - Jérémy Bouyer
- Institut Sénégalais de Recherches Agricoles, Laboratoire National d'Elevage et de Recherches Vétérinaires, Service de Parasitologie, BP 2057, Dakar - Hann, Senegal; Cirad, UMR Contrôle des maladies animales exotiques et émergentes, Campus International de Baillarguet, F34398 Montpellier, France; Inra, UMR 1309 Contrôle des Maladies Animales Exotiques et Emergentes, Campus International de Baillarguet, F34398 Montpellier, France
| | - Guiguigbaza-Kossigan Dayo
- Centre International de Recherche-Développement sur l'Elevage en zone Subhumide (CIRDES), 01 BP 454 Bobo-Dioulasso 01, Burkina Faso
| | | | - Philippe Solano
- Institut de Recherche pour le Développement (IRD)/Centre International de Recherche-Développement sur l'Elevage en zone Subhumide (CIRDES), UMR 177 INTERTRYP IRD-CIRAD, CIRDES, 01 BP 454 Bobo-Dioulasso 01, Burkina Faso
| |
Collapse
|
20
|
Feldmann U, Ready P. Applying GIS and population genetics for managing livestock insect pests: case studies of tsetse and screwworm flies. Acta Trop 2014; 138 Suppl:S1-5. [PMID: 24713196 DOI: 10.1016/j.actatropica.2014.03.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 03/24/2014] [Accepted: 03/26/2014] [Indexed: 10/25/2022]
Abstract
The Food and Agriculture Organization of the United Nations (FAO) and the International Atomic Energy Agency (IAEA) have supported a Co-ordinated Research Project (CRP) on 'Applying GIS and population genetics for managing livestock insect pests'. This six-year CRP (2008-2013) focused on research aimed at under-pinning the Area-Wide Integrated Pest Management (AW-IPM) of populations of tsetse and screwworm flies, and this introductory paper to the Special Issue integrates the findings of the CRP participants and discusses them in a broader context. The tools and techniques for mapping and modelling the distributions of genetically-characterised populations of tsetse and screwworm flies are increasingly used by researchers and managers for more effective decision-making in AW-IPM programmes, as illustrated by the reports in this Special Issue. Currently, the insect pests are often characterized only by neutral genetic markers suitable for recognizing spatially isolated populations that are sometimes associated with specific environments. Two challenges for those involved in AW-IPM are the standardization of best practice to permit the efficient application of GIS and genetic tools by regional teams, and the need to develop further the mapping and modelling of parasite and pest phenotypes that are epidemiologically important.
Collapse
|
21
|
Adam Y, Bouyer J, Dayo GK, Mahama CI, Vreysen MJB, Cecchi G, Abd-Alla AMM, Solano P, Ravel S, de Meeûs T. Genetic comparison of Glossina tachinoides populations in three river basins of the Upper West Region of Ghana and implications for tsetse control. INFECTION GENETICS AND EVOLUTION 2014; 28:588-95. [PMID: 24709401 DOI: 10.1016/j.meegid.2014.03.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 03/17/2014] [Accepted: 03/24/2014] [Indexed: 11/19/2022]
Abstract
Tsetse flies are the cyclical vectors of African animal trypanosomosis (AAT) and human African trypanosomosis (HAT). In March 2010, the Government of Ghana initiated a large scale integrated tsetse eradication campaign in the Upper West Region (UWR) (≈18,000 km(2)) under the umbrella of the Pan-African Tsetse and Trypanosomosis Eradication Campaign (PATTEC). We investigated the structuring of Glossina tachinoides populations within and between the three main river basins of the target area in the UWR. Out of a total sample of 884 flies, a sub-sample of 266 was genotyped at nine microsatellite loci. The significance of the different hierarchical levels was tested using Yang's parameters estimated with Weir and Cockerham's method. A significant effect of traps within groups (pooling traps no more than 3 km distant from each other), of groups within river basins and of river basins within the whole target area was observed. Isolation by distance between traps was highly significant. A local density of 0.48-0.61 flies/m(2) was estimated and a dispersal distance that approximated 11 m per generation [CI 9, 17]. No significant sex-biased dispersal was detected. Dispersal distances of G. tachinoides in the UWR were relatively low, possibly as a result of the fragmentation of the habitat and the seasonality of the Kulpawn and Sissili rivers. Moreover, very high fly population densities were observed in the sample sites, which potentially reduces dispersal at constant habitat saturation, because the probability that migrants can established is reduced (density dependent dispersal). However, the observed spatial dispersal was deemed sufficient for a G. tachinoides-cleared area to be reinvaded from neighboring populations in adjacent river basins. These data corroborate results from other population genetics studies in West Africa, which indicate that G. tachinoides populations from different river basins cannot be considered isolated.
Collapse
Affiliation(s)
- Y Adam
- Veterinary Services Department of MOFA, P.O. Box 97, Pong-Tamale, Ghana.
| | - J Bouyer
- Cirad, UMR INRA-CIRAD Contrôle des maladies animales exotiques et émergentes, F-34398 Montpellier, France; Institut Sénégalais de Recherches Agricoles, Laboratoire National d'Elevage et de Recherches Vétérinaires, BP 2057, Dakar - Hann, Senegal.
| | - G-K Dayo
- Centre International de Recherche-Développement Sur l'Elevage en Zone Subhumide (CIRDES), 01 BP 454, Bobo-Dioulasso, Burkina Faso.
| | - C I Mahama
- Veterinary Services Department of MOFA, P.O. Box 97, Pong-Tamale, Ghana.
| | - M J B Vreysen
- Insect Pest Control Laboratory, Joint FAO/IAEA Program of Nuclear Techniques in Food and Agriculture, P.O. Box 100, Wagramerstrasse 4, A 1400 Vienna, Austria.
| | - G Cecchi
- Food and Agriculture Organization of the United Nations, Sub-regional Office for Eastern Africa, CMC Road, P.O. Box 5536, Addis Ababa, Ethiopia.
| | - A M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Program of Nuclear Techniques in Food and Agriculture, P.O. Box 100, Wagramerstrasse 4, A 1400 Vienna, Austria.
| | - P Solano
- IRD, UMR 177 IRD-CIRAD Intertryp, CIRDES 01, BP 454, Bobo-Dioulasso 01, Burkina Faso.
| | - S Ravel
- IRD, UMR 177 IRD-CIRAD Intertryp, TA A-17/G, Campus International de Baillarguet, 34398 Montpellier Cedex 5, France.
| | - T de Meeûs
- IRD, UMR 177 IRD-CIRAD Intertryp, CIRDES 01, BP 454, Bobo-Dioulasso 01, Burkina Faso.
| |
Collapse
|
22
|
Kajdacsi B, Costa F, Hyseni C, Porter F, Brown J, Rodrigues G, Farias H, Reis MG, Childs JE, Ko AI, Caccone A. Urban population genetics of slum-dwelling rats (Rattus norvegicus) in Salvador, Brazil. Mol Ecol 2013; 22:5056-70. [PMID: 24118116 PMCID: PMC3864905 DOI: 10.1111/mec.12455] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/07/2013] [Accepted: 07/08/2013] [Indexed: 01/25/2023]
Abstract
Throughout the developing world, urban centres with sprawling slum settlements are rapidly expanding and invading previously forested ecosystems. Slum communities are characterized by untended refuse, open sewers and overgrown vegetation, which promote rodent infestation. Norway rats (Rattus norvegicus) are reservoirs for epidemic transmission of many zoonotic pathogens of public health importance. Understanding the population ecology of R. norvegicus is essential to formulate effective rodent control strategies, as this knowledge aids estimation of the temporal stability and spatial connectivity of populations. We screened for genetic variation, characterized the population genetic structure and evaluated the extent and patterns of gene flow in the urban landscape using 17 microsatellite loci in 146 rats from nine sites in the city of Salvador, Brazil. These sites were divided between three neighbourhoods within the city spaced an average of 2.7 km apart. Surprisingly, we detected very little relatedness among animals trapped at the same site and found high levels of genetic diversity, as well as structuring across small geographical distances. Most F(ST) comparisons among sites were statistically significant, including sites <400 m apart. Bayesian analyses grouped the samples in three genetic clusters, each associated with distinct sampling sites from different neighbourhoods or valleys within neighbourhoods. These data indicate the existence of complex genetic structure in R. norvegicus in Salvador, linked to the heterogeneous urban landscape. Future rodent control measures need to take into account the spatial and temporal linkage of rat populations in Salvador, as revealed by genetic data, to develop informed eradication strategies.
Collapse
Affiliation(s)
- Brittney Kajdacsi
- Department of Ecology and Evolutionary Biology, Yale University, 21 Sachem Street, New Haven, CT, USA
| | - Federico Costa
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College Street, New Haven, CT, USA
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Ministério da Saúde, Salvador, Brazil
| | - Chaz Hyseni
- Department of Ecology and Evolutionary Biology, Yale University, 21 Sachem Street, New Haven, CT, USA
| | - Fleur Porter
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College Street, New Haven, CT, USA
| | - Julia Brown
- Department of Ecology and Evolutionary Biology, Yale University, 21 Sachem Street, New Haven, CT, USA
| | - Gorete Rodrigues
- Centro de Controle de Zoonoses, Secretaria Municipal de Saúde, Ministério da Saúde, Salvador, Brazil
| | - Helena Farias
- Centro de Controle de Zoonoses, Secretaria Municipal de Saúde, Ministério da Saúde, Salvador, Brazil
| | - Mitermeyer G. Reis
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Ministério da Saúde, Salvador, Brazil
| | - James E. Childs
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College Street, New Haven, CT, USA
| | - Albert I. Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College Street, New Haven, CT, USA
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Ministério da Saúde, Salvador, Brazil
| | - Adalgisa Caccone
- Department of Ecology and Evolutionary Biology, Yale University, 21 Sachem Street, New Haven, CT, USA
| |
Collapse
|
23
|
Dama E, Cornelie S, Camara M, Somda MB, Poinsignon A, Ilboudo H, Elanga Ndille E, Jamonneau V, Solano P, Remoue F, Bengaly Z, Belem AMG, Bucheton B. In silico identification of a candidate synthetic peptide (Tsgf118-43) to monitor human exposure to tsetse flies in West Africa. PLoS Negl Trop Dis 2013; 7:e2455. [PMID: 24086785 PMCID: PMC3784472 DOI: 10.1371/journal.pntd.0002455] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 08/12/2013] [Indexed: 01/31/2023] Open
Abstract
Background The analysis of humoral responses directed against the saliva of blood-sucking arthropods was shown to provide epidemiological biomarkers of human exposure to vector-borne diseases. However, the use of whole saliva as antigen presents several limitations such as problems of mass production, reproducibility and specificity. The aim of this study was to design a specific biomarker of exposure to tsetse flies based on the in silico analysis of three Glossina salivary proteins (Ada, Ag5 and Tsgf1) previously shown to be specifically recognized by plasma from exposed individuals. Methodology/Principal Findings Synthetic peptides were designed by combining several linear epitope prediction methods and Blast analysis. The most specific peptides were then tested by indirect ELISA on a bank of 160 plasma samples from tsetse infested areas and tsetse free areas. Anti-Tsgf118–43 specific IgG levels were low in all three control populations (from rural Africa, urban Africa and Europe) and were significantly higher (p<0.0001) in the two populations exposed to tsetse flies (Guinean HAT foci, and South West Burkina Faso). A positive correlation was also found between Anti-Tsgf118–43 IgG levels and the risk of being infected by Trypanosoma brucei gambiense in the sleeping sickness foci of Guinea. Conclusion/Significance The Tsgf118–43 peptide is a suitable and promising candidate to develop a standardize immunoassay allowing large scale monitoring of human exposure to tsetse flies in West Africa. This could provide a new surveillance indicator for tsetse control interventions by HAT control programs. Increasing interest is paid to blood-sucking arthropod's salivary antigens to develop host direct biomarkers of exposure. Nevertheless use of whole saliva is problematic both because of mass production and specificity issues. Here, we describe an in silico approach we used to identify potential epitopes on the amino acid sequence of three tsetse salivary proteins (Ada, Ag5 and Tsgf1) that were previously shown to be specifically recognized by antibodies from exposed individuals. Three candidate peptides were synthesized and evaluated on a set of plasma collected in different tsetse-infested and tsetse-free areas. The Tsgf118–43 synthetic peptide appeared as a promising candidate to assess human exposure to tsetse flies as antibody responses were low in all three control groups and were significantly higher in our two exposed groups. Significantly higher anti- Tsgf118–43 responses were also observed in sleeping sickness patients as compared to uninfected controls suggesting that Tsgf118–43 may be used both to assess human tsetse contacts and the risk of infection by trypanosomes. This new sero-epidemiological tool could thus help National Control Programs to quickly map human exposure levels in order to better target vector control efforts and monitor vector control efficiency.
Collapse
Affiliation(s)
- Emilie Dama
- Centre International de Recherche-Développement sur l'Elevage en zone Subhumide (CIRDES), Bobo-Dioulasso, Burkina Faso
| | - Sylvie Cornelie
- Institut de Recherche pour le Développement (IRD), UMR MIVEGEC IRD 224-CNRS 5290-Université de Montpellier 1 et Montpellier 2, Montpellier, France
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, Bénin
| | - Mamadou Camara
- Programme National de Lutte contre la Trypanosomose Humaine Africaine en Guinée, Conakry, Guinée
| | - Martin Bienvenu Somda
- Centre International de Recherche-Développement sur l'Elevage en zone Subhumide (CIRDES), Bobo-Dioulasso, Burkina Faso
| | - Anne Poinsignon
- Institut de Recherche pour le Développement (IRD), UMR MIVEGEC IRD 224-CNRS 5290-Université de Montpellier 1 et Montpellier 2, Montpellier, France
| | - Hamidou Ilboudo
- Centre International de Recherche-Développement sur l'Elevage en zone Subhumide (CIRDES), Bobo-Dioulasso, Burkina Faso
| | - Emmanuel Elanga Ndille
- Institut de Recherche pour le Développement (IRD), UMR MIVEGEC IRD 224-CNRS 5290-Université de Montpellier 1 et Montpellier 2, Montpellier, France
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, Bénin
| | - Vincent Jamonneau
- Centre International de Recherche-Développement sur l'Elevage en zone Subhumide (CIRDES), Bobo-Dioulasso, Burkina Faso
- Institut de Recherche pour le Développement, Unité Mixte de Recherche IRD-CIRAD 177, Campus International de Baillarguet, Montpellier, France
| | - Philippe Solano
- Centre International de Recherche-Développement sur l'Elevage en zone Subhumide (CIRDES), Bobo-Dioulasso, Burkina Faso
- Institut de Recherche pour le Développement, Unité Mixte de Recherche IRD-CIRAD 177, Campus International de Baillarguet, Montpellier, France
| | - Franck Remoue
- Institut de Recherche pour le Développement (IRD), UMR MIVEGEC IRD 224-CNRS 5290-Université de Montpellier 1 et Montpellier 2, Montpellier, France
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, Bénin
| | - Zakaria Bengaly
- Centre International de Recherche-Développement sur l'Elevage en zone Subhumide (CIRDES), Bobo-Dioulasso, Burkina Faso
| | | | - Bruno Bucheton
- Centre International de Recherche-Développement sur l'Elevage en zone Subhumide (CIRDES), Bobo-Dioulasso, Burkina Faso
- Institut de Recherche pour le Développement, Unité Mixte de Recherche IRD-CIRAD 177, Campus International de Baillarguet, Montpellier, France
- * E-mail:
| |
Collapse
|
24
|
Bouyer J, Bouyer F, Donadeu M, Rowan T, Napier G. Community- and farmer-based management of animal African trypanosomosis in cattle. Trends Parasitol 2013; 29:519-22. [PMID: 24012356 DOI: 10.1016/j.pt.2013.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 08/10/2013] [Accepted: 08/13/2013] [Indexed: 10/26/2022]
Abstract
Tsetse eradication is impossible in many parts of Africa given environmental, political, and economic circumstances. Animal African trypanosomosis (AAT) control then relies on implementation of local, integrated control strategies by communities or farmers that must take into account the eco-epidemiological context and the cattle rearing system to be sustainable.
Collapse
Affiliation(s)
- Jérémy Bouyer
- Unité Mixte de Recherche Contrôle des Maladies Animales Exotiques et Emergentes, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, France; Unité Mixte de Recherche 1309 Contrôle des Maladies Animales Exotiques et Emergentes, Institut National de la Recherche Agronomique, Montpellier, France; Institut Sénégalais de Recherches Agricoles, Laboratoire National d'Elevage et de Recherches Vétérinaires, Dakar, BP 2057, Sénégal.
| | | | | | | | | |
Collapse
|
25
|
Glossina fuscipes populations provide insights for human African trypanosomiasis transmission in Uganda. Trends Parasitol 2013; 29:394-406. [PMID: 23845311 DOI: 10.1016/j.pt.2013.06.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/11/2013] [Accepted: 06/11/2013] [Indexed: 11/21/2022]
Abstract
Uganda has both forms of human African trypanosomiasis (HAT): the chronic gambiense disease in the northwest and the acute rhodesiense disease in the south. The recent spread of rhodesiense into central Uganda has raised concerns given the different control strategies the two diseases require. We present knowledge on the population genetics of the major vector species Glossina fuscipes fuscipes in Uganda with a focus on population structure, measures of gene flow between populations, and the occurrence of polyandry. The microbiome composition and diversity is discussed, focusing on their potential role on trypanosome infection outcomes. We discuss the implications of these findings for large-scale tsetse control programs, including suppression or eradication, being undertaken in Uganda, and potential future genetic applications.
Collapse
|
26
|
Pooda SH, Mouline K, De Meeûs T, Bengaly Z, Solano P. Decrease in survival and fecundity of Glossina palpalis gambiensis vanderplank 1949 (Diptera: Glossinidae) fed on cattle treated with single doses of ivermectin. Parasit Vectors 2013; 6:165. [PMID: 23741989 PMCID: PMC3679994 DOI: 10.1186/1756-3305-6-165] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 05/21/2013] [Indexed: 11/17/2022] Open
Abstract
Background Human and Animal Trypanosomes are major problems for the socio-economic growth of developing countries like Burkina Faso. Ivermectin is currently used to treat humans in mass drug administration programs in Africa, and is also commonly used for veterinary purposes. In this study, we tested the effect of ivermectin injected into cattle on the survival and fecundity of Glossina palpalis gambiensis, the main vector of human and animal trypanosomes in West Africa. Methods Three cows (local zebu*baoulé crossbreds) were used, and received either no ivermectin (for the control), or ivermectin at therapeutic dose (0.2 mg/kg) and 10 times the therapeutic dose (2 mg/kg) respectively. G. palpalis gambiensis were fed on the cattle for their first bloodmeal, and then either on cattle or on membrane for subsequent meals. Results Our results showed that survival of Glossina palpalis gambiensis was significantly decreased when they were fed on cattle treated with ivermectin. This decrease in survival ranged from 21% to 83.7% for the therapeutic dose (0.2 mg/kg), up to 8 days after treatment. The effects of a dose of 2 mg/kg were higher with a 78.3% to 93.9% decrease in survival, until 14 days after injection. The therapeutic dose of ivermectin also decreased fecundity, and delayed the first larviposition, but there was no significant effect on hatching rate. Conclusion Ivermectin injected into cattle may constitute an additional potential tool for the control of Glossina palpalis gambiensis and possibly other vector species. Further studies will be needed to assess its effect on trypanosome transmission, and to define more precisely the adequate dose to be used for control purposes.
Collapse
Affiliation(s)
- Sié H Pooda
- Ministère des Ressources Animales et Halieutiques, PATTEC-PCZLD, Ouagadougou, Burkina Faso
| | | | | | | | | |
Collapse
|
27
|
Sow A, Ganaba R, Percoma L, Sidibé I, Bengaly Z, Adam Y, Koné P, Sawadogo G, Van Den Abbeele J, Marcotty T, Delespaux V. Baseline survey of animal trypanosomosis in the region of the Boucle du Mouhoun, Burkina Faso. Res Vet Sci 2013; 94:573-8. [DOI: 10.1016/j.rvsc.2012.12.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 12/07/2012] [Accepted: 12/23/2012] [Indexed: 11/15/2022]
|
28
|
Dama E, Cornelie S, Bienvenu Somda M, Camara M, Kambire R, Courtin F, Jamonneau V, Demettre E, Seveno M, Bengaly Z, Solano P, Poinsignon A, Remoue F, Belem AMG, Bucheton B. Identification of Glossina palpalis gambiensis specific salivary antigens: towards the development of a serologic biomarker of human exposure to tsetse flies in West Africa. Microbes Infect 2013; 15:416-27. [PMID: 23500186 DOI: 10.1016/j.micinf.2013.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 02/26/2013] [Accepted: 03/01/2013] [Indexed: 12/27/2022]
Abstract
The saliva of blood sucking arthropods contains a number of pharmacologically active compounds that induce an antibody response in exposed human individuals. The objectives of the present study were (i) to assess the human IgG response directed against salivary antigens of Glossina palpalis gambiensis, the main vector of Trypanosoma brucei gambiense in West Africa, as a biomarker of human-tsetse contacts; and (ii) to identify specific salivary antigens. Immune reactivity of human plasma collected within active human African trypanosomiasis (HAT) foci (coastal Guinea), historical foci where tsetse flies are still present (South-West Burkina Faso) and a tsetse free area (Bobo-Dioulasso, Burkina Faso), was measured by ELISA against whole saliva extracts. In the active HAT foci and areas where tsetse flies were present in high densities, specific IgG responses were significantly higher (p < 0.0001) to those in Bobo-Dioulasso or in Loropeni, where tsetse flies were either absent or only present at low densities. Furthermore, 2D-electrophoresis combined with mass spectrometry enabled to reveal that several antigens were specifically recognized by plasma from exposed individuals. Among them, four salivary proteins were successfully identified (Ada, 5'Nuc, Ag5 and Tsgf1). These results represent a first attempt to identify Glossina salivary proteins or synthetic peptides to develop a standardized and specific biomarker of tsetse exposure in West Africa.
Collapse
Affiliation(s)
- Emilie Dama
- Centre International de Recherche-Développement sur l'Elevage en zone Subhumide CIRDES, 01 BP 454 Bobo-Dioulasso 01, Burkina Faso
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kagbadouno MS, Camara M, Rouamba J, Rayaisse JB, Traoré IS, Camara O, Onikoyamou MF, Courtin F, Ravel S, de Meeûs T, Bucheton B, Jamonneau V, Solano P. Epidemiology of sleeping sickness in Boffa (Guinea): where are the trypanosomes? PLoS Negl Trop Dis 2012; 6:e1949. [PMID: 23272259 PMCID: PMC3521671 DOI: 10.1371/journal.pntd.0001949] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 10/25/2012] [Indexed: 11/19/2022] Open
Abstract
Human African Trypanosomiasis (HAT) in West Africa is a lethal, neglected disease caused by Trypanosoma brucei gambiense transmitted by the tsetse Glossina palpalis gambiensis. Although the littoral part of Guinea with its typical mangrove habitat is the most prevalent area in West Africa, very few data are available on the epidemiology of the disease in such biotopes. As part of a HAT elimination project in Guinea, we carried a cross-sectional study of the distribution and abundance of people, livestock, tsetse and trypanosomes in the focus of Boffa. An exhaustive census of the human population was done, together with spatial mapping of the area. Entomological data were collected, a human medical survey was organized together with a survey in domestic animals. In total, 45 HAT cases were detected out of 14445 people who attended the survey, these latter representing 50.9% of the total population. Potential additional carriers of T. b. gambiense were also identified by the trypanolysis test (14 human subjects and two domestic animals). No trypanosome pathogenic to animals were found, neither in the 874 tsetse dissected nor in the 300 domestic animals sampled. High densities of tsetse were found in places frequented by humans, such as pirogue jetties, narrow mangrove channels and watering points. The prevalence of T. b. gambiense in humans, combined to low attendance of the population at risk to medical surveys, and to an additional proportion of human and animal carriers of T. b. gambiense who are not treated, highlights the limits of strategies targeting HAT patients only. In order to stop T. b. gambiense transmission, vector control should be added to the current strategy of case detection and treatment. Such an integrated strategy will combine medical surveillance to find and treat cases, and vector control activities to protect people from the infective bites of tsetse. Human African Trypanosomiasis (HAT) in West Africa is a lethal, neglected disease caused by Trypanosoma brucei gambiense transmitted by the tsetse fly Glossina palpalis gambiensis. Although the littoral part of Guinea with its typical mangrove habitat is the most prevalent area in West Africa, very few data are available on the epidemiology of the disease in such biotopes. We carried out a cross-sectional study of the distribution and abundance of people, livestock, tsetse and trypanosomes in the active focus of Boffa. We only found T. b. gambiense in the area, no other trypanosome. T. b. gambiense was found parasitologically in humans (45 cases), and suspected serologically in other humans and in two animals. Tsetse flies were present in high densities in places very frequented by humans, such as pirogue jetties, and watering points. Our results confirm the importance of medical surveys to find cases and treat them, but also point out the limit of strategies targeted at HAT patients only. If sleeping sickness is to be eliminated, a vector control component must be added to the strategy of case detection and treatment, and this latter must be directed to the population the most at risk.
Collapse
Affiliation(s)
- Moise Saa Kagbadouno
- Programme National de Lutte contre la THA, Ministère de la Santé, Conakry, Guinée
| | - Mamadou Camara
- Programme National de Lutte contre la THA, Ministère de la Santé, Conakry, Guinée
| | - Jeremi Rouamba
- Centre Muraz, Ministère de la Santé, Bobo-Dioulasso, Burkina Faso
| | - Jean-Baptiste Rayaisse
- Centre International de Recherche Développement sur l'Elevage en zone Subhumide, Bobo-Dioulasso, Burkina Faso
| | - Ibrahima Sory Traoré
- Programme National de Lutte contre la THA, Ministère de la Santé, Conakry, Guinée
| | - Oumou Camara
- Programme National de Lutte contre la THA, Ministère de la Santé, Conakry, Guinée
| | - Mory Fassou Onikoyamou
- Direction Nationale de l'Elevage, Ministère de l'Agriculture et de l'Elevage, Conakry, Guinée
| | - Fabrice Courtin
- Institut de Recherche pour le Développement, UMR 177 IRD-CIRAD INTERTRYP, CIRDES Bobo-Dioulasso, Burkina Faso
| | - Sophie Ravel
- Institut de Recherche pour le Développement, UMR 177 IRD-CIRAD INTERTRYP, Campus International de Baillarguet, Montpellier, France
| | - Thierry de Meeûs
- Institut de Recherche pour le Développement, UMR 177 IRD-CIRAD INTERTRYP, CIRDES Bobo-Dioulasso, Burkina Faso
| | - Bruno Bucheton
- Institut de Recherche pour le Développement, UMR 177 IRD-CIRAD INTERTRYP, Campus International de Baillarguet, Montpellier, France
| | - Vincent Jamonneau
- Institut de Recherche pour le Développement, UMR 177 IRD-CIRAD INTERTRYP, CIRDES Bobo-Dioulasso, Burkina Faso
| | - Philippe Solano
- Institut de Recherche pour le Développement, UMR 177 IRD-CIRAD INTERTRYP, CIRDES Bobo-Dioulasso, Burkina Faso
- * E-mail:
| |
Collapse
|
30
|
Hyseni C, Kato AB, Okedi LM, Masembe C, Ouma JO, Aksoy S, Caccone A. The population structure of Glossina fuscipes fuscipes in the Lake Victoria basin in Uganda: implications for vector control. Parasit Vectors 2012; 5:222. [PMID: 23036153 PMCID: PMC3522534 DOI: 10.1186/1756-3305-5-222] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 09/15/2012] [Indexed: 11/14/2022] Open
Abstract
Background Glossina fuscipes fuscipes is the primary vector of trypanosomiasis in humans and livestock in Uganda. The Lake Victoria basin has been targeted for tsetse eradication using a rolling carpet initiative, from west to east, with four operational blocks (3 in Uganda and 1 in Kenya), under a Pan-African Tsetse and Trypanosomiasis Eradication Campaign (PATTEC). We screened tsetse flies from the three Ugandan PATTEC blocks for genetic diversity at 15 microsatellite loci from continental and offshore populations to provide empirical data to support this initiative. Methods We collected tsetse samples from 11 sites across the Lake Victoria basin in Uganda. We performed genetic analyses on 409 of the collected tsetse flies and added data collected for 278 individuals in a previous study. The flies were screened across 15 microsatellite loci and the resulting data were used to assess the temporal stability of populations, to analyze patterns of genetic exchange and structuring, to estimate dispersal rates and evaluate the sex bias in dispersal, as well as to estimate demographic parameters (NE and NC). Results We found that tsetse populations in this region were stable over 4-16 generations and belong to 4 genetic clusters. Two genetic clusters (1 and 2) corresponded approximately to PATTEC blocks 1 and 2, while the other two (3 and 4) fell within PATTEC block 3. Island populations grouped into the same genetic clusters as neighboring mainland sites, suggesting presence of gene flow between these sites. There was no evidence of the stretch of water separating islands from the mainland forming a significant barrier to dispersal. Dispersal rates ranged from 2.5 km per generation in cluster 1 to 14 km per generation in clusters 3 and 4. We found evidence of male-biased dispersal. Few breeders are successfully dispersing over large distances. Effective population size estimates were low (33–310 individuals), while census size estimates ranged from 1200 (cluster 1) to 4100 (clusters 3 and 4). We present here a novel technique that adapts an existing census size estimation method to sampling without replacement, the scheme used in sampling tsetse flies. Conclusion Our study suggests that different control strategies should be implemented for the three PATTEC blocks and that, given the high potential for re-invasion from island sites, mainland and offshore sites in each block should be targeted at the same time.
Collapse
Affiliation(s)
- Chaz Hyseni
- Department of Ecology and Evolutionary Biology, Yale University, 21 Sachem Street, New Haven, CT, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Parasite epidemiology in a changing world: can molecular phylogeography help us tell the wood from the trees? Parasitology 2012; 139:1924-38. [PMID: 22917112 DOI: 10.1017/s0031182012001060] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARY Molecular phylogeography has revolutionised our ability to infer past biogeographic events from cross-sectional data on current parasite populations. In ecological parasitology, this approach has been used to address fundamental questions concerning host-parasite co-evolution and geographic patterns of spread, and has raised many technical issues and problems of interpretation. For applied parasitologists, the added complexity inherent in adding population genetic structure to perceived parasite distributions can sometimes seem to cloud rather than clarify approaches to control. In this paper, we use case studies firstly to illustrate the potential extent of cryptic diversity in parasite and parasitoid populations, secondly to consider how anthropogenic influences including movement of domestic animals affect the geographic distribution and host associations of parasite genotypes, and thirdly to explore the applied relevance of these processes to parasites of socio-economic importance. The contribution of phylogeographic approaches to deeper understanding of parasite biology in these cases is assessed. Thus, molecular data on the emerging parasites Angiostrongylus vasorum in dogs and wild canids, and the myiasis-causing flies Lucilia spp. in sheep and Cochliomyia hominovorax in humans, lead to clear implications for control efforts to limit global spread. Broader applications of molecular phylogeography to understanding parasite distributions in an era of rapid global change are also discussed.
Collapse
|
32
|
Tsetse flies: their biology and control using area-wide integrated pest management approaches. J Invertebr Pathol 2012; 112 Suppl:S15-25. [PMID: 22878217 DOI: 10.1016/j.jip.2012.07.026] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tsetse flies are the cyclical vectors of trypanosomes, the causative agents of 'sleeping sickness' or human African trypanosomosis (HAT) in humans and 'nagana' or African animal trypanosomosis (AAT) in livestock in Sub-saharan Africa. Many consider HAT as one of the major neglected tropical diseases and AAT as the single greatest health constraint to increased livestock production. This review provides some background information on the taxonomy of tsetse flies, their unique way of reproduction (adenotrophic viviparity) making the adult stage the only one easily accessible for control, and how their ecological affinities, their distribution and population dynamics influence and dictate control efforts. The paper likewise reviews four control tactics (sequential aerosol technique, stationary attractive devices, live bait technique and the sterile insect technique) that are currently accepted as friendly to the environment, and describes their limitations and advantages and how they can best be put to practise in an IPM context. The paper discusses the different strategies for tsetse control i.e. localised versus area-wide and focusses thereafter on the principles of area-wide integrated pest management (AW-IPM) and the phased-conditional approach with the tsetse project in Senegal as a recent example. We argue that sustainable tsetse-free zones can be created on Africa mainland provided certain managerial and technical prerequisites are in place.
Collapse
|
33
|
Kaba D, Ravel S, Acapovi-Yao G, Solano P, Allou K, Bosson-Vanga H, Gardes L, N'Goran EK, Schofield CJ, Koné M, Dujardin JP. Phenetic and genetic structure of tsetse fly populations (Glossina palpalis palpalis) in southern Ivory Coast. Parasit Vectors 2012; 5:153. [PMID: 22846152 PMCID: PMC3492019 DOI: 10.1186/1756-3305-5-153] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 07/04/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sleeping sickness, transmitted by G. p. palpalis, is known to be present in the Ivory Coast. G. p. palpalis has recently been reported to occur in several places within the town of Abidjan, including: (i) the Banco forest, (ii) the Abobo Adjamé University campus and (iii) the zoological park. Could these three places be treated sequentially, as separate tsetse populations, or should they be taken as one area comprising a single, panmictic population? METHODS The amount of gene flow between these places provides strategic information for vector control. It was estimated by the use of both microsatellite DNA and morphometric markers. The idea was to assess the interest of the faster and much less expensive morphometric approach in providing relevant information about population structure. Thus, to detect possible lack of insect exchange between these neighbouring areas of Abidjan, we used both genetic (microsatellite DNA) and phenetic (geometric morphometrics) markers on the same specimens.Using these same markers, we also compared these samples with specimens from a more distant area of south Ivory Coast, the region of Aniassué (186 km north from Abidjan). RESULTS Neither genetic nor phenetic markers detected significant differentiation between the three Abidjan G. p. palpalis samples. Thus, the null hypothesis of a single panmictic population within the city of Abidjan could not be rejected, suggesting the control strategy should not consider them separately. The markers were also in agreement when comparing G. p. palpalis from Abidjan with those of Aniassué, showing significant divergence between the two sites. CONCLUSIONS Both markers suggested that a successful control of tsetse in Abidjan would require the three Abidjan sites to be considered together, either by deploying control measures simultaneously in all three sites, or by a continuous progression of interventions following for instance the "rolling carpet" principle. To compare the geometry of wing venation of tsetse flies is a cheap and fast technique. Agreement with the microsatellite approach highlights its potential for rapid assessment of population structure.
Collapse
Affiliation(s)
- Dramane Kaba
- Institut Pierre Richet / Institut National de Santé Publique, BP V 47 Abidjan, Côte d’Ivoire
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
De Meeûs T, Ravel S, Rayaisse JB, Courtin F, Solano P. Understanding local population genetics of tsetse: the case of an isolated population of Glossina palpalis gambiensis in Burkina Faso. INFECTION GENETICS AND EVOLUTION 2012; 12:1229-34. [PMID: 22546274 DOI: 10.1016/j.meegid.2012.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 03/30/2012] [Accepted: 04/05/2012] [Indexed: 11/25/2022]
Abstract
Tsetse flies are the vectors of human and animal trypanosomiases. For tsetse eradication programs, it is crucial to be able to identify and target isolated populations, because they can be targeted for eradication without risk of reinvasion. However, most data that are available on non-isolated populations fail to find how these populations are locally structured, because Wahlund effect (admixture of individuals from genetically different units) always interfere with interpretations. In this paper, we investigated the genetic population structure of a possibly isolated population of Glossina palpalis gambiensis in a sacred wood in South Burkina Faso, using microsatellite DNA markers. We found that genotypic proportions in this population were in agreement with random mating model and that these tsetse were genetically highly differentiated from other populations of the same Mouhoun river basin only a few kilometers away, confirming its genetic isolation. The population also displayed substantial temporal differentiation in a two years period that lead to an estimate of effective population size of ∼100 individuals. The fact that no Wahlund effect was identified allowed us to accurately measure the basic genetic parameters of this isolated population. Identifying such isolated and small populations is crucial for eradication programs and should be implemented more often.
Collapse
Affiliation(s)
- Thierry De Meeûs
- Institut de Recherche pour le Développement, Centre International de Recherche pour l'Elevage en zones Subhumides, IRD UMR INTERTRYP IRD-CIRAD, CIRDES 01 BP 454 Bobo-Dioulasso 01, Burkina Faso.
| | | | | | | | | |
Collapse
|
35
|
Dyer NA, Ravel S, Choi KS, Darby AC, Causse S, Kapitano B, Hall MJR, Steen K, Lutumba P, Madinga J, Torr SJ, Okedi LM, Lehane MJ, Donnelly MJ. Cryptic diversity within the major trypanosomiasis vector Glossina fuscipes revealed by molecular markers. PLoS Negl Trop Dis 2011; 5:e1266. [PMID: 21858237 PMCID: PMC3153427 DOI: 10.1371/journal.pntd.0001266] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 06/21/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The tsetse fly Glossina fuscipes s.l. is responsible for the transmission of approximately 90% of cases of human African trypanosomiasis (HAT) or sleeping sickness. Three G. fuscipes subspecies have been described, primarily based upon subtle differences in the morphology of their genitalia. Here we describe a study conducted across the range of this important vector to determine whether molecular evidence generated from nuclear DNA (microsatellites and gene sequence information), mitochondrial DNA and symbiont DNA support the existence of these taxa as discrete taxonomic units. PRINCIPAL FINDINGS The nuclear ribosomal Internal transcribed spacer 1 (ITS1) provided support for the three subspecies. However nuclear and mitochondrial sequence data did not support the monophyly of the morphological subspecies G. f. fuscipes or G. f. quanzensis. Instead, the most strongly supported monophyletic group was comprised of flies sampled from Ethiopia. Maternally inherited loci (mtDNA and symbiont) also suggested monophyly of a group from Lake Victoria basin and Tanzania, but this group was not supported by nuclear loci, suggesting different histories of these markers. Microsatellite data confirmed strong structuring across the range of G. fuscipes s.l., and was useful for deriving the interrelationship of closely related populations. CONCLUSION/SIGNIFICANCE We propose that the morphological classification alone is not used to classify populations of G. fuscipes for control purposes. The Ethiopian population, which is scheduled to be the target of a sterile insect release (SIT) programme, was notably discrete. From a programmatic perspective this may be both positive, given that it may reflect limited migration into the area or negative if the high levels of differentiation are also reflected in reproductive isolation between this population and the flies to be used in the release programme.
Collapse
Affiliation(s)
- Naomi A. Dyer
- Vector Group, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Sophie Ravel
- Institut de Recherche pour le Développement (IRD), UMR 177 IRD-CIRAD, LRCT Campus International de Baillarguet, Montpellier, France
| | - Kwang-Shik Choi
- Vector Group, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Alistair C. Darby
- School of Biological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Sandrine Causse
- Institut de Recherche pour le Développement (IRD), UMR 177 IRD-CIRAD, LRCT Campus International de Baillarguet, Montpellier, France
| | - Berisha Kapitano
- Southern Rift Valley of Ethiopia Tsetse Eradication Project, Hawassa, Ethiopia
| | | | - Keith Steen
- Vector Group, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Pascal Lutumba
- Department of Tropical Medicine, School of Medicine, Kinshasa University, Kinshasa, Democratic Republic of Congo
| | - Joules Madinga
- Department of Tropical Medicine, School of Medicine, Kinshasa University, Kinshasa, Democratic Republic of Congo
| | - Steve J. Torr
- Agriculture, Health and Environment Group, National Resources Institute, University of Greenwich, Chatham Maritime, United Kingdom
| | - Loyce M. Okedi
- National Livestock Resources Research Institute, Tororo, Uganda
| | - Michael J. Lehane
- Vector Group, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Martin J. Donnelly
- Vector Group, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Microbiology, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
36
|
Melachio TTTTT, Simo G, Ravel S, De Meeûs T, Causse S, Solano P, Lutumba P, Asonganyi T, Njiokou F. Population genetics of Glossina palpalis palpalis from central African sleeping sickness foci. Parasit Vectors 2011; 4:140. [PMID: 21767402 PMCID: PMC3162924 DOI: 10.1186/1756-3305-4-140] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 07/18/2011] [Indexed: 11/10/2022] Open
Abstract
Background Glossina palpalis palpalis (Diptera: Glossinidae) is widespread in west Africa, and is the main vector of sleeping sickness in Cameroon as well as in the Bas Congo Province of the Democratic Republic of Congo. However, little is known on the structure of its populations. We investigated G. p. palpalis population genetic structure in five sleeping sickness foci (four in Cameroon, one in Democratic Republic of Congo) using eight microsatellite DNA markers. Results A strong isolation by distance explains most of the population structure observed in our sampling sites of Cameroon and DRC. The populations here are composed of panmictic subpopulations occupying fairly wide zones with a very strong isolation by distance. Effective population sizes are probably between 20 and 300 individuals and if we assume densities between 120 and 2000 individuals per km2, dispersal distance between reproducing adults and their parents extends between 60 and 300 meters. Conclusions This first investigation of population genetic structure of G. p. palpalis in Central Africa has evidenced random mating subpopulations over fairly large areas and is thus at variance with that found in West African populations of G. p. palpalis. This study brings new information on the isolation by distance at a macrogeographic scale which in turn brings useful information on how to organise regional tsetse control. Future investigations should be directed at temporal sampling to have more accurate measures of demographic parameters in order to help vector control decision.
Collapse
|
37
|
Koné N, Bouyer J, Ravel S, Vreysen MJB, Domagni KT, Causse S, Solano P, de Meeûs T. Contrasting population structures of two vectors of African trypanosomoses in Burkina Faso: consequences for control. PLoS Negl Trop Dis 2011; 5:e1217. [PMID: 21738812 PMCID: PMC3125141 DOI: 10.1371/journal.pntd.0001217] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 05/16/2011] [Indexed: 11/22/2022] Open
Abstract
Background African animal trypanosomosis is a major obstacle to the development of more efficient and sustainable livestock production systems in West Africa. Riverine tsetse species such as Glossina palpalis gambiensis Vanderplank and Glossina tachinoides Westwood are the major vectors. A wide variety of control tactics is available to manage these vectors, but their removal will in most cases only be sustainable if the control effort is targeting an entire tsetse population within a circumscribed area. Methodology/Principal Findings In the present study, genetic variation at microsatellite DNA loci was used to examine the population structure of G. p. gambiensis and G. tachinoides inhabiting four adjacent river basins in Burkina Faso, i.e. the Mouhoun, the Comoé, the Niger and the Sissili River Basins. Isolation by distance was significant for both species across river basins, and dispersal of G. tachinoides was ∼3 times higher than that of G. p. gambiensis. Thus, the data presented indicate that no strong barriers to gene flow exists between riverine tsetse populations in adjacent river basins, especially so for G. tachinoides. Conclusions/Significance Therefore, potential re-invasion of flies from adjacent river basins will have to be prevented by establishing buffer zones between the Mouhoun and the other river basin(s), in the framework of the PATTEC (Pan African Tsetse and Trypanosomosis Eradication Campaign) eradication project that is presently targeting the northern part of the Mouhoun River Basin. We argue that these genetic analyses should always be part of the baseline data collection before any tsetse control project is initiated. Tsetse flies are insects that transmit trypanosomes to humans (sleeping sickness) and animals (nagana). Controlling these vectors is a very efficient way to control these diseases. In Burkina Faso, a tsetse eradication campaign is presently targeting the northern part of the Mouhoun River Basin. To attain this objective, the approach has to be area-wide, i.e. the control effort targets an entire pest population within a circumscribed area. To assess the level of this isolation, we studied the genetic structure of Glossina palpalis gambiensis and Glossina tachinoides populations in the target area and in the adjacent river basins of the Comoé, the Niger and the Sissili River Basins. Our results suggest an absence of strong genetic isolation of the target populations. We therefore recommend establishing permanent buffer zones between the Mouhoun and the other river basin(s) to prevent reinvasion. This kind of study may be extended to other areas on other tsetse species.
Collapse
Affiliation(s)
- Naférima Koné
- Unité de Formation et de Recherche Biosciences, University of Abidjan, Abidjan, Ivory Coast
- Centre International en Recherche-Développement sur l'Elevage en Zone Subhumide (CIRDES), Bobo-Dioulasso, Burkina Faso
| | - Jérémy Bouyer
- Cirad, UMR CIRAD-INRA Contrôle des Maladies Animales Exotiques et Émergentes, Montpellier, France
- Isra-Lnerv, Service de Parasitologie, Dakar-Hann, Sénégal
- * E-mail:
| | - Sophie Ravel
- Institut de Recherche pour le Développement (IRD), UMR177 IRD-CIRAD, Montpellier, France
| | - Marc J. B. Vreysen
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Kouadjo T. Domagni
- Centre International en Recherche-Développement sur l'Elevage en Zone Subhumide (CIRDES), Bobo-Dioulasso, Burkina Faso
- UEMOA, Département du Développement Rural, des Ressources Naturelles et de l'Environnement (DDRE), Direction des Ressources Animales et Halieutiques (DRAH), Ouagadougou, Burkina Faso
| | - Sandrine Causse
- Institut de Recherche pour le Développement (IRD), UMR177 IRD-CIRAD, Montpellier, France
| | - Philippe Solano
- Centre International en Recherche-Développement sur l'Elevage en Zone Subhumide (CIRDES), Bobo-Dioulasso, Burkina Faso
- Institut de Recherche pour le Développement (IRD), UMR177 IRD-CIRAD, Montpellier, France
| | - Thierry de Meeûs
- Centre International en Recherche-Développement sur l'Elevage en Zone Subhumide (CIRDES), Bobo-Dioulasso, Burkina Faso
- Institut de Recherche pour le Développement (IRD), UMR177 IRD-CIRAD, Montpellier, France
- CNRS, Délégation Languedoc-Roussillon, Montpellier, France
| |
Collapse
|
38
|
Salim B, de Meeûs T, Bakheit MA, Kamau J, Nakamura I, Sugimoto C. Population genetics of Trypanosoma evansi from camel in the Sudan. PLoS Negl Trop Dis 2011; 5:e1196. [PMID: 21666799 PMCID: PMC3110163 DOI: 10.1371/journal.pntd.0001196] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 04/20/2011] [Indexed: 11/24/2022] Open
Abstract
Genetic variation of microsatellite loci is a widely used method for the analysis of population genetic structure of microorganisms. We have investigated genetic variation at 15 microsatellite loci of T. evansi isolated from camels in Sudan and Kenya to evaluate the genetic information partitioned within and between individuals and between sites. We detected a strong signal of isolation by distance across the area sampled. The results also indicate that either, and as expected, T. evansi is purely clonal and structured in small units at very local scales and that there are numerous allelic dropouts in the data, or that this species often sexually recombines without the need of the “normal” definitive host, the tsetse fly or as the recurrent immigration from sexually recombined T. brucei brucei. Though the first hypothesis is the most likely, discriminating between these two incompatible hypotheses will require further studies at much localized scales. Trypanosomiasis due to Trypanosoma evansi is a widely distributed disease of livestock, affecting especially camelids and equines and is transmitted by biting flies. The disease is of great concern to many developing countries such as Sudan, where its large camel population estimated at over 4.6 million heads is at risk. It is generally believed that T. evansi has evolved when camels infected with T. brucei moved to tsetse-free areas, but only a few studies have been carried out to elucidate the genetic make-up of T. evansi. Therefore, in the current study, 15 microsatellite markers from non-coding loci on 38 isolates of T. evansi originating from different locations in Sudan were analyzed. Three reference strains from Sudan and Kenya were additionally analyzed and compared to the recent isolates. The results of this study revealed a highly significant isolation by distance pattern with rather small neighborhood sizes. It also suggested that T. evansi is either purely clonal with numerous problems of allelic dropouts or that it often sexually recombines without the need of the definitive host, the tsetse fly, or as the result of recurrent immigration from sexually recombined T. brucei brucei mutants.
Collapse
Affiliation(s)
- Bashir Salim
- Department of Collaboration and Education, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.
| | | | | | | | | | | |
Collapse
|
39
|
Koné N, N'goran EK, Sidibe I, Kombassere AW, Bouyer J. Spatio-temporal distribution of tsetse and other biting flies in the Mouhoun River basin, Burkina Faso. MEDICAL AND VETERINARY ENTOMOLOGY 2011; 25:156-168. [PMID: 21198714 DOI: 10.1111/j.1365-2915.2010.00938.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In the Mouhoun River basin, Burkina Faso, the main vectors of African animal trypanosomoses are Glossina palpalis gambiensis Vanderplank and Glossina tachinoides Westwood (Diptera: Glossinidae), both of which are riverine tsetse species. The aim of our study was to understand the impact of landscape anthropogenic changes on the seasonal dynamics of vectors and associated trypanosomosis risk. Three sites were selected on the basis of the level of disturbance of tsetse habitats and predominant tsetse species: disturbed (Boromo, for G. tachinoides) and half-disturbed (Douroula for G. tachinoides and Kadomba for G. p. gambiensis). At each of these sites, seasonal variations in the apparent densities of tsetse and mechanical vectors and tsetse infection rates were monitored over 17 months. Tsetse densities differed significantly between sites and seasons. Of 5613 captured tsetse, 1897 were dissected; 34 of these were found to be infected with trypanosomes. The most frequent infection was Trypanosoma vivax (1.4%), followed by Trypanosoma congolense (0.3%) and Trypanosoma brucei (0.05%). The mean physiological age of 703 tsetse females was investigated to better characterize the transmission risk. Despite the environmental changes, it appeared that tsetse lived long enough to transmit trypanosomes, especially in half-disturbed landscapes. A total of 3021 other biting flies from 15 species (mainly Tabanidae and Stomoxyinae) were also caught: their densities also differed significantly among sites and seasons. Their relative importance regarding trypanosome transmission is discussed; the trypanosomosis risk in cattle was similar at all sites despite very low tsetse densities (but high mechanical vector densities) in one of them.
Collapse
Affiliation(s)
- N Koné
- Centre International de Recherche-Développement sur l'Elevage en Zone Subhumide, Bobo Dioulasso, Burkina Faso.
| | | | | | | | | |
Collapse
|
40
|
|
41
|
Echodu R, Beadell JS, Okedi LM, Hyseni C, Aksoy S, Caccone A. Temporal stability of Glossina fuscipes fuscipes populations in Uganda. Parasit Vectors 2011; 4:19. [PMID: 21320301 PMCID: PMC3045980 DOI: 10.1186/1756-3305-4-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 02/14/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glossina fuscipes, a riverine species of tsetse, is the major vector of human African trypanosomiasis (HAT) in sub-Saharan Africa. Understanding the population dynamics, and specifically the temporal stability, of G. fuscipes will be important for informing vector control activities. We evaluated genetic changes over time in seven populations of the subspecies G. f. fuscipes distributed across southeastern Uganda, including a zone of contact between two historically isolated lineages. A total of 667 tsetse flies were genotyped at 16 microsatellite loci and at one mitochondrial locus. RESULTS Results of an AMOVA indicated that time of sampling did not explain a significant proportion of the variance in allele frequencies observed across all samples. Estimates of differentiation between samples from a single population ranged from approximately 0 to 0.019, using Jost's DEST. Effective population size estimates using momentum-based and likelihood methods were generally large. We observed significant change in mitochondrial haplotype frequencies in just one population, located along the zone of contact. The change in haplotypes was not accompanied by changes in microsatellite frequencies, raising the possibility of asymmetric mating compatibility in this zone. CONCLUSION Our results suggest that populations of G. f. fuscipes were stable over the 8-12 generations studied. Future studies should aim to reconcile these data with observed seasonal fluctuations in the apparent density of tsetse.
Collapse
|
42
|
Nimmo C. Time to put out the lights on sleeping sickness? Travel Med Infect Dis 2010; 8:263-8. [PMID: 20970729 DOI: 10.1016/j.tmaid.2010.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 04/29/2010] [Accepted: 05/05/2010] [Indexed: 10/19/2022]
Abstract
Sleeping sickness (or Human African Trypanosomiasis, HAT) is a potentially fatal parasitic disease that affects a large proportion of sub-Saharan Africa. It was epidemic in the early 20th century before being nearly eradicated through a variety of control programmes. Despite this, there was a resurgence in the 1980s and 90s following relaxation of these programmes. Recent advances are reversing this trend once more. However, more research is required to improve diagnosis and treatment, and to better understand the epidemiology of HAT if complete eradication is to be achieved in the future.
Collapse
Affiliation(s)
- Camus Nimmo
- University College London Medical School, Gower Street, London WC1E6BT, UK.
| |
Collapse
|
43
|
Population genetics as a tool to select tsetse control strategies: suppression or eradication of Glossina palpalis gambiensis in the Niayes of Senegal. PLoS Negl Trop Dis 2010; 4:e692. [PMID: 20520795 PMCID: PMC2876113 DOI: 10.1371/journal.pntd.0000692] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 03/30/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The Government of Senegal has initiated the "Projet de lutte contre les glossines dans les Niayes" to remove the trypanosomosis problem from this area in a sustainable way. Due to past failures to sustainably eradicate Glossina palpalis gambiensis from the Niayes area, controversies remain as to the best strategy implement, i.e. "eradication" versus "suppression." To inform this debate, we used population genetics to measure genetic differentiation between G. palpalis gambiensis from the Niayes and those from the southern tsetse belt (Missira). METHODOLOGY/PRINCIPAL FINDINGS Three different markers (microsatellite DNA, mitochondrial CO1 DNA, and geometric morphometrics of the wings) were used on 153 individuals and revealed that the G. p. gambiensis populations of the Niayes were genetically isolated from the nearest proximate known population of Missira. The genetic differentiation measured between these two areas (theta = 0.12 using microsatellites) was equivalent to a between-taxa differentiation. We also demonstrated that within the Niayes, the population from Dakar - Hann was isolated from the others and had probably experienced a bottleneck. CONCLUSION/SIGNIFICANCE The information presented in this paper leads to the recommendation that an eradication strategy for the Niayes populations is advisable. This kind of study may be repeated in other habitats and for other tsetse species to (i) help decision on appropriate tsetse control strategies and (ii) find other possible discontinuities in tsetse distribution.
Collapse
|
44
|
Updating the northern tsetse limit in Burkina Faso (1949-2009): impact of global change. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2010; 7:1708-19. [PMID: 20617055 PMCID: PMC2872350 DOI: 10.3390/ijerph7041708] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 03/04/2010] [Accepted: 03/12/2010] [Indexed: 11/17/2022]
Abstract
The northern distribution limit of tsetse flies was updated in Burkina Faso and compared to previous limits to revise the existing map of these vectors of African trypanosomiases dating from several decades ago. From 1949 to 2009, a 25- to 150-km shift has appeared toward the south. Tsetse are now discontinuously distributed in Burkina Faso with a western and an eastern tsetse belt. This range shift can be explained by a combination of decreased rainfall and increased human density. Within a context of international control, this study provides a better understanding of the factors influencing the distribution of tsetse flies.
Collapse
|