1
|
Marick J, Mukherjee SS, Patra BK, Ash A. Unlocking the Biological Enigma: Influence of Host Length and Infection Site on Parasite Abundance in Ompok bimaculatus. Acta Parasitol 2024; 69:1492-1500. [PMID: 39164543 DOI: 10.1007/s11686-024-00879-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/30/2024] [Indexed: 08/22/2024]
Abstract
PURPOSE The influence of two key factors, host length and infection site, on the host-parasite interaction in Ompok bimaculatus (Butter catfish) from Mukutmanipur Dam Lake, were investigated. METHODS Present study involved 192 specimens of Ompok bimaculatus with varying body lengths, subjected to diverse statistical analyses. One-way analysis of variance (ANOVA) was performed for the parasite numbers for three groups (cestode, nematode and trematode). Subsequently, we conducted one-way permutational multivariate analysis of variance (PERMANOVA) followed by pairwise test to assess parasite numbers across three body sites (intestine, mesentery, and bodycavity), employing the Bray-Curtis index. Additionally, Principal Coordinate Analysis (PCoA) for the same dataset was performed using the same index. Linear regression analysis was performed for the fish length-cestode number, fish length-nematode number, fish length-trematode number and fish length-total parasite number. RESULTS One-way ANOVA revealed no significant differences in parasite numbers among the three endo-helminth groups (cestode, nematode, and trematode). The results of PERMANOVA revealed significant differences in parasite numbers across the three body sites of the host fishes (groups) (F = 9.41, p = 0.0001). Pairwise tests further demonstrated significant differences between the intestine-mesentery, intestine-body-cavity, and mesentery-body-cavity. Additionally, Principal Coordinate Analysis (PCoA) unveiled a significant relationship between infection site and parasite number. However, linear regression analysis examining the relationship between fish length and parasite abundance indicated no significant associations. CONCLUSIONS Through a detailed exploration of the statistical analyses, we provide insights into the host-parasite interaction, elucidating both established knowledge and novel findings in fish parasitology.
Collapse
Affiliation(s)
- Jit Marick
- Helminthology Laboratory & Molecular Taxonomy Research Unit, Department of Zoology, University of Burdwan, Golapbag, Burdwan, 713104, India
| | | | - Bhairab Kumar Patra
- Helminthology Laboratory & Molecular Taxonomy Research Unit, Department of Zoology, University of Burdwan, Golapbag, Burdwan, 713104, India
| | - Anirban Ash
- Helminthology Laboratory & Molecular Taxonomy Research Unit, Department of Zoology, University of Burdwan, Golapbag, Burdwan, 713104, India.
| |
Collapse
|
2
|
Durrani Z, Kinnaird J, Cheng CW, Brühlmann F, Capewell P, Jackson A, Larcombe S, Olias P, Weir W, Shiels B. A parasite DNA binding protein with potential to influence disease susceptibility acts as an analogue of mammalian HMGA transcription factors. PLoS One 2023; 18:e0286526. [PMID: 37276213 DOI: 10.1371/journal.pone.0286526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/15/2023] [Indexed: 06/07/2023] Open
Abstract
Intracellular pathogens construct their environmental niche, and influence disease susceptibility, by deploying factors that manipulate infected host cell gene expression. Theileria annulata is an important tick-borne parasite of cattle that causes tropical theileriosis. Excellent candidates for modulating host cell gene expression are DNA binding proteins bearing AT-hook motifs encoded within the TashAT gene cluster of the parasite genome. In this study, TashAT2 was transfected into bovine BoMac cells to generate three expressing and three non-expressing (opposite orientation) cell lines. RNA-Seq was conducted and differentially expressed (DE) genes identified. The resulting dataset was compared with genes differentially expressed between infected cells and non-infected cells, and DE genes between infected cell lines from susceptible Holstein vs tolerant Sahiwal cattle. Over 800 bovine genes displayed differential expression associated with TashAT2, 209 of which were also modulated by parasite infection. Network analysis showed enrichment of DE genes in pathways associated with cellular adhesion, oncogenesis and developmental regulation by mammalian AT-hook bearing high mobility group A (HMGA) proteins. Overlap of TashAT2 DE genes with Sahiwal vs Holstein DE genes revealed that a significant number of shared genes were associated with disease susceptibility. Altered protein levels encoded by one of these genes (GULP1) was strongly linked to expression of TashAT2 in BoMac cells and was demonstrated to be higher in infected Holstein leucocytes compared to Sahiwal. We conclude that TashAT2 operates as an HMGA analogue to differentially mould the epigenome of the infected cell and influence disease susceptibility.
Collapse
Affiliation(s)
- Zeeshan Durrani
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jane Kinnaird
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Chew Weng Cheng
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Francis Brühlmann
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Paul Capewell
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Andrew Jackson
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Stephen Larcombe
- School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, United Kingdom
| | - Philipp Olias
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Institute of Veterinary Pathology, Justus Liebig University, Giessen, Germany
| | - William Weir
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Brian Shiels
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
3
|
Stiner MC. The challenges of documenting coevolution and niche construction: The example of domestic spaces. Evol Anthropol 2021; 30:63-70. [PMID: 33382521 DOI: 10.1002/evan.21878] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 03/09/2020] [Accepted: 11/24/2020] [Indexed: 11/12/2022]
Abstract
This essay delves into some of the challenges of studying the coevolution of humans and domestic spaces. These constructed arenas center on food preparation, and as part of the heritable niche they can shift the opportunities for, and constraints on, social interaction and cooperation in evolutionary time. Domestic spaces are widely evidenced in the archeological record, but investigators have made little progress in demonstrating causal links between proposed feedback spirals and constructed spaces of any sort. Bridging fine-scale and large-scale processes in coevolutionary systems is a complex problem that must engage higher levels of generative evolutionary theory. Archaeology nonetheless stands to offer a great deal to larger research programs by documenting and analyzing the pathways of change based on site formation processes along with evidence from subsistence refuse and technology. Choice models remain valuable tools for investigating aspects of the fine-scale feedback processes involved.
Collapse
Affiliation(s)
- Mary C Stiner
- School of Anthropology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
4
|
Mills PB, Hossie TJ, Murray DL. Niche determinants in a salamander complex: Does hybridism or reproductive parasitism explain patterns of distribution? Ecosphere 2020. [DOI: 10.1002/ecs2.3265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Peter B. Mills
- Department of Biology Trent University 1600 West Bank Drive Peterborough Ontario Canada
| | - Thomas J. Hossie
- Department of Biology Trent University 1600 West Bank Drive Peterborough Ontario Canada
| | - Dennis L. Murray
- Department of Biology Trent University 1600 West Bank Drive Peterborough Ontario Canada
| |
Collapse
|
5
|
Santacruz A, Ornelas‐García CP, Pérez‐Ponce de León G. Incipient genetic divergence or cryptic speciation?
Procamallanus
(Nematoda) in freshwater fishes (
Astyanax
). ZOOL SCR 2020. [DOI: 10.1111/zsc.12443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ana Santacruz
- Departamento de Zoología Instituto de Biología Universidad Nacional Autónoma de México Mexico City Mexico
- Posgrado en Ciencias Biológicas Universidad Nacional Autónoma de México Mexico City Mexico
- Escuela Nacional de Estudios Superiores unidad Mérida Mérida México
| | | | - Gerardo Pérez‐Ponce de León
- Departamento de Zoología Instituto de Biología Universidad Nacional Autónoma de México Mexico City Mexico
- Escuela Nacional de Estudios Superiores unidad Mérida Mérida México
| |
Collapse
|
6
|
Mestre A, Poulin R, Hortal J. A niche perspective on the range expansion of symbionts. Biol Rev Camb Philos Soc 2019; 95:491-516. [DOI: 10.1111/brv.12574] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Alexandre Mestre
- Cavanilles Institute of Biodiversity and Evolutionary BiologyUniversity of Valencia Av. Dr. Moliner 50, 46100 Burjassot Spain
- Department of BiologyUniversity of Concordia Richard J. Renaud Science Complex, 7141 Sherbrooke W., H4B 1R6 Montreal Canada
| | - Robert Poulin
- Department of ZoologyUniversity of Otago 340 Great King Street, 9054 Dunedin New Zealand
| | - Joaquín Hortal
- Department of Biogeography and Global ChangeMuseo Nacional de Ciencias Naturales (MNCN‐CSIC) C/José Gutiérrez Abascal 2, 28006 Madrid Spain
- Departamento de EcologiaICB, Universidade Federal de Goiás (UFG), Rodovia Goiânia‐Nerópolis Km 5, Campus II, Setor Itatiaia, Goiânia GO 74001‐970 Brazil
- cE3c–Centre for EcologyEvolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Edifício C2 Piso 5, 1749‐016 Lisboa Portugal
| |
Collapse
|
7
|
van der Eijk JAJ, Verwoolde MB, de Vries Reilingh G, Jansen CA, Rodenburg TB, Lammers A. Chicken lines divergently selected on feather pecking differ in immune characteristics. Physiol Behav 2019; 212:112680. [PMID: 31518579 DOI: 10.1016/j.physbeh.2019.112680] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/19/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022]
Abstract
It is crucial to identify whether relations between immune characteristics and damaging behaviors in production animals exist, as these behaviors reduce animal welfare and productivity. Feather pecking (FP) is a damaging behavior in chickens, which involves hens pecking and pulling at feathers of conspecifics. To further identify relationships between the immune system and FP we characterized high FP (HFP) and low FP (LFP) selection lines with regard to nitric oxide (NO) production by monocytes, specific antibody (SpAb) titers, natural (auto)antibody (N(A)Ab) titers and immune cell subsets. NO production by monocytes was measured as indicator for innate pro-inflammatory immune functioning, SpAb titers were measured as part of the adaptive immune system and N(A)Ab titers were measured as they play an essential role in both innate and adaptive immunity. Immune cell subsets were measured to identify whether differences in immune characteristics were reflected by differences in the relative abundance of immune cell subsets. Divergent selection on FP affected NO production by monocytes, SpAb and N(A)Ab titers, but did not affect immune cell subsets. The HFP line showed higher NO production by monocytes and higher IgG N(A)Ab titers compared to the LFP line. Furthermore the HFP line tended to have lower IgM NAAb titers, but higher IgM and IgG SpAb titers compared to the LFP line. Thus, divergent selection on FP affects the innate and adaptive immune system, where the HFP line seems to have a more responsive immune system compared to the LFP line. Although causation cannot be established in the present study, it is clear that relationships between the immune system and FP exist. Therefore, it is important to take these relationships into account when selecting on behavioral or immunological traits.
Collapse
Affiliation(s)
- Jerine A J van der Eijk
- Behavioural Ecology Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, the Netherlands; Adaptation Physiology Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, the Netherlands.
| | - Michel B Verwoolde
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, the Netherlands; Animal Nutrition Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, the Netherlands
| | - Ger de Vries Reilingh
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, the Netherlands
| | - Christine A Jansen
- Avian Immunology Group, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - T Bas Rodenburg
- Behavioural Ecology Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, the Netherlands; Adaptation Physiology Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, the Netherlands; Department of Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Aart Lammers
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, the Netherlands
| |
Collapse
|
8
|
Mestre A, Poulin R, Holt RD, Barfield M, Clamp JC, Fernandez-Leborans G, Mesquita-Joanes F. The interplay of nested biotic interactions and the abiotic environment regulates populations of a hypersymbiont. J Anim Ecol 2019; 88:1998-2010. [PMID: 31408529 DOI: 10.1111/1365-2656.13091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 07/01/2019] [Accepted: 07/21/2019] [Indexed: 01/13/2023]
Abstract
The role of biotic interactions in shaping the distribution and abundance of species should be particularly pronounced in symbionts. Indeed, symbionts have a dual niche composed of traits of their individual hosts and the abiotic environment external to the host, and often combine active dispersal at finer scales with host-mediated dispersal at broader scales. The biotic complexity in the determinants of species distribution and abundance should be even more pronounced for hyper symbionts (symbionts of other symbionts). We use a chain of symbiosis to explore the relative influence of nested biotic interactions and the abiotic environment on occupancy and abundance of a hypersymbiont. Our empirical system is the epibiont ciliate Lagenophrys discoidea, which attaches to an ostracod that is itself ectosymbiotic on crayfish (the basal host). We applied multimodel selection and variance partitioning for GLMM to assess the relative importance of (a) traits of symbiotic hosts (ostracod sex and abundance), (b) traits of basal hosts (crayfish body weight, abundance and intermoult stage), (c) the abiotic environment (water chemistry and climate) and (d) geospatial autocorrelation patterns (capturing potential effects of crayfish dispersal among localities). Our models explained about half of the variation in prevalence and abundance of the hypersymbiont. Variation in prevalence was partly explained, in decreasing order of importance (18%-4%) by shared effects of symbiotic host traits and the abiotic environment, pure fixed effects of symbiotic hosts, abiotic environment and geospatial patterns (traits of basal hosts were not relevant). Hypersymbiont abundance was most strongly explained by random effects of host traits (mainly the symbiotic host), in addition to weaker fixed effects (mostly abiotic environment). Our results highlight the major role of the interplay between abundance of symbiotic hosts and water physico-chemistry in regulating populations of a hypersymbiotic ciliate, which is likely critical for dispersal dynamics, availability of attachment resources and suitability of on-host living conditions for the ciliate. We also found moderate signal of regulation by the basal host, for which we propose three mechanisms: (a) modulation of microhabitat suitability (crayfish-created water currents); (b) concentration of symbiotic hosts within crayfish; and (c) dispersal mediated by crayfish.
Collapse
Affiliation(s)
- Alexandre Mestre
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain.,Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Robert Poulin
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Robert D Holt
- Department of Biology, University of Florida, Gainesville, Florida
| | - Michael Barfield
- Department of Biology, University of Florida, Gainesville, Florida
| | - John C Clamp
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, North Carolina
| | | | - Francesc Mesquita-Joanes
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| |
Collapse
|
9
|
Landscapes within landscapes: A parasite utilizes different ecological niches on the host landscapes of two host species. Acta Trop 2019; 193:60-65. [PMID: 30807751 DOI: 10.1016/j.actatropica.2019.02.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/22/2019] [Accepted: 02/22/2019] [Indexed: 11/22/2022]
Abstract
Parasites are distributed across populations of hosts, but also across microhabitats on or inside hosts: together the host population distribution and "host landscape" distribution comprise a part of the ecological niche of a parasite. In this paper we examine how a generalist parasite, the tick Ixodes holocyclus, is distributed at both the host population and host landscape scales in two species of host (Perameles nasuta and Rattus rattus) that co-occur. We anaesthetized wildlife to locate ticks from five generalized host body regions; we then analysed the distribution of ticks among the populations of hosts (aggregation) and the distribution of ticks among the available host body regions as niches. Ixodes holocyclus is more aggregated in the R. rattus population. At the host landscape scale, I. holocyclus's utilized niche includes the entire surface of P. nasuta equally, while the niche on R. rattus is focused on the head. Differences in tick aggregation between host species may reflect tick habitat suitability at the host landscape scale, as well as differences in ecological and evolutionary histories. By exploring the distribution of parasites at multiple scales, including host landscapes, we can better understand the complex ecology of parasites.
Collapse
|
10
|
Azambuja P, Garcia ES, Waniek PJ, Vieira CS, Figueiredo MB, Gonzalez MS, Mello CB, Castro DP, Ratcliffe NA. Rhodnius prolixus: from physiology by Wigglesworth to recent studies of immune system modulation by Trypanosoma cruzi and Trypanosoma rangeli. JOURNAL OF INSECT PHYSIOLOGY 2017; 97:45-65. [PMID: 27866813 DOI: 10.1016/j.jinsphys.2016.11.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 11/04/2016] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
This review is dedicated to the memory of Professor Sir Vincent B. Wigglesworth (VW) in recognition of his many pioneering contributions to insect physiology which, even today, form the basis of modern-day research in this field. Insects not only make vital contributions to our everyday lives by their roles in pollination, balancing eco-systems and provision of honey and silk products, but they are also outstanding models for studying the pathogenicity of microorganisms and the functioning of innate immunity in humans. In this overview, the immune system of the triatomine bug, Rhodnius prolixus, is considered which is most appropriate to this dedication as this insect species was the favourite subject of VW's research. Herein are described recent developments in knowledge of the functioning of the R. prolixus immune system. Thus, the roles of the cellular defences, such as phagocytosis and nodule formation, as well as the role of eicosanoids, ecdysone, antimicrobial peptides, reactive oxygen and nitrogen radicals, and the gut microbiota in the immune response of R. prolixus are described. The details of many of these were unknown to VW although his work gives indications of his awareness of the importance to R. prolixus of cellular immunity, antibacterial activity, prophenoloxidase and the gut microbiota. This description of R. prolixus immunity forms a backdrop to studies on the interaction of the parasitic flagellates, Trypanosoma cruzi and Trypanosoma rangeli, with the host defences of this important insect vector. These parasites remarkably utilize different strategies to avoid/modulate the triatomine immune response in order to survive in the extremely hostile host environments present in the vector gut and haemocoel. Much recent information has also been gleaned on the remarkable diversity of the immune system in the R. prolixus gut and its interaction with trypanosome parasites. This new data is reviewed and gaps in our knowledge of R. prolixus immunity are identified as subjects for future endeavours. Finally, the publication of the T. cruzi, T. rangeli and R. prolixus genomes, together with the use of modern molecular techniques, should lead to the enhanced identification of the determinants of infection derived from both the vector and the parasites which, in turn, could form targets for new molecular-based control strategies.
Collapse
Affiliation(s)
- P Azambuja
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil; Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil.
| | - E S Garcia
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil; Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil.
| | - P J Waniek
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil.
| | - C S Vieira
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil.
| | - M B Figueiredo
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil.
| | - M S Gonzalez
- Laboratório de Biologia de Insetos, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| | - C B Mello
- Laboratório de Biologia de Insetos, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| | - D P Castro
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil; Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil.
| | - N A Ratcliffe
- Laboratório de Biologia de Insetos, Universidade Federal Fluminense, Niterói, RJ, Brazil; Department of Biosciences, College of Science, Swansea University, Singleton Park, Swansea, Wales, United Kingdom.
| |
Collapse
|
11
|
Abstract
Through behavior, animals interact with a world where parasites abound. It is easy to understand how behavioral traits can thus have a differential effect on pathogen exposure. Harder to understand is why we observe behavioral traits to be linked to immune defense traits. Is variation in immune traits a consequence of behavior-induced variation in immunological experiences? Or is variation in behavioral traits a function of immune capabilities? Is our immune system a much bigger driver of personality than anticipated? In this review, I provide examples of how behavioral and immune traits co-vary. I then explore the different routes linking behavioral and immune traits, emphasizing on the physiological/hormonal mechanisms that could lead to immune control of behavior. Finally, I discuss why we should aim at understanding more about the mechanisms connecting these phenotypic traits.
Collapse
Affiliation(s)
- Patricia C Lopes
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
12
|
Bergman A, Gligorijevic B. Niche construction game cancer cells play. EUROPEAN PHYSICAL JOURNAL PLUS 2015; 130:203. [PMID: 27656339 PMCID: PMC5027994 DOI: 10.1140/epjp/i2015-15203-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Niche construction concept was originally defined in evolutionary biology as the continuous interplay between natural selection via environmental conditions and the modification of these conditions by the organism itself. Processes unraveling during cancer metastasis include construction of niches, which cancer cells use towards more efficient survival, transport into new environments and preparation of the remote sites for their arrival. Many elegant experiments were done lately illustrating, for example, the premetastatic niche construction, but there is practically no mathematical modeling done which would apply the niche construction framework. To create models useful for understanding niche construction role in cancer progression, we argue that a) genetic, b) phenotypic and c) ecological levels are to be included. While the model proposed here is phenomenological in its current form, it can be converted into a predictive outcome model via experimental measurement of the model parameters. Here we give an overview of an experimentally formulated problem in cancer metastasis and propose how niche construction framework can be utilized and broadened to model it. Other life science disciplines, such as host-parasite coevolution, may also benefit from niche construction framework adaptation, to satisfy growing need for theoretical considerations of data collected by experimental biology.
Collapse
Affiliation(s)
- Aviv Bergman
- Systems and Computational Biology Department, Albert Einstein College of Medicine, 1301 Morris Park Ave, 10461, Bronx, NY, USA
| | - Bojana Gligorijevic
- Bioengineering Department, Temple University, 1947 N 12th st., 19122 Philadelphia, PA, USA; Cancer Biology Program, Fox Chase Cancer Center, Cottman Ave 333, 19111 Philadelphia, PA, USA
| |
Collapse
|