1
|
Cooper AN, Malmgren L, Hawkes FM, Farrell IW, Hien DFDS, Hopkins RJ, Lefèvre T, Stevenson PC. Identifying mosquito plant hosts from ingested nectar secondary metabolites. Sci Rep 2025; 15:6488. [PMID: 39987345 PMCID: PMC11846922 DOI: 10.1038/s41598-025-88933-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 01/31/2025] [Indexed: 02/24/2025] Open
Abstract
Establishing how plants contribute food and refuge to insects can be challenging for small species that are difficult to observe in their natural habitat, such as disease vectoring mosquitoes. Currently indirect methods of plant-host identification rely on DNA sequencing of ingested plant material but are often unsuccessful for small insects that feed primarily on plant sugars or have little contact with plant cells. Here we developed an innovative approach to determine species-specific phytophagy by detecting taxon-specific plant secondary metabolites (PSMs) in nectar. Two mosquito species were exposed to three PSMs, each present in the nectar of a known plant host, firstly from dosed sucrose solutions and secondly from flowers. Both experiments yielded high rates of PSM detection in mosquitoes using liquid chromatography-mass spectrometry (LC-MS). PSMs were consistently detected in mosquitoes up to 8 h post-ingestion. In experiments consisting of two or three plant species, multiple PSMs from different host plants could be detected. These positive results demonstrate that PSMs could be useful indicators of insect plant-hosts selection in the wild. With expanded knowledge of nectar-based PSMs across a landscape, improved knowledge of plant-host relationships could be achieved where direct observations in their natural habitat are lacking. Increasing understanding of vector insect ecology will have an important role in tackling vector-borne disease.
Collapse
Affiliation(s)
- Amanda N Cooper
- Royal Botanic Gardens Kew, Kew Road, Richmond, Surrey, TW9 3AE, UK.
| | - Louise Malmgren
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, ME4 4TB, UK
| | - Frances M Hawkes
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, ME4 4TB, UK
| | - Iain W Farrell
- Royal Botanic Gardens Kew, Kew Road, Richmond, Surrey, TW9 3AE, UK
| | - Domonbabele F D S Hien
- Institut de Recherche en Sciences de La Santé (IRSS), Bobo Dioulasso, Burkina Faso
- Laboratoire Mixte International Maladies à Vecteurs en Afrique de l'Ouest (LAMIVECT), Bobo Dioulasso, Burkina Faso
| | - Richard J Hopkins
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, ME4 4TB, UK
| | - Thierry Lefèvre
- MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Philip C Stevenson
- Royal Botanic Gardens Kew, Kew Road, Richmond, Surrey, TW9 3AE, UK
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, ME4 4TB, UK
| |
Collapse
|
2
|
Vinauger C, Chandrasegaran K. Context-specific variation in life history traits and behavior of Aedes aegypti mosquitoes. FRONTIERS IN INSECT SCIENCE 2024; 4:1426715. [PMID: 39386346 PMCID: PMC11461241 DOI: 10.3389/finsc.2024.1426715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/19/2024] [Indexed: 10/12/2024]
Abstract
Aedes aegypti, the vector for dengue, chikungunya, yellow fever, and Zika, poses a growing global epidemiological risk. Despite extensive research on Ae. aegypti's life history traits and behavior, critical knowledge gaps persist, particularly in integrating these findings across varied experimental contexts. The plasticity of Ae. aegypti's traits throughout its life cycle allows dynamic responses to environmental changes, yet understanding these variations within heterogeneous study designs remains challenging. A critical aspect often overlooked is the impact of using lab-adapted lines of Ae. aegypti, which may have evolved under laboratory conditions, potentially altering their life history traits and behavioral responses compared to wild populations. Therefore, incorporating field-derived populations in experimental designs is essential to capture the natural variability and adaptability of Ae. aegypti. The relationship between larval growing conditions and adult traits and behavior is significantly influenced by the specific context in which mosquitoes are studied. Laboratory conditions may not replicate the ecological complexities faced by wild populations, leading to discrepancies in observed traits and behavior. These discrepancies highlight the need for ecologically relevant experimental conditions, allowing mosquito traits and behavior to reflect field distributions. One effective approach is semi-field studies involving field-collected mosquitoes housed for fewer generations in the lab under ecologically relevant conditions. This growing trend provides researchers with the desired control over experimental conditions while maintaining the genetic diversity of field populations. By focusing on variations in life history traits and behavioral plasticity within these varied contexts, this review highlights the intricate relationship between larval growing conditions and adult traits and behavior. It underscores the significance of transstadial effects and the necessity of adopting study designs and reporting practices that acknowledge plasticity in adult traits and behavior, considering variations due to larval rearing conditions. Embracing such approaches paves the way for a comprehensive understanding of contextual variations in mosquito life history traits and behavior. This integrated perspective enables the synthesis of research findings across laboratory, semi-field, and field-based investigations, which is crucial for devising targeted intervention strategies tailored to specific ecological contexts to combat the health threat posed by this formidable disease vector effectively.
Collapse
Affiliation(s)
- Clément Vinauger
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | | |
Collapse
|
3
|
Wouters RM, Beukema W, Schrama M, Biesmeijer K, Braks MAH, Helleman P, Schaffner F, van Slobbe J, Stroo A, van der Beek JG. Local environmental factors drive distributions of ecologically-contrasting mosquito species (Diptera: Culicidae). Sci Rep 2024; 14:19315. [PMID: 39164289 PMCID: PMC11336062 DOI: 10.1038/s41598-024-64948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/14/2024] [Indexed: 08/22/2024] Open
Abstract
Mosquitoes are important vectors of disease pathogens and multiple species are undergoing geographical shifts due to global changes. As such, there is a growing need for accurate distribution predictions. Ecological niche modelling (ENM) is an effective tool to assess mosquito distribution patterns and link these to underlying environmental preferences. Typically, macroclimatic variables are used as primary predictors of mosquito distributions. However, they likely undervalue local conditions and intraspecific variation in environmental preferences. This is problematic, as mosquito control takes place at the local scale. Utilising high-resolution (10 × 10 m) Maxent ENMs on the island of Bonaire as model system, we explore the influence of local environmental variables on mosquito distributions. Our results show a distinct set of environmental variables shape distribution patterns across ecologically-distinct species, with urban variables strongly associated with introduced species like Aedes aegypti and Culex quinquefasciatus, while native species show habitat preferences for either mangroves, forests, or ephemeral water habitats. These findings underscore the importance of distinct local environmental factors in shaping distributions of different mosquitoes, even on a small island. As such, these findings warrant further studies aimed at predicting high-resolution mosquito distributions, opening avenues for preventative management of vector-borne disease risks amidst ongoing global change and ecosystem degradation.
Collapse
Grants
- MOBOCON Ministry of Health, Welfare and Sport, The Netherlands
- MOBOCON Ministry of Health, Welfare and Sport, The Netherlands
- MOBOCON Ministry of Health, Welfare and Sport, The Netherlands
- MOBOCON Ministry of Health, Welfare and Sport, The Netherlands
- MOBOCON Ministry of Health, Welfare and Sport, The Netherlands
- MOBOCON Ministry of Health, Welfare and Sport, The Netherlands
- MOBOCON Ministry of Health, Welfare and Sport, The Netherlands
- Pandemics and Disaster Preparedness Center
Collapse
Affiliation(s)
- Roel M Wouters
- NL Biodiversity and Society Research Group, Naturalis Biodiversity Center, 2333 CR, Leiden, The Netherlands.
- Institute of Environmental Sciences, Leiden University, 2333 CC, Leiden, The Netherlands.
- Department of Ecology, Faculty of Science, Charles University, 12844, Prague, Czechia.
| | - Wouter Beukema
- NL Biodiversity and Society Research Group, Naturalis Biodiversity Center, 2333 CR, Leiden, The Netherlands
- RAVON, Reptile, Amphibian and Fish Conservation Netherlands, 6501 BK, Nijmegen, The Netherlands
| | - Maarten Schrama
- Institute of Environmental Sciences, Leiden University, 2333 CC, Leiden, The Netherlands
| | - Koos Biesmeijer
- NL Biodiversity and Society Research Group, Naturalis Biodiversity Center, 2333 CR, Leiden, The Netherlands
- Institute of Environmental Sciences, Leiden University, 2333 CC, Leiden, The Netherlands
| | - Marieta A H Braks
- Institute of Environmental Sciences, Leiden University, 2333 CC, Leiden, The Netherlands
- Centre for Zoonoses and Environmental Microbiology, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA, Bilthoven, The Netherlands
| | - Pepijn Helleman
- Institute of Environmental Sciences, Leiden University, 2333 CC, Leiden, The Netherlands
| | | | - Joey van Slobbe
- Bonaire Public Health Department, Public Body Bonaire, 4PXG+GH4, Kralendijk, Dutch Caribbean, The Netherlands
| | - Arjan Stroo
- Centre for Monitoring of Vectors (CMV), Netherlands Food and Consumer Product Safety Authority (NVWA), 6706 EA, Wageningen, The Netherlands
| | - Jordy G van der Beek
- NL Biodiversity and Society Research Group, Naturalis Biodiversity Center, 2333 CR, Leiden, The Netherlands
- Institute of Environmental Sciences, Leiden University, 2333 CC, Leiden, The Netherlands
- Pandemic and Disaster Preparedness Center, Delft, Rotterdam, The Netherlands
| |
Collapse
|
4
|
Ippoliti C, Bonicelli L, De Ascentis M, Tora S, Di Lorenzo A, d’Alessio SG, Porrello A, Bonanni A, Cioci D, Goffredo M, Calderara S, Conte A. Spotting Culex pipiens from satellite: modeling habitat suitability in central Italy using Sentinel-2 and deep learning techniques. Front Vet Sci 2024; 11:1383320. [PMID: 39027906 PMCID: PMC11256216 DOI: 10.3389/fvets.2024.1383320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/05/2024] [Indexed: 07/20/2024] Open
Abstract
Culex pipiens, an important vector of many vector borne diseases, is a species capable to feeding on a wide variety of hosts and adapting to different environments. To predict the potential distribution of Cx. pipiens in central Italy, this study integrated presence/absence data from a four-year entomological survey (2019-2022) carried out in the Abruzzo and Molise regions, with a datacube of spectral bands acquired by Sentinel-2 satellites, as patches of 224 × 224 pixels of 20 meters spatial resolution around each site and for each satellite revisit time. We investigated three scenarios: the baseline model, which considers the environmental conditions at the time of collection; the multitemporal model, focusing on conditions in the 2 months preceding the collection; and the MultiAdjacency Graph Attention Network (MAGAT) model, which accounts for similarities in temperature and nearby sites using a graph architecture. For the baseline scenario, a deep convolutional neural network (DCNN) analyzed a single multi-band Sentinel-2 image. The DCNN in the multitemporal model extracted temporal patterns from a sequence of 10 multispectral images; the MAGAT model incorporated spatial and climatic relationships among sites through a graph neural network aggregation method. For all models, we also evaluated temporal lags between the multi-band Earth Observation datacube date of acquisition and the mosquito collection, from 0 to 50 days. The study encompassed a total of 2,555 entomological collections, and 108,064 images (patches) at 20 meters spatial resolution. The baseline model achieved an F1 score higher than 75.8% for any temporal lag, which increased up to 81.4% with the multitemporal model. The MAGAT model recorded the highest F1 score of 80.9%. The study confirms the widespread presence of Cx. pipiens throughout the majority of the surveyed area. Utilizing only Sentinel-2 spectral bands, the models effectively capture early in advance the temporal patterns of the mosquito population, offering valuable insights for directing surveillance activities during the vector season. The methodology developed in this study can be scaled up to the national territory and extended to other vectors, in order to support the Ministry of Health in the surveillance and control strategies for the vectors and the diseases they transmit.
Collapse
Affiliation(s)
- Carla Ippoliti
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Lorenzo Bonicelli
- Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Modena, Italy
| | - Matteo De Ascentis
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Susanna Tora
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Alessio Di Lorenzo
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | | | - Angelo Porrello
- Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Modena, Italy
| | - Americo Bonanni
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Daniela Cioci
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Maria Goffredo
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Simone Calderara
- Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Modena, Italy
| | - Annamaria Conte
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| |
Collapse
|
5
|
Kefi M, Cardoso-Jaime V, Saab SA, Dimopoulos G. Curing mosquitoes with genetic approaches for malaria control. Trends Parasitol 2024; 40:487-499. [PMID: 38760256 DOI: 10.1016/j.pt.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 05/19/2024]
Abstract
Malaria remains a persistent global public health challenge because of the limitations of current prevention tools. The use of transgenic mosquitoes incapable of transmitting malaria, in conjunction with existing methods, holds promise for achieving elimination of malaria and preventing its reintroduction. In this context, population modification involves the spread of engineered genetic elements through mosquito populations that render them incapable of malaria transmission. Significant progress has been made in this field over the past decade in revealing promising targets, optimizing genetic tools, and facilitating the transition from the laboratory to successful field deployments, which are subject to regulatory scrutiny. This review summarizes recent advances and ongoing challenges in 'curing' Anopheles vectors of the malaria parasite.
Collapse
Affiliation(s)
- Mary Kefi
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Victor Cardoso-Jaime
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Sally A Saab
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - George Dimopoulos
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
6
|
Rainey TA, Schneider AC, Pakula CJ, Swanson BJ. As human societies urbanize, so does ecology; taxonomic, geographic, and other research trends in urban vertebrate ecology. Ecol Evol 2024; 14:e11439. [PMID: 38774138 PMCID: PMC11106554 DOI: 10.1002/ece3.11439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/25/2024] [Accepted: 05/03/2024] [Indexed: 05/24/2024] Open
Abstract
The threat to biodiversity posed by urban expansion is well researched and supported. Since the late 1990s, the field of urban ecology has been expanding along with the developed landscapes it studies. Past reviews have shown unequal publication rates in urban ecology literature for taxonomic groups and research locations. Herein, we explore differences in the publication rate of urban studies by vertebrate groups, but also expand on previous investigations by broadening the scope of the literature searched, exploring trends in subtopics within the urban wildlife literature, identifying geographic patterns of such publications, and comparing the rate at which non-native and threatened and endangered species are studied in urban settings. We used linear and segmented regression to assess publication rates and Fisher's exact tests for comparisons between groups. All vertebrate groups show an increasing proportion of urban studies through time, with urban avian studies accelerating most sharply and herpetofauna appearing to be understudied. Non-native mammals are more studied than non-native birds, and threatened and endangered herpetofauna and mammals are more likely to be studied than threatened and endangered birds in urban areas. The plurality of urban wildlife studies are found in North America, while there is a dearth of studies from Africa, Asia, and South America. Our results can help inform decisions of urban ecologists on how to better fill in knowledge gaps and bring a greater degree of equity into the field.
Collapse
Affiliation(s)
- Travis A. Rainey
- Department of BiologyCentral Michigan UniversityMount PleasantMichiganUSA
| | - Alaini C. Schneider
- Department of BiologyCentral Michigan UniversityMount PleasantMichiganUSA
- Western EcoSystems Technology, Inc.Golden ValleyMinnesotaUSA
| | - Carson J. Pakula
- Department of BiologyCentral Michigan UniversityMount PleasantMichiganUSA
- Savannah River Ecology LaboratoryUniversity of GeorgiaAikenSouth CarolinaUSA
- Warnell School of Forestry and Natural ResourcesUniversity of GeorgiaAthensGeorgiaUSA
| | - Bradley J. Swanson
- Department of BiologyCentral Michigan UniversityMount PleasantMichiganUSA
| |
Collapse
|
7
|
Zhang L, Wang D, Shi P, Li J, Niu J, Chen J, Wang G, Wu L, Chen L, Yang Z, Li S, Meng J, Ruan F, He Y, Zhao H, Ren Z, Wang Y, Liu Y, Shi X, Wang Y, Liu Q, Li J, Wang P, Wang J, Zhu Y, Cheng G. A naturally isolated symbiotic bacterium suppresses flavivirus transmission by Aedes mosquitoes. Science 2024; 384:eadn9524. [PMID: 38669573 DOI: 10.1126/science.adn9524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/15/2024] [Indexed: 04/28/2024]
Abstract
The commensal microbiota of the mosquito gut plays a complex role in determining the vector competence for arboviruses. In this study, we identified a bacterium from the gut of field Aedes albopictus mosquitoes named Rosenbergiella sp. YN46 (Rosenbergiella_YN46) that rendered mosquitoes refractory to infection with dengue and Zika viruses. Inoculation of 1.6 × 103 colony forming units (CFUs) of Rosenbergiella_YN46 into A. albopictus mosquitoes effectively prevents viral infection. Mechanistically, this bacterium secretes glucose dehydrogenase (RyGDH), which acidifies the gut lumen of fed mosquitoes, causing irreversible conformational changes in the flavivirus envelope protein that prevent viral entry into cells. In semifield conditions, Rosenbergiella_YN46 exhibits effective transstadial transmission in field mosquitoes, which blocks transmission of dengue virus by newly emerged adult mosquitoes. The prevalence of Rosenbergiella_YN46 is greater in mosquitoes from low-dengue areas (52.9 to ~91.7%) than in those from dengue-endemic regions (0 to ~6.7%). Rosenbergiella_YN46 may offer an effective and safe lead for flavivirus biocontrol.
Collapse
Affiliation(s)
- Liming Zhang
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Daxi Wang
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen 518083, China
| | - Peibo Shi
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juzhen Li
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Jichen Niu
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Jielong Chen
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Gang Wang
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Linjuan Wu
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Lu Chen
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Zhenxing Yang
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan 650000, China
| | - Susheng Li
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan 650000, China
| | - Jinxin Meng
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan 650000, China
| | - Fangchao Ruan
- Kunming Medical University, Kunming, Yunnan 650000, China
| | - Yuwen He
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan 650000, China
| | - Hailong Zhao
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen 518083, China
| | - Zirui Ren
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen 518083, China
| | - Yibaina Wang
- China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Yang Liu
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Xiaolu Shi
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Yunfu Wang
- Institute of Neuroscience, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Qiyong Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Junhua Li
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen 518083, China
| | - Penghua Wang
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Jinglin Wang
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan 650000, China
| | - Yibin Zhu
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Gong Cheng
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
- Southwest United Graduate School, Kunming 650092, China
| |
Collapse
|
8
|
Krol L, Remmerswaal L, Groen M, van der Beek JG, Sikkema RS, Dellar M, van Bodegom PM, Geerling GW, Schrama M. Landscape level associations between birds, mosquitoes and microclimates: possible consequences for disease transmission? Parasit Vectors 2024; 17:156. [PMID: 38532512 DOI: 10.1186/s13071-024-06239-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Mosquito-borne diseases are on the rise. While climatic factors have been linked to disease occurrences, they do not explain the non-random spatial distribution in disease outbreaks. Landscape-related factors, such as vegetation structure, likely play a crucial but hitherto unquantified role. METHODS We explored how three critically important factors that are associated with mosquito-borne disease outbreaks: microclimate, mosquito abundance and bird communities, vary at the landscape scale. We compared the co-occurrence of these three factors in two contrasting habitat types (forest versus grassland) across five rural locations in the central part of the Netherlands between June and September 2021. RESULTS Our results show that forest patches provide a more sheltered microclimate, and a higher overall abundance of birds. When accounting for differences in landscape characteristics, we also observed that the number of mosquitoes was higher in isolated forest patches. CONCLUSIONS Our findings indicate that, at the landscape scale, variation in tree cover coincides with suitable microclimate and high Culex pipiens and bird abundance. Overall, these factors can help understand the non-random spatial distribution of mosquito-borne disease outbreaks.
Collapse
Affiliation(s)
- Louie Krol
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands.
- Deltares, Daltonlaan 600, Utrecht, The Netherlands.
| | - Laure Remmerswaal
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
| | - Marvin Groen
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
| | - Jordy G van der Beek
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Reina S Sikkema
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Martha Dellar
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
- Deltares, Daltonlaan 600, Utrecht, The Netherlands
| | - Peter M van Bodegom
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
| | - Gertjan W Geerling
- Deltares, Daltonlaan 600, Utrecht, The Netherlands
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Maarten Schrama
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
| |
Collapse
|
9
|
Madeira S, Bernardino R, Osório HC, Boinas F. Mosquito (Diptera: Culicidae) Fauna of a Zoological Park in an Urban Setting: Analysis of Culex pipiens s.l. and Their Biotypes. INSECTS 2024; 15:45. [PMID: 38249051 PMCID: PMC10816151 DOI: 10.3390/insects15010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024]
Abstract
Mosquito-borne diseases (MBDs) are important emerging diseases that affect humans and animals. Zoological parks can work as early warning systems for the occurrence of MBDs. In this study, we characterized the mosquito fauna captured inside Lisbon Zoo from May 2018 to November 2019. An average of 2.4 mosquitos per trap/night were captured. Five mosquito species potentially causing MBDs, including Culex pipiens biotypes, were found in the zoo. The sympatric occurrence of Culex pipiens biotypes represents a risk factor for the epizootic transmission of West Nile virus and Usutu virus. The mosquito occurrence followed the expected seasonality, with the maximum densities during summer months. However, mosquito activity was detected in winter months in low numbers. The minimum temperature and the relative humidity (RH) on the day of capture showed a positive effect on Culex pipiens abundance. Contrary, the RH the week before capture and the average precipitation the week of capture had a negative effect. No invasive species were identified, nor have flaviviruses been detected in the mosquitoes. The implementation of biosecurity measures regarding the hygiene of the premises and the strict control of all the animals entering the zoo can justify the low prevalence of mosquitoes and the absence of flavivirus-infected mosquitoes.
Collapse
Affiliation(s)
- Sara Madeira
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | | | - Hugo Costa Osório
- CEVDI—INSA—Centre for Vectors and Infectious Diseases Research, National Institute of Health Doutor Ricardo Jorge, 2965-575 Águas de Moura, Portugal;
- ISAMB—Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Fernando Boinas
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| |
Collapse
|
10
|
Martin LE, Hillyer JF. Higher temperature accelerates the aging-dependent weakening of the melanization immune response in mosquitoes. PLoS Pathog 2024; 20:e1011935. [PMID: 38198491 PMCID: PMC10805325 DOI: 10.1371/journal.ppat.1011935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/23/2024] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
The body temperature of mosquitoes, like most insects, is dictated by the environmental temperature. Climate change is increasing the body temperature of insects and thereby altering physiological processes such as immune proficiency. Aging also alters insect physiology, resulting in the weakening of the immune system in a process called senescence. Although both temperature and aging independently affect the immune system, it is unknown whether temperature alters the rate of immune senescence. Here, we evaluated the independent and combined effects of temperature (27°C, 30°C and 32°C) and aging (1, 5, 10 and 15 days old) on the melanization immune response of the adult female mosquito, Anopheles gambiae. Using a spectrophotometric assay that measures phenoloxidase activity (a rate limiting enzyme) in hemolymph, and therefore, the melanization potential of the mosquito, we discovered that the strength of melanization decreases with higher temperature, aging, and infection. Moreover, when the temperature is higher, the aging-dependent decline in melanization begins at a younger age. Using an optical assay that measures melanin deposition on the abdominal wall and in the periostial regions of the heart, we found that melanin is deposited after infection, that this deposition decreases with aging, and that this aging-dependent decline is accelerated by higher temperature. This study demonstrates that higher temperature accelerates immune senescence in mosquitoes, with higher temperature uncoupling physiological age from chronological age. These findings highlight the importance of investigating the consequences of climate change on how disease transmission by mosquitoes is affected by aging.
Collapse
Affiliation(s)
- Lindsay E. Martin
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Julián F. Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
11
|
Naik BR, Tyagi BK, Xue RD. Mosquito-borne diseases in India over the past 50 years and their Global Public Health Implications: A Systematic Review. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2023; 39:258-277. [PMID: 38108431 DOI: 10.2987/23-7131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Mosquito-borne diseases (MBDs) pose a significant public health concern globally, and India, with its unique eco-sociodemographic characteristics, is particularly vulnerable to these diseases. This comprehensive review aims to provide an in-depth overview of MBDs in India, emphasizing their impact and potential implications for global health. The article explores distribution, epidemiology, control or elimination, and economic burden of the prevalent diseases such as malaria, dengue, chikungunya, Japanese encephalitis, and lymphatic filariasis, which collectively contribute to millions of cases annually. It sheds light on their profound effects on morbidity, mortality, and socioeconomic burdens and the potential for international transmission through travel and trade. The challenges and perspectives associated with controlling mosquito populations are highlighted, underscoring the importance of effective public health communication for prevention and early detection. The potential for these diseases to spread beyond national borders is recognized, necessitating a holistic approach to address the challenge. A comprehensive literature search was conducted, covering the past five decades (1972-2022), utilizing databases such as Web of Science, PubMed, and Google Scholar, in addition to in-person library consultations. The literature review analyzed 4,082 articles initially identified through various databases. After screening and eligibility assessment, 252 articles were included for analysis. The review focused on malaria, dengue, chikungunya, Japanese encephalitis, and lymphatic filariasis. The included studies focused on MBDs occurrence in India, while those conducted outside India, lacking statistical analysis, or published before 1970 were excluded. This review provides valuable insights into the status of MBDs in India and underscores the need for concerted efforts to combat these diseases on both national and global scales through consilience.
Collapse
|
12
|
Green Ii DA. Tracking technologies: advances driving new insights into monarch migration. CURRENT OPINION IN INSECT SCIENCE 2023; 60:101111. [PMID: 37678709 DOI: 10.1016/j.cois.2023.101111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/09/2023]
Abstract
Understanding the rules of how monarch butterflies complete their annual North American migration will be clarified by studying them within a movement ecology framework. Insect movement ecology is growing at a rapid pace due to the development of novel monitoring systems that allow ever-smaller animals to be tracked at higher spatiotemporal resolution for longer periods of time. New innovations in tracking hardware and associated software, including miniaturization, energy autonomy, data management, and wireless communication, are reducing the size and increasing the capability of next-generation tracking technologies, bringing the goal of tracking monarchs over their entire migration closer within reach. These tools are beginning to be leveraged to provide insight into different aspects of monarch biology and ecology, and to contribute to a growing capacity to understand insect movement ecology more broadly and its impact on human life.
Collapse
Affiliation(s)
- Delbert A Green Ii
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 N University Ave, Ann Arbor, MI 48109, USA.
| |
Collapse
|
13
|
Meier CJ, Martin LE, Hillyer JF. Mosquito larvae exposed to a sublethal dose of photosensitive insecticides have altered juvenile development but unaffected adult life history traits. Parasit Vectors 2023; 16:412. [PMID: 37951916 PMCID: PMC10638795 DOI: 10.1186/s13071-023-06004-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/06/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Larvicides are critical for the control of mosquito-borne diseases. However, even sublethal exposure to a larvicide can alter development and life history traits, which can then affect population density and disease transmission dynamics. Photosensitive insecticides (PSIs) are a promising class of larvicide that are toxic when ingested and activated by light. We investigated whether the time of day when exposure occurs, or the process of pupation, affects larval susceptibility to PSI phototoxicity in the mosquito Anopheles gambiae, and whether sublethal exposure to PSIs alters life history traits. METHODS Larvae were treated with lethal concentrations of the PSIs methylene blue (MB) and rose bengal (RB), and larval survival was measured at various times of day. Additionally, larvae were exposed to two concentrations of each PSI that resulted in low and medium mortality, and the life history traits of the surviving larvae were measured. RESULTS Pupation, which predominantly occurs in the evening, protected larvae from PSI toxicity, but the toxicity of PSIs against larvae that had yet to pupate was unaffected by time of day. Larval exposure to a sublethal concentration of MB, but not RB, shortened the time to pupation. However, larval exposure to a sublethal concentration of RB, but not MB, increased pupal mortality. Neither PSI had a meaningful effect on the time to eclosion, adult longevity, or adult melanization potential. CONCLUSIONS PSIs are lethal larvicides. Sublethal PSI exposure alters mosquito development, but does not affect adult life history traits.
Collapse
Affiliation(s)
- Cole J Meier
- Department of Biological Sciences, Vanderbilt University, VU Station B 35-16342, Nashville, TN, 37235, USA
| | - Lindsay E Martin
- Department of Biological Sciences, Vanderbilt University, VU Station B 35-16342, Nashville, TN, 37235, USA
| | - Julián F Hillyer
- Department of Biological Sciences, Vanderbilt University, VU Station B 35-16342, Nashville, TN, 37235, USA.
| |
Collapse
|
14
|
El-Barkey NM, Nassar MY, El-Khawaga AH, Kamel AS, Baz MM. Efficacy of alumina nanoparticles as a controllable tool for mortality and biochemical parameters of Culex pipiens. Sci Rep 2023; 13:19592. [PMID: 37949900 PMCID: PMC10638367 DOI: 10.1038/s41598-023-46689-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023] Open
Abstract
Mosquitoes still pose a clear risk to human and animal health. Recently, nanomaterials have been considered one of the cost-effective solutions to this problem. Therefore, alumina nanoparticles (Al) were synthesized using an auto-combustion method, followed by calcination at 600 and 800 °C. Glucose (G) and sucrose (Su) were used as fuels and the combustion was performed at pH 2, 7, and 10. The as-synthesized Al2O3 nanoparticles were characterized by XRD, FTIR, SEM, and TEM. Alumina nanoparticles prepared using G and Su fuels at pH 7 and 800 °C (Al-G7-800 and Al-Su7-800) have crystallite sizes of 3.9 and 4.05 nm, respectively. While the samples (Al-G7-600 and Al-Su7-600) synthesized at pH 7 and 600 °C were amorphous. The prepared alumina nanoparticles were applied to the larval and pupal stages of Culex pipiens. The results showed that alumina nanoparticles cause higher mortality in the 1st larval instar than in all other larval instars and pupal stages of Culex pipiens after treatment at a high concentration of 200 ppm. Additionally, the larval duration after treatment with LC50 concentrations of alumina (Al-G7-800 and Al-Su7-800) was 31.7 and 23.6 days, respectively, compared to the control (13.3 days). The recorded data found that the content of glutathione-S-transferase, alkaline/acid phosphatase, β/α-esterase, and total protein were altered upon treatment with the LC50 concentration of alumina (Al-G7-800) nanoparticles. Based on these findings, alumina nanoparticles are a promising candidate as a potential weapon to control pests and mosquitoes.
Collapse
Affiliation(s)
- Nehad M El-Barkey
- Entomology Department, Faculty of Science, Benha University, Benha, 13518, Egypt
| | - Mostafa Y Nassar
- Chemistry Department, Faculty of Science, Benha University, Benha, 13518, Egypt.
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia.
| | - Aya H El-Khawaga
- Entomology Department, Faculty of Science, Benha University, Benha, 13518, Egypt
| | - Aida S Kamel
- Entomology Department, Faculty of Science, Benha University, Benha, 13518, Egypt
| | - Mohamed M Baz
- Entomology Department, Faculty of Science, Benha University, Benha, 13518, Egypt
| |
Collapse
|
15
|
Dharmamuthuraja D, P. D. R, Lakshmi M. I, Isvaran K, Ghosh SK, Ishtiaq F. Determinants of Aedes mosquito larval ecology in a heterogeneous urban environment- a longitudinal study in Bengaluru, India. PLoS Negl Trop Dis 2023; 17:e0011702. [PMID: 37939204 PMCID: PMC10659209 DOI: 10.1371/journal.pntd.0011702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/20/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Aedes-borne disease risk is associated with contemporary urbanization practices where city developing structures function as a catalyst for creating mosquito breeding habitats. We lack better understanding on how the links between landscape ecology and urban geography contribute to the prevalence and abundance of mosquito and pathogen spread. METHODS An outdoor longitudinal study in Bengaluru (Karnataka, India) was conducted between February 2021 and June 2022 to examine the effects of macrohabitat types on the diversity and distribution of larval habitats, mosquito species composition, and body size to quantify the risk of dengue outbreak in the landscape context. FINDINGS A total of 8,717 container breeding sites were inspected, of these 1,316 were wet breeding habitats. A total of 1,619 mosquito larvae representing 16 species from six macrohabitats and nine microhabitats were collected. Aedes aegypti and Aedes albopictus were the dominant species and significantly higher in artificial habitats than in natural habitats. Breeding preference ratio for Aedes species was high in grinding stones and storage containers. The Aedes infestation indices were higher than the WHO threshold and showed significant linear increase from Barren habitat to High density areas. We found Ae. albopictus breeding in sympatry with Ae. aegypti had shorter wing length. CONCLUSIONS A large proportion of larval habitats were man-made artificial containers. Landscape ecology drives mosquito diversity and abundance even at a small spatial scale which could be affecting the localized outbreaks. Our findings showed that sampling strategies for mosquito surveillance must include urban environments with non-residential locations and dengue transmission reduction programmes should focus on 'neighbourhood surveillance' as well to prevent and control the rising threat of Aedes-borne diseases.
Collapse
Affiliation(s)
- Deepa Dharmamuthuraja
- Tata Institute for Genetics and Society, New InStem Building, GKVK Campus, Bengaluru, India
| | - Rohini P. D.
- Tata Institute for Genetics and Society, New InStem Building, GKVK Campus, Bengaluru, India
| | - Iswarya Lakshmi M.
- Tata Institute for Genetics and Society, New InStem Building, GKVK Campus, Bengaluru, India
| | - Kavita Isvaran
- Centre for Ecological Sciences, Indian Institute of Science, Bengaluru, India
| | | | - Farah Ishtiaq
- Tata Institute for Genetics and Society, New InStem Building, GKVK Campus, Bengaluru, India
| |
Collapse
|
16
|
Cazelles B, Cazelles K, Tian H, Chavez M, Pascual M. Disentangling local and global climate drivers in the population dynamics of mosquito-borne infections. SCIENCE ADVANCES 2023; 9:eadf7202. [PMID: 37756402 PMCID: PMC10530079 DOI: 10.1126/sciadv.adf7202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 08/21/2023] [Indexed: 09/29/2023]
Abstract
Identifying climate drivers is essential to understand and predict epidemics of mosquito-borne infections whose population dynamics typically exhibit seasonality and multiannual cycles. Which climate covariates to consider varies across studies, from local factors such as temperature to remote drivers such as the El Niño-Southern Oscillation. With partial wavelet coherence, we present a systematic investigation of nonstationary associations between mosquito-borne disease incidence and a given climate factor while controlling for another. Analysis of almost 200 time series of dengue and malaria around the globe at different geographical scales shows a systematic effect of global climate drivers on interannual variability and of local ones on seasonality. This clear separation of time scales of action enhances detection of climate drivers and indicates those best suited for building early-warning systems.
Collapse
Affiliation(s)
- Bernard Cazelles
- UMMISCO, Sorbonne Université, Paris, France
- Eco-Evolution Mathématique, IBENS, CNRS UMR-8197, Ecole Normale Supérieure, Paris, France
| | - Kévin Cazelles
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
- inSileco Inc., 2-775 Avenue Monk, Québec, Québec, Canada
| | - Huaiyu Tian
- State Key Laboratory of Remote Sensing Science, Center for Global Change and Public Health, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
| | - Mario Chavez
- Hôpital de la Pitié-Salpêtrière, CNRS UMR-7225, Paris, France
| | - Mercedes Pascual
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
- The Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|
17
|
Zhou Y, Deng D, Chen R, Lai C, Chen Q. Effects of antennal segments defects on blood-sucking behavior in Aedes albopictus. PLoS One 2023; 18:e0276036. [PMID: 37561778 PMCID: PMC10414602 DOI: 10.1371/journal.pone.0276036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 07/23/2023] [Indexed: 08/12/2023] Open
Abstract
After mating, female mosquitoes need a blood meal to promote the reproductive process. When mosquitoes bite infected people and animals, they become infected with germs such as viruses and parasites. Mosquitoes rely on many cues for host selection and localization, among which the trace chemical cues emitted by the host into the environment are considered to be the most important, and the sense of smell is the main way to perceive these trace chemical cues. However, the current understanding of the olfactory mechanism is not enough to meet the needs of mosquito control. Unlike previous studies that focused on the olfactory receptor recognition spectrum to reveal the olfactory mechanism of mosquito host localization. In this paper, based on the observation that mosquitoes with incomplete antennae still can locate the host and complete blood feeding in the laboratory, we proposed that there may be some protection or compensation mechanism in the 13 segments of antennae flagella, and only when the antennae are missing to a certain threshold will it affect the mosquito's ability to locate the host. Through rational-designed behavioral experiments, we found that the 6th and 7th flagellomeres on the Aedes albopictus antenna are important in the olfactory detection of host searching. This study preliminarily screened antennal segments important for host localization of Ae. albopictus, and provided a reference for subsequent cell biology and molecular biology studies on these segments. Meanwhile, the morphology and distribution of sensilla on each antenna flagellomere were also analyzed and discussed in this paper.
Collapse
Affiliation(s)
- Yiyuan Zhou
- Research Center of Eugenics, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Department of Obstetrics, The first affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Dongyang Deng
- Research Center of Eugenics, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Department of Obstetrics, The first affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Rong Chen
- Research Center of Eugenics, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Department of Obstetrics, The first affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Chencen Lai
- Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of Education, Guizhou Medical University, Guiyang, China
- Department of Nosocomial Infection, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Qian Chen
- Research Center of Eugenics, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Department of Obstetrics, The first affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
18
|
Jato-Espino D, Mayor-Vitoria F, Moscardó V, Capra-Ribeiro F, Bartolomé del Pino LE. Toward One Health: a spatial indicator system to model the facilitation of the spread of zoonotic diseases. Front Public Health 2023; 11:1215574. [PMID: 37457260 PMCID: PMC10340543 DOI: 10.3389/fpubh.2023.1215574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023] Open
Abstract
Recurrent outbreaks of zoonotic infectious diseases highlight the importance of considering the interconnections between human, animal, and environmental health in disease prevention and control. This has given rise to the concept of One Health, which recognizes the interconnectedness of between human and animal health within their ecosystems. As a contribution to the One Health approach, this study aims to develop an indicator system to model the facilitation of the spread of zoonotic diseases. Initially, a literature review was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement to identify relevant indicators related to One Health. The selected indicators focused on demographics, socioeconomic aspects, interactions between animal and human populations and water bodies, as well as environmental conditions related to air quality and climate. These indicators were characterized using values obtained from the literature or calculated through distance analysis, geoprocessing tasks, and other methods. Subsequently, Multi-Criteria Decision-Making (MCDM) techniques, specifically the Entropy and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) methods, were utilized to combine the indicators and create a composite metric for assessing the spread of zoonotic diseases. The final indicators selected were then tested against recorded zoonoses in the Valencian Community (Spain) for 2021, and a strong positive correlation was identified. Therefore, the proposed indicator system can be valuable in guiding the development of planning strategies that align with the One Health principles. Based on the results achieved, such strategies may prioritize the preservation of natural landscape features to mitigate habitat encroachment, protect land and water resources, and attenuate extreme atmospheric conditions.
Collapse
Affiliation(s)
- Daniel Jato-Espino
- GREENIUS Research Group, Universidad Internacional de Valencia—VIU, Calle Pintor Sorolla, Valencia, Spain
| | - Fernando Mayor-Vitoria
- GREENIUS Research Group, Universidad Internacional de Valencia—VIU, Calle Pintor Sorolla, Valencia, Spain
| | - Vanessa Moscardó
- GREENIUS Research Group, Universidad Internacional de Valencia—VIU, Calle Pintor Sorolla, Valencia, Spain
| | - Fabio Capra-Ribeiro
- GREENIUS Research Group, Universidad Internacional de Valencia—VIU, Calle Pintor Sorolla, Valencia, Spain
- School of Architecture, College of Art and Design, Louisiana State University, Baton Rouge, LA, United States
| | | |
Collapse
|
19
|
Dixon AR, Vondra I. Biting Innovations of Mosquito-Based Biomaterials and Medical Devices. MATERIALS (BASEL, SWITZERLAND) 2022; 15:4587. [PMID: 35806714 PMCID: PMC9267633 DOI: 10.3390/ma15134587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 02/01/2023]
Abstract
Mosquitoes are commonly viewed as pests and deadly predators by humans. Despite this perception, investigations of their survival-based behaviors, select anatomical features, and biological composition have led to the creation of several beneficial technologies for medical applications. In this review, we briefly explore these mosquito-based innovations by discussing how unique characteristics and behaviors of mosquitoes drive the development of select biomaterials and medical devices. Mosquito-inspired microneedles have been fabricated from a variety of materials, including biocompatible metals and polymers, to mimic of the mouthparts that some mosquitoes use to bite a host with minimal injury during blood collection. The salivary components that these mosquitoes use to reduce the clotting of blood extracted during the biting process provide a rich source of anticoagulants that could potentially be integrated into blood-contacting biomaterials or administered in therapeutics to reduce the risk of thrombosis. Mosquito movement, vision, and olfaction are other behaviors that also have the potential for inspiring the development of medically relevant technologies. For instance, viscoelastic proteins that facilitate mosquito movement are being investigated for use in tissue engineering and drug delivery applications. Even the non-wetting nanostructure of a mosquito eye has inspired the creation of a robust superhydrophobic surface coating that shows promise for biomaterial and drug delivery applications. Additionally, biosensors incorporating mosquito olfactory receptors have been built to detect disease-specific volatile organic compounds. Advanced technologies derived from mosquitoes, and insects in general, form a research area that is ripe for exploration and can uncover potential in further dissecting mosquito features for the continued development of novel medical innovations.
Collapse
Affiliation(s)
- Angela R. Dixon
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Biomedical Engineering, School of Engineering and School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Isabelle Vondra
- Biomedical Engineering Program, Northern Illinois University, DeKalb, IL 60115, USA;
| |
Collapse
|
20
|
Mosquito flight: Escaping attacks in dim light. Curr Biol 2022; 32:R279-R281. [PMID: 35349815 DOI: 10.1016/j.cub.2022.01.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To avoid fast attackers, animals must move somewhere their pursuer cannot follow or does not expect. A new study shows that female mosquitoes of either a diurnal or a nocturnal species each exhibit a distinct escape strategy matched to the light level they experience as they hunt for blood.
Collapse
|
21
|
Lefèvre T, Sauvion N, Almeida RP, Fournet F, Alout H. The ecological significance of arthropod vectors of plant, animal, and human pathogens. Trends Parasitol 2022; 38:404-418. [DOI: 10.1016/j.pt.2022.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/16/2022]
|
22
|
Simon LM, Rangel TF. Are Temperature Suitability and Socioeconomic Factors Reliable Predictors of Dengue Transmission in Brazil? FRONTIERS IN TROPICAL DISEASES 2021. [DOI: 10.3389/fitd.2021.758393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dengue is an ongoing problem, especially in tropical countries. Like many other vector-borne diseases, the spread of dengue is driven by a myriad of climate and socioeconomic factors. Within developing countries, heterogeneities on socioeconomic factors are expected to create variable conditions for dengue transmission. However, the relative role of socioeconomic characteristics and their association with climate in determining dengue prevalence are poorly understood. Here we assembled essential socioeconomic factors over 5570 municipalities across Brazil and assessed their effect on dengue prevalence jointly with a previously predicted temperature suitability for transmission. Using a simultaneous autoregressive approach (SAR), we showed that the variability in the prevalence of dengue cases across Brazil is primarily explained by the combined effect of climate and socioeconomic factors. At some dengue seasons, the effect of temperature on transmission potential showed to be a more significant proxy of dengue cases. Still, socioeconomic factors explained the later increase in dengue prevalence over Brazil. In a heterogeneous country such as Brazil, recognizing the transmission drivers by vectors is a fundamental issue in effectively predicting and combating tropical diseases like dengue. Ultimately, it indicates that not considering socioeconomic factors in disease transmission predictions might compromise efficient surveillance strategies. Our study shows that sanitation, urbanization, and GDP are regional indicators that should be considered along with temperature suitability on dengue transmission, setting effective directions to mosquito-borne disease control.
Collapse
|
23
|
Aguirre E, Andreo V, Porcasi X, Lopez L, Guzman C, González P, Scavuzzo CM. Implementation of a proactive system to monitor Aedes aegypti populations using open access historical and forecasted meteorological data. ECOL INFORM 2021. [DOI: 10.1016/j.ecoinf.2021.101351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Brass DP, Cobbold CA, Ewing DA, Purse BV, Callaghan A, White SM. Phenotypic plasticity as a cause and consequence of population dynamics. Ecol Lett 2021; 24:2406-2417. [PMID: 34412157 DOI: 10.1111/ele.13862] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 06/04/2021] [Accepted: 07/05/2021] [Indexed: 11/28/2022]
Abstract
Predicting complex species-environment interactions is crucial for guiding conservation and mitigation strategies in a dynamically changing world. Phenotypic plasticity is a mechanism of trait variation that determines how individuals and populations adapt to changing and novel environments. For individuals, the effects of phenotypic plasticity can be quantified by measuring environment-trait relationships, but it is often difficult to predict how phenotypic plasticity affects populations. The assumption that environment-trait relationships validated for individuals indicate how populations respond to environmental change is commonly made without sufficient justification. Here we derive a novel general mathematical framework linking trait variation due to phenotypic plasticity to population dynamics. Applying the framework to the classical example of Nicholson's blowflies, we show how seemingly sensible predictions made from environment-trait relationships do not generalise to population responses. As a consequence, trait-based analyses that do not incorporate population feedbacks risk mischaracterising the effect of environmental change on populations.
Collapse
Affiliation(s)
- Dominic P Brass
- UK Centre for Ecology & Hydrology, Wallingford, Oxfordshire, UK.,Ecology and Evolutionary Biology, School of Biological Sciences, University of Reading, Reading, UK
| | - Christina A Cobbold
- School of Mathematics and Statistics, College of Science and Engineering, University of Glasgow, University Place, Glasgow, UK
| | - David A Ewing
- Biomathematics and Statistics Scotland, Edinburgh, UK
| | - Bethan V Purse
- UK Centre for Ecology & Hydrology, Wallingford, Oxfordshire, UK
| | - Amanda Callaghan
- Ecology and Evolutionary Biology, School of Biological Sciences, University of Reading, Reading, UK
| | - Steven M White
- UK Centre for Ecology & Hydrology, Wallingford, Oxfordshire, UK
| |
Collapse
|
25
|
López-Mercadal J, Barretto Bruno Wilke A, Barceló C, Miranda MA. Evidence of Wing Shape Sexual Dimorphism in Aedes (Stegomyia) albopictus in Mallorca, Spain. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.569034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Asian tiger mosquito Aedes albopictus (Skuse, 1894) is a highly invasive species widely distributed on the Spanish Mediterranean coast and the Balearic archipelago. Most studies involving this species in Spain have been focused on surveillance and control methods. However, micro-evolutionary studies for Ae. albopictus in Spain have been traditionally neglected. Morphological diversity could be the result of long-term evolutionary diversification in responses to selective pressures such as temperature, precipitation, food availability, predation, or competition that may influence flight activity, host-seeking, and blood-feeding behavior. Wing geometric morphometric have been used not only to study micro- and macro-evolution in mosquitoes but also in studies of population structuring and sexual dimorphism. Therefore, the main goal of this study was to investigate the wing shape patterns of Ae. albopictus populations to unveil sexual dimorphism that could provide information about their ecology and behavior. Mosquito eggs were collected using oviposition traps at the main campus of the University of the Balearic Islands (Palma de Mallorca, Spain) and reared under laboratory conditions. In order to study wing shape variation patterns in Ae. albopictus males and females, the left wing of each adult mosquito was removed and analyzed based on 18 landmarks. Our results indicated strong levels of sexual dimorphism between Ae. albopictus males and females. Furthermore, according to the cross-validated reclassification test, males were correctly distinguished from females with an accuracy of 84% and females from males 75%. We observed a significant sexual dimorphism in the wing shape patterns of Ae. albopictus when considering different seasonal patterns (spring vs. autumn). Our results suggested that selective pressures may affect males differently to females. Host-seeking, blood-feeding, and oviposition behavior of females may act as a major driver for wing shape sexual dimorphism. These results should be considered for the development of more effective and targeted mosquito control strategies.
Collapse
|
26
|
Dada N, Jupatanakul N, Minard G, Short SM, Akorli J, Villegas LM. Considerations for mosquito microbiome research from the Mosquito Microbiome Consortium. MICROBIOME 2021; 9:36. [PMID: 33522965 PMCID: PMC7849159 DOI: 10.1186/s40168-020-00987-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/28/2020] [Indexed: 05/17/2023]
Abstract
In the past decade, there has been increasing interest in mosquito microbiome research, leading to large amounts of data on different mosquito species, with various underlying physiological characteristics, and from diverse geographical locations. However, guidelines and standardized methods for conducting mosquito microbiome research are lacking. To streamline methods in mosquito microbiome research and optimize data quality, reproducibility, and comparability, as well as facilitate data curation in a centralized location, we are establishing the Mosquito Microbiome Consortium, a collaborative initiative for the advancement of mosquito microbiome research. Our overall goal is to collectively work on unraveling the role of the mosquito microbiome in mosquito biology, while critically evaluating its potential for mosquito-borne disease control. This perspective serves to introduce the consortium and invite broader participation. It highlights the issues we view as most pressing to the community and proposes guidelines for conducting mosquito microbiome research. We focus on four broad areas in this piece: (1) sampling/experimental design for field, semi-field, or laboratory studies; (2) metadata collection; (3) sample processing, sequencing, and use of appropriate controls; and (4) data handling and analysis. We finally summarize current challenges and highlight future directions in mosquito microbiome research. We hope that this piece will spark discussions around this area of disease vector biology, as well as encourage careful considerations in the design and implementation of mosquito microbiome research. Video Abstract.
Collapse
Affiliation(s)
- Nsa Dada
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway.
| | - Natapong Jupatanakul
- Protein-Ligand Engineering and Molecular Biology Research Team, National Center for Genetic Engineering and Biotechnology, Khlong Neung, Thailand
| | - Guillaume Minard
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622, Villeurbanne, France
| | - Sarah M Short
- Department of Entomology, The Ohio State University, Columbus, USA
| | - Jewelna Akorli
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | | |
Collapse
|
27
|
Escobar LE. Ecological Niche Modeling: An Introduction for Veterinarians and Epidemiologists. Front Vet Sci 2020; 7:519059. [PMID: 33195507 PMCID: PMC7641643 DOI: 10.3389/fvets.2020.519059] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 08/25/2020] [Indexed: 01/08/2023] Open
Abstract
Most infectious diseases in animals are not distributed randomly. Instead, diseases in livestock and wildlife are predictable in terms of the geography, time, and species affected. Ecological niche modeling approaches have been crucial to the advancement of our understanding of diversity and diseases distributions. This contribution is an introductory overview to the field of distributional ecology, with emphasis on its application for spatial epidemiology. A new, revised modeling framework is proposed for more detailed and replicable models that account for both the biology of the disease to be modeled and the uncertainty of the data available. Considering that most disease systems need at least two organisms interacting (i.e., host and pathogen), biotic interactions lie at the core of the pathogen's ecological niche. As a result, neglecting interacting organisms in pathogen dynamics (e.g., maintenance, reproduction, and transmission) may limit efforts to forecast disease distributions in veterinary epidemiology. Although limitations of ecological niche modeling are noted, it is clear that the application and value of ecological niche modeling to epidemiology will increase in the future. Potential research lines include the examination of the effects of biotic variables on model performance, assessments of protocols for model calibration in disease systems, and new tools and metrics for robust model evaluation. Epidemiologists aiming to employ ecological niche modeling theory and methods to reconstruct and forecast epidemics should familiarize themselves with ecological literature and must consider multidisciplinary collaborations including veterinarians to develop biologically sound, statistically robust analyses. This review attempts to increase the use of tools from ecology in disease mapping.
Collapse
Affiliation(s)
- Luis E Escobar
- Department of Fish and Wildlife Conservation, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
28
|
Tomás G, Zamora-Muñoz C, Martín-Vivaldi M, Barón MD, Ruiz-Castellano C, Soler JJ. Effects of Chemical and Auditory Cues of Hoopoes (Upupa epops) in Repellence and Attraction of Blood-Feeding Flies. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.579667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
29
|
Affiliation(s)
- Miguel Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal.
| |
Collapse
|
30
|
Qasim M, Xiao H, He K, Omar MAA, Liu F, Ahmed S, Li F. Genetic engineering and bacterial pathogenesis against the vectorial capacity of mosquitoes. Microb Pathog 2020; 147:104391. [PMID: 32679245 DOI: 10.1016/j.micpath.2020.104391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/05/2020] [Accepted: 07/09/2020] [Indexed: 12/19/2022]
Abstract
Mosquitoes are the main vector of multiple diseases worldwide and transmit viral (malaria, chikungunya, encephalitis, yellow fever, as well as dengue fever), as well as bacterial diseases (tularemia). To manage the outbreak of mosquito populations, various management programs include the application of chemicals, followed by biological and genetic control. Here we aimed to focus on the role of bacterial pathogenesis and molecular tactics for the management of mosquitoes and their vectorial capacity. Bacterial pathogenesis and molecular manipulations have a substantial impact on the biology of mosquitoes, and both strategies change the gene expression and regulation of disease vectors. The strategy for genetic modification is also proved to be excellent for the management of mosquitoes, which halt the development of population via incompatibility of different sex. Therefore, the purpose of the present discussion is to illustrate the impact of both approaches against the vectorial capacity of mosquitoes. Moreover, it could be helpful to understand the relationship of insect-pathogen and to manage various insect vectors as well as diseases.
Collapse
Affiliation(s)
- Muhammad Qasim
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Huamei Xiao
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China; College of Life Sciences and Resource Environment, Key Laboratory of Crop Growth and Development Regulation of Jiangxi Province, Yichun University, Yichun, 336000, China
| | - Kang He
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Mohamed A A Omar
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Feiling Liu
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Sohail Ahmed
- Department of Entomology, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Fei Li
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
31
|
Habitat and Seasonality Affect Mosquito Community Composition in the West Region of Cameroon. INSECTS 2020; 11:insects11050312. [PMID: 32429075 PMCID: PMC7291174 DOI: 10.3390/insects11050312] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022]
Abstract
To identify potential sylvatic, urban and bridge-vectors that can be involved in current or future virus spillover from wild to more urbanised areas, entomological field surveys were conducted in rural, peri-urban and urban areas spanning the rainy and dry seasons in western Cameroon. A total of 2650 mosquitoes belonging to 37 species and eight genera were collected. Mosquito species richness was significantly influenced by the specific combination of the habitat type and the season. The highest species richness was found in the peri-urban area (S = 30, Chao1 = 121 ± 50.63, ACE = 51.97 ± 3.88) during the dry season (S = 28, Chao1 = 64 ± 25.7, ACE = 38.33 ± 3.1). Aedes (Ae.) africanus and Culex (Cx.) moucheti were only found in the rural and peri-urban areas, while Cx. pipiens s.l. and Ae. aegypti were only found in the urban area. Cx. (Culiciomyia) spp., Cx. duttoni and Ae. albopictus were caught in the three habitat types. Importantly, approximately 52% of the mosquito species collected in this study have been implicated in the transmission of diverse arboviruses. This entomological survey provides a catalogue of the different mosquito species that may be involved in the transmission of arboviruses. Further investigations are needed to study the vectorial capacity of each mosquito species in arbovirus transmission.
Collapse
|