1
|
Akcay G, Bahadir A, Tatar Y, Nuri Atalar M, Babur C, Taylan Ozkan A. Investigation of the effects of Toxoplasma gondii on behavioral and molecular mechanism in bradyzoite stage. Brain Res 2024; 1828:148762. [PMID: 38228258 DOI: 10.1016/j.brainres.2024.148762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 01/18/2024]
Abstract
Toxoplasma gondii is a single-celled parasite that causes a disease called toxoplasmosis. It can reach the central nervous system, but the mechanism of T. gondii disrupting the functioning of these brain regions occurs in bradyzoite stage of parasite, causing brain damage by forming tissue cysts in brain. In our study, the effects of T. gondii on locomotor activity, anxiety, learning and memory, and norepinephrine (NE), levodopa (L-DOPA), dopamine (DA) and 3,4-D-dihydroxyphenylacetic acid (DOPAC) catecholamines in amygdala, striatum, prefrontal cortex and hippocampus regions of the brain were investigated in bradyzoite stage. Twenty male Albino mice Mus musculus, 4-5 weeks old, weighing 20-25 g, were used. T. gondii inoculated to mice intraperitonealy with 48-50-hour passages of T. gondii RH Ankara strain. For intraperitoneal inoculation of mice 5x104 tachyzoites per mouse. No inoculation was made in control group (n: 20). Locomotor activity behavior in open field test (OFT), anxious behavior in elevated plus maze (EPM), and learning behavior in novel object recognition (NOR) tests were evaluated. NE, L-DOPA, DA and DOPAC were measured by HPLC in brain tissues of amygdala, striatum, prefrontal cortex and hippocampus. A decrease was observed in the locomotor activity, anxiety and learning values of the T. gondii group compared to the control group (p < 0.05). The heighten in NE and L-DOPA levels in amygdala tissue of T. gondii group compared to control group, an elevation in NE, L-DOPA, DA and DOPAC levels in striatum tissue, and an increase in levels of NE in prefrontal cortex tissue were detected in monoamine results. In hippocampus tissue, an increase was observed in DA levels, while a decrease was observed in NE, L-DOPA and DOPAC levels. In our study, it has been shown that T. gondii in bradyzoite stage reduces locomotor activity, causes learning and memory impairment, and has anxiogenic effects.
Collapse
Affiliation(s)
- Guven Akcay
- Hitit University, Faculty of Medicine, Department of Biophysics, Çorum, Turkey.
| | - Anzel Bahadir
- Duzce University, Faculty of Medicine, Department of Biophysics, Düzce, Turkey
| | - Yakup Tatar
- TOBB University of Economics and Technology, Faculty of Medicine, Department of Physiology, Ankara, Turkey
| | - Mehmet Nuri Atalar
- Igdir University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Iğdır, Turkey
| | - Cahit Babur
- National Parasitology Reference Laboratory, General Directorate of Health, Ministry of Health of Turkey, Ankara, Turkey
| | - Aysegul Taylan Ozkan
- TOBB ETU University, Faculty of Medicine, Department of Medical Microbiology, Ankara, Turkey
| |
Collapse
|
2
|
Rahdar M, Farbod Y, Seydinejad S, Zarrin M. The effect of chronic experimental toxoplasmosis on some brain neurotransmitters level and behavior changes. Exp Parasitol 2023:108575. [PMID: 37394088 DOI: 10.1016/j.exppara.2023.108575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/04/2023]
Abstract
Toxoplasma is capable of causing long-lasting brain cysts in its hosts, which can lead to physiological disturbances in brain neurotransmitters and result in changes in the host's behavior. This study aimed to investigate these changes using an experimental model. Twenty-five female Wistar rats, weighing 220-220 g and six weeks old, were selected for the study. The rats were divided into two control and experimental groups. The experimental group was injected with 5 × 105 tachyzoites of Toxoplasma gondii (virulent RH strain) intra-peritoneally. Four months after the injection, the rats were subjected to behavioral tests, including learning, memory, depression, and locomotor activity tests. The rats were then euthanized, and their brain and serum samples were analyzed for dopamine and serotonin levels. To ensure the presence of cysts in the brain tissue, a PCR test and preparation of pathological slides from the brain tissue were performed. The results showed that the amount of dopamine in the brain of the infected group was significantly higher than that of the control group, while the level of serotonin in brain of the infected group was significantly lower than that of the control group (P < 0.05). However, no significant difference was observed in the amount of these neurotransmitters in the blood of the two groups (P > 0.05). Behavioral changes were evaluated, and it was found that the learning and memory levels of the infected rats were significantly lower than those of the control group (P < 0.05), but no difference was observed in locomotor activity between the two groups (P > 0.05). This experimental infection model indicated that changes in neurotransmitter levels lead to behavior changes. CONCLUSION: The presence of parasite cysts in the brain can affect some of the host's behaviors through changes in neurotransmitter levels. Therefore, there is a possibility that there is a relationship between the presence of Toxoplasma cysts in the brain and neurological disorders. The results of this study suggest that chronic toxoplasmosis may play a role in behavior changes in psychotic diseases.
Collapse
Affiliation(s)
- Mahmoud Rahdar
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Yaghoub Farbod
- Department of Medical Physiology Department, Medical School, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Samira Seydinejad
- Department of Medical Parasitology, Medical School, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Majid Zarrin
- Department of Medical Mycology, Medical School, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
3
|
Floccari VA, Dragoš A. Host control by SPβ phage regulatory switch as potential manipulation strategy. Curr Opin Microbiol 2023; 71:102260. [PMID: 36580707 DOI: 10.1016/j.mib.2022.102260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 12/28/2022]
Abstract
The interaction between temperate phages and their bacterial hosts has always been one of the most controversial in nature. As genetic parasites, phages need their hosts to propagate, while the host may take advantage of the genetic arsenal carried in the phage genome. This intriguing host-parasite interplay with an evident mutualistic implication could be challenged by recent discoveries of alternative phage lifestyles and regulatory systems that seem to support a manipulative strategy pursued by the phage. Through two fascinating novel mechanisms concerning the active lysogeny and a phage-encoded quorum sensing system, referred as 'Arbitrium', employed by SPβ-like phages of Bacilli, we propose the parasite manipulation as ecological relationship between certain temperate phages and bacteria.
Collapse
Affiliation(s)
- Valentina A Floccari
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Anna Dragoš
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia.
| |
Collapse
|
4
|
Effects of diverse Types of Toxoplasma gondii on the outcome of Alzheimer's disease in the rat model. Microb Pathog 2023; 174:105931. [PMID: 36473668 DOI: 10.1016/j.micpath.2022.105931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Toxoplasma gondii has lifelong persistence in the brain and its cysts can affect gene expression and change diverse biological functions of neurons. Many studies indicated T. gondii infection as a risk factor for the development of behavioral changes and neurodegenerative diseases such as Alzheimer's disease (AD), although the etiopathogenetic link between them has not been exactly elucidated. The current study aimed to examine the effects of chronic toxoplasmosis infection with Types I, II, and III strains (RH, PRU, and VEG) alone and in combination on cognitive impairments and neuronal death in the Aβ1-42-induced rat model of Alzheimer's disease. In the chronic toxoplasmosis phase, Alzheimer's induction was conducted by injecting Aβ1-42 oligomers into the rat brain hippocampus. Behavioral tests were conducted 10 days after the AD induction. Real-time PCR was performed to evaluate T. gondii parasite burden by amplification of the B1 gene. Cytokines IL-1β, TNF-α, and IL-10 were assayed in brain tissue supernatant using ELISA. Also, histopathological examinations were conducted to calculate inflammatory changes and neuronal death in the brain. Our findings showed that chronic toxoplasmosis infection with PRU reduces cognitive disorders, while the RH strain of T. gondii plays a destructive role and aggravates cognitive impairments in AD. Also, infection with a combination of PRU and VEG strains significantly improved spatial learning and memory impairments in Alzheimer's rat model. Histopathological findings also confirmed the results of behavioral tests, so that in AβPRU and AβPRU + VEG groups, neuronal death and infiltration of inflammatory cells were negligible and significantly less than in Alzheimer's and AβRH groups. Our findings indicate that chronic toxoplasmosis infection with PRU strain alone, also in combination with VEG strain can significantly improve cognitive disorders in AD rats, while RH strain plays a destructive role in AD pathogenesis.
Collapse
|
5
|
Soares GLDS, Leão ERLPD, Freitas SF, Alves RMC, Tavares NDP, Costa MVN, Menezes GCD, Oliveira JHPD, Guerreiro LCF, Assis ACLD, Araújo SC, Franco FTDC, Anaissi AKM, Carmo ELD, Morais RDAPB, Demachki S, Diniz JAP, Nunes HM, Anthony DC, Diniz DG, Diniz CWP. Behavioral and Neuropathological Changes After Toxoplasma gondii Ocular Conjunctival Infection in BALB/c Mice. Front Cell Infect Microbiol 2022; 12:812152. [PMID: 35372100 PMCID: PMC8965508 DOI: 10.3389/fcimb.2022.812152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/07/2022] [Indexed: 11/15/2022] Open
Abstract
Ocular infection with Toxoplasma gondii causes toxoplasmosis in mice. However, following ocular infection with tachyzoites, the cause of the accompanying progressive changes in hippocampal-dependent tasks, and their relationship with the morphology and number of microglia, is less well understood. Here, in 6-month-old, female BALB/c mice, 5 μl of a suspension containing 48.5 × 106 tachyzoites/ml was introduced into the conjunctival sac; control received an equal volume of saline. Before and after instillation, all mice were subject to an olfactory discrimination (OD) test, using predator (cat) feces, and to an open-field (OF) task. After the behavioral tests, the animals were culled at either 22 or 44 days post-instillation (dpi), and the brains and retinas were dissected and processed for immunohistochemistry. The total number of Iba-1-immunolabeled microglia in the molecular layer of the dentate gyrus was estimated, and three-dimensional reconstructions of the cells were evaluated. Immobility was increased in the infected group at 12, 22, and 43 dpi, but the greatest immobility was observed at 22 dpi and was associated with reduced line crossing in the OF and distance traveled. In the OD test, infected animals spent more time in the compartment with feline fecal material at 14 and at 43 dpi. No OD changes were observed in the control group. The number of microglia was increased at 22 dpi but returned to control levels by 44 dpi. These changes were associated with the differentiation of T. gondii tachyzoites into bradyzoite-enclosed cysts within the brain and retina. Thus, infection of mice with T. gondii alters exploratory behavior, gives rise to a loss in predator’s odor avoidance from 2 weeks after infection, increased microglia number, and altered their morphology in the molecular layer of the dentate gyrus.
Collapse
|
6
|
Gering E, Laubach ZM, Weber PSD, Soboll Hussey G, Lehmann KDS, Montgomery TM, Turner JW, Perng W, Pioon MO, Holekamp KE, Getty T. Toxoplasma gondii infections are associated with costly boldness toward felids in a wild host. Nat Commun 2021; 12:3842. [PMID: 34158487 PMCID: PMC8219747 DOI: 10.1038/s41467-021-24092-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 05/18/2021] [Indexed: 01/17/2023] Open
Abstract
Toxoplasma gondii is hypothesized to manipulate the behavior of warm-blooded hosts to promote trophic transmission into the parasite's definitive feline hosts. A key prediction of this hypothesis is that T. gondii infections of non-feline hosts are associated with costly behavior toward T. gondii's definitive hosts; however, this effect has not been documented in any of the parasite's diverse wild hosts during naturally occurring interactions with felines. Here, three decades of field observations reveal that T. gondii-infected hyena cubs approach lions more closely than uninfected peers and have higher rates of lion mortality. We discuss these results in light of 1) the possibility that hyena boldness represents an extended phenotype of the parasite, and 2) alternative scenarios in which T. gondii has not undergone selection to manipulate behavior in host hyenas. Both cases remain plausible and have important ramifications for T. gondii's impacts on host behavior and fitness in the wild.
Collapse
Affiliation(s)
- Eben Gering
- Michigan State University, Department of Integrative Biology and Program in Ecology, Evolution and Behavior, East Lansing, MI, USA
- Nova Southeastern University, Department of Biological Sciences, Halmos College of Natural Sciences and Oceanography, Fort Lauderdale, FL, USA
| | - Zachary M Laubach
- Michigan State University, Department of Integrative Biology and Program in Ecology, Evolution and Behavior, East Lansing, MI, USA.
- University of Colorado Boulder, Department of Ecology and Evolutionary Biology, Boulder, CO, USA.
- Mara Hyena Project, Narok County, Kenya.
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA.
| | - Patty Sue D Weber
- Michigan State University, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, East Lansing, MI, USA
| | - Gisela Soboll Hussey
- Michigan State University, Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, East Lansing, MI, USA
| | - Kenna D S Lehmann
- Michigan State University, Department of Integrative Biology and Program in Ecology, Evolution and Behavior, East Lansing, MI, USA
- Mara Hyena Project, Narok County, Kenya
| | - Tracy M Montgomery
- Michigan State University, Department of Integrative Biology and Program in Ecology, Evolution and Behavior, East Lansing, MI, USA
- Mara Hyena Project, Narok County, Kenya
- Max Planck Institute of Animal Behavior, Department for the Ecology of Animal Societies, Konstanz, Germany
| | - Julie W Turner
- Michigan State University, Department of Integrative Biology and Program in Ecology, Evolution and Behavior, East Lansing, MI, USA
- Mara Hyena Project, Narok County, Kenya
- Memorial University of Newfoundland, Department of Biology, St. John's, NL, Canada
| | - Wei Perng
- LEAD Center & University of Colorado, School of Public Health, Aurora, CO, United States
| | | | - Kay E Holekamp
- Michigan State University, Department of Integrative Biology and Program in Ecology, Evolution and Behavior, East Lansing, MI, USA
- Mara Hyena Project, Narok County, Kenya
| | - Thomas Getty
- Michigan State University, Department of Integrative Biology and Program in Ecology, Evolution and Behavior, East Lansing, MI, USA
| |
Collapse
|
7
|
The Adaptiveness of Host Behavioural Manipulation Assessed Using Tinbergen's Four Questions. Trends Parasitol 2021; 37:597-609. [PMID: 33568325 DOI: 10.1016/j.pt.2021.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 11/20/2022]
Abstract
Host organisms show altered phenotypic reactions when parasitised, some of which result from adaptive host manipulation, a phenomenon that has long been debated. Here, we provide an overview and discuss the rationale in distinguishing adaptive versus nonadaptive host behavioural manipulation. We discuss Poulin's criteria of adaptive host behavioural manipulation within the context of Tinbergen's four questions of ethology, while highlighting the importance of both the proximate and evolutionary explanations of such traits. We also provide guidelines for future studies exploring the adaptiveness of host behavioural manipulation. Through this article, we seek to encourage researchers to consider both the proximate and ultimate causes of host behavioural manipulation to infer on the adaptiveness of such traits.
Collapse
|
8
|
Doherty JF. When fiction becomes fact: exaggerating host manipulation by parasites. Proc Biol Sci 2020; 287:20201081. [PMID: 33049168 DOI: 10.1098/rspb.2020.1081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In an era where some find fake news around every corner, the use of sensationalism has inevitably found its way into the scientific literature. This is especially the case for host manipulation by parasites, a phenomenon in which a parasite causes remarkable change in the appearance or behaviour of its host. This concept, which has deservedly garnered popular interest throughout the world in recent years, is nearly 50 years old. In the past two decades, the use of scientific metaphors, including anthropomorphisms and science fiction, to describe host manipulation has become more and more prevalent. It is possible that the repeated use of such catchy, yet misleading words in both the popular media and the scientific literature could unintentionally hamper our understanding of the complexity and extent of host manipulation, ultimately shaping its narrative in part or in full. In this commentary, the impacts of exaggerating host manipulation are brought to light by examining trends in the use of embellishing words. By looking at key examples of exaggerated claims from widely reported host-parasite systems found in the recent scientific literature, it would appear that some of the fiction surrounding host manipulation has since become fact.
Collapse
|
9
|
Fayard M, Dechaume-Moncharmont FX, Wattier R, Perrot-Minnot MJ. Magnitude and direction of parasite-induced phenotypic alterations: a meta-analysis in acanthocephalans. Biol Rev Camb Philos Soc 2020; 95:1233-1251. [PMID: 32342653 DOI: 10.1111/brv.12606] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/25/2022]
Abstract
Several parasite species have the ability to modify their host's phenotype to their own advantage thereby increasing the probability of transmission from one host to another. This phenomenon of host manipulation is interpreted as the expression of a parasite extended phenotype. Manipulative parasites generally affect multiple phenotypic traits in their hosts, although both the extent and adaptive significance of such multidimensionality in host manipulation is still poorly documented. To review the multidimensionality and magnitude of host manipulation, and to understand the causes of variation in trait value alteration, we performed a phylogenetically corrected meta-analysis, focusing on a model taxon: acanthocephalan parasites. Acanthocephala is a phylum of helminth parasites that use vertebrates as final hosts and invertebrates as intermediate hosts, and is one of the few parasite groups for which manipulation is predicted to be ancestral. We compiled 279 estimates of parasite-induced alterations in phenotypic trait value, from 81 studies and 13 acanthocephalan species, allocating a sign to effect size estimates according to the direction of alteration favouring parasite transmission, and grouped traits by category. Phylogenetic inertia accounted for a low proportion of variation in effect sizes. The overall average alteration of trait value was moderate and positive when considering the expected effect of alterations on trophic transmission success (signed effect sizes, after the onset of parasite infectivity to the final host). Variation in the alteration of trait value was affected by the category of phenotypic trait, with the largest alterations being reversed taxis/phobia and responses to stimuli, and increased vulnerability to predation, changes to reproductive traits (behavioural or physiological castration) and immunosuppression. Parasite transmission would thereby be facilitated mainly by changing mainly the choice of micro-habitat and the anti-predation behaviour of infected hosts, and by promoting energy-saving strategies in the host. In addition, infection with larval stages not yet infective to definitive hosts (acanthella) tends to induce opposite effects of comparable magnitude to infection with the infective stage (cystacanth), although this result should be considered with caution due to the low number of estimates with acanthella. This analysis raises important issues that should be considered in future studies investigating the adaptive significance of host manipulation, not only in acanthocephalans but also in other taxa. Specifically, the contribution of phenotypic traits to parasite transmission and the range of taxonomic diversity covered deserve thorough attention. In addition, the relationship between behaviour and immunity across parasite developmental stages and host-parasite systems (the neuropsychoimmune hypothesis of host manipulation), still awaits experimental evidence. Most of these issues apply more broadly to reported cases of host manipulation by other groups of parasites.
Collapse
Affiliation(s)
- Marion Fayard
- UMR CNRS 6282 Biogéosciences, Université de Bourgogne-Franche-Comté, 6 Bd Gabriel, 21000, Dijon, France
| | - François-Xavier Dechaume-Moncharmont
- UMR CNRS 6282 Biogéosciences, Université de Bourgogne-Franche-Comté, 6 Bd Gabriel, 21000, Dijon, France.,Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France
| | - Rémi Wattier
- UMR CNRS 6282 Biogéosciences, Université de Bourgogne-Franche-Comté, 6 Bd Gabriel, 21000, Dijon, France
| | | |
Collapse
|
10
|
Galal L, Stragier C, Boumédiène F, Hamidović A, Maugrion O, Dardé ML, Mercier A. Combining spatial analysis and host population genetics to gain insights into the mode of transmission of a pathogen: The example of Toxoplasma gondii in mice. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 78:104142. [PMID: 31841702 DOI: 10.1016/j.meegid.2019.104142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/08/2019] [Accepted: 12/10/2019] [Indexed: 02/06/2023]
Abstract
Toxoplasma gondii is a ubiquitous highly prevalent zoonotic protozoan. Cats are the definitive hosts, while all other warm-blooded animals are intermediate hosts for this parasite. Commensal rodents, being the main prey of cats, are probably the major reservoir for T. gondii in the domestic environment. Rodents can acquire infection after ingestion of oocysts that have sporulated in the environment. However, experimental evidence shows that vertical transmission can be sufficient for the perpetuation of transmission between generations of mice. In natural settings, the relative epidemiological importance of vertical transmission over oral transmission is a matter of debate and raises the question of the possibility of a T. gondii cycle in the absence of cats. In the present study, we took advantage of an extensive survey of commensal rodents in Dakar, Senegal, where the house mouse is the predominant putative reservoir of T. gondii. Mice genotypes and spatial location through GPS referencing of all trapping localizations were investigated in relation to T. gondii infection in eight sites of the city of Dakar and on Goree Island. In each sampling site, the occurrence of over-prevalence zones of T. gondii infection was investigated through Kulldorf's statistic using SaTScan software. Genetic structure and relatedness between mice were investigated within each over-prevalence zone, in order to find clues of transmission between related mice. Within each of the four over-prevalence zones identified across nine sites, infected mice belonged to more than one genetic group. No association between the degree of relatedness and the occurrence of T. gondii infection could be detected. These findings suggest an environmental source of infection for mice associated with localized putative foci of environmental contamination and support an oral route of infection for mice from Dakar rather than a cycle based on vertical transmission. However, further investigations based on a denser sampling in different epidemiological contexts are recommended.
Collapse
Affiliation(s)
- Lokman Galal
- INSERM UMR_S 1094, Neuroépidémiologie Tropicale, Laboratoire de Parasitologie-Mycologie, Faculté de Médecine, Université de Limoges, Limoges 87025, France.
| | - Claire Stragier
- BIOPASS (IRD-CBGP, ISRA, UCAD), Campus de Bel-Air, BP 1386, CP 18524 Dakar, Senegal
| | - Farid Boumédiène
- INSERM UMR_S 1094, Neuroépidémiologie Tropicale, Laboratoire de Parasitologie-Mycologie, Faculté de Médecine, Université de Limoges, Limoges 87025, France
| | - Azra Hamidović
- INSERM UMR_S 1094, Neuroépidémiologie Tropicale, Laboratoire de Parasitologie-Mycologie, Faculté de Médecine, Université de Limoges, Limoges 87025, France
| | - Océane Maugrion
- INSERM UMR_S 1094, Neuroépidémiologie Tropicale, Laboratoire de Parasitologie-Mycologie, Faculté de Médecine, Université de Limoges, Limoges 87025, France
| | - Marie-Laure Dardé
- INSERM UMR_S 1094, Neuroépidémiologie Tropicale, Laboratoire de Parasitologie-Mycologie, Faculté de Médecine, Université de Limoges, Limoges 87025, France; Centre National de Référence Toxoplasmose/Toxoplasma Biological Resource Center, CHU Limoges, 87042 Limoges, France
| | - Aurélien Mercier
- INSERM UMR_S 1094, Neuroépidémiologie Tropicale, Laboratoire de Parasitologie-Mycologie, Faculté de Médecine, Université de Limoges, Limoges 87025, France; Centre National de Référence Toxoplasmose/Toxoplasma Biological Resource Center, CHU Limoges, 87042 Limoges, France
| |
Collapse
|
11
|
Boillat M, Hammoudi PM, Dogga SK, Pagès S, Goubran M, Rodriguez I, Soldati-Favre D. Neuroinflammation-Associated Aspecific Manipulation of Mouse Predator Fear by Toxoplasma gondii. Cell Rep 2020; 30:320-334.e6. [PMID: 31940479 PMCID: PMC6963786 DOI: 10.1016/j.celrep.2019.12.019] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/27/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022] Open
Abstract
In rodents, the decrease of felid aversion induced by Toxoplasma gondii, a phenomenon termed fatal attraction, is interpreted as an adaptive manipulation by the neurotropic protozoan parasite. With the aim of understanding how the parasite induces such specific behavioral modifications, we performed a multiparametric analysis of T. gondii-induced changes on host behavior, physiology, and brain transcriptome as well as parasite cyst load and distribution. Using a set of complementary behavioral tests, we provide strong evidence that T. gondii lowers general anxiety in infected mice, increases explorative behaviors, and surprisingly alters predator aversion without selectivity toward felids. Furthermore, we show a positive correlation between the severity of the behavioral alterations and the cyst load, which indirectly reflects the level of inflammation during brain colonization. Taken together, these findings refute the myth of a selective loss of cat fear in T. gondii-infected mice and point toward widespread immune-related alterations of behaviors.
Collapse
Affiliation(s)
- Madlaina Boillat
- Department of Genetics and Evolution, Faculty of Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Pierre-Mehdi Hammoudi
- Department of Microbiology and Molecular Medicine, Faculty of Medicine-University of Geneva CMU, 1 rue Michel-Servet 1211 Geneva 4, Switzerland
| | - Sunil Kumar Dogga
- Department of Microbiology and Molecular Medicine, Faculty of Medicine-University of Geneva CMU, 1 rue Michel-Servet 1211 Geneva 4, Switzerland
| | - Stéphane Pagès
- Wyss Center for Bio- and Neuroengineering, Geneva, Switzerland; Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Maged Goubran
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Ivan Rodriguez
- Department of Genetics and Evolution, Faculty of Sciences, University of Geneva, 1211 Geneva, Switzerland.
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine-University of Geneva CMU, 1 rue Michel-Servet 1211 Geneva 4, Switzerland.
| |
Collapse
|
12
|
Herbison R, Evans S, Doherty JF, Algie M, Kleffmann T, Poulin R. A molecular war: convergent and ontogenetic evidence for adaptive host manipulation in related parasites infecting divergent hosts. Proc Biol Sci 2019; 286:20191827. [PMID: 31744433 DOI: 10.1098/rspb.2019.1827] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mermithids (phylum Nematoda) and hairworms (phylum Nematomorpha) somehow drive their arthropod hosts into water, which is essential for the worms' survival after egression. The mechanisms behind this behavioural change have been investigated in hairworms, but not in mermithids. Establishing a similar mechanistic basis for host behavioural change between these two distantly related parasitic groups would provide strong convergent evidence for adaptive manipulation and insight into how these parasites modify and/or create behaviour. Here, we search for this convergence, and also contrast changes in physiology between hosts infected with immature and mature mermithids to provide the first ontogenetic evidence for adaptive manipulation by disentangling host response and pathology from the parasite's apparent manipulative effects. We used SWATH-mass spectrometry on brains of Forficula auricularia (earwig) and Bellorchestia quoyana (sandhopper), infected with the mermithids Mermis nigrescens and Thaumamermis zealandica, respectively, at both immature and mature stages of infection, to quantify proteomic changes resulting from mermithid infection. Across both hosts (and hairworm-infected hosts, from earlier studies), the general function of dysregulated proteins was conserved. Proteins involved in energy generation/mobilization were dysregulated, corroborating reports of erratic/hyperactive behaviour in infected hosts. Dysregulated proteins involved in axon/dendrite and synapse modulation were also common to all hosts, suggesting neuronal manipulation is involved in inducing positive hydrotaxis. Furthermore, downregulation of CamKII and associated proteins suggest manipulation of memory also contributes to the behavioural shift.
Collapse
Affiliation(s)
- Ryan Herbison
- Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Steven Evans
- Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | | | - Michael Algie
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Torsten Kleffmann
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Robert Poulin
- Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
13
|
Reiling SJ, Measures L, Feng S, Boone R, Merks H, Dixon BR. Toxoplasma gondii, Sarcocystis sp. and Neospora caninum-like parasites in seals from northern and eastern Canada: potential risk to consumers. Food Waterborne Parasitol 2019; 17:e00067. [PMID: 32095635 PMCID: PMC7033983 DOI: 10.1016/j.fawpar.2019.e00067] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 12/18/2022] Open
Abstract
Zoonotic parasites of seals that are harvested for food may pose a health risk when seal meat or organ tissues of infected animals are eaten raw or undercooked. In this study, 124 tissue samples from 81 seals, comprising four species, were collected from northern and eastern Canada. Tissues from 23 ringed seals (Pusa hispida), 8 hooded seals (Cystophora cristata), 21 harp seals (Pagophilus groenlandicus), and 29 grey seals (Halichoerus grypus) were tested for parasites of the Sarcocystidae family including Toxoplasma gondii, Sarcocystis spp., and Neospora spp. using nested PCR followed by Sanger sequencing. Toxoplasma gondii DNA was present in 26% of ringed seals, 63% of hooded seals, 57% of harp seals, and 31% of grey seals. Sarcocystis sp. DNA was found in 9% of ringed seals, 13% of hooded seals, 14% of harp seals, and 4% of grey seals, while N. caninum-like DNA was present in 26% of ringed seals. While it is unclear how pinnipeds may become infected with these protozoans, horizontal transmission is most likely. However, one harp seal pup (4 days old) was PCR-positive for T. gondii, suggesting vertical transmission may also occur. Phylogenetic analysis of the 18S gene region indicates that Sarcocystis sp. in these seals belongs to a unique genotype. Furthermore, this study represents a new host report for T. gondii in harp seals, a new host and geographic report for N. caninum-like parasites in ringed seals, and four new hosts and geographic reports for Sarcocystis sp. These results demonstrate that parasites of the Sarcocystidae family are prevalent in northern and eastern Canadian seals. While the zoonotic potential of Sarcocystis sp. and the N. caninum-like parasite are unclear, consumption of raw or undercooked seal meat or organ tissues pose a risk of T. gondii infection to consumers. Tissues from ringed, hooded, harp and grey seals in Canada were PCR-positive for Toxoplasma, Sarcocystis and Neospora. Raw or undercooked seal meat may pose a risk for zoonotic transmission of T. gondii to consumers. The risk for zoonotic transmission of Sarcocystis sp. and the Neospora caninum-like parasite is unknown.
Collapse
Affiliation(s)
- Sarah J. Reiling
- Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Lena Measures
- Fisheries and Oceans Canada, Maurice Lamontagne Institute, Mont-Joli, QC, G5H 3Z4, Canada
| | - Sandy Feng
- Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Ryan Boone
- Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Harriet Merks
- Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Brent R. Dixon
- Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, ON, K1A 0K9, Canada
- Corresponding author. Address: 251 Sir Frederick Banting Driveway, A.L. 2204E, Ottawa, ON, K1A 0K9, Canada.
| |
Collapse
|
14
|
Ihara F, Tanaka S, Fereig RM, Nishimura M, Nishikawa Y. Involvement of Toll-like receptor 2 in the cerebral immune response and behavioral changes caused by latent Toxoplasma infection in mice. PLoS One 2019; 14:e0220560. [PMID: 31404078 PMCID: PMC6690529 DOI: 10.1371/journal.pone.0220560] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 07/18/2019] [Indexed: 02/07/2023] Open
Abstract
Subacute and chronic infections with the intracellular protozoan parasite Toxoplasma gondii are associated with an increased risk of psychiatric diseases like schizophrenia. However, little is known about the mechanisms involved in T. gondii-induced neuronal disorders. Recently, we reported that Toll-like receptor 2 (TLR2) was required to initiate the innate immune response in cultured mouse brain cells. However, how TLR2 contributes to latent infection with T. gondii remains unclear. Therefore, we examined the role of TLR2 in brain pathology and behavior using wild-type (TLR2+/+) and TLR2-deficient (TLR2-/-) mice. The behavioral analyses showed that TLR2 deficiency increased the anxiety state of the uninfected and infected animals alike, and TLR2 deficiency showed no relationship with the infection. In the contextual and cued fear-conditioning tests, T. gondii infection decreased the mouse freezing reaction while TLR2 deficiency increased it, but there was no interaction between the two factors. Our histopathological analysis showed that the TLR2+/+ and TLR2-/- mice had similar brain lesions at 30 days post infection (dpi) with T. gondii. Higher numbers of parasites were detected in the brains of the TLR2-/- mice than in those from the TLR2+/+ mice at 30 dpi, but not at 7 and 14 dpi. No significant differences were observed in the proinflammatory gene expression levels in the TLR2+/+ and TLR2-/- mice. Therefore, it appears that TLR2 signaling in the brain might contribute to the control of parasite growth, but not to brain pathology or the impaired fear memory response induced by infection with T. gondii.
Collapse
Affiliation(s)
- Fumiaki Ihara
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, Japan
| | - Sachi Tanaka
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, Japan
| | - Ragab M. Fereig
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, Japan
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena City, Qena, Egypt
| | - Maki Nishimura
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, Japan
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, Japan
- * E-mail:
| |
Collapse
|
15
|
|
16
|
Torniainen-Holm M, Suvisaari J, Lindgren M, Härkänen T, Dickerson F, Yolken RH. The lack of association between herpes simplex virus 1 or Toxoplasma gondii infection and cognitive decline in the general population: An 11-year follow-up study. Brain Behav Immun 2019; 76:159-164. [PMID: 30465879 DOI: 10.1016/j.bbi.2018.11.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/28/2018] [Accepted: 11/18/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Inflammation has been suggested to be one, possibly treatable, cause of cognitive decline and dementia. The purpose of the present article was to investigate whether the herpes simplex virus 1 (HSV-1) or Toxoplasma gondii (T. gondii) infections are related to cognitive decline or dementia. METHOD The Health 2000 survey, conducted 2000-2001, is a population-representative sample of people over 30 years old that involved 7112 participants. The sample was followed up in the year 2011, in the Health 2011 study. At both time points, cognitive performance was assessed with two tests from the Consortium to Establish a Registry for Alzheimer's Disease (CERAD) assessing verbal fluency and verbal learning. In addition, the abbreviated Mini-Mental State Examination was administered to people aged over 55. In addition, tests assessing reaction and movement time were performed at baseline. Dementia diagnoses from nationwide health care registers were followed up until the end of year 2013. The presence of HSV-1 and T. gondii immunoglobulin G (IgG) was determined by solid-phase immunoassay at baseline. RESULTS HSV-1 or T. gondii seropositivity, or IgG antibody levels, were not associated with cognitive decline when investigated as infection × time interactions. In addition, the infections were not associated with the risk of dementia. CONCLUSIONS In a large sample of participants that is representative of the whole country and with a long follow-up, the results suggest that latent HSV-1 or T. gondii infections are not related to either decline in cognitive performance or dementia risk.
Collapse
Affiliation(s)
- M Torniainen-Holm
- Mental Health Unit, National Institute for Health and Welfare, Helsinki, Finland.
| | - J Suvisaari
- Mental Health Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - M Lindgren
- Mental Health Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - T Härkänen
- Health Monitoring Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - F Dickerson
- Stanley Research Program, Sheppard Pratt Health System, Baltimore, MD, USA
| | - R H Yolken
- Stanley Division of Developmental Neurovirology, Stanley Neurovirology Laboratory, Johns Hopkins University, School of Medicine, Baltimore, USA
| |
Collapse
|
17
|
Petkova I, Abbey-Lee RN, Løvlie H. Parasite infection and host personality: Glugea-infected three-spined sticklebacks are more social. Behav Ecol Sociobiol 2018; 72:173. [PMID: 30369708 PMCID: PMC6182751 DOI: 10.1007/s00265-018-2586-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/20/2018] [Accepted: 09/24/2018] [Indexed: 01/04/2023]
Abstract
Abstract The existence of animal personality is now well-documented, although the causes and consequences of this phenomenon are still largely unclear. Parasite infection can have pervasive effects on hosts, including altering host behaviour, and may thus contribute to differences in host personality. We investigated the relationship between the three-spined stickleback and its common parasite Glugea anomala, with focus on differences in host personality. Naturally infected and uninfected individuals were assayed for the five personality traits activity, exploration, boldness, sociability, and aggression. If infected fish behaved differently from uninfected, to benefit this parasite with horizontal transmission, we predicted behaviour increasing interactions with other sticklebacks to increase. Infection status explained differences in host personality. Specifically, Glugea-infected individuals were more social than uninfected fish. This confirms a link between parasite infection and host behaviour, and a relationship which may improve the horizontal transmission of Glugea. However, future studies need to establish the consequences of this for the parasite, and the causality of the parasite-host personality relationship. Significance statement Parasite infection that alters host behaviour could be a possible avenue of research into the causes of animal personality. We studied the link between infection and personality using the three-spined stickleback and its parasite Glugea anomala. We predicted that infected individuals would be more prone to interact with other sticklebacks, since this would improve transmission of this parasite. The personality of uninfected and naturally infected fish was measured and we observed that Glugea-infected sticklebacks were more social. Our results confirm a link between parasitism and variation in host personality. Electronic supplementary material The online version of this article (10.1007/s00265-018-2586-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Irina Petkova
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, SE-581 83 Linköping, Sweden
- School of Biological Sciences, Centre for Ecology, Evolution and Behaviour, Royal Holloway University of London, Egham, TW20 0EX UK
| | - Robin N. Abbey-Lee
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, SE-581 83 Linköping, Sweden
| | - Hanne Løvlie
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, SE-581 83 Linköping, Sweden
| |
Collapse
|
18
|
Iqbal A, Measures L, Lair S, Dixon B. Toxoplasma gondii infection in stranded St. Lawrence Estuary beluga Delphinapterus leucas in Quebec, Canada. DISEASES OF AQUATIC ORGANISMS 2018; 130:165-175. [PMID: 30259869 DOI: 10.3354/dao03262] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The St. Lawrence Estuary (SLE) beluga Delphinapterus leucas in Quebec, Canada, is endangered due to intensive hunting in the 19th and 20th centuries and subsequent anthropogenic contamination and human activities in the region. Infectious disease is a primary cause of death in this population. The protozoan parasite Toxoplasma gondii is reported in numerous marine mammal species, including beluga. In the present study, 55 tissue samples (heart and brain) collected from 34 stranded SLE beluga were analysed by PCR followed by DNA sequencing and restriction fragment length polymorphism analysis (RFLP) to determine the PCR prevalence and genotypes of T. gondii in these beluga. Of 34 beluga tested, 44% were positive for T. gondii by PCR, with males having a higher prevalence of infection than females and with more infected neonates and juveniles than adults. Molecular analyses indicated that all T. gondii infecting stranded SLE beluga grouped into genotype II, which predominates in humans. While our results indicate that a high prevalence of stranded beluga are PCR-positive for T. gondii infection, very few deaths are attributed to toxoplasmosis based on published necropsy results. Toxoplasma gondii can cause a range of diseases, including neurological deficits, and more data are needed to investigate this parasite's effect on population recovery.
Collapse
Affiliation(s)
- Asma Iqbal
- Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, ON K1A 0K9, Canada
| | | | | | | |
Collapse
|
19
|
Insights into the molecular basis of host behaviour manipulation by Toxoplasma gondii infection. Emerg Top Life Sci 2017; 1:563-572. [PMID: 33525856 DOI: 10.1042/etls20170108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/22/2017] [Accepted: 11/27/2017] [Indexed: 12/22/2022]
Abstract
Typically illustrating the 'manipulation hypothesis', Toxoplasma gondii is widely known to trigger sustainable behavioural changes during chronic infection of intermediate hosts to enhance transmission to its feline definitive hosts, ensuring survival and dissemination. During the chronic stage of infection in rodents, a variety of neurological dysfunctions have been unravelled and correlated with the loss of cat fear, among other phenotypic impacts. However, the underlying neurological alteration(s) driving these behavioural modifications is only partially understood, which makes it difficult to draw more than a correlation between T. gondii infection and changes in brain homeostasis. Moreover, it is barely known which among the brain regions governing fear and stress responses are preferentially affected during T. gondii infection. Studies aiming at an in-depth dissection of underlying molecular mechanisms occurring at the host and parasite levels will be discussed in this review. Addressing this reminiscent topic in the light of recent technical progress and new discoveries regarding fear response, olfaction and neuromodulator mechanisms could contribute to a better understanding of this complex host-parasite interaction.
Collapse
|
20
|
Ehret T, Torelli F, Klotz C, Pedersen AB, Seeber F. Translational Rodent Models for Research on Parasitic Protozoa-A Review of Confounders and Possibilities. Front Cell Infect Microbiol 2017. [PMID: 28638807 PMCID: PMC5461347 DOI: 10.3389/fcimb.2017.00238] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Rodents, in particular Mus musculus, have a long and invaluable history as models for human diseases in biomedical research, although their translational value has been challenged in a number of cases. We provide some examples in which rodents have been suboptimal as models for human biology and discuss confounders which influence experiments and may explain some of the misleading results. Infections of rodents with protozoan parasites are no exception in requiring close consideration upon model choice. We focus on the significant differences between inbred, outbred and wild animals, and the importance of factors such as microbiota, which are gaining attention as crucial variables in infection experiments. Frequently, mouse or rat models are chosen for convenience, e.g., availability in the institution rather than on an unbiased evaluation of whether they provide the answer to a given question. Apart from a general discussion on translational success or failure, we provide examples where infections with single-celled parasites in a chosen lab rodent gave contradictory or misleading results, and when possible discuss the reason for this. We present emerging alternatives to traditional rodent models, such as humanized mice and organoid primary cell cultures. So-called recombinant inbred strains such as the Collaborative Cross collection are also a potential solution for certain challenges. In addition, we emphasize the advantages of using wild rodents for certain immunological, ecological, and/or behavioral questions. The experimental challenges (e.g., availability of species-specific reagents) that come with the use of such non-model systems are also discussed. Our intention is to foster critical judgment of both traditional and newly available translational rodent models for research on parasitic protozoa that can complement the existing mouse and rat models.
Collapse
Affiliation(s)
- Totta Ehret
- FG16 - Mycotic and Parasitic Agents and Mycobacteria, Robert Koch InstituteBerlin, Germany.,Department of Molecular Parasitology, Humboldt-Universität zu BerlinBerlin, Germany
| | - Francesca Torelli
- FG16 - Mycotic and Parasitic Agents and Mycobacteria, Robert Koch InstituteBerlin, Germany
| | - Christian Klotz
- FG16 - Mycotic and Parasitic Agents and Mycobacteria, Robert Koch InstituteBerlin, Germany
| | - Amy B Pedersen
- School of Biological Sciences, University of EdinburghEdinburgh, United Kingdom
| | - Frank Seeber
- FG16 - Mycotic and Parasitic Agents and Mycobacteria, Robert Koch InstituteBerlin, Germany
| |
Collapse
|
21
|
Kramer P, Bressan P. Humans as Superorganisms: How Microbes, Viruses, Imprinted Genes, and Other Selfish Entities Shape Our Behavior. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2016; 10:464-81. [PMID: 26177948 DOI: 10.1177/1745691615583131] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Psychologists and psychiatrists tend to be little aware that (a) microbes in our brains and guts are capable of altering our behavior; (b) viral DNA that was incorporated into our DNA millions of years ago is implicated in mental disorders; (c) many of us carry the cells of another human in our brains; and (d) under the regulation of viruslike elements, the paternally inherited and maternally inherited copies of some genes compete for domination in the offspring, on whom they have opposite physical and behavioral effects. This article provides a broad overview, aimed at a wide readership, of the consequences of our coexistence with these selfish entities. The overarching message is that we are not unitary individuals but superorganisms, built out of both human and nonhuman elements; it is their interaction that determines who we are.
Collapse
Affiliation(s)
- Peter Kramer
- Department of General Psychology, University of Padua, Italy
| | - Paola Bressan
- Department of General Psychology, University of Padua, Italy
| |
Collapse
|
22
|
Mahmoudvand H, Ziaali N, Aghaei I, Sheibani V, Shojaee S, Keshavarz H, Shabani M. The possible association between Toxoplasma gondii infection and risk of anxiety and cognitive disorders in BALB/c mice. Pathog Glob Health 2016; 109:369-76. [PMID: 26924347 DOI: 10.1080/20477724.2015.1117742] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
There are conflicting reports concerning the association of Toxoplasma gondii infection with increased risk of mental disorders. This investigation will provide a good understanding about defining the possible association between T. gondii exposure and risk of anxiety and cognitive alterations. Besides, a secondary objective of this study was to determine the effect of pioglitazone administration on the possible alterations induced by T. gondii exposure. Male BALB/c mice were used for this study. The animal model of Toxoplasma infection was established by the intraperitoneal inoculation of 20-25 tissue cysts from Tehran strain of T. gondii. Pioglitazone (20 mg/kg, i.p.1/day) was administered to the animals for 2 weeks before behavioural tests. Behavioural tests including open-field, elevated plus-maze and passive avoidance learning were evaluated in the groups. Since cytokines were implicated as a contributing factor for mood disorders, the mRNA levels of TNF-α, IL-1β, IL-6 as well as inducible nitric oxide synthase (iNOs) were examined by real-time PCR. Findings demonstrated that T. gondii caused anxiety-like symptoms and impaired cognitive functions of the infected BALB/c mice, whereas pioglitazone, a peroxisome proliferator-activated receptor agonist, showed a promising effect against the cognitive impairments induced by Toxoplasma infection. The results also revealed that the mRNA levels of the aforementioned cytokines were significantly (p < 0.05) increased in the infected mice compared to the uninfected BALB/c ones. Pioglitazone can be offered as a potential neuroprotective agent in the treatment of patients with T. gondii infection that manifests anxiety and cognitive impairments; however, further studies are needed to clarify the exact mechanisms.
Collapse
Affiliation(s)
- Hossein Mahmoudvand
- 1 Department of Medical Parasitology and Mycology, Lorestan University of Medical Sciences , Khorramabad, Iran
| | | | | | | | | | | | | |
Collapse
|
23
|
Toxoplasma gondii Infection in Mice Impairs Long-Term Fear Memory Consolidation through Dysfunction of the Cortex and Amygdala. Infect Immun 2016; 84:2861-70. [PMID: 27456832 DOI: 10.1128/iai.00217-16] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/19/2016] [Indexed: 11/20/2022] Open
Abstract
Chronic infection with Toxoplasma gondii becomes established in tissues of the central nervous system, where parasites may directly or indirectly modulate neuronal function. Epidemiological studies have revealed that chronic infection in humans is a risk factor for developing mental diseases. However, the mechanisms underlying parasite-induced neuronal dysfunction in the brain remain unclear. Here, we examined memory associated with conditioned fear in mice and found that T. gondii infection impairs consolidation of conditioned fear memory. To examine the brain pathology induced by T. gondii infection, we analyzed the parasite load and histopathological changes. T. gondii infects all brain areas, yet the cortex exhibits more severe tissue damage than other regions. We measured neurotransmitter levels in the cortex and amygdala because these regions are involved in fear memory expression. The levels of dopamine metabolites but not those of dopamine were increased in the cortex of infected mice compared with those in the cortex of uninfected mice. In contrast, serotonin levels were decreased in the amygdala and norepinephrine levels were decreased in the cortex and amygdala of infected mice. The levels of cortical dopamine metabolites were associated with the time spent freezing in the fear-conditioning test. These results suggest that T. gondii infection affects fear memory through dysfunction of the cortex and amygdala. Our findings provide insight into the mechanisms underlying the neurological changes seen during T. gondii infection.
Collapse
|
24
|
Mahmoudvand H, Sheibani V, Shojaee S, Mirbadie SR, Keshavarz H, Esmaeelpour K, Keyhani AR, Ziaali N. Toxoplasma gondii Infection Potentiates Cognitive Impairments of Alzheimer's Disease in the BALB/c Mice. J Parasitol 2016; 102:629-635. [PMID: 27513205 DOI: 10.1645/16-28] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
This study tests the hypothesis that in chronic Toxoplasma gondii infection communication among immune cells promotes neuroinflammation through cytokine networks and potentiate cognitive impairments in BALB/c mice with Alzheimer's disease (AD). The animal model of Toxoplasma infection was established by the intraperitoneal inoculation of 20-25 tissue cysts from the Tehran strain of T. gondii . We injected amyloid-beta 1-42 peptide (Aβ1-42, 1 and 2 μl) into the hippocampus of BALB/c mice to establish an animal model of AD. The behavioral experiments such as spatial learning and memory were performed using the Morris water maze test. The mRNA levels of TNF-α, IL-1β, IFN-γ, and inducible nitric oxide synthase (iNOS) were examined by real-time PCR. We found that T. gondii infection caused AD-like symptoms and impaired learning and memory functions of the infected BALB/c mice. We also found that in Toxoplasma infection + Aβ1-42 (1 μl) group, T. gondii infection could potentiate AD in infected mice receiving subdoses of Aβ1-42 (1 μl) and caused considerable impairment in learning and memory functions similar to AD group. Comparison of the results demonstrated that mRNA levels of IL-1β, TNF-α, IFN-γ, and iNOS significantly (P < 0.001) increased in T. gondii + Aβ1-42 (1 μl) in comparison with the other tested groups. The obtained results showed that chronic T. gondii infection communication among immune cells promotes neuroinflammation through cytokine networks and induces pathological progression of AD in the mice brain, whereas the presence of neuroanatomical Toxoplasma tissue cysts in the brain could also affect the behavioral functions in T. gondii -infected mice.
Collapse
Affiliation(s)
- Hossein Mahmoudvand
- Department of Medical Parasitology and Mycology, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Vahid Sheibani
- Department of Medical Parasitology and Mycology, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Saeideh Shojaee
- Department of Medical Parasitology and Mycology, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Seyed Reza Mirbadie
- Department of Medical Parasitology and Mycology, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hossein Keshavarz
- Department of Medical Parasitology and Mycology, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Khadijeh Esmaeelpour
- Department of Medical Parasitology and Mycology, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Ali Reza Keyhani
- Department of Medical Parasitology and Mycology, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Naser Ziaali
- Department of Medical Parasitology and Mycology, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
25
|
|
26
|
Hillman AE, Lymbery AJ, Thompson RA. Is Toxoplasma gondii a threat to the conservation of free-ranging Australian marsupial populations? Int J Parasitol Parasites Wildl 2016; 5:17-27. [PMID: 27141439 PMCID: PMC4840267 DOI: 10.1016/j.ijppaw.2015.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 12/07/2015] [Accepted: 12/11/2015] [Indexed: 11/25/2022]
Abstract
It has often been asserted that Australian marsupial species are particularly susceptible to Toxoplasma gondii infection and to clinical toxoplasmosis following infection. This implicates T. gondii as a potential threat to marsupial population viability, and contrasts to what is known of T. gondii in populations of several other host species. We reviewed the literature, and found a lack of scientifically robust evidence addressing the occurrence of T. gondii infection in free-ranging populations of Australian marsupial species, and the impacts of the infection on population health. Key limitations included a lack of studies in free-ranging marsupial populations, study findings susceptible to substantial chance influences, and selection, misclassification and confounding biases. The lack of scientifically robust data available on this topic indicates that assertions that free-ranging populations of Australian marsupials are particularly susceptible to T. gondii infection and to toxoplasmosis are premature. The threat of T. gondii to the viability of free-ranging marsupial populations should therefore be regarded, at this stage, as a hypothesis.
Collapse
|
27
|
Changes in neurotransmitter levels and expression of immediate early genes in brain of mice infected with Neospora caninum. Sci Rep 2016; 6:23052. [PMID: 26971577 PMCID: PMC4789785 DOI: 10.1038/srep23052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 02/25/2016] [Indexed: 01/21/2023] Open
Abstract
Neospora caninum is an obligate intracellular parasite that causes neurological disorders in dogs and cattle. The majority of host animals are asymptomatic at the chronic stage of infection. However, it remains unclear whether cerebral function is normal in asymptomatic animals. In this study, mice were infected with N. caninum (strain Nc-1) and their brains were examined to understand changes in cerebral function at the chronic stage of infection. Mice infected with N. caninum showed impaired locomotor activity, but no differences in clinical symptoms were observed. In the brains of infected mice, parasites were distributed throughout the brain and histological lesions were observed everywhere except for the cerebellum. Expression levels of proinflammatory cytokines, interferon-gamma and tumour necrosis factor-alpha, were highly upregulated in several brain regions of infected mice. Additionally, the level of neurotransmitters glutamate, glycine, gamma-aminobutyric acid, dopamine and 5-hydroxytryptamine, were altered in infected mice compared with those of uninfected mice. Interestingly, the expression levels of immediately early genes, c-Fos and Arc, in the brain of infected mice were lower than those of in uninfected mice. Our findings may provide insight into neurological disorders associated with N. caninum infection.
Collapse
|
28
|
Tan D, Vyas A. Toxoplasma gondii infection and testosterone congruently increase tolerance of male rats for risk of reward forfeiture. Horm Behav 2016; 79:37-44. [PMID: 26774464 DOI: 10.1016/j.yhbeh.2016.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 01/01/2016] [Accepted: 01/11/2016] [Indexed: 12/26/2022]
Abstract
Decision making under risk involves balancing the potential of gaining rewards with the possibility of loss and/or punishment. Tolerance to risk varies between individuals. Understanding the biological basis of risk tolerance is pertinent because excessive tolerance contributes to adverse health and safety outcomes. Yet, not much is known about biological factors mediating inter-individual variability in this regard. We investigate if latent Toxoplasma gondii infection can cause risk tolerance. Using a rodent model of the balloon analogous risk task, we show that latent T. gondii infection leads to a greater tolerance of reward forfeiture. Furthermore, effects of the infection on risk can be recapitulated with testosterone supplementation alone, demonstrating that greater testosterone synthesis by the host post-infection is sufficient to change risk tolerance. T. gondii is a frequent parasite of humans and animals. Thus, the infection status can potentially explain some of the inter-individual variability in the risky decision making.
Collapse
Affiliation(s)
- Donna Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Ajai Vyas
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
29
|
Host Manipulation by Parasites: A Look Back Before Moving Forward. Trends Parasitol 2015; 31:563-570. [DOI: 10.1016/j.pt.2015.07.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/14/2015] [Accepted: 07/16/2015] [Indexed: 01/12/2023]
|
30
|
Vasudevan A, Kumar V, Chiang YN, Yew JY, Cheemadan S, Vyas A. α2u-globulins mediate manipulation of host attractiveness in Toxoplasma gondii-Rattus novergicus association. ISME JOURNAL 2015; 9:2112-5. [PMID: 25853804 DOI: 10.1038/ismej.2015.33] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 01/22/2015] [Accepted: 02/06/2015] [Indexed: 11/09/2022]
Abstract
Uninfected female rats (Rattus novergicus) exhibit greater attraction to the males infected with protozoan parasite Toxoplasma gondii. This phenomenon is contrary to the aversion towards infected males observed in multitude of other host-parasite associations. In this report, we describe a proximate mechanism for this anomaly. We demonstrate that T. gondii infection enhances hepatic production and urinary excretion of α2u-globulins in rats. We further demonstrate that α2u-globulins are sufficient to recapitulate male sexual attractiveness akin to effects of the infection. This manipulation possibly results in greater horizontal transmission of this parasite between the infected male and the uninfected female. It supports the notion that in some evolutionary niches parasites can alter host sexual signaling, likely leading to an increased rate of sexual transmission.
Collapse
Affiliation(s)
- Anand Vasudevan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Vineet Kumar
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | | - Joanne Y Yew
- 1] Temasek Life Sciences Laboratories, Singapore, Singapore [2] Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Sabna Cheemadan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Ajai Vyas
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
31
|
Vyas A. Extended epigenotype in a Rattus novergicus - Toxoplasma gondii association. Commun Integr Biol 2015; 8:e992743. [PMID: 26844540 PMCID: PMC4594435 DOI: 10.4161/19420889.2014.992743] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 09/19/2014] [Indexed: 11/19/2022] Open
Abstract
Several studies demonstrate that rats (Rattus novergicus) infected with protozoan parasite Toxoplasma gondii exhibit lesser fear to cat odors. This is thought to increase transmission of the parasite to its definitive hosts, i.e. cats. This is an example of extended phenotype where a gene of an organism allegedly creates a phenotype in another organism. We examined a possible proximate mechanism for this phenotype, describing an epigenetic change in arginine vasopressin gene in medial amygdala of male rats. Exogenously mimicking medial amygdala DNA hypomethylation resulted in reduction of fear to cat odors in uninfected animals, thus suggesting sufficiency. Systemic blockade of infection-induced DNA hypomethylation countermanded infection-induced behavioral change, thus suggesting necessity. This leads us to propose an epigenetic basis for this extended phenotype.
Collapse
Affiliation(s)
- Ajai Vyas
- School of Biological Sciences; Nanyang Technological University ; Singapore
| |
Collapse
|
32
|
Hari Dass SA, Vyas A. Toxoplasma gondii infection reduces predator aversion in rats through epigenetic modulation in the host medial amygdala. Mol Ecol 2014; 23:6114-22. [PMID: 25142402 DOI: 10.1111/mec.12888] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/02/2014] [Accepted: 08/06/2014] [Indexed: 12/14/2022]
Abstract
Male rats (Rattus novergicus) infected with protozoan Toxoplasma gondii relinquish their innate aversion to the cat odours. This behavioural change is postulated to increase transmission of the parasite to its definitive felid hosts. Here, we show that the Toxoplasma gondii infection institutes an epigenetic change in the DNA methylation of the arginine vasopressin promoter in the medial amygdala of male rats. Infected animals exhibit hypomethylation of arginine vasopressin promoter, leading to greater expression of this nonapeptide. The infection also results in the greater activation of the vasopressinergic neurons after exposure to the cat odour. Furthermore, we show that loss of fear in the infected animals can be rescued by the systemic hypermethylation and recapitulated by directed hypomethylation in the medial amygdala. These results demonstrate an epigenetic proximate mechanism underlying the extended phenotype in the Rattus novergicus-Toxoplasma gondii association.
Collapse
|
33
|
Daniels BP, Sestito SR, Rouse ST. An expanded task battery in the Morris water maze reveals effects of Toxoplasma gondii infection on learning and memory in rats. Parasitol Int 2014; 64:5-12. [PMID: 25220582 DOI: 10.1016/j.parint.2014.09.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/11/2014] [Accepted: 09/02/2014] [Indexed: 11/16/2022]
Abstract
Infection with the neurotropic parasite Toxoplasma gondii is widespread among human populations; however, the impacts of latent central nervous system (CNS) T. gondii infection have only recently come to light. Epidemiological evidence in humans and experimental studies in rodents have revealed a number of neurological and behavioral sequelae following the establishment of latent CNS toxoplasmosis. Here, we report alterations in learning and memory task performance in latently infected rats using the Morris water maze. While simple spatial reference learning was intact, infected rodents exhibited poor performance compared to controls in probe trials requiring spatial memory recall and progressively poorer performance with increasing time intervals before memory testing, but, surprisingly, enhanced performance in reversal learning tasks. Despite obvious changes to memory task performance, no cysts were detected in the hippocampi of infected rats. Instead, cysts were stochastically distributed across the entire brain, suggesting that behavioral alterations in this study were due to accumulated changes in neurophysiology across multiple anatomical regions. Together, these data provide new evidence that latent toxoplasmosis contributes to neurocognitive symptoms in mammalian hosts, and does so on a broad anatomical scale within the CNS.
Collapse
Affiliation(s)
- Brian P Daniels
- Division of Science, Southern Wesleyan University, Central, SC 29631, USA
| | | | - Susan T Rouse
- Division of Science, Southern Wesleyan University, Central, SC 29631, USA.
| |
Collapse
|
34
|
Morger J, Bajnok J, Boyce K, Craig PS, Rogan MT, Lun ZR, Hide G, Tschirren B. Naturally occurring Toll-like receptor 11 (TLR11) and Toll-like receptor 12 (TLR12) polymorphisms are not associated with Toxoplasma gondii infection in wild wood mice. INFECTION GENETICS AND EVOLUTION 2014; 26:180-4. [DOI: 10.1016/j.meegid.2014.05.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/23/2014] [Accepted: 05/28/2014] [Indexed: 01/01/2023]
|
35
|
Worth AR, Andrew Thompson RC, Lymbery AJ. Reevaluating the evidence for Toxoplasma gondii-induced behavioural changes in rodents. ADVANCES IN PARASITOLOGY 2014; 85:109-42. [PMID: 24928181 DOI: 10.1016/b978-0-12-800182-0.00003-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The ubiquitous protozoan parasite Toxoplasma gondii has been associated with behavioural changes in various hosts, including humans. In rodents, these behavioural changes are thought to represent adaptive manipulation by T. gondii to enhance transmission from intermediate hosts to the feline definitive host. In this review, we have tabulated evidence of changes in motor coordination, learning, memory, locomotion, anxiety, response to novelty and aversion to feline odour in rodents experimentally infected with T. gondii. In general, there was no consistent indication of the direction or magnitude of behavioural changes in response to infection. This may be due to the use, in these experimental studies, of different T. gondii strains, different host species and sexes and/or different methodologies to measure behaviour. A particular problem with studies of behavioural manipulation is likely to be the validity of behavioural tests, that is, whether they are actually measuring the traits that they were designed to measure. We suggest that future studies can be improved in three major ways. First, they should use multiple tests of behaviour, followed by multivariate data analysis to identify behavioural constructs such as aversion, anxiety and response to novelty. Second, they should incorporate longitudinal measurements on the behaviour of individual hosts before and after infection, so that within-individual and between-individual variances and covariances in behavioural traits can be estimated. Finally, they should investigate how variables such as parasite strain, host species and host sex interact with parasite infection to alter host behaviour, in order to provide a sound foundation for research concerning the proximate and ultimate mechanism(s) responsible for behavioural changes.
Collapse
Affiliation(s)
- Amanda R Worth
- Parasitology, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia.
| | - R C Andrew Thompson
- Parasitology, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia
| | - Alan J Lymbery
- Parasitology, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia; Freshwater Fish Group & Fish Health Unit, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia
| |
Collapse
|
36
|
Cézilly F, Perrot-Minnot MJ, Rigaud T. Cooperation and conflict in host manipulation: interactions among macro-parasites and micro-organisms. Front Microbiol 2014; 5:248. [PMID: 24966851 PMCID: PMC4052506 DOI: 10.3389/fmicb.2014.00248] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 05/06/2014] [Indexed: 11/30/2022] Open
Abstract
Several parasite species are known to manipulate the phenotype of their hosts in ways that enhance their own transmission. Co-occurrence of manipulative parasites, belonging to the same species or to more than one species, in a single host has been regularly observed. Little is known, however, on interactions between co-occurring manipulative parasites with same or different transmission routes. Several models addressing this problem have provided predictions on how cooperation and conflict between parasites could emerge from multiple infections. Here, we review the empirical evidence in favor of the existence of synergistic or antagonistic interactions between co-occurring parasites, and highlight the neglected role of micro-organisms. We particularly discuss the actual importance of selective forces shaping the evolution of interactions between manipulative parasites in relation to parasite prevalence in natural populations, efficiency in manipulation, and type of transmission (i.e., horizontal versus vertical), and we emphasize the potential for future research.
Collapse
Affiliation(s)
- Frank Cézilly
- Equipe Ecologie Evolutive, UMR CNRS 6282 Biogéosciences, Université de BourgogneDijon, France
- Institut Universitaire de FranceStrasbourg, France
| | | | - Thierry Rigaud
- Equipe Ecologie Evolutive, UMR CNRS 6282 Biogéosciences, Université de BourgogneDijon, France
| |
Collapse
|
37
|
Tryps and trips: cell trafficking across the 100-year-old blood-brain barrier. Trends Neurosci 2014; 37:325-33. [PMID: 24780507 PMCID: PMC4045197 DOI: 10.1016/j.tins.2014.03.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 03/27/2014] [Accepted: 03/28/2014] [Indexed: 01/03/2023]
Abstract
The blood–brain barrier (BBB) was discovered one century ago by the use of trypan dyes. The discovery initiated the targeted brain delivery of drugs. Trypan dyes were developed to kill African trypanosomes that cause sleeping sickness. Trypanosomes disclose cell trafficking in and out of the BBB. Disturbed gating at the BBB may cause neurodegeneration.
One hundred years ago, Edwin E. Goldmann discovered the blood–brain barrier (BBB) using trypan dyes. These dyes were developed and named by Paul Ehrlich during his search for drugs to kill African trypanosomes (extracellular parasites that cause sleeping sickness) while sparing host cells. For Ehrlich, this was the first strategy based on the ‘chemotherapy’ concept he had introduced. The discovery of the BBB revealed, however, the difficulties in drug delivery to the brain. Mechanisms by which parasites enter, dwell, and exit the brain currently provide novel views on cell trafficking across the BBB. These mechanisms also highlight the role of pericytes and endocytosis regulation in BBB functioning and in disrupted BBB gating, which may be involved in the pathogenesis of neurodegeneration.
Collapse
|
38
|
Parlog A, Harsan LA, Zagrebelsky M, Weller M, von Elverfeldt D, Mawrin C, Korte M, Dunay IR. Chronic murine toxoplasmosis is defined by subtle changes in neuronal connectivity. Dis Model Mech 2014; 7:459-69. [PMID: 24524910 PMCID: PMC3974456 DOI: 10.1242/dmm.014183] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Recent studies correlate chronic Toxoplasma gondii (T. gondii) infection with behavioral changes in rodents; additionally, seropositivity in humans is reported to be associated with behavioral and neuropsychiatric diseases. In this study we investigated whether the described behavioral changes in a murine model of chronic toxoplasmosis are associated with changes in synaptic plasticity and brain neuronal circuitry. In mice chronically infected with T. gondii, magnetic resonance imaging (MRI) data analysis displayed the presence of heterogeneous lesions scattered throughout all brain areas. However, a higher density of lesions was observed within specific regions such as the somatosensory cortex (SSC). Further histopathological examination of these brain areas indicated the presence of activated resident glia and recruited immune cells accompanied by limited alterations of neuronal viability. In vivo diffusion-tensor MRI analysis of neuronal fiber density within the infected regions revealed connectivity abnormalities in the SSC. Altered fiber density was confirmed by morphological analysis of individual, pyramidal and granule neurons, showing a reduction in dendritic arbor and spine density within the SSC, as well as in the hippocampus. Evaluation of synapse efficacy revealed diminished levels of two key synaptic proteins, PSD95 and synaptophysin, within the same brain areas, indicating deficits in functionality of the synaptic neurotransmission in infected mice. Our results demonstrate that persistent T. gondii infection in a murine model results in synaptic deficits within brain structures leading to disturbances in the morphology of noninfected neurons and modified brain connectivity, suggesting a potential explanation for the behavioral and neuropsychiatric alterations.
Collapse
Affiliation(s)
- Alexandru Parlog
- Institute of Medical Microbiology, Otto-von-Guericke University, 39120-Magdeburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Behavioural changes in the flour beetleTribolium confusuminfected with the spirurid nematodeProtospirura muricola. J Helminthol 2013; 89:68-79. [DOI: 10.1017/s0022149x13000606] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractWe examined changes to the behaviour of flour beetles,Tribolium confusum, infected with the rodent stomach worm, the spiruridProtospirura muricola, in the context of the ‘Behavioural Manipulation Hypothesis’.Trobolium confusuminfected with the third-stage infective larvae ofP. muricolashowed consistently altered patterns of behaviour. Relative to uninfected beetles, over a measured time period, beetles infected withP. muricolawere likely to move over a shorter distance, when moving their speed of movement was slower, they were more likely to stay in the illuminated area of their environment, more likely to emerge from darkened areas into the illuminated areas, and their longevity was significantly shortened. The changes in behaviour, as reflected in effects on speed of movement, were only evident among beetles that actually harboured infective cysts and not among those carrying younger infections when the larvae within their haemocoels would have been at an earlier stage of development and not yet capable of infecting the definitive murine hosts. We discuss whether these changes would have made the beetles more susceptible to predation by rodents, and specifically by the omnivorous eastern spiny mouse,Acomys dimidiatus, the natural definitive host of this parasite in Egypt, from where theP. muricolaisolate originated, and whether they support the Behavioural Manipulation Hypothesis or reflect parasite-induced pathology.
Collapse
|
40
|
Lélu M, Langlais M, Poulle ML, Gilot-Fromont E, Gandon S. When should a trophically and vertically transmitted parasite manipulate its intermediate host? The case of Toxoplasma gondii. Proc Biol Sci 2013; 280:20131143. [PMID: 23825211 DOI: 10.1098/rspb.2013.1143] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Parasites with complex life cycles are expected to manipulate the behaviour of their intermediate hosts (IHs), which increase their predation rate and facilitate the transmission to definitive hosts (DHs). This ability, however, is a double-edged sword when the parasite can also be transmitted vertically in the IH. In this situation, as the manipulation of the IH behaviour increases the IH death rate, it conflicts with vertical transmission, which requires healthy and reproducing IHs. The protozoan Toxoplasma gondii, a widespread pathogen, combines both trophic and vertical transmission strategies. Is parasite manipulation of host behaviour still adaptive in this situation? We model the evolution of the IH manipulation by T. gondii to study the conflict between these two routes of transmission under different epidemiological situations. Model outputs show that manipulation is particularly advantageous for virulent strains and in epidemic situations, and that different levels of manipulation may evolve depending on the sex of the IH and the transmission routes considered. These results may help to understand the variability of strain characteristics encountered for T. gondii and may extend to other trophically transmitted parasites.
Collapse
Affiliation(s)
- Maud Lélu
- National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, TN 37996, USA.
| | | | | | | | | |
Collapse
|