1
|
Dilxat T, Shi Q, Chen X, Liu X. Garlic oil supplementation blocks inflammatory pyroptosis-related acute lung injury by suppressing the NF-κB/NLRP3 signaling pathway via H 2S generation. Aging (Albany NY) 2024; 16:6521-6536. [PMID: 38613798 PMCID: PMC11042940 DOI: 10.18632/aging.205721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/09/2024] [Indexed: 04/15/2024]
Abstract
Acute lung injury (ALI) is a major cause of acute respiratory failure with a high morbidity and mortality rate, and effective therapeutic strategies for ALI remain limited. Inflammatory response is considered crucial for the pathogenesis of ALI. Garlic, a globally used cooking spice, reportedly exhibits excellent anti-inflammatory bioactivity. However, protective effects of garlic against ALI have never been reported. This study aimed to investigate the protective effects of garlic oil (GO) supplementation on lipopolysaccharide (LPS)-induced ALI models. Hematoxylin and eosin staining, pathology scores, lung myeloperoxidase (MPO) activity measurement, lung wet/dry (W/D) ratio detection, and bronchoalveolar lavage fluid (BALF) analysis were performed to investigate ALI histopathology. Real-time polymerase chain reaction, western blotting, and enzyme-linked immunosorbent assay were conducted to evaluate the expression levels of inflammatory factors, nuclear factor-κB (NF-κB), NLRP3, pyroptosis-related proteins, and H2S-producing enzymes. GO attenuated LPS-induced pulmonary pathological changes, lung W/D ratio, MPO activity, and inflammatory cytokines in the lungs and BALF. Additionally, GO suppressed LPS-induced NF-κB activation, NLRP3 inflammasome expression, and inflammatory-related pyroptosis. Mechanistically, GO promoted increased H2S production in lung tissues by enhancing the conversion of GO-rich polysulfide compounds or by increasing the expression of H2S-producing enzymes in vivo. Inhibition of endogenous or exogenous H2S production reversed the protective effects of GO on ALI and eliminated the inhibitory effects of GO on NF-κB, NLRP3, and pyroptotic signaling pathways. Overall, these findings indicate that GO has a critical anti-inflammatory effect and protects against LPS-induced ALI by suppressing the NF-κB/NLRP3 signaling pathway via H2S generation.
Collapse
Affiliation(s)
- Tursunay Dilxat
- Xinjiang Agricultural Vocational Technological College, Changji 831100, Xinjiang, China
| | - Qiang Shi
- Xinjiang Agricultural Vocational Technological College, Changji 831100, Xinjiang, China
| | - Xiaofan Chen
- Xinjiang Agricultural Vocational Technological College, Changji 831100, Xinjiang, China
| | - Xuxin Liu
- Xinjiang Agricultural Vocational Technological College, Changji 831100, Xinjiang, China
| |
Collapse
|
2
|
Amin Mohedin J, Rezaiemanesh A, Asadi S, Haddadi M, Abdul Ahmed B, Gorgin Karaji A, Salari F. Resolvin D1 (Rvd1) Attenuates In Vitro LPS-Stimulated Inflammation Through Downregulation of miR-155, miR -146, miR -148 and Krupple Like Factor 5. Rep Biochem Mol Biol 2024; 12:566-574. [PMID: 39086587 PMCID: PMC11288237 DOI: 10.61186/rbmb.12.4.566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/15/2024] [Indexed: 08/02/2024]
Abstract
Background Chronic inflammation is associated with many inflammatory diseases. Specialized pro-resolving mediators (SPMs) are well known for their crucial role in promoting the resolution phase of inflammation and restoring tissue homeostasis. Resolvin D1 (RvD1) is an endogenous omega-3-derived lipid mediator with pro-resolving activity. This study aimed to evaluate the effect of Resolvin D1 (RvD1) on some inflammatory miRNAs (mir-155-5p, miR146a-5p and miR148-3p) and Krüppel-like factors 5 (KLF5) in an LPS-stimulated THP-1 preclinical model of inflammation. Methods PMA-differentiated THP-1 cells (macrophages) were pre-incubated with or without various concentrations of RvD1 (10, 50, or 100 nM) for 2 h prior to stimulation by 1 μg/ml LPS. Un-stimulated PMA-differentiated THP-1 cells were as the control group. Then, the expression levels of target genes were evaluated by real-time PCR. Results Compared with untreated macrophages, stimulation with 1 µg/ml LPS increased mRNA expression levels of TNF-α, KLF5, miR-155-5p, miR-146-5p, and miR-148a-3p. When the cells were exposed to various concentrations (10, 50 and 100 nM) of RvD1 for 2 h prior to LPS stimulation, the TNF-α, KLF5, miR-155-5p, miR-146-5p, and miR-148a-3p mRNA expression levels were significantly downregulated in a dose-dependent manner, compared to the LPS group. Conclusions The results demonstrate that RvD1 can attenuate inflammatory response in LPS-stimulated macrophages. Our data also showed that RvD1 may exert anti-inflammatory effects by inhibiting miR-155-5p, miR-146a-5p, and miR-148-3p.
Collapse
Affiliation(s)
- Jabbar Amin Mohedin
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Department of Laboratory, Ministry of Health, Sulamania, KRG, Iraq.
| | - Alireza Rezaiemanesh
- Department of immunology, school of medicine, Kermanshah University of Medical Science, Kermanshah, Iran.
| | - Soheila Asadi
- Department of biochemistry, school of medicine, Kermanshah University of Medical Science, Kermanshah, Iran.
| | - Maryam Haddadi
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Bahroz Abdul Ahmed
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Ali Gorgin Karaji
- Department of immunology, school of medicine, Kermanshah University of Medical Science, Kermanshah, Iran.
| | - Farhad Salari
- Department of immunology, school of medicine, Kermanshah University of Medical Science, Kermanshah, Iran.
| |
Collapse
|
3
|
Centanni D, Henricks PAJ, Engels F. The therapeutic potential of resolvins in pulmonary diseases. Eur J Pharmacol 2023; 958:176047. [PMID: 37742814 DOI: 10.1016/j.ejphar.2023.176047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/24/2023] [Accepted: 09/13/2023] [Indexed: 09/26/2023]
Abstract
Uncontrolled inflammation leads to nonspecific destruction and remodeling of tissues and can contribute to many human pathologies, including pulmonary diseases. Stimulation of inflammatory resolution is considered an important process that protects against the progression of chronic inflammatory diseases. Resolvins generated from essential omega-3 polyunsaturated fatty acids have been demonstrated to be signaling molecules in inflammation with important pro-resolving and anti-inflammatory capabilities. By binding to specific receptors, resolvins can modulate inflammatory processes such as neutrophil migration, macrophage phagocytosis and the presence of pro-inflammatory mediators to reduce inflammatory pathologies. The discovery of these pro-resolving mediators has led to a shift in drug research from suppressing pro-inflammatory molecules to investigating compounds that promote resolution to treat inflammation. The exploration of inflammatory resolution also provided the opportunity to further understand the pathophysiology of pulmonary diseases. Alterations of resolution are now linked to both the development and exacerbation of diseases such as asthma, chronic obstructive pulmonary disease, cystic fibrosis, acute respiratory distress syndrome, cancer and COVID-19. These findings have resulted in the rise of novel design and testing of innovative resolution-based therapeutics to treat diseases. Hence, this paper reviews the generation and mechanistic actions of resolvins and investigates their role and therapeutic potential in several pulmonary diseases that may benefit from resolution-based pharmaceuticals.
Collapse
Affiliation(s)
- Daniel Centanni
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, the Netherlands
| | - Paul A J Henricks
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, the Netherlands
| | - Ferdi Engels
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, the Netherlands.
| |
Collapse
|
4
|
Walker KA, Le Page LM, Terrando N, Duggan MR, Heneka MT, Bettcher BM. The role of peripheral inflammatory insults in Alzheimer's disease: a review and research roadmap. Mol Neurodegener 2023; 18:37. [PMID: 37277738 PMCID: PMC10240487 DOI: 10.1186/s13024-023-00627-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 05/24/2023] [Indexed: 06/07/2023] Open
Abstract
Peripheral inflammation, defined as inflammation that occurs outside the central nervous system, is an age-related phenomenon that has been identified as a risk factor for Alzheimer's disease. While the role of chronic peripheral inflammation has been well characterized in the context of dementia and other age-related conditions, less is known about the neurologic contribution of acute inflammatory insults that take place outside the central nervous system. Herein, we define acute inflammatory insults as an immune challenge in the form of pathogen exposure (e.g., viral infection) or tissue damage (e.g., surgery) that causes a large, yet time-limited, inflammatory response. We provide an overview of the clinical and translational research that has examined the connection between acute inflammatory insults and Alzheimer's disease, focusing on three categories of peripheral inflammatory insults that have received considerable attention in recent years: acute infection, critical illness, and surgery. Additionally, we review immune and neurobiological mechanisms which facilitate the neural response to acute inflammation and discuss the potential role of the blood-brain barrier and other components of the neuro-immune axis in Alzheimer's disease. After highlighting the knowledge gaps in this area of research, we propose a roadmap to address methodological challenges, suboptimal study design, and paucity of transdisciplinary research efforts that have thus far limited our understanding of how pathogen- and damage-mediated inflammatory insults may contribute to Alzheimer's disease. Finally, we discuss how therapeutic approaches designed to promote the resolution of inflammation may be used following acute inflammatory insults to preserve brain health and limit progression of neurodegenerative pathology.
Collapse
Affiliation(s)
- Keenan A Walker
- Laboratory of Behavioral Neuroscience, National Institute On Aging. Baltimore, Baltimore, MD, USA.
| | - Lydia M Le Page
- Departments of Physical Therapy and Rehabilitation Science, and Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Niccolò Terrando
- Department of Anesthesiology, Cell Biology and Immunology, Duke University Medical Center, Durham, NC, USA
| | - Michael R Duggan
- Laboratory of Behavioral Neuroscience, National Institute On Aging. Baltimore, Baltimore, MD, USA
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Brianne M Bettcher
- Behavioral Neurology Section, Department of Neurology, University of Colorado Alzheimer's and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
5
|
Li R, Ren T, Zeng J, Xu H. ALCAM Deficiency Alleviates LPS-Induced Acute Lung Injury by Inhibiting Inflammatory Response. Inflammation 2023; 46:688-699. [PMID: 36418761 DOI: 10.1007/s10753-022-01765-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022]
Abstract
We investigated the effects and underlying mechanisms of activated leukocyte adhesion molecule (ALCAM) on acute lung injury (ALI) by using lipopolysaccharide (LPS)-induced ALI animal model and LPS-induced inflammation in vitro. In LPS-stimulated mice, ALCAM deficiency relieved lung injury, which manifested as reduced pathological changes in the lung tissue, reduced pulmonary edema, and reduced vascular permeability. Furthermore, we demonstrated that ALCAM deficiency reduced the infiltration of inflammatory cells, including neutrophil, eosinophil, and macrophages; the release of inflammatory cytokines, including IL-1β, IL-6, TNF-α, and COX2; and reduced the protein level of TLR4/NF-κB pathway (TLR4, MyD88, p-IkBɑ, and p-NF-κB p65). We also demonstrated that ALCAM deficiency reduced the expression of oxidative stress-related proteins (Nrf-2, HO-1, and NQO-1) and endoplasmic reticulum stress-related proteins (CHOP, GRP78, ATF-6, and p-eIF2ɑ). In addition, in LPS-induced inflammation in vitro, ALCAM overexpression promoted inflammatory response, oxidative stress, and ER stress. We established that ALCAM deficiency can suppress the ALI process by reducing inflammatory response, oxidative stress, and endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Ruirui Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Shihezi University School of Medicine, No. 107, Shibei 2Nd Road, Shihezi, 832008, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Tao Ren
- Three Departments of Cardiology, The First Affiliated Hospital of Shihezi University School of Medicine, Shihezi, 832008, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Jianqiong Zeng
- Cardiovascular Surgery CCU, Foshan First People's Hospital, Foshan, 528000, Guangdong, People's Republic of China
| | - Hang Xu
- Department of Critical Care Medicine, The First Affiliated Hospital of Shihezi University School of Medicine, No. 107, Shibei 2Nd Road, Shihezi, 832008, Xinjiang Uygur Autonomous Region, People's Republic of China.
| |
Collapse
|
6
|
Stotts C, Corrales-Medina VF, Rayner KJ. Pneumonia-Induced Inflammation, Resolution and Cardiovascular Disease: Causes, Consequences and Clinical Opportunities. Circ Res 2023; 132:751-774. [PMID: 36927184 DOI: 10.1161/circresaha.122.321636] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Pneumonia is inflammation in the lungs, which is usually caused by an infection. The symptoms of pneumonia can vary from mild to life-threatening, where severe illness is often observed in vulnerable populations like children, older adults, and those with preexisting health conditions. Vaccines have greatly reduced the burden of some of the most common causes of pneumonia, and the use of antimicrobials has greatly improved the survival to this infection. However, pneumonia survivors do not return to their preinfection health trajectories but instead experience an accelerated health decline with an increased risk of cardiovascular disease. The mechanisms of this association are not well understood, but a persistent dysregulated inflammatory response post-pneumonia appears to play a central role. It is proposed that the inflammatory response during pneumonia is left unregulated and exacerbates atherosclerotic vascular disease, which ultimately leads to adverse cardiac events such as myocardial infarction. For this reason, there is a need to better understand the inflammatory cross talk between the lungs and the heart during and after pneumonia to develop therapeutics that focus on preventing pneumonia-associated cardiovascular events. This review will provide an overview of the known mechanisms of inflammation triggered during pneumonia and their relevance to the increased cardiovascular risk that follows this infection. We will also discuss opportunities for new clinical approaches leveraging strategies to promote inflammatory resolution pathways as a novel therapeutic target to reduce the risk of cardiac events post-pneumonia.
Collapse
Affiliation(s)
- Cameron Stotts
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada (C.S., K.J.R).,Centre for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada (C.S., V.F.C.-M.).,University of Ottawa Heart Institute, Ottawa, ON, Canada (C.S., K.J.R)
| | - Vicente F Corrales-Medina
- Centre for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada (C.S., V.F.C.-M.).,Department of Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada (V.F.C-M).,Ottawa Hospital Research Institute, Ottawa, ON, Canada (V.F.C.-M)
| | - Katey J Rayner
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada (C.S., K.J.R).,University of Ottawa Heart Institute, Ottawa, ON, Canada (C.S., K.J.R)
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW This review provides an update on the actions of omega-3 polyunsaturated fatty acids (PUFAs) and presents the most recent findings from trials in patients in the intensive care unit (ICU) setting including relevant meta-analyses. Many specialized pro-resolving mediators (SPMs) are produced from bioactive omega-3 PUFAs and may explain many of the beneficial effects of omega-3 PUFAs, although other mechanisms of action of omega-3 PUFAs are being uncovered. RECENT FINDINGS SPMs resolve inflammation, promote healing and support antiinfection activities of the immune system. Since publication of the ESPEN guidelines, numerous studies further support the use of omega-3 PUFAs. Recent meta-analyses favor the inclusion of omega-3 PUFAs in nutrition support of patients with acute respiratory distress syndrome or sepsis. Recent trials indicate that omega-3 PUFAs may protect against delirium and liver dysfunction in patients in the ICU, although effects on muscle loss are unclear and require further investigation. Critical illness may alter omega-3 PUFA turnover. There has been significant discussion about the potential for omega-3 PUFAs and SPMs in treatment of coronavirus disease 2019. SUMMARY Evidence for benefits of omega-3 PUFAs in the ICU setting has strengthened through new trials and meta-analyses. Nevertheless, better quality trials are still needed. SPMs may explain many of the benefits of omega-3 PUFAs.
Collapse
Affiliation(s)
- Pierre Singer
- Department of General Intensive Care and Institute for Nutrition Research, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine
- NIHR Southampton Biomedical Research Centre and University Hospital Southampton NHS Foundation Trust, University of Southampton, Southampton, UK
| |
Collapse
|
8
|
da Silva Batista E, Nakandakari SCBR, Ramos da Silva AS, Pauli JR, Pereira de Moura L, Ropelle ER, Camargo EA, Cintra DE. Omega-3 pleiad: The multipoint anti-inflammatory strategy. Crit Rev Food Sci Nutr 2022; 64:4817-4832. [PMID: 36382659 DOI: 10.1080/10408398.2022.2146044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Omega 3 (ω3) fatty acids have been described since the 1980s as promising anti-inflammatory substances. Prostaglandin and leukotriene modulation were exhaustively explored as the main reason for ω3 beneficial outcomes. However, during the early 2000s, after the human genome decoding advent, the nutrigenomic approaches exhibited an impressive plethora of ω3 targets, now under the molecular point of view. Different G protein-coupled receptors (GPCRs) recognizing ω3 and its derivatives appear to be responsible for blocking inflammation and insulin-sensitizing effects. A new class of ω3-derived substances, such as maresins, resolvins, and protectins, increases ω3 actions. Inflammasome disruption, the presence of GPR120 on immune cell surfaces, and intracellular crosstalk signaling mediated by PPARγ compose the last discoveries regarding the multipoint anti-inflammatory targets for this nutrient. This review shows a detailed mechanistic proposal to understand ω3 fatty acid action over the inflammatory environment in the background of several chronic diseases.
Collapse
Affiliation(s)
- Ellencristina da Silva Batista
- Graduate Program of Health Sciences (PPGCS), Federal University of Sergipe, Aracaju, Sergipe, Brazil
- Nutritional Genomics Laboratory, LabGeN, School of Applied Sciences, UNICAMP, São Paulo, Brazil
- Nutrigenomics and Lipids Research Center, CELN, School of Applied Sciences, UNICAMP, São Paulo, Brazil
- Nutrition Department, Federal University of Sergipe, Lagarto, Sergipe, Brazil
| | - Susana Castelo Branco Ramos Nakandakari
- Nutritional Genomics Laboratory, LabGeN, School of Applied Sciences, UNICAMP, São Paulo, Brazil
- Nutrigenomics and Lipids Research Center, CELN, School of Applied Sciences, UNICAMP, São Paulo, Brazil
| | | | - José Rodrigo Pauli
- Nutrigenomics and Lipids Research Center, CELN, School of Applied Sciences, UNICAMP, São Paulo, Brazil
- Laboratory of Molecular Biology of Exercise, School of Applied Sciences, UNICAMP, São Paulo, Brazil
| | - Leandro Pereira de Moura
- Laboratory of Molecular Biology of Exercise, School of Applied Sciences, UNICAMP, São Paulo, Brazil
| | - Eduardo Rochete Ropelle
- Nutrigenomics and Lipids Research Center, CELN, School of Applied Sciences, UNICAMP, São Paulo, Brazil
- Laboratory of Molecular Biology of Exercise, School of Applied Sciences, UNICAMP, São Paulo, Brazil
| | - Enilton A Camargo
- Graduate Program of Health Sciences (PPGCS), Federal University of Sergipe, Aracaju, Sergipe, Brazil
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Dennys Esper Cintra
- Nutritional Genomics Laboratory, LabGeN, School of Applied Sciences, UNICAMP, São Paulo, Brazil
- Nutrigenomics and Lipids Research Center, CELN, School of Applied Sciences, UNICAMP, São Paulo, Brazil
- OCRC - Obesity and Comorbidities Research Center, UNICAMP, São Paulo, Brazil
| |
Collapse
|
9
|
Cell Proteins Obtained by Peptic Shaving of Two Phenotypically Different Strains of Streptococcus thermophilus as a Source of Anti-Inflammatory Peptides. Nutrients 2022; 14:nu14224777. [PMID: 36432464 PMCID: PMC9695010 DOI: 10.3390/nu14224777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
Streptococcus thermophilus, a food grade bacterium, is extensively used in the manufacture of fermented products such as yogurt and cheeses. It has been shown that S. thermophilus strains exhibited varying anti-inflammatory activities in vitro. Our previous study displayed that this activity could be partially due to peptide(s) generated by trypsin hydrolysis of the surface proteins of S. thermophilus LMD-9. Surface protease PrtS could be the source of these peptides during gastrointestinal digestion. Therefore, peptide hydrolysates were obtained by shaving two phenotypically distinct strains of S. thermophilus (LMD-9 PrtS+ and CNRZ-21N PrtS-) with pepsin, a gastric protease, followed or not by trypsinolysis. The peptide hydrolysates of both strains exhibited anti-inflammatory action through the modulation of pro-inflammatory mediators in LPS-stimulated THP-1 macrophages (COX-2, Pro-IL-1β, IL-1β, and IL-8) and LPS-stimulated HT-29 cells (IL-8). Therefore, peptides released from either PrtS+ or PrtS- strains in the gastrointestinal tract during digestion of a product containing this bacterium may display anti-inflammatory effects and reduce the risk of inflammation-related chronic diseases.
Collapse
|
10
|
Chen C, Wang N, Wang B, Zhang Q, Hu Y, Cheng G, Tao S, Huang J, Wang C, Zhang Y. Network analysis-based strategy to investigate the protective effect of cepharanthine on rat acute respiratory distress syndrome. Front Pharmacol 2022; 13:1054339. [DOI: 10.3389/fphar.2022.1054339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022] Open
Abstract
Combined with Network Analysis (NA) and in vivo experimental methods, we explored and verified the mechanism of Cepharanthine (CEP) involved in the treatment of acute respiratory distress syndrome (ARDS). Potential targets of CEP were searched using the SwissTargetPrediction database. The pathogenic genes related to ARDS were obtained using the DisGeNET database. A protein-protein interaction network of common target genes of disease-compound was subsequently built and visualised. Functional enrichment analysis was performed through the Enrichr database. Finally, for in vivo experimental verification, we established an oleic acid-induced ARDS rat model, mainly through histological evaluation and the ELISA method to evaluate both the protective effect of CEP on ARDS and its effect on inflammation. A total of 100 genes were found to be CEP targeted genes, while 153 genes were found to be associated with ARDS. The PPI network was used to illustrate the link and purpose of the genes associated with CEP and ARDS, which contained 238 nodes and 2,333 links. GO and KEGG analyses indicated that inflammatory response and its related signalling pathways were closely associated with CEP-mediated ARDS treatment. Thus, a key CEP–gene–pathway-ARDS network was constructed through network analysis, including 152 nodes (5 targets and 6 pathways) and 744 links. The results of in vivo experiments showed that CEP could alleviate histopathological changes and pulmonary edema related to ARDS, in addition to reducing neutrophil infiltration and secretion of inflammatory cytokines, whilst increasing serum contents of ResolvinD1 and ResolvinE1. Thus, these effects enhance the anti-inflammatory responses. Thus, our results show that CEP can treat oleic acid-induced ARDS in rats via ResolvinE1 and ResolvinD1 signalling pathways that promote inflammation resolution, providing a new avenue to explore for the clinical treatment of ARDS.
Collapse
|
11
|
Kotlyarov S, Kotlyarova A. Clinical significance of polyunsaturated fatty acids in the prevention of cardiovascular diseases. Front Nutr 2022; 9:998291. [PMID: 36276836 PMCID: PMC9582942 DOI: 10.3389/fnut.2022.998291] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular diseases are one of the most important problems of modern medicine. They are associated with a large number of health care visits, hospitalizations and mortality. Prevention of atherosclerosis is one of the most effective strategies and should start as early as possible. Correction of lipid metabolism disorders is associated with definite clinical successes, both in primary prevention and in the prevention of complications of many cardiovascular diseases. A growing body of evidence suggests a multifaceted role for polyunsaturated fatty acids. They demonstrate a variety of functions in inflammation, both participating directly in a number of cellular processes and acting as a precursor for subsequent biosynthesis of lipid mediators. Extensive clinical data also support the importance of polyunsaturated fatty acids, but all questions have not been answered to date, indicating the need for further research.
Collapse
Affiliation(s)
| | - Anna Kotlyarova
- Department of Pharmacy Management and Economics, Ryazan State Medical University, Ryazan, Russia
| |
Collapse
|
12
|
Marzec JM, Nadadur SS. Inflammation resolution in environmental pulmonary health and morbidity. Toxicol Appl Pharmacol 2022; 449:116070. [PMID: 35618031 PMCID: PMC9872158 DOI: 10.1016/j.taap.2022.116070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/04/2022] [Accepted: 05/14/2022] [Indexed: 02/07/2023]
Abstract
Inflammation and resolution are dynamic processes comprised of inflammatory activation and neutrophil influx, followed by mediator catabolism and efferocytosis. These critical pathways ensure a return to homeostasis and promote repair. Over the past decade research has shown that diverse mediators play a role in the active process of resolution. Specialized pro-resolving mediators (SPMs), biosynthesized from fatty acids, are released during inflammation to facilitate resolution and are deficient in a variety of lung disorders. Failed resolution results in remodeling and cellular deposition through pro-fibrotic myofibroblast expansion that irreversibly narrows the airways and worsens lung function. Recent studies indicate environmental exposures may perturb and deregulate critical resolution pathways. Environmental xenobiotics induce lung inflammation and generate reactive metabolites that promote oxidative stress, injuring the respiratory mucosa and impairing gas-exchange. This warrants recognition of xenobiotic associated molecular patterns (XAMPs) as new signals in the field of inflammation biology, as many environmental chemicals generate free radicals capable of initiating the inflammatory response. Recent studies suggest that unresolved, persistent inflammation impacts both resolution pathways and endogenous regulatory mediators, compromising lung function, which over time can progress to chronic lung disease. Chronic ozone (O3) exposure overwhelms successful resolution, and in susceptible individuals promotes asthma onset. The industrial contaminant cadmium (Cd) bioaccumulates in the lung to impair resolution, and recurrent inflammation can result in chronic obstructive pulmonary disease (COPD). Persistent particulate matter (PM) exposure increases systemic cardiopulmonary inflammation, which reduces lung function and can exacerbate asthma, COPD, and idiopathic pulmonary fibrosis (IPF). While recurrent inflammation underlies environmentally induced pulmonary morbidity and may drive the disease process, our understanding of inflammation resolution in this context is limited. This review aims to explore inflammation resolution biology and its role in chronic environmental lung disease(s).
Collapse
Affiliation(s)
- Jacqui M Marzec
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Srikanth S Nadadur
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
13
|
Alqahtani S, Xia L, Shannahan JH. Enhanced silver nanoparticle-induced pulmonary inflammation in a metabolic syndrome mouse model and resolvin D1 treatment. Part Fibre Toxicol 2022; 19:54. [PMID: 35933425 PMCID: PMC9356467 DOI: 10.1186/s12989-022-00495-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/28/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Metabolic syndrome (MetS) exacerbates susceptibility to inhalation exposures such as particulate air pollution, however, the mechanisms responsible remain unelucidated. Previously, we determined a MetS mouse model exhibited exacerbated pulmonary inflammation 24 h following AgNP exposure compared to a healthy mouse model. This enhanced response corresponded with reduction of distinct resolution mediators. We hypothesized silver nanoparticle (AgNP) exposure in MetS results in sustained pulmonary inflammation. Further, we hypothesized treatment with resolvin D1 (RvD1) will reduce exacerbations in AgNP-induced inflammation due to MetS. RESULTS To evaluate these hypotheses, healthy and MetS mouse models were exposed to vehicle (control) or AgNPs and a day later, treated with resolvin D1 (RvD1) or vehicle (control) via oropharyngeal aspiration. Pulmonary lung toxicity was evaluated at 3-, 7-, 14-, and 21-days following AgNP exposure. MetS mice exposed to AgNPs and receiving vehicle treatment, demonstrated exacerbated pulmonary inflammatory responses compared to healthy mice. In the AgNP exposed mice receiving RvD1, pulmonary inflammatory response in MetS was reduced to levels comparable to healthy mice exposed to AgNPs. This included decreases in neutrophil influx and inflammatory cytokines, as well as elevated anti-inflammatory cytokines. CONCLUSIONS Inefficient resolution may contribute to enhancements in MetS susceptibility to AgNP exposure causing an increased pulmonary inflammatory response. Treatments utilizing specific resolution mediators may be beneficial to individuals suffering MetS following inhalation exposures.
Collapse
Affiliation(s)
- Saeed Alqahtani
- grid.169077.e0000 0004 1937 2197School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN USA ,grid.452562.20000 0000 8808 6435Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Li Xia
- grid.169077.e0000 0004 1937 2197School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN USA
| | - Jonathan H. Shannahan
- grid.169077.e0000 0004 1937 2197School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN USA
| |
Collapse
|
14
|
Shum M, London CM, Briottet M, Sy KA, Baillif V, Philippe R, Zare A, Ghorbani-Dalini S, Remus N, Tarze A, Escabasse V, Epaud R, Dubourdeau M, Urbach V. CF Patients’ Airway Epithelium and Sex Contribute to Biosynthesis Defects of Pro-Resolving Lipids. Front Immunol 2022; 13:915261. [PMID: 35784330 PMCID: PMC9244846 DOI: 10.3389/fimmu.2022.915261] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/13/2022] [Indexed: 01/07/2023] Open
Abstract
Specialized pro-resolving lipid mediators (SPMs) as lipoxins (LX), resolvins (Rv), protectins (PD) and maresins (MaR) promote the resolution of inflammation. We and others previously reported reduced levels of LXA4 in bronchoalveolar lavages from cystic fibrosis (CF) patients. Here, we investigated the role of CF airway epithelium in SPMs biosynthesis, and we evaluated its sex specificity. Human nasal epithelial cells (hNEC) were obtained from women and men with or without CF. Lipids were quantified by mass spectrometry in the culture medium of hNEC grown at air-liquid interface and the expression level and localization of the main enzymes of SPMs biosynthesis were assessed. The 5-HETE, LXA4, LXB4, RvD2, RvD5, PD1 and RvE3 levels were significantly lower in samples derived from CF patients compared with non-CF subjects. Within CF samples, the 12-HETE, 15-HETE, RvD3, RvD4, 17-HODHE and PD1 were significantly lower in samples derived from females. While the mean expression levels of 15-LO, 5-LO and 12-LO do not significantly differ either between CF and non-CF or between female and male samples, the SPMs content correlates with the level of expression of several enzymes involved in SPMs metabolism. In addition, the 5-LO localization significantly differed from cytoplasmic in non-CF to nucleic (or nuclear envelope) in CF hNEC. Our studies provided evidence for lower abilities of airway epithelial cells derived from CF patients and more markedly, females to produce SPMs. These data are consistent with a contribution of CF airway epithelium in the abnormal resolution of inflammation and with worse pulmonary outcomes in women.
Collapse
Affiliation(s)
- Mickael Shum
- University Paris Est Créteil, Institut National de la Santé Et de la Recherche Médicale (INSERM) U955, Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
| | - Charlie M. London
- University Paris Est Créteil, Institut National de la Santé Et de la Recherche Médicale (INSERM) U955, Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
| | - Maelle Briottet
- University Paris Est Créteil, Institut National de la Santé Et de la Recherche Médicale (INSERM) U955, Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
| | - Khadeeja Adam Sy
- University Paris Est Créteil, Institut National de la Santé Et de la Recherche Médicale (INSERM) U955, Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
| | | | - Reginald Philippe
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1151 – Institut Necker Enfants Malades (INEM), Paris, France
| | - Abdolhossein Zare
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1151 – Institut Necker Enfants Malades (INEM), Paris, France
| | - Sadegh Ghorbani-Dalini
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1151 – Institut Necker Enfants Malades (INEM), Paris, France
| | - Natacha Remus
- University Paris Est Créteil, Institut National de la Santé Et de la Recherche Médicale (INSERM) U955, Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
- Centre Hospitalier Intercommunal de Créteil (CHIC), Créteil, France
| | - Agathe Tarze
- University Paris Est Créteil, Institut National de la Santé Et de la Recherche Médicale (INSERM) U955, Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
| | - Virginie Escabasse
- University Paris Est Créteil, Institut National de la Santé Et de la Recherche Médicale (INSERM) U955, Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
- Centre Hospitalier Intercommunal de Créteil (CHIC), Créteil, France
| | - Ralph Epaud
- University Paris Est Créteil, Institut National de la Santé Et de la Recherche Médicale (INSERM) U955, Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
- Centre Hospitalier Intercommunal de Créteil (CHIC), Créteil, France
| | | | - Valerie Urbach
- University Paris Est Créteil, Institut National de la Santé Et de la Recherche Médicale (INSERM) U955, Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1151 – Institut Necker Enfants Malades (INEM), Paris, France
- *Correspondence: Valerie Urbach,
| |
Collapse
|
15
|
Kotlyarov S, Kotlyarova A. Molecular Pharmacology of Inflammation Resolution in Atherosclerosis. Int J Mol Sci 2022; 23:ijms23094808. [PMID: 35563200 PMCID: PMC9104781 DOI: 10.3390/ijms23094808] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
Atherosclerosis is one of the most important problems of modern medicine as it is the leading cause of hospitalizations, disability, and mortality. The key role in the development and progression of atherosclerosis is the imbalance between the activation of inflammation in the vascular wall and the mechanisms of its control. The resolution of inflammation is the most important physiological mechanism that is impaired in atherosclerosis. The resolution of inflammation has complex, not fully known mechanisms, in which lipid mediators derived from polyunsaturated fatty acids (PUFAs) play an important role. Specialized pro-resolving mediators (SPMs) represent a group of substances that carry out inflammation resolution and may play an important role in the pathogenesis of atherosclerosis. SPMs include lipoxins, resolvins, maresins, and protectins, which are formed from PUFAs and regulate many processes related to the active resolution of inflammation. Given the physiological importance of these substances, studies examining the possibility of pharmacological effects on inflammation resolution are of interest.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
- Correspondence:
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
16
|
Allouche R, Hafeez Z, Papier F, Dary-Mourot A, Genay M, Miclo L. In Vitro Anti-Inflammatory Activity of Peptides Obtained by Tryptic Shaving of Surface Proteins of Streptococcus thermophilus LMD-9. Foods 2022; 11:foods11081157. [PMID: 35454744 PMCID: PMC9030335 DOI: 10.3390/foods11081157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/01/2022] [Accepted: 04/11/2022] [Indexed: 12/16/2022] Open
Abstract
Streptococcus thermophilus, a lactic acid bacterium widely used in the dairy industry, is consumed regularly by a significant proportion of the population. Some strains show in vitro anti-inflammatory activity which is not fully understood. We hypothesized that peptides released from the surface proteins of this bacterium during digestion could be implied in this activity. Consequently, we prepared a peptide hydrolysate by shaving and hydrolysis of surface proteins using trypsin, and the origin of peptides was checked by liquid chromatography–tandem mass spectrometry (LC-MS/MS) analysis. Most of the identified peptides originated from bacterial cell surface proteins. The anti-inflammatory activity of peptide hydrolysate was investigated under inflammatory conditions in two cell models. Peptide hydrolysate significantly decreased secretion of pro-inflammatory cytokine IL-8 in lipopolysaccharide (LPS)-stimulated human colon epithelial HT-29 cells. It also reduced the production of pro-inflammatory cytokines IL-8, IL-1β and the protein expression levels of Pro-IL-1β and COX-2 in LPS-stimulated THP-1 macrophages. The results showed that peptides released from bacterial surface proteins by a pancreatic protease could therefore participate in an anti-inflammatory activity of S. thermophilus LMD-9 and could prevent low-grade inflammation.
Collapse
|
17
|
Blaudez F, Ivanovski S, Fournier B, Vaquette C. The utilisation of resolvins in medicine and tissue engineering. Acta Biomater 2022; 140:116-135. [PMID: 34875358 DOI: 10.1016/j.actbio.2021.11.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/19/2022]
Abstract
Recent advances in the field of regenerative medicine and biomaterial science have highlighted the importance of controlling immune cell phenotypes at the biomaterial interface. These studies have clearly indicated that a rapid resolution of the inflammatory process, mediated by a switch in the macrophage population towards a reparative phenotype, is essential for tissue regeneration to occur. While various biomaterial surfaces have been developed in order to impart immunomodulatory properties to the resulting constructs, an alternative strategy involving the use of reparative biological cues, known as resolvins, is emerging in regenerative medicine. This review reports on the mechanisms via which resolvins participate in the resolution of inflammation and describes their current utilisation in pre-clinical and clinical settings, along with their effectiveness when combined with biomaterial constructs in tissue engineering applications. STATEMENT OF SIGNIFICANCE: The resolution of the inflammatory process is necessary for achieving tissue healing and regeneration. Resolvins are lipid mediators and play a key role in the resolution of the inflammatory response and can be used in as biological cues to promote tissue regeneration. This review describes the various biological inflammatory mechanisms and pathways involving resolvins and how their action results in a pro-healing response. The use of these molecules in the clinical setting is then summarised for various applications along with their limitations. Lastly, the review focuses on the emergence resolvins in tissue engineering products including the use of a more stable form which holds greater prospect for regenerative purposes.
Collapse
Affiliation(s)
- Fanny Blaudez
- School of Dentistry and Oral Health, Griffith University, Parklands Dr, Southport QLD 4222, Australia; The University of Queensland, School of Dentistry, 288 Herston Rd, Herston QLD 4006, Australia
| | - Saso Ivanovski
- The University of Queensland, School of Dentistry, 288 Herston Rd, Herston QLD 4006, Australia
| | - Benjamin Fournier
- The University of Queensland, School of Dentistry, 288 Herston Rd, Herston QLD 4006, Australia; Université de Paris, Dental Faculty Garanciere, Oral Biology Department, Centre of Reference for Oral Rare Diseases, 5 rue Garanciere, Paris, 75006, France; Centre de Recherche des Cordeliers, Université de Paris, Sorbonne Université, INSERM UMRS 1138, Molecular Oral Pathophysiology, 15-21 rue de l'école de médecine, 75006 Paris, France
| | - Cedryck Vaquette
- The University of Queensland, School of Dentistry, 288 Herston Rd, Herston QLD 4006, Australia.
| |
Collapse
|
18
|
Roberti A, Chaffey LE, Greaves DR. NF-κB Signaling and Inflammation-Drug Repurposing to Treat Inflammatory Disorders? BIOLOGY 2022; 11:372. [PMID: 35336746 PMCID: PMC8945680 DOI: 10.3390/biology11030372] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 12/15/2022]
Abstract
NF-κB is a central mediator of inflammation, response to DNA damage and oxidative stress. As a result of its central role in so many important cellular processes, NF-κB dysregulation has been implicated in the pathology of important human diseases. NF-κB activation causes inappropriate inflammatory responses in diseases including rheumatoid arthritis (RA) and multiple sclerosis (MS). Thus, modulation of NF-κB signaling is being widely investigated as an approach to treat chronic inflammatory diseases, autoimmunity and cancer. The emergence of COVID-19 in late 2019, the subsequent pandemic and the huge clinical burden of patients with life-threatening SARS-CoV-2 pneumonia led to a massive scramble to repurpose existing medicines to treat lung inflammation in a wide range of healthcare systems. These efforts continue and have proven to be controversial. Drug repurposing strategies are a promising alternative to de novo drug development, as they minimize drug development timelines and reduce the risk of failure due to unexpected side effects. Different experimental approaches have been applied to identify existing medicines which inhibit NF-κB that could be repurposed as anti-inflammatory drugs.
Collapse
Affiliation(s)
| | | | - David R. Greaves
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK; (A.R.); (L.E.C.)
| |
Collapse
|
19
|
Kotlyarov S, Kotlyarova A. Anti-Inflammatory Function of Fatty Acids and Involvement of Their Metabolites in the Resolution of Inflammation in Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2021; 22:ijms222312803. [PMID: 34884621 PMCID: PMC8657960 DOI: 10.3390/ijms222312803] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 12/13/2022] Open
Abstract
Lipid metabolism plays an important role in many lung functions. Disorders of lipid metabolism are part of the pathogenesis of chronic obstructive pulmonary disease (COPD). Lipids are involved in numerous cross-linkages with inflammation. Recent studies strongly support the involvement of fatty acids as participants in inflammation. They are involved in the initiation and resolution of inflammation, including acting as a substrate for the formation of lipid mediators of inflammation resolution. Specialized pro-inflammatory mediators (SPMs) belonging to the classes of lipoxins, resolvins, maresins, and protectins, which are formed enzymatically from unsaturated fatty acids, are now described. Disorders of their production and function are part of the pathogenesis of COPD. SPMs are currently the subject of active research in order to find new drugs. Short-chain fatty acids are another important participant in metabolic and immune processes, and their role in the pathogenesis of COPD is of great clinical interest.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
- Correspondence:
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
20
|
Zhao D, Yang B, Ye C, Zhang S, Lv X, Chen Q. Enteral nutrition ameliorates the symptoms of Crohn's disease in mice via activating special pro-resolving mediators through innate lymphoid cells. Innate Immun 2021; 27:533-542. [PMID: 34791916 PMCID: PMC8762089 DOI: 10.1177/17534259211057038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Crohn's disease activates the inflammatory reactions to induce intestinal disorders. Enteral nutrition (EN) could exert general immunomodulatory effects. Cecal ligation and perforation (CLP) surgery was utilized to establish Crohn's disease mice models. Survival analysis, hematoxylin-eosin staining, flow cytometry, ELISA, Western blot and liquid chromatography-tandem MS were applied. Baicalein was added to inhibit lipoxygenases. The survival rate was restored and inflammatory injury, exudate neutrophils in peritoneal lavage and serum levels of IL-6 and TNF-α were ameliorated by EN treatment as compared with CLP treatment. EN also increased ILC-3 content, 5/15-LOX level and RvD1-RvD5 in peritoneal lavage. Baicalein reversed all the detected effects of EN except ILC-3 content. EN could activate special pro-resolving mediators (SPMs) through ILCs to mitigate injuries of Crohn's disease.
Collapse
Affiliation(s)
- Di Zhao
- Clinical Research Center for Digestive Diseases, Tongji University, Shanghai, China.,Department of Colorectal Disease, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bo Yang
- Clinical Research Center for Digestive Diseases, Tongji University, Shanghai, China.,Department of Colorectal Disease, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chen Ye
- Clinical Research Center for Digestive Diseases, Tongji University, Shanghai, China.,Department of Colorectal Disease, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shaoyi Zhang
- Clinical Research Center for Digestive Diseases, Tongji University, Shanghai, China.,Department of Colorectal Disease, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoqiong Lv
- Clinical Research Center for Digestive Diseases, Tongji University, Shanghai, China.,Department of Colorectal Disease, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qiyi Chen
- Clinical Research Center for Digestive Diseases, Tongji University, Shanghai, China.,Department of Colorectal Disease, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Molaei E, Molaei A, Hayes AW, Karimi G. Resolvin D1, therapeutic target in acute respiratory distress syndrome. Eur J Pharmacol 2021; 911:174527. [PMID: 34582846 PMCID: PMC8464084 DOI: 10.1016/j.ejphar.2021.174527] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/09/2021] [Accepted: 09/23/2021] [Indexed: 12/25/2022]
Abstract
Acute lung injury (ALI), or its more severe form, acute respiratory distress syndrome (ARDS), is a disease with high mortality and is a serious challenge facing the World Health Organization because there is no specific treatment. The excessive and prolonged immune response is the hallmark of this disorder, so modulating and regulating inflammation plays an important role in its prevention and treatment. Resolvin D1 (RvD1) as a specialized pro-resolving mediator has the potential to suppress the expression of inflammatory cytokines and to facilitate the production of antioxidant proteins by stimulating lipoxin A4 receptor/formyl peptide receptor 2 (ALX/FPR2). These changes limit the invasion of immune cells into the lung tissue, inhibit coagulation, and enhance cell protection against oxidative stress (OS). In particular, this biomolecule reduces the generation of reactive oxygen species (ROS) by blocking the activation of inflammatory transcription factors, especially nuclear factor-κB (NF-κB), and accelerating the synthesis of antioxidant compounds such as heme oxygenase 1 (HO-1) and superoxide dismutase (SOD). Therefore, the destruction and dysfunction of important cell components such as cytoplasmic membrane, mitochondria, Na+/k + adenosine triphosphatase (ATPase) and proteins involved in the phagocytic activity of scavenger macrophages are attenuated. Numerous studies on the effect of RvD1 over inflammation using animal models revealed that Rvs have both anti-inflammatory and pro-resolving capabilities and therefore, might have potential therapeutic value in treating ALI. Here, we review the current knowledge on the classification, biosynthesis, receptors, mechanisms of action, and role of Rvs in ALI/ARDS.
Collapse
Affiliation(s)
- Emad Molaei
- Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Molaei
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- University of South Florida College of Public Health, Tampa, FL, USA
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
22
|
Xiang SY, Ye Y, Yang Q, Xu HR, Shen CX, Ma MQ, Jin SW, Mei HX, Zheng SX, Smith FG, Jin SW, Wang Q. RvD1 accelerates the resolution of inflammation by promoting apoptosis of the recruited macrophages via the ALX/FasL-FasR/caspase-3 signaling pathway. Cell Death Discov 2021; 7:339. [PMID: 34750369 PMCID: PMC8575873 DOI: 10.1038/s41420-021-00708-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/30/2021] [Accepted: 10/11/2021] [Indexed: 12/11/2022] Open
Abstract
The uncontrolled inflammatory response caused by a disorder in inflammation resolution is one of the reasons for acute respiratory distress syndrome (ARDS). The macrophage pool markedly expands when inflammatory monocytes, known as recruited macrophages, migrate from the circulation to the lung. The persistent presence of recruited macrophages leads to chronic inflammation in the resolution phase of inflammation. On the contrary, elimination of the recruited macrophages at the injury site leads to the rapid resolution of inflammation. Resolvin D1 (RvD1) is an endogenous lipid mediator derived from docosahexaenoic acid. Mice were administered RvD1 via the tail vein 3 and 4 days after stimulation with lipopolysaccharide. RvD1 reduced the levels of the inflammatory factors in the lung tissue, promoted the anti-inflammatory M2 phenotype, and enhanced the phagocytic function of recruited macrophages to alleviate acute lung injury. We also found that the number of macrophages was decreased in BAL fluid after treatment with RvD1. RvD1 increased the apoptosis of recruited macrophages partly via the FasL-FasR/caspase-3 signaling pathway, and this effect could be blocked by Boc-2, an ALX/PRP2 inhibitor. Taken together, our findings reinforce the concept of therapeutic targeting leading to the apoptosis of recruited macrophages. Thus, RvD1 may provide a new therapy for the resolution of ARDS.
Collapse
Affiliation(s)
- Shu-Yang Xiang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, 325027, China
| | - Yang Ye
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, 325027, China
| | - Qian Yang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, 325027, China
| | - Hao- Ran Xu
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, 325027, China
| | - Chen-Xi Shen
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, 325027, China
| | - Min-Qi Ma
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, 325027, China
| | - Shao-Wu Jin
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, 325027, China
| | - Hong-Xia Mei
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, 325027, China
| | - Sheng-Xing Zheng
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, 325027, China
| | - Fang-Gao Smith
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, 325027, China.,nstitute of Inflammation and Aging, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Sheng-Wei Jin
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, 325027, China.
| | - Qian Wang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, 325027, China.
| |
Collapse
|
23
|
Ulu A, Burr A, Heires AJ, Pavlik J, Larsen T, Perez PA, Bravo C, DiPatrizio NV, Baack M, Romberger DJ, Nordgren TM. A high docosahexaenoic acid diet alters lung inflammation and recovery following repetitive exposure to aqueous organic dust extracts. J Nutr Biochem 2021; 97:108797. [PMID: 34126202 PMCID: PMC8725620 DOI: 10.1016/j.jnutbio.2021.108797] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022]
Abstract
Agricultural workers, especially those who work in swine confinement facilities, are at increased risk for developing pulmonary diseases including asthma, chronic obstructive pulmonary disease, and chronic bronchitis due to exposures to fumes, vapors, and organic dust. Repetitive exposure to agricultural dust leads to unresolved inflammation, a common underlying mechanism that worsens lung disease. Besides occupational exposure to dusts, diet also significantly contributes to inflammation and disease progression. Since DHA (docosahexaenoic acid), a polyunsaturated omega-3 fatty acid and its bioactive metabolites have key roles in inflammation resolution, we rationalized that individuals chronically exposed to organic dusts can benefit from dietary modifications. Here, we evaluated the role of DHA in modifying airway inflammation in a murine model of repetitive exposure to an aqueous extract of agricultural dust (three-week exposure to swine confinement dust extract, HDE) and after a one-week resolution/recovery period. We found that mice fed a high DHA diet had significantly increased bronchoalveolar lavage fluid (BALF) levels of DHA-derived resolvins and lower TNFα along with altered plasma levels of endocannabinoids and related lipid mediators. Following the one-week recovery we identified significantly reduced BALF cellularity and cytokine/chemokine release along with increased BALF amphiregulin and resolvins in DHA diet-fed versus control diet-fed mice challenged with HDE. We further report observations on the effects of repetitive HDE exposure on lung Ym1+ and Arg-1+ macrophages. Overall, our findings support a protective role for DHA and identify DHA-derived resolvins and endocannabinoids among the potential mediators of DHA in altering airway inflammation in chronic agricultural dust exposure.
Collapse
Affiliation(s)
- Arzu Ulu
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Abigail Burr
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Art J Heires
- Pulmonary, Critical Care, Sleep and Allergy Division, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jacqueline Pavlik
- Pulmonary, Critical Care, Sleep and Allergy Division, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Tricia Larsen
- Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota, USA
| | - Pedro A Perez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Carissa Bravo
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Nicholas V DiPatrizio
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Michelle Baack
- Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota, USA; Division of Neonatology, University of South Dakota-Sanford School of Medicine, Sioux Falls, South Dakota, USA
| | - Debra J Romberger
- VA Nebraska-Western Iowa Healthcare System, Omaha, Nebraska, USA; Pulmonary, Critical Care, Sleep and Allergy Division, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Tara M Nordgren
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA; Pulmonary, Critical Care, Sleep and Allergy Division, University of Nebraska Medical Center, Omaha, Nebraska, USA.
| |
Collapse
|
24
|
Shati AA, El-Kott AF. Resolvin D1 protects against cadmium chloride-induced memory loss and hippocampal damage in rats: A comparison with docosahexaenoic acid. Hum Exp Toxicol 2021; 40:S215-S232. [PMID: 34405727 DOI: 10.1177/09603271211038739] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Intoxication with cadmium (Cd) ions leads to hippocampal damage and cognitive impairment. However, omega-3 polyunsaturated fatty acids (n-3 PUFAs) exert neuroprotective effects in different animal models of neurodegeneration. PURPOSE This study compared the neuroprotective effect of the n-3 PUFA, docosahexaenoic acid (DHA), and its downstream metabolite, resolvin D1 (RVD1), on hippocampal damage and memory deficits in cadmium chloride (CdCl2)-treated rats. RESEARCH DESIGN Control or CdCl2 (0.5 mg/kg)-treated rats were subdivided into three groups (n = 18/each) and treated for 6 weeks as follows: (1) fed control diet, (2) fed DHA-rich diets (0.7 g/100 g), or (3) treated with RVD1 (0.2 μg/kg, i.p). RESULTS Treatment with a DHA-rich diet or RVD1 significantly increased the levels of docosahexaenoic acid and RVD1, respectively, in the hippocampal of CdCl2-treated rats without affecting the reduction in the expression of the 15-lipooxygenase-1 (ALOX15). These effects were associated with improvements in rats' memory function and hippocampal structure, as well as a redction in the hippocampal levels of reactive oxygen species (ROS), malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), nuclear localization of the nuclear factor-kappa beta p65 (NF-κB p65), and expression of cleaved caspase-3. Concomitantly, hippocampi of both groups of rats showed significantly higher levels of Bcl-2, superoxide dismutase (SOD), and glutathione (GSH), as well as enhanced nuclear levels of the nuclear factor erythroid 2-related factor 2 (Nrf-2). The effects of RVD1 on all these markers in the CdCl2-induced rats were more profound than those of DHA. Also, the increase in the nuclear protein levels of Nrf-2 and the decrease in the levels of Bax and nuclear protein levels of NF-κB p65 were only seen in the hippocampal of CdCl2 + RVD1-treated rats. CONCLUSION RVD1 is more powerful than DHA in preventing CdCl2-induced memory loss and hippocampal damage in rats.
Collapse
Affiliation(s)
- Ali A Shati
- Department of Biology, College of Science, 48144King Khalid University, Abha, Saudi Arabia
| | - Attalla F El-Kott
- Department of Biology, College of Science, 48144King Khalid University, Abha, Saudi Arabia.,Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
| |
Collapse
|
25
|
Li Z, Liu Z, Lu H, Dai W, Chen J, He L. RvD1 Attenuated Susceptibility to Ischemic AKI in Diabetes by Downregulating Nuclear Factor-κ B Signal and Inhibiting Apoptosis. Front Physiol 2021; 12:651645. [PMID: 34326777 PMCID: PMC8315138 DOI: 10.3389/fphys.2021.651645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/28/2021] [Indexed: 11/19/2022] Open
Abstract
Background Acute kidney injury (AKI), when occurring in diabetic kidney disease (DKD), is known to be more severe and difficult to recover from. Inflammation and apoptosis may contribute to the heightened sensitivity of, and non-recovery from, AKI in patients with DKD. Resolvin D1 (RvD1) is a potent lipid mediator which can inhibit the inflammatory response and apoptosis in many diseases. However, it has been reported that the RvD1 levels were decreased in diabetes, which may explain why DKD is more susceptible to AKI. Methods For animal experiments, diabetic nephropathy (DN) mice were induced by streptozotocin (STZ) injection intraperitoneally. Renal ischemia–reperfusion was used to induce AKI. Blood urea nitrogen (BUN) and serum creatinine were determined using commercial kits to indicate renal function. Renal apoptosis was examined by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay. Real-time polymerase chain reaction (PCR) was used to detect the marker of inflammatory response. Western blot was used to detect the expression of nuclear factor-κB (NF-κB)-related proteins. For clinical study, 12 cases diagnosed with DKD were enrolled in this study, and an equal number of non-diabetic renal disease patients (NDKD) were recruited as a control group. The serum RvD1 in DKD or NDKD patients were detected through an ELISA kit. Results In clinical study, we found that the serum RvD1 levels were decreased in DKD patients compared to those in NDKD patients. Decreased serum RvD1 levels were responsible for the susceptibility to ischemic AKI in DKD patients. In animal experiments, both the serum RvD1 and renal ALX levels were downregulated. RvD1 treatment could ameliorate renal function and histological damage after ischemic injury in DN mice. RvD1 treatment also could inhibit the inflammatory response. Di-tert-butyl dicarbonate (BOC-2) treatment could deteriorate renal function and histological damage after ischemic injury in non-diabetic mice. RvD1 could inhibit the NF-κB activation and suppress inflammatory response mainly by inhibiting NF-κB signaling. Conclusion RvD1 attenuated susceptibility to ischemic AKI in diabetes by downregulating NF-κB signaling and inhibiting apoptosis. Downregulated serum RvD1 levels could be the crucial factor for susceptibility to ischemic AKI in diabetes.
Collapse
Affiliation(s)
- Zheng Li
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiwen Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hengcheng Lu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wenni Dai
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Junxiang Chen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Liyu He
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
26
|
Honari N, Shaban P, Nasseri S, Hosseini M. Ethanolic extract of Achillea wilhelmsii C. Koch improves pulmonary function and inflammation in LPS-induced acute lung injury mice. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2021; 19:261-267. [PMID: 33962506 DOI: 10.1515/jcim-2021-0045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/06/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Acute lung injury (ALI) is a life-threatening pulmonary dysfunction associated with severe inflammation. There are still no effective pharmacological therapies for the treatment of ALI. In this concern, several anti-inflammatory agents could be used as add-on therapy to inhibit inflammation. Achillea wilhelmsii (AW) C. Koch is a well-known medicinal plant in the Iranian ethnomedical practices with anti-inflammatory activity. This study was aimed to evaluate the efficacy of ethanolic extract of AW on lipopolysaccharide (LPS)-induced ALI in mice. METHODS The ALI model was established via the intra-tracheal (i.t.) administration of LPS (2 mg/kg) to male BALB/c mice. The ALI mice were divided into four groups (n=8 each) which intra-peritoneally (i.p.) treated with repeated doses of saline (model), dexamethasone (2 mg/kg), and AW (150-300 mg/kg) 1, 11 and 23 h post LPS administration. Twenty-four hours after the LPS challenge, bronchoalveolar lavage fluid (BALF) and lung tissue were evaluated for inflammatory cell influx, level of tumor necrosis factor-α (TNF-α) and histopathological changes. RESULTS The AW (150-300 mg/kg) treated mice showed lower inflammatory cells infiltration in BALF and TNF-α level when compared to the model group. In addition, LPS induced several pathological alterations such as edema, alveolar hemorrhage and inflammatory cell infiltration into the interstitium and alveolar spaces. Treatment with AW significantly reduced LPS-induced pathological injury. CONCLUSIONS Taken together, the data here indicated that AW may be considered as a promising add-on therapy for ALI.
Collapse
Affiliation(s)
- Niloofar Honari
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Parastoo Shaban
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Nasseri
- Cellular and Molecular Research Center, Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mehran Hosseini
- Cellular and Molecular Research Center, Department of Anatomical Sciences, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
27
|
Siegel ER, Croze RH, Fang X, Matthay MA, Gotts JE. Inhibition of the lipoxin A4 and resolvin D1 receptor impairs host response to acute lung injury caused by pneumococcal pneumonia in mice. Am J Physiol Lung Cell Mol Physiol 2021; 320:L1085-L1092. [PMID: 33822656 DOI: 10.1152/ajplung.00046.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Resolution of the acute respiratory distress syndrome (ARDS) from pneumonia requires repair of the injured lung endothelium and alveolar epithelium, removal of neutrophils from the distal airspaces of the lung, and clearance of the pathogen. Previous studies have demonstrated the importance of specialized proresolving mediators (SPMs) in the regulation of host responses during inflammation. Although ARDS is commonly caused by Streptococcus pneumoniae, the role of lipoxin A4 (LXA4) and resolvin D1 (RvD1) in pneumococcal pneumonia is not well understood. In the present experimental study, we tested the hypothesis that endogenous SPMs play a role in the resolution of lung injury in a clinically relevant model of bacterial pneumonia. Blockade of formyl peptide receptor 2 (ALX/FPR2), the receptor for LXA4 and RvD1, with the peptide WRW4 resulted in more pulmonary edema, greater protein accumulation in the air spaces, and increased bacteria accumulation in the air spaces and the blood. Inhibition of this receptor was also associated with decreased levels of proinflammatory cytokines. Even in the presence of antibiotic treatment, WRW4 inhibited the resolution of lung injury. In summary, these experiments demonstrated two novel findings: LXA4 and RvD1 contribute to the resolution of lung injury due to pneumococcal pneumonia, and the mechanism of their benefit likely includes augmenting bacterial clearance and reducing pulmonary edema via the restoration of lung alveolar-capillary barrier permeability.
Collapse
Affiliation(s)
- Emily R Siegel
- School of Medicine, University of California, San Francisco, California
| | - Roxanne H Croze
- Cardiovascular Research Institute, University of California, San Francisco, California
| | - Xiaohui Fang
- Cardiovascular Research Institute, University of California, San Francisco, California
| | - Michael A Matthay
- Cardiovascular Research Institute, University of California, San Francisco, California.,Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, California.,Department of Anesthesia and Perioperative Care, University of California, San Francisco, California
| | - Jeffrey E Gotts
- Cardiovascular Research Institute, University of California, San Francisco, California.,Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, California.,Department of Anesthesia and Perioperative Care, University of California, San Francisco, California
| |
Collapse
|
28
|
Guo Y, Tu YH, Wu X, Ji S, Shen JL, Wu HM, Fei GH. ResolvinD1 Protects the Airway Barrier Against Injury Induced by Influenza A Virus Through the Nrf2 Pathway. Front Cell Infect Microbiol 2021; 10:616475. [PMID: 33643931 PMCID: PMC7907644 DOI: 10.3389/fcimb.2020.616475] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/16/2020] [Indexed: 11/13/2022] Open
Abstract
Airway barrier damage and excessive inflammation induced by influenza A virus (IAV) are associated with disease progression and prognosis. ResolvinD1 (RvD1) is a promising lipid mediator with critical protection against infection in the lung. However, whether RvD1 protects against IAV-induced injury and the underlying mechanisms remain elusive. In this study, primary normal human bronchial epithelial (pNHBE) cells were isolated and co-cultured with IAV and/or RvD1. Then, the expressions of E-cadherin, Zonula occludins-1, inflammatory mediators and proteins in Nrf2-dependent pathway were detected. To further explore the mechanisms, Nrf2 short hairpin RNA (Nrf2 shRNA) was applied in pNHBE cells. Furthermore, mice were infected with IAV, and were subsequently treated with RvD1. We found that IAV downregulated expressions of E-cadherin, Zonula occludins-1, Nrf2 and HO-1, upregulated the phosphorylation of NF κ B p65 and IKBα, levels of IL-8 and TNF-α, as well as ROS production. RvD1 reversed these damaging effects induced by IAV. However, when Nrf2 expression was suppressed with shRNA in pNHBE cells, the protective effects of RvD1 on IAV-induced injury were inhibited. In vivo studies further demonstrated that RvD1 could alleviate barrier protein breakdown and reduce airway inflammatory reactions. Collectively, the study demonstrated that RvD1 could play dual beneficial roles in protecting airway epithelium barrier function and reducing inflammation via the Nrf2 pathway, which may provide a better treatment option for influenza A virus infection.
Collapse
Affiliation(s)
- Yan Guo
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - You-Hui Tu
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xu Wu
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shuang Ji
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ji-Long Shen
- Department of Pathogen Biology and Provincial Laboratories of Pathogen Biology and Zoonoses, Anhui Medical University, Hefei, China
| | - Hui-Mei Wu
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Guang-He Fei
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
29
|
Wang J, Yan X, Wang T, Fang L. Potential effect of astragaloside IV on the lipopolysaccharide induced inflammation via the inactivation of NF-κB signaling pathway. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_267_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
30
|
CHi X, Liang X, Shen J, Duan X, Zhou R, Liu P. Resveratrol exerts anti-inflammatory effect in lipopolysaccharide-induced lung inflammation via downregulation of antioxidant and inflammatory mediators. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_41_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
31
|
Shivanna SK, Nataraj BH. Revisiting therapeutic and toxicological fingerprints of milk-derived bioactive peptides: An overview. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100771] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
32
|
Cioccari L, Luethi N, Masoodi M. Lipid Mediators in Critically Ill Patients: A Step Towards Precision Medicine. Front Immunol 2020; 11:599853. [PMID: 33324417 PMCID: PMC7724037 DOI: 10.3389/fimmu.2020.599853] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022] Open
Abstract
A dysregulated response to systemic inflammation is a common pathophysiological feature of most conditions encountered in the intensive care unit (ICU). Recent evidence indicates that a dysregulated inflammatory response is involved in the pathogenesis of various ICU-related disorders associated with high mortality, including sepsis, acute respiratory distress syndrome, cerebral and myocardial ischemia, and acute kidney injury. Moreover, persistent or non-resolving inflammation may lead to the syndrome of persistent critical illness, characterized by acquired immunosuppression, catabolism and poor long-term functional outcomes. Despite decades of research, management of many disorders in the ICU is mostly supportive, and current therapeutic strategies often do not take into account the heterogeneity of the patient population, underlying chronic conditions, nor the individual state of the immune response. Fatty acid-derived lipid mediators are recognized as key players in the generation and resolution of inflammation, and their signature provides specific information on patients' inflammatory status and immune response. Lipidomics is increasingly recognized as a powerful tool to assess lipid metabolism and the interaction between metabolic changes and the immune system via profiling lipid mediators in clinical studies. Within the concept of precision medicine, understanding and characterizing the individual immune response may allow for better stratification of critically ill patients as well as identification of diagnostic and prognostic biomarkers. In this review, we provide an overview of the role of fatty acid-derived lipid mediators as endogenous regulators of the inflammatory, anti-inflammatory and pro-resolving response and future directions for use of clinical lipidomics to identify lipid mediators as diagnostic and prognostic markers in critical illness.
Collapse
Affiliation(s)
- Luca Cioccari
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, Bern, Switzerland.,Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Prahran, VIC, Australia
| | - Nora Luethi
- Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Prahran, VIC, Australia.,Department of Emergency Medicine, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Mojgan Masoodi
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
33
|
Baicalin Liposome Alleviates Lipopolysaccharide-Induced Acute Lung Injury in Mice via Inhibiting TLR4/JNK/ERK/NF- κB Pathway. Mediators Inflamm 2020; 2020:8414062. [PMID: 33223957 PMCID: PMC7673921 DOI: 10.1155/2020/8414062] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/22/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are challenging diseases with the high mortality in a clinical setting. Baicalin (BA) is the main effective constituent isolated from the Chinese medical herb Scutellaria baicalensis Georgi, and studies have proved that it has a protective effect on ALI induced by lipopolysaccharide (LPS) due to the anti-inflammatory efficacy. However, BA has low solubility which may limit its clinical application. Hence, we prepared a novel drug delivery system—Baicalin liposome (BA-LP) in previous research—which can improve some physical properties of BA. Therefore, we aimed to explore the effect of BA-LP on ALI mice induced by LPS. In pharmacokinetics study, the values of t1/2 and AUC0-t in the BA-LP group were significantly higher than that of the BA group in normal mice, indicating that BA-LP could prolong the duration time in vivo of BA. The BA-LP group also showed a higher concentration in lung tissues than the BA group. Pharmacodynamics studies showed that BA-LP had a better effect than the BA group at the same dosage on reducing the W/D ratio, alleviating the lung injury score, and decreasing the proinflammatory factors (TNF-α, IL-1β) and total proteins in bronchoalveolar lavage fluids (BALF). In addition, the therapeutic effects of BA-LP showed a dose-dependent manner. Western blot analysis indicated that the anti-inflammatory action of BA could be attributed to the inhibition of the TLR4-NFκBp65 and JNK-ERK signaling pathways. These results suggest that BA-LP could be a valuable therapeutic candidate in the treatment of ALI.
Collapse
|
34
|
Li J, Deng X, Bai T, Wang S, Jiang Q, Xu K. Resolvin D1 mitigates non-alcoholic steatohepatitis by suppressing the TLR4-MyD88-mediated NF-κB and MAPK pathways and activating the Nrf2 pathway in mice. Int Immunopharmacol 2020; 88:106961. [PMID: 33182038 DOI: 10.1016/j.intimp.2020.106961] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023]
Abstract
AIMS Resolvin D1 (RvD1), a potent endogenous lipid mediator converted from docosahexaenoic acid (DHA), has exert anti-inflammatory and antioxidant effects in many preclinical disease models, but its potential role in non-alcoholic steatohepatitis (NASH) remains elusive. This study was performed to investigate the protective effects and mechanisms of RvD1 in NASH. MAIN METHODS In vivo, male C57BL/6 mice were fed an MCD diet for 4 weeks to induce NASH. RvD1 was added in the last 2 weeks of the feeding period. In vitro, lipopolysaccharide (LPS)-activated RAW264.7 macrophages were pretreated with increasing concentrations of RvD1. Serum liver functional markers and hepatic oxidative stress indicators were measured biochemically. Mouse liver tissue sections were stained with hematoxylin-eosin, oil red O, and Masson's trichrome to assess the severity of steatohepatitis, steatosis and fibrosis. The qRT-PCR, immunohistochemistry and Western blotting assays were applied to analyse mechanisms underlying RvD1 protection in NASH. KEY FINDINGS In vivo, RvD1 significantly attenuates steatohepatitis in MCD diet-fed mice by modulating key events, including steatosis, inflammation, oxidative stress and fibrosis in the progression of NASH. In vitro, RvD1 also represses LPS-induced inflammation in RAW264.7 cells. These effects may be mainly attributed to RvD1 markedly suppressing excessive inflammatory responses via the inhibition of the TLR4-MyD88-mediated NF-κB and MAPK signalling pathways as well as enhancing antioxidation capacity via the activation of the Nrf2 pathway. SIGNIFICANCE These results demonstrate that RvD1 is a promising hepatoprotective agent for the therapy of NASH.
Collapse
Affiliation(s)
- Jiahuan Li
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoling Deng
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tao Bai
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuhan Wang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qianqian Jiang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Keshu Xu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
35
|
Jeong YS, Bae YS. Formyl peptide receptors in the mucosal immune system. Exp Mol Med 2020; 52:1694-1704. [PMID: 33082511 PMCID: PMC7572937 DOI: 10.1038/s12276-020-00518-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022] Open
Abstract
Formyl peptide receptors (FPRs) belong to the G protein-coupled receptor (GPCR) family and are well known as chemotactic receptors and pattern recognition receptors (PRRs) that recognize bacterial and mitochondria-derived formylated peptides. FPRs are also known to detect a wide range of ligands, including host-derived peptides and lipids. FPRs are highly expressed not only in phagocytes such as neutrophils, monocytes, and macrophages but also in nonhematopoietic cells such as epithelial cells and endothelial cells. Mucosal surfaces, including the gastrointestinal tract, the respiratory tract, the oral cavity, the eye, and the reproductive tract, separate the external environment from the host system. In mucosal surfaces, the interaction between the microbiota and host cells needs to be strictly regulated to maintain homeostasis. By sharing the same FPRs, immune cells and epithelial cells may coordinate pathophysiological responses to various stimuli, including microbial molecules derived from the normal flora. Accumulating evidence shows that FPRs play important roles in maintaining mucosal homeostasis. In this review, we summarize the roles of FPRs at mucosal surfaces.
Collapse
Affiliation(s)
- Yu Sun Jeong
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yoe-Sik Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
36
|
Abstract
Resolvins, belonging to the group of specialized proresolving mediators (SPMs), are metabolic products of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) and are synthesized during the initial phases of acute inflammatory responses to promote the resolution of inflammation. Resolvins are produced for termination of neutrophil infiltration, stimulation of the clearance of apoptotic cells by macrophages, and promotion of tissue remodeling and homeostasis. Metabolic dysregulation due to either uncontrolled activity of pro-inflammatory responses or to inefficient resolution of inflammation results in chronic inflammation and may also lead to atherosclerosis or other chronic autoimmune diseases such as rheumatoid arthritis, psoriasis, systemic lupus erythematosus, vasculitis, inflammatory bowel diseases, and type 1 diabetes mellitus. The pathogenesis of such diseases involves a complex interplay between the immune system and, environmental factors (non-infectious or infectious), and critically depends on individual susceptibility to such factors. In the present review, resolvins and their roles in the resolution of inflammation, as well as the role of these mediators as potential therapeutic agents to counteract specific chronic autoimmune and inflammatory diseases are discussed.
Collapse
|
37
|
Calder PC. Eicosapentaenoic and docosahexaenoic acid derived specialised pro-resolving mediators: Concentrations in humans and the effects of age, sex, disease and increased omega-3 fatty acid intake. Biochimie 2020; 178:105-123. [PMID: 32860894 DOI: 10.1016/j.biochi.2020.08.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/02/2020] [Accepted: 08/20/2020] [Indexed: 12/27/2022]
Abstract
Although inflammation has a physiological role, unrestrained inflammation can be detrimental, causing tissue damage and disease. Under normal circumstances inflammation is self-limiting with induction of active resolution processes. Central to these is the generation of specialised pro-resolving lipid mediators (SPMs) from eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). These include resolvins, protectins and maresins whose activities have been well described in cell and animal models. A number of SPMs have been reported in plasma or serum in infants, children, healthy adults and individuals with various diseases, as well as in human sputum, saliva, tears, breast milk, urine, synovial fluid and cerebrospinal fluid and in human adipose tissue, skeletal muscle, hippocampus, skin, placenta, lymphoid tissues and atherosclerotic plaques. Differences in SPM concentrations have been reported between health and disease, as would be expected. However, sometimes SPM concentrations are lower in disease and sometimes they are higher. Human studies report that plasma or serum concentrations of some SPMs can be increased by increasing intake of EPA and DHA. However, the relationship of specific intakes of EPA and DHA to enhancement in the appearance of specific SPMs is not clear and needs a more thorough investigation. This is important because of the potential for EPA and DHA to be used more effectively in prevention and treatment of inflammatory conditions. If generation of SPMs represents an important mechanism of action of EPA and DHA, then more needs to be known about the most effective strategies by which EPA and DHA can increase SPM concentrations.
Collapse
Affiliation(s)
- Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, United Kingdom.
| |
Collapse
|
38
|
Yue Q, Liu T, Cheng Z. Protective Effect of Colchicine on LPS-Induced Lung Injury in Rats via Inhibition of P-38, ERK1/2, and JNK Activation. Pharmacology 2020; 105:639-644. [PMID: 32688359 DOI: 10.1159/000504759] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/12/2019] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Acute lung injury (ALI), a commonly detected syndrome, is characterized by the accumulation of neutrophils and leucocytes, and inflammation of pulmonary tissues. OBJECTIVE The present study was designed to investigate the effect and underlying mechanism of colchicine on LPS-induced lung injury. METHODS The rats were divided randomly into 6 groups of 10 each: normal control, untreated, and 4 colchicine (5, 10, 15, and 20 mg/kg) treatment groups. ALI was induced in rats by the administration of 20 μg LPS intratracheally. Rats in the normal control and untreated groups were injected normal saline, while those in the treatment groups received 5, 10, 15, and 20 mg/kg doses of colchicine daily for 1 month. ELISA was used for determination of interleukin (IL)-1β, IL-6, tumour necrosis factor (TNF)-α, superoxide dismutase (SOD), and leucocytes in the rat bronchoalveolar lavage fluid (BALF). The expression of P-38, JNK, and Erk-1/2 was analysed by Western blotting. RESULTS In LPS-administered TC-1 cells, the levels of IL-1β, IL-6, and TNF-α were markedly higher. Treatment with colchicine reduced the levels of IL-1β, IL-6, and TNF-α in LPS-administered TC-1 cells. Colchicine treatment caused a marked reduction in LPS-induced accumulation of inflammatory cells in the rat lungs. The LPS-induced aggregation of leucocytes and neutrophils in the rat BALF was also suppressed markedly on treatment with colchicine. Treatment of the lung injury in rats with colchicine caused a marked decrease in the level of IL-1β, IL-6, and TNF-α in BALF. The LPS-mediated suppression of SOD in the rat BALF was prevented by treatment with colchicine. Treatment of the rats with colchicine attenuated the LPS-induced activation of P-38, Erk1/2, and JNK in pulmonary tissues. CONCLUSION In summary, colchicine treatment prevents LPS-induced lung damage in rats through targeting activation of P-38, ERK1/2, and JNK. Therefore, colchicine may be used for the development of treatment for ALI.
Collapse
Affiliation(s)
- Qianyu Yue
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Tian Liu
- Respiratory Medicine, People's Hospital of Qingyuan County, Baoding, China
| | - Zhongfeng Cheng
- Emergency Department, The Second People's Hospital of Yunnan Province, Kunming, China,
| |
Collapse
|
39
|
Abstract
Inflammation is a normal part of the immune response and should be self-limiting. Excessive or unresolved inflammation is linked to tissue damage, pathology and ill health. Prostaglandins and leukotrienes produced from the n-6 fatty acid arachidonic acid are involved in inflammation. Fatty acids may also influence inflammatory processes through mechanisms not necessarily involving lipid mediators. The n-3 fatty acids EPA and DHA possess a range of anti-inflammatory actions. Increased content of EPA and DHA in the membranes of cells involved in inflammation has effects on the physical nature of the membranes and on the formation of signalling platforms called lipid rafts. EPA and DHA interfere with arachidonic acid metabolism which yields prostaglandins and leukotrienes involved in inflammation. EPA gives rise to weak (e.g. less inflammatory) analogues and both EPA and DHA are substrates for the synthesis of specialised pro-resolving mediators. Through their effects on early signalling events in membranes and on the profile of lipid mediators produced, EPA and DHA alter both intracellular and intercellular signals. Within cells, this leads to altered patterns of gene expression and of protein production. The net result is decreased production of inflammatory cytokines, chemokines, adhesion molecules, proteases and enzymes. The anti-inflammatory and inflammation-resolving effects of EPA and DHA are relevant to both prevention and treatment of human diseases that have an inflammatory component. This has been widely studied in rheumatoid arthritis where there is good evidence that high doses of EPA + DHA reduce pain and other symptoms.
Collapse
Affiliation(s)
- Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| |
Collapse
|
40
|
Abstract
The immune system protects the host from pathogenic organisms (bacteria, viruses, fungi, parasites). To deal with this array of threats, the immune system has evolved to include a myriad of specialised cell types, communicating molecules and functional responses. The immune system is always active, carrying out surveillance, but its activity is enhanced if an individual becomes infected. This heightened activity is accompanied by an increased rate of metabolism, requiring energy sources, substrates for biosynthesis and regulatory molecules, which are all ultimately derived from the diet. A number of vitamins (A, B6, B12, folate, C, D and E) and trace elements (zinc, copper, selenium, iron) have been demonstrated to have key roles in supporting the human immune system and reducing risk of infections. Other essential nutrients including other vitamins and trace elements, amino acids and fatty acids are also important. Each of the nutrients named above has roles in supporting antibacterial and antiviral defence, but zinc and selenium seem to be particularly important for the latter. It would seem prudent for individuals to consume sufficient amounts of essential nutrients to support their immune system to help them deal with pathogens should they become infected. The gut microbiota plays a role in educating and regulating the immune system. Gut dysbiosis is a feature of disease including many infectious diseases and has been described in COVID-19. Dietary approaches to achieve a healthy microbiota can also benefit the immune system. Severe infection of the respiratory epithelium can lead to acute respiratory distress syndrome (ARDS), characterised by excessive and damaging host inflammation, termed a cytokine storm. This is seen in cases of severe COVID-19. There is evidence from ARDS in other settings that the cytokine storm can be controlled by n-3 fatty acids, possibly through their metabolism to specialised pro-resolving mediators.
Collapse
Affiliation(s)
- Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
41
|
Li C, Wu X, Liu S, Shen D, Zhu J, Liu K. Role of Resolvins in the Inflammatory Resolution of Neurological Diseases. Front Pharmacol 2020; 11:612. [PMID: 32457616 PMCID: PMC7225325 DOI: 10.3389/fphar.2020.00612] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022] Open
Abstract
The occurrence of neurological diseases including neurodegenerative disorders, neuroimmune diseases, and cerebrovascular disorders is closely related to neuroinflammation. Inflammation is a response against infection or injury. Genetic abnormalities, the aging process, or environmental factors can lead to dysregulation of the inflammatory response. Our immune system can cause massive damage when the inflammatory response becomes dysregulated. Inflammatory resolution is an effective process that terminates the inflammatory response to maintain health. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are omega-three polyunsaturated fatty acids that play a crucial regulatory role in the development of inflammation. Resolvins (Rvs) derived from EPA and DHA constitute the Rvs E and Rvs D series, respectively. Numerous studies on the effect of Rvs over inflammation using animal models reveal that they have both anti-inflammatory and pro-resolving capabilities. Here, we review the current knowledge on the classification, biosynthesis, receptors, mechanisms of action, and role of Rvs in neurological diseases.
Collapse
Affiliation(s)
- Chunrong Li
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Xiujuan Wu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Shan Liu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Donghui Shen
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Jie Zhu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China.,Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Kangding Liu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
42
|
Yang Y, Ding Z, Wang Y, Zhong R, Feng Y, Xia T, Xie Y, Yang B, Sun X, Shu Z. Systems pharmacology reveals the mechanism of activity of Physalis alkekengi L. var. franchetii against lipopolysaccharide-induced acute lung injury. J Cell Mol Med 2020; 24:5039-5056. [PMID: 32220053 PMCID: PMC7205831 DOI: 10.1111/jcmm.15126] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/03/2020] [Accepted: 01/21/2020] [Indexed: 12/11/2022] Open
Abstract
Acute lung injury (ALI) is an important cause of mortality of patients with sepsis, shock, trauma, pneumonia, multiple transfusions and pancreatitis. Physalis alkekengi L. var. franchetii (Mast.) Makino (PAF) has been extensively used in Chinese folk medicine because of a good therapeutic effect in respiratory diseases. Here, an integrated approach combining network pharmacology, proton nuclear magnetic resonance-based metabolomics, histopathological analysis and biochemical assays was used to elucidate the mechanism of PAF against ALI induced by lipopolysaccharide (LPS) in a mouse model. We found that the compounds present in PAF interact with 32 targets to effectively improve the damage in the lung undergoing ALI. We predicted the putative signalling pathway involved by using the network pharmacology and then used the orthogonal signal correction partial least-squares discriminant analysis to analyse the disturbances in the serum metabolome in mouse. We also used ELISA, RT-qPCR, Western blotting, immunohistochemistry and TUNEL assay to confirm the potential signalling pathways involved. We found that PAF reduced the release of cytokines, such as TNF-α, and the accumulation of oxidation products; decreased the levels of NF-κB, p-p38, ERK, JNK, p53, caspase-3 and COX-2; and enhanced the translocation of Nrf2 from the cytoplasm to the nucleus. Collectively, PAF significantly reduced oxidative stress injury and inflammation, at the same time correcting the energy metabolism imbalance caused by ALI, increasing the amount of antioxidant-related metabolites and reducing the apoptosis of lung cells. These observations suggest that PAF may be an effective candidate preparation alleviating ALI.
Collapse
Affiliation(s)
- Yanni Yang
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zihe Ding
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yi Wang
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Renxing Zhong
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanlin Feng
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Tianyi Xia
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yuanyuan Xie
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Bingyou Yang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zunpeng Shu
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
43
|
Chamani S, Bianconi V, Tasbandi A, Pirro M, Barreto GE, Jamialahmadi T, Sahebkar A. Resolution of Inflammation in Neurodegenerative Diseases: The Role of Resolvins. Mediators Inflamm 2020; 2020:3267172. [PMID: 32308554 PMCID: PMC7132591 DOI: 10.1155/2020/3267172] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 03/09/2020] [Indexed: 12/14/2022] Open
Abstract
Acute inflammation has been described as a reactive dynamic process, promoted by the secretion of proinflammatory mediators, including lipid molecules like leukotrienes and prostaglandins, and counterbalanced by proresolving mediators including omega-3 polyunsaturated fatty-acid- (PUFA-) derived molecules. The switch from the initiation to the resolution phase of acute inflammatory response is crucial for tissue homeostasis, whereas the failure to resolve early inflammation by specialized proresolving mediators leads to chronic inflammation and tissue damage. Among PUFA-derived proresolving mediators, different eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) derivatives have been described, namely, resolvins (resolution phase interaction products), which exert their anti-inflammatory and immune-regulatory activities through specific G-protein-coupled receptors. In recent years, compelling evidence has shown that impairment of resolution of inflammation is a crucial pathogenic hallmark in different neurodegenerative disorders, including Alzheimer's disease and Parkinson's disease. This review summarizes current knowledge on the role of resolvins in resolution of inflammation and highlights available evidence showing the neuroprotective potential of EPA- and DHA-derived resolvins (E-series and D-series resolvins, respectively) in neurodegenerative diseases.
Collapse
Affiliation(s)
- Sajad Chamani
- Birjand University of Medical Sciences, Birjand, Iran
| | - Vanessa Bianconi
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - Aida Tasbandi
- School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Matteo Pirro
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - George E. Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Tannaz Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
44
|
Cui X, Zhu J, Wu X, Yang S, Yao X, Zhu W, Xu P, Chen X. Hematoporphyrin monomethyl ether-mediated photodynamic therapy inhibits the growth of keloid graft by promoting fibroblast apoptosis and reducing vessel formation. Photochem Photobiol Sci 2020; 19:114-125. [PMID: 31934700 DOI: 10.1039/c9pp00311h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photodynamic therapy (PDT) has been shown to significantly inhibit fibroblast activity. However, the effect of PDT mediated by the photosensitizer hematoporphyrin monomethyl ether (HMME) on keloids is not known well. The aim of our study was to examine the efficacy of HMME-PDT in cellular and animal models of keloids. Keloid fibroblasts (KFbs) were isolated from human keloid specimens and the proliferation, invasion, and migration of KFbs after HMME-PDT treatment was examined in vitro. Apoptosis in cells was measured by flow cytometry. Cysteinyl aspartate specific proteinase 3 (Caspase3) expression was determined by immunofluorescence staining and western blot. HMME-PDT inhibited KFbs proliferation, invasion, migration, increased apoptosis rate and enhanced caspase3 and cleaved caspase3 expression. The keloid graft transplantation was performed by using nude mice. The growth of the graft was monitored every third day. Interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) mRNA expression were detected by quantitative real time PCR. It was observed that HMME-PDT attenuated graft growth and reduced vessel density in the keloid grafts. However, HMME-PDT did not alter IL-6 and TNF-α mRNA expression in the keloid grafts. Moreover, HMME-PDT suppressed transforming growth-β1 (TGF-β1) and small phenotype and Drosophila Mothers Against Decapentaplegic 3 (Smad3) expression in both KFbs and keloid grafts. Collectively, the evidence suggests that HMME-PDT inhibits the growth of the keloid graft by promoting the apoptosis of fibroblasts and reducing vessel formation of the keloid graft.
Collapse
Affiliation(s)
- Xiaomei Cui
- Department of Medical Cosmetology, Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Jing Zhu
- Department of Dermatology, Wuxi People's Hospital, Wuxi, 214000, China
| | - Xiaoyan Wu
- Department of Medical Cosmetology, Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Shengju Yang
- Department of Medical Cosmetology, Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Xiaodong Yao
- Department of Medical Cosmetology, Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Wenyan Zhu
- Department of Medical Cosmetology, Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Pan Xu
- Department of Medical Cosmetology, Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Xiaodong Chen
- Department of Medical Cosmetology, Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| |
Collapse
|
45
|
Qian Q, Cao X, Wang B, Dong X, Pei J, Xue L, Feng F. Endoplasmic reticulum stress potentiates the autophagy of alveolar macrophage to attenuate acute lung injury and airway inflammation. Cell Cycle 2020; 19:567-576. [PMID: 32057287 PMCID: PMC7100984 DOI: 10.1080/15384101.2020.1718851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Endoplasmic reticulum (ER) stress has been reported to play a role in acute lung injury (ALI), yet the in-depth mechanism remains elusive. This study aims to investigate the effect of ER stress-induced autophagy of alveolar macrophage (AM) on acute lung injury (ALI) and airway inflammation using mouse models. ALI models were induced by intranasal instillation of lipopolysaccharide (LPS). The lung weight/body weight (LW/BW) ratio and excised lung gas volume (ELGV) in each group were measured. Mouse bronchoalveolar lavage fluid (BALF) was collected for cell sorting and protein concentration determination. Expression of tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6) in lung tissues and BALF was also detected. Mouse AMs were isolated to observe the autophagy. Expression of GRP78, PERK, LC3I, LC3II and Beclin1 was further determined. The results indicated that tunicamycin (TM) elevated GRP78 and PERK expression of AMs in ALI mice in a dose-dependent manner. Low dosage of TM abated LC3I expression, increased LC3II and Beclin1 expression, triggered ER stress and AM autophagy, and alleviated pathological changes of AMs in ALI mice. Also, in ALI mice, low dosage of TM attenuated goblet cell proliferation of tracheal wall, and declined LW/BW ratio, ELGV, total cells and neutrophils, protein concentrations in BALF, and IL-6 and TNF-α expression in lung tissues and BALF. Collectively, this study suggests that a low dosage of TM-induced ER stress can enhance the autophagy of AM in ALI mice models, thus attenuating the progression of ALI and airway inflammation.
Collapse
Affiliation(s)
- Qingzeng Qian
- College of Public Health, North China University of Science and Technology, Tangshan, P. R. China
| | - Xiangke Cao
- College of Life Sciences, North China University of Science and Technology, Tangshan, P. R. China
| | - Bin Wang
- Department of Pediatrics, Affiliated Hospital of North China University of Science and Technology, Tangshan, P. R. China
| | - Xiaoliu Dong
- Department of Neurology, Tangshan People's Hospital, Tangshan, P. R. China
| | - Jian Pei
- Department of Neurosurgery, Tangshan Worker's Hospital, Tangshan, P. R. China
| | - Ling Xue
- College of Public Health, North China University of Science and Technology, Tangshan, P. R. China
| | - Fumin Feng
- College of Public Health, North China University of Science and Technology, Tangshan, P. R. China
| |
Collapse
|
46
|
Selman M, Pardo A. The leading role of epithelial cells in the pathogenesis of idiopathic pulmonary fibrosis. Cell Signal 2020; 66:109482. [DOI: 10.1016/j.cellsig.2019.109482] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/12/2022]
|
47
|
Kytikova OY, Perelman JM, Novgorodtseva TP, Denisenko YK, Kolosov VP, Antonyuk MV, Gvozdenko TA. Peroxisome Proliferator-Activated Receptors as a Therapeutic Target in Asthma. PPAR Res 2020; 2020:8906968. [PMID: 32395125 PMCID: PMC7201810 DOI: 10.1155/2020/8906968] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/04/2019] [Accepted: 12/26/2019] [Indexed: 12/13/2022] Open
Abstract
The complexity of the pathogenetic mechanisms of the development of chronic inflammation in asthma determines its heterogeneity and insufficient treatment effectiveness. Nuclear transcription factors, which include peroxisome proliferator-activated receptors, that is, PPARs, play an important role in the regulation of initiation and resolution of the inflammatory process. The ability of PPARs to modulate not only lipid homeostasis but also the activity of the inflammatory response makes them an important pathogenetic target in asthma therapy. At present, special attention is focused on natural (polyunsaturated fatty acids (PUFAs), endocannabinoids, and eicosanoids) and synthetic (fibrates, thiazolidinediones) PPAR ligands and the study of signaling mechanisms involved in the implementation of their anti-inflammatory effects in asthma. This review summarizes current views on the structure and function of PPARs, as well as their participation in the pathogenesis of chronic inflammation in asthma. The potential use of PPAR ligands as therapeutic agents for treating asthma is under discussion.
Collapse
Affiliation(s)
- Oxana Yu. Kytikova
- Vladivostok Branch of Far Eastern Scientific Centre of Physiology and Pathology of Respiration, Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok, Russia
| | - Juliy M. Perelman
- Far Eastern Scientific Center of Physiology and Pathology of Respiration, Russian Academy of Sciences, Blagoveshchensk, Russia
| | - Tatyana P. Novgorodtseva
- Vladivostok Branch of Far Eastern Scientific Centre of Physiology and Pathology of Respiration, Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok, Russia
| | - Yulia K. Denisenko
- Vladivostok Branch of Far Eastern Scientific Centre of Physiology and Pathology of Respiration, Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok, Russia
| | - Viktor P. Kolosov
- Far Eastern Scientific Center of Physiology and Pathology of Respiration, Russian Academy of Sciences, Blagoveshchensk, Russia
| | - Marina V. Antonyuk
- Vladivostok Branch of Far Eastern Scientific Centre of Physiology and Pathology of Respiration, Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok, Russia
| | - Tatyana A. Gvozdenko
- Vladivostok Branch of Far Eastern Scientific Centre of Physiology and Pathology of Respiration, Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok, Russia
| |
Collapse
|
48
|
Scott MA, Woolums AR, Swiderski CE, Perkins AD, Nanduri B, Smith DR, Karisch BB, Epperson WB, Blanton JR. Whole blood transcriptomic analysis of beef cattle at arrival identifies potential predictive molecules and mechanisms that indicate animals that naturally resist bovine respiratory disease. PLoS One 2020; 15:e0227507. [PMID: 31929561 PMCID: PMC6957175 DOI: 10.1371/journal.pone.0227507] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022] Open
Abstract
Bovine respiratory disease (BRD) is a multifactorial disease complex and the leading infectious disease in post-weaned beef cattle. Clinical manifestations of BRD are recognized in beef calves within a high-risk setting, commonly associated with weaning, shipping, and novel feeding and housing environments. However, the understanding of complex host immune interactions and genomic mechanisms involved in BRD susceptibility remain elusive. Utilizing high-throughput RNA-sequencing, we contrasted the at-arrival blood transcriptomes of 6 beef cattle that ultimately developed BRD against 5 beef cattle that remained healthy within the same herd, differentiating BRD diagnosis from production metadata and treatment records. We identified 135 differentially expressed genes (DEGs) using the differential gene expression tools edgeR and DESeq2. Thirty-six of the DEGs shared between these two analysis platforms were prioritized for investigation of their relevance to infectious disease resistance using WebGestalt, STRING, and Reactome. Biological processes related to inflammatory response, immunological defense, lipoxin metabolism, and macrophage function were identified. Production of specialized pro-resolvin mediators (SPMs) and endogenous metabolism of angiotensinogen were increased in animals that resisted BRD. Protein-protein interaction modeling of gene products with significantly higher expression in cattle that naturally acquire BRD identified molecular processes involving microbial killing. Accordingly, identification of DEGs in whole blood at arrival revealed a clear distinction between calves that went on to develop BRD and those that resisted BRD. These results provide novel insight into host immune factors that are present at the time of arrival that confer protection from BRD.
Collapse
Affiliation(s)
- Matthew A. Scott
- Department of Pathobiology and Population Medicine, Mississippi State University, Mississippi State, MS, United States of America
- * E-mail:
| | - Amelia R. Woolums
- Department of Pathobiology and Population Medicine, Mississippi State University, Mississippi State, MS, United States of America
| | - Cyprianna E. Swiderski
- Department of Clinical Sciences, Mississippi State University, Mississippi State, MS, United States of America
| | - Andy D. Perkins
- Department of Computer Science and Engineering, Mississippi State University, Mississippi State, MS, United States of America
| | - Bindu Nanduri
- Department of Basic Sciences, Mississippi State University College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States of America
| | - David R. Smith
- Department of Pathobiology and Population Medicine, Mississippi State University, Mississippi State, MS, United States of America
| | - Brandi B. Karisch
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, United States of America
| | - William B. Epperson
- Department of Pathobiology and Population Medicine, Mississippi State University, Mississippi State, MS, United States of America
| | - John R. Blanton
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, United States of America
| |
Collapse
|
49
|
Suttisuwan R, Phunpruch S, Saisavoey T, Sangtanoo P, Thongchul N, Karnchanatat A. Isolation and characterization of anti-inflammatory peptides derived from trypsin hydrolysis of microalgae protein (Synechococcussp. VDW). FOOD BIOTECHNOL 2019. [DOI: 10.1080/08905436.2019.1673171] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Rutairat Suttisuwan
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok Thailand
| | - Saranya Phunpruch
- Department of Biology, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand
- Bioenergy Research Unit, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Tanatorn Saisavoey
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Papassara Sangtanoo
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Nuttha Thongchul
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Aphichart Karnchanatat
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
50
|
Zhang HW, Wang Q, Mei HX, Zheng SX, Ali AM, Wu QX, Ye Y, Xu HR, Xiang SY, Jin SW. RvD1 ameliorates LPS-induced acute lung injury via the suppression of neutrophil infiltration by reducing CXCL2 expression and release from resident alveolar macrophages. Int Immunopharmacol 2019; 76:105877. [DOI: 10.1016/j.intimp.2019.105877] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/26/2019] [Accepted: 09/03/2019] [Indexed: 02/08/2023]
|