1
|
Muslima U, Khandaker MU, Lam SE, Mat Nawi SN, Abdul Sani SF, Ung NM, Osman H, Hanfi MY, Sayyed MI, Alzimami K, Alqahtani A, Bradley DA. Exploring the thermoluminescence characteristics of smartphone screen safety glasses for retrospective dosimetry applications. Appl Radiat Isot 2024; 212:111457. [PMID: 39068692 DOI: 10.1016/j.apradiso.2024.111457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/24/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
In clinical settings, standard dosimeters might miss radiation mishaps. Retrospective dosimeters could help to track personnel (such as patients and other staff who don't wear dosimeters) exceeding safe limits and assess long-term exposure trends. This study has investigated key thermoluminescence (TL) dosimetric characteristics, including the glow curve structure, dose-response, energy dependence, sensitivity and fading of various safety glasses that are used as screen protectors of smartphones subjected to photon irradiation. Among the studied glasses, the HD Anti-Peep safety glass for iPhone has been found to exhibit a linear dose-response with a regression coefficient of 99% within the dose range of 2-10 Gy. Moreover, all the safety glasses showed independence with respect to photon energy of 6 MV and 10 MV. The TL glow curves of the samples showed a broad glow peak between 125 °C and 325 °C at 10 Gy. The TL kinetic parameters of the safety glasses were also studied by analyzing the glow curves using the peak shape and initial rise method. The geometric factor (μg) is found to be within the range of 0.43-0.53, which indicates the suitability of applying Chen's general-order formula to calculate the kinetic parameters such as activation energy, frequency factor and trap lifetime. The activation energy (E) and frequency factor (s) are found in the range of 0.31-0.54 eV and 4.55 × 103 to 2.12 × 106 s-1 respectively obtained via the peak shape method. The relatively long trap lifetime and observed thermoluminescence features indicate that the HD Anti-Peep safety glass offers a better option to estimate dose retrospectively to ensure the safety of human health.
Collapse
Affiliation(s)
- Umme Muslima
- Applied Physics and Radiation Technologies Group, CCDCU, School of Engineering and Technology, Sunway University, 47500, Bandar Sunway, Selangor, Malaysia
| | - Mayeen Uddin Khandaker
- Applied Physics and Radiation Technologies Group, CCDCU, School of Engineering and Technology, Sunway University, 47500, Bandar Sunway, Selangor, Malaysia; Faculty of Graduate Studies, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh.
| | - S E Lam
- Applied Physics and Radiation Technologies Group, CCDCU, School of Engineering and Technology, Sunway University, 47500, Bandar Sunway, Selangor, Malaysia
| | - S N Mat Nawi
- Applied Physics and Radiation Technologies Group, CCDCU, School of Engineering and Technology, Sunway University, 47500, Bandar Sunway, Selangor, Malaysia
| | - S F Abdul Sani
- Department of Physics, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - N M Ung
- Clinical Oncology Unit, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Hamid Osman
- Department of Radiological Sciences, College of Applied Medical Sciences, Taif University, 21944, Taif, Saudi Arabia
| | - Mohamed Y Hanfi
- Nuclear Materials Authority, P.O. Box 530 El-Maadi, Cairo, Egypt; Ural Federal University, St. Mira, 19, 620002, Yekaterinburg, Russia
| | - M I Sayyed
- Department of Physics, Faculty of Science, Isra University, Amman, Jordan; Department of Physics and Technical Sciences, Western Caspian University, Baku, Azerbaijan
| | - Khalid Alzimami
- Department of Radiological Sciences, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh, 11433, Saudi Arabia
| | - Amal Alqahtani
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, Dammam, 34212, Saudi Arabia
| | - D A Bradley
- Applied Physics and Radiation Technologies Group, CCDCU, School of Engineering and Technology, Sunway University, 47500, Bandar Sunway, Selangor, Malaysia; School of Mathematics and Physics, University of Surrey, Guildford, GU2 7XH, United Kingdom
| |
Collapse
|
2
|
Draeger E, Roberts K, Decker RD, Bahar N, Wilson LD, Contessa J, Husain Z, Williams BB, Flood AB, Swartz HM, Carlson DJ. In Vivo Verification of Electron Paramagnetic Resonance Biodosimetry Using Patients Undergoing Radiation Therapy Treatment. Int J Radiat Oncol Biol Phys 2024; 119:292-301. [PMID: 38072322 DOI: 10.1016/j.ijrobp.2023.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/28/2023] [Accepted: 11/19/2023] [Indexed: 01/06/2024]
Abstract
PURPOSE Electron paramagnetic resonance (EPR) biodosimetry, used to triage large numbers of individuals incidentally exposed to unknown doses of ionizing radiation, is based on detecting a stable physical response in the body that is subject to quantifiable variation after exposure. In vivo measurement is essential to fully characterize the radiation response relevant to a living tooth measured in situ. The purpose of this study was to verify EPR spectroscopy in vivo by estimating the radiation dose received in participants' teeth. METHODS AND MATERIALS A continuous wave L-band spectrometer was used for EPR measurements. Participants included healthy volunteers and patients undergoing head and neck and total body irradiation treatments. Healthy volunteers completed 1 measurement each, and patients underwent measurement before starting treatment and between subsequent fractions. Optically stimulated luminescent dosimeters and diodes were used to determine the dose delivered to the teeth to validate EPR measurements. RESULTS Seventy measurements were acquired from 4 total body irradiation and 6 head and neck patients over 15 months. Patient data showed a linear increase of EPR signal with delivered dose across the dose range tested. A linear least-squares weighted fit of the data gave a statistically significant correlation between EPR signal and absorbed dose (P < .0001). The standard error of inverse prediction (SEIP), used to assess the usefulness of fits, was 1.92 Gy for the dose range most relevant for immediate triage (≤7 Gy). Correcting for natural background radiation based on patient age reduced the SEIP to 1.51 Gy. CONCLUSIONS This study demonstrated the feasibility of using spectroscopic measurements from radiation therapy patients to validate in vivo EPR biodosimetry. The data illustrated a statistically significant correlation between the magnitude of EPR signals and absorbed dose. The SEIP of 1.51 Gy, obtained under clinical conditions, indicates the potential value of this technique in response to large radiation events.
Collapse
Affiliation(s)
- Emily Draeger
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut.
| | - Kenneth Roberts
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut
| | - Roy D Decker
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut
| | - Nina Bahar
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut
| | - Lynn D Wilson
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut
| | - Joseph Contessa
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut
| | - Zain Husain
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut
| | - Benjamin B Williams
- Department of Radiology & EPR Center, Geisel Medical School at Dartmouth, Hanover, New Hampshire
| | - Ann Barry Flood
- Department of Radiology & EPR Center, Geisel Medical School at Dartmouth, Hanover, New Hampshire
| | - Harold M Swartz
- Department of Radiology & EPR Center, Geisel Medical School at Dartmouth, Hanover, New Hampshire
| | - David J Carlson
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
3
|
Muslima U, Khandaker MU, Lam S, Nawi SM, Sani SA, Osman H, Hanfi MY, Sayyed M, Bradley D. Tempered glass as a thermoluminescent medium for retrospective dosimetry. Radiat Phys Chem Oxf Engl 1993 2024; 217:111534. [DOI: 10.1016/j.radphyschem.2024.111534] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
|
4
|
Park JI, Koo CU, Oh J, Kim IJ, Choi K, Ye SJ. Enhancing Precision in L-band Electron Paramagnetic Resonance Tooth Dosimetry: Incorporating Digital Image Processing and Radiation Therapy Plans for Geometric Correction. HEALTH PHYSICS 2024; 126:79-95. [PMID: 37948057 DOI: 10.1097/hp.0000000000001773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
ABSTRACT Following unforeseen exposure to radiation, quick dose determination is essential to prioritize potential patients that require immediate medical care. L-band electron paramagnetic resonance tooth dosimetry can be efficiently used for rapid triage as this poses no harm to the human incisor, although geometric variations among human teeth may hinder accurate dose estimation. Consequently, we propose a practical geometric correction method using a mobile phone camera. Donated human incisors were irradiated with calibrated 6-MV photon beam irradiation, and dose-response curves were developed by irradiation with a predetermined dose using custom-made poly(methyl methacrylate) slab phantoms. Three radiation treatment plans for incisors were selected and altered to suit the head phantom. The mean doses on tooth structures were calculated using a commercial treatment planning system, and the electron paramagnetic resonance signals of the incisors were measured. The enamel area was computed from camera-acquired tooth images. The relative standard uncertainty was rigorously estimated both with and without geometric correction. The effects on the electron paramagnetic resonance signal caused by axial and rotational movements of tooth samples were evaluated through finite element analysis. The mean absolute deviations of mean doses both with and without geometric correction showed marginal improvement. The average relative differences without and with geometric correction significantly decreased from 21.0% to 16.8% (p = 0.01). The geometric correction method shows potential in improving dose precision measurement with minimal delay. Furthermore, our findings demonstrated the viability of using treatment planning system doses in dose estimation for L-band electron paramagnetic resonance tooth dosimetry.
Collapse
Affiliation(s)
- Jong In Park
- Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Chang Uk Koo
- Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeonghun Oh
- Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - In Jung Kim
- Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Kwon Choi
- Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | | |
Collapse
|
5
|
Vijayalakshmi J, Chaurasia RK, Srinivas KS, Vijayalakshmi K, Paul SF, Bhat N, Sapra B. Establishment of ex vivo calibration curve for X-ray induced "dicentric + ring" and micronuclei in human peripheral lymphocytes for biodosimetry during radiological emergencies, and validation with dose blinded samples. Heliyon 2023; 9:e17068. [PMID: 37484390 PMCID: PMC10361230 DOI: 10.1016/j.heliyon.2023.e17068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 07/25/2023] Open
Abstract
In the modern developing society, application of radiation has increased extensively. With significant improvement in the radiation protection practices, exposure to human could be minimized substantially, but cannot be avoided completely. Assessment of exposure is essential for regulatory decision and medical management as applicable. Until now, cytogenetic changes have served as surrogate marker of radiation exposure and have been extensively employed for biological dose estimation of various planned and unplanned exposures. Dicentric Chromosomal Aberration (DCA) is radiation specific and is considered as gold standard, micronucleus is not very specific to radiation and is considered as an alternative method for biodosimetry. In this study dose response curves were generated for X-ray induced "dicentric + ring" and micronuclei, in lymphocytes of three healthy volunteers [2 females (age 22, 23 years) and 1 male (24 year)]. The blood samples were irradiated with X-ray using LINAC (energy 6 MV, dose rate 6 Gy/min), in the dose range of 0-5Gy. Irradiated blood samples were cultured and processed to harvest metaphases, as per standard procedures recommended by International Atomic Energy Agency. Pooled data obtained from all the three volunteers, were in agreement with Poisson distribution for "dicentric + ring", however over dispersion was observed for micronuclei. Data ("dicentric + ring" and micronuclei) were fitted by linear quadratic model of the expression Y[bond, double bond]C + αD + βD2 using Dose Estimate software, version 5.2. The data fit has resulted in linear coefficient α = 0.0006 (±0.0068) "dicentric + ring" cell-1 Gy-1 and quadratic coefficient β = 0.0619 (±0.0043) "dicentric + ring" cell-1 Gy-2 for "dicentric + ring" and linear coefficient α = 0.0459 ± (0.0038) micronuclei cell-1 Gy-1 and quadratic coefficient β = 0.0185 ± (0.0010) micronuclei cell-1 Gy-2 for micronuclei, respectively. Background frequencies for "dicentric + ring" and micronuclei were 0.0006 ± 0.0004 and 0.0077 ± 0.0012 cell-1, respectively. Established curves were validated, by reconstructing the doses of 8 dose blinded samples (4 by DCA and 4 by CBMN) using coefficients generated here. Estimated doses were within the variation of 0.9-16% for "dicentric + ring" and 21.7-31.2% for micronuclei respectively. These established curves have potential to be employed for biodosimetry of occupational, clinical and accidental exposures, for initial triage and medical management.
Collapse
Affiliation(s)
- J. Vijayalakshmi
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, India
| | - Rajesh Kumar Chaurasia
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre (BARC), Mumbai, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| | - K. Satish Srinivas
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, India
| | - K. Vijayalakshmi
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, India
| | - Solomon F.D. Paul
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, India
| | - N.N. Bhat
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre (BARC), Mumbai, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| | - B.K. Sapra
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre (BARC), Mumbai, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| |
Collapse
|
6
|
Fingernail electron paramagnetic resonance dosimetry protocol for localized hand exposure accident. NUCLEAR ENGINEERING AND TECHNOLOGY 2022. [DOI: 10.1016/j.net.2022.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Marciniak A, Ciesielski B, Juniewicz M. EPR dosimetry in glass: a review. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2022; 61:179-203. [PMID: 35306595 DOI: 10.1007/s00411-022-00970-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Electron Paramagnetic Resonance (EPR) spectroscopy enables detection of paramagnetic centers generated in solids by ionising radiation. In the last years, the ubiquity of glass in personal utility items increased significance of fortuities retrospective dosimetry based on EPR in glass parts of mobile phones and watches. Despite of fading of the signals and their susceptibility to light, it enables dosimetry at medical triage level of 1-2 Gy. In this article information relevant for assessment of applicability and planning of the EPR dosimetry is presented-particularly at dose levels typical for radiation accidents. Reported data on fading of the radiation-induced spectral components are presented and compared. Effects of light on background spectra and on the dosimetric signals are also presented. It is concluded that when properly accounting for the fading and for the obscuring effects of light, the EPR dosimetry in glasses from mobile phones and watches can be used in dose assessment after radiation accidents.
Collapse
Affiliation(s)
- Agnieszka Marciniak
- Department of Physics and Biophysics, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland
| | - Bartłomiej Ciesielski
- Department of Physics and Biophysics, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland.
| | - Małgorzata Juniewicz
- Department of Physics and Biophysics, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland
| |
Collapse
|
8
|
Sudprasert W, Belyakov OV, Tashiro S. Biological and internal dosimetry for radiation medicine: current status and future perspectives. JOURNAL OF RADIATION RESEARCH 2022; 63:247-254. [PMID: 34977921 PMCID: PMC8944326 DOI: 10.1093/jrr/rrab119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 10/21/2021] [Indexed: 06/14/2023]
Abstract
The International Atomic Energy Agency (IAEA) and Hiroshima International Council for Health Care of the Radiation-Exposed (HICARE) jointly organized two relevant workshops in Hiroshima, Japan, i.e. a Training Meeting 'Biodosimetry in the 21st century' (BIODOSE-21) on 10-14 June 2013 and a Workshop on 'Biological and internal dosimetry: recent advance and clinical applications' which took place between 17 and 21 February 2020. The main objective of the first meeting was to develop the ability of biodosimetry laboratories to use mature and novel techniques in biological dosimetry for the estimation of radiation doses received by individuals and populations. This meeting had a special focus on the Asia-Pacific region and was connected with the then on-going IAEA Coordinated Research Project (CRP) E35008 'Strengthening of "Biological dosimetry" in IAEA Member States: Improvement of current techniques and intensification of collaboration and networking among the different institutes' (2012-17). The meeting was attended by 25 participants, which included 11 lecturers. The 14 trainees for this meeting came from India, Indonesia, Japan, Malaysia, Philippines, Republic of Korea, Singapore, Thailand and Vietnam. During the meeting 13 lectures by HICARE and IAEA invited lecturers were delivered besides eight research reports presented by the IAEA CRP E35008 network centers from the Asia-Pacific region. Two laboratory exercises were also undertaken, one each at Hiroshima University and the Radiation Effects Research Foundation (RERF). The second training workshop aimed to discuss with the participants the use of mature and novel techniques in biological and internal dosimetry for the estimation of radiation effects by accidental, environmental and medical exposures. The workshop was attended by 19 participants from Indonesia, Jordan, Oman, Philippines, Singapore, Syrian Arab Republic, Thailand, UAE, USA and Yemen. The main outcome of both meetings was a review of the state-of-the-art of biodosimetry and internal dosimetry and their future perspectives in medical management. This report highlights the learning outcome of two meetings for the benefit of all stake-holders in the field of biological and internal dosimetry.
Collapse
Affiliation(s)
- Wanwisa Sudprasert
- Department of Applied Radiation and Isotopes, Faculty of Science, Kasetsart University, 10900 Bangkok, Thailand
| | - Oleg V Belyakov
- Corresponding author. Section of Applied Radiation Biology and Radiotherapy, Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna International Centre, PO Box 100, 1400 Vienna, Austria. E-mail:
| | | |
Collapse
|
9
|
Blakely WF, Port M, Abend M. Early-response multiple-parameter biodosimetry and dosimetry: risk predictions. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2021; 41:R152-R175. [PMID: 34280908 DOI: 10.1088/1361-6498/ac15df] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
The accepted generic multiple-parameter and early-response biodosimetry and dosimetry assessment approach for suspected high-dose radiation (i.e. life-threatening) exposure includes measuring radioactivity associated with the exposed individual (if appropriate); observing and recording prodromal signs/symptoms; obtaining serial complete blood counts with white-blood-cell differential; sampling blood for the chromosome-aberration cytogenetic bioassay using the 'gold standard' dicentric assay (premature chromosome condensation assay for exposures >5 Gy photon acute doses equivalent), measurement of proteomic biomarkers and gene expression assays for dose assessment; bioassay sampling, if appropriate, to determine radioactive internal contamination; physical dose reconstruction, and using other available opportunistic dosimetry approaches. Biodosimetry and dosimetry resources are identified and should be setup in advance along with agreements to access additional national, regional, and international resources. This multifaceted capability needs to be integrated into a biodosimetry/dosimetry 'concept of operations' for use in a radiological emergency. The combined use of traditional biological-, clinical-, and physical-dosimetry should be use in an integrated approach to provide: (a) early-phase diagnostics to guide the development of initial medical-management strategy, and (b) intermediate and definitive assessment of radiation dose and injury. Use of early-phase (a) clinical signs and symptoms, (b) blood chemistry biomarkers, and (c) triage cytogenetics shows diagnostic utility to predict acute radiation injury severity.
Collapse
Affiliation(s)
- William F Blakely
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Matthias Port
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | - Michael Abend
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| |
Collapse
|
10
|
Lamkowski A, Combs SE, Abend M, Port M. Training of clinical triage of acute radiation casualties: a performance comparison of on-siteversus onlinetraining due to the covid-19 pandemic. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2021; 41:S540-S560. [PMID: 34256358 DOI: 10.1088/1361-6498/ac13c2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
A collection of powerful diagnostic tools have been developed under the umbrellas of NATO for ionising radiation dose assessment (BAT, WinFRAT) and estimate of acute health effects in humans (WinFRAT, H-Module). We assembled a database of 191 ARS cases using the medical treatment protocols for radiation accident victims (n= 167) and the system for evaluation and archiving of radiation accidents based on case histories (n= 24) for training purposes of medical personnel. From 2016 to 2019, we trained 39 participants comprising MSc level radiobiology students in an on-site teaching class. Enforced by the covid-19 pandemic in 2020 for the first time, an online teaching of nine MSc radiobiology students replaced the on-site teaching. We found that: (a) limitations of correct diagnostic decision-making based on clinical signs and symptoms were experienced unrelated to the teaching format. (b) A significant performance decrease concerning online (first number in parenthesis) versus on-site teaching (reference and second number in parenthesis) was seen regarding the estimate time (31 vs 61 cases per hour, two-fold decrease,p= 0.005). Also, the accurate assessment of response categories (89.9% vs 96.9%,p= 0.001), ARS (92.4% vs 96.7%,p= 0.002) and hospitalisation (93.5% vs 97.0%,p= 0.002) decreased by around 3%-7%. The performances of the online attendees were mainly distributed within the lower quartile performance of on-site participants and the 25%-75% interquartile range increased 3-7-fold. (c) Comparison of dose estimates performed by training participants with hematologic acute radiation syndrome (HARS) severity mirrored the known limitations of dose alone as a surrogate parameter for HARS severity at doses less than 1.5 Gy, but demonstrated correct determination of HARS 2-4 and support for clinical decision making at dose estimates >1.5 Gy, regardless of teaching format. (d) Overall, one-third of the online participants showed substantial misapprehension and insecurities of elementary course content that did not occur after the on-site teaching.
Collapse
Affiliation(s)
- Andreas Lamkowski
- Bundeswehr Institute of Radiobiology affiliated to the University Ulm, Neuherbergstrasse 11, Munich 80937, Germany
| | - Stephanie E Combs
- Department of Radiation Oncology, Technical University of Munich (TUM), Ismaninger Straße 22, 81675 Munich, Germany
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München (HMGU), Ingolstaedter Landstr. 1 85764 Neuherberg, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site, Munich, Germany
| | - Michael Abend
- Bundeswehr Institute of Radiobiology affiliated to the University Ulm, Neuherbergstrasse 11, Munich 80937, Germany
| | - Matthias Port
- Bundeswehr Institute of Radiobiology affiliated to the University Ulm, Neuherbergstrasse 11, Munich 80937, Germany
| |
Collapse
|
11
|
Yasmin S, Khandaker MU, Nawi SNM, Sani SFA, Bradley DA, Islam MA. The potential of decorative building materials (marble) for retrospective thermoluminescence dosimetry. Appl Radiat Isot 2021; 175:109782. [PMID: 34082304 DOI: 10.1016/j.apradiso.2021.109782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
Among the various types of decorative materials used in Bangladeshi dwellings, the marble/marble stone is one of the most common ones that used largely for enhancing the beauty and/or aristocracy of the dwelling environment. In this study, the most commonly used, six types of marble stones, have been analyzed for retrospective accident dosimetry. With the interest of characterizing several key thermoluminescence properties to examine their potentiality for dosimetry, annealing - irradiation - readout steps have been done chronologically which comprises the analysis of glow curves, relative sensitivity, dose dependence, repeatability and fading. Considering the various TL parameters, marble 'Carrara' imported from Italy present relatively better capability for reconstruction of radiation dose in the dose range of 10-50 Gy. From fading result, it is clear that for reconstruction of absorbed dose up to four weeks of post exposure, the marble 'Carrara' is found to be the most reliable media among the studied marble types. The Zeff values for the various marble samples are found to be in the range of 13.65-19.12, comparing favorably in replace of TLD-200 (Zeff = 16.3) which can be used for low-level environmental radiation dosimetry. Present work constitutes the first study to investigate the potentials of marble stone for reconstruction of absorbed dose in the range of 10-50 Gy dose.
Collapse
Affiliation(s)
- Sabina Yasmin
- Department of Physics, Chittagong University of Engineering and Technology, Chattogram, Bangladesh.
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, 47500 Bandar Sunway, Selangor, Malaysia
| | - S N Mat Nawi
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, 47500 Bandar Sunway, Selangor, Malaysia; Department of Physics, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - S F Abdul Sani
- Department of Physics, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - D A Bradley
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, 47500 Bandar Sunway, Selangor, Malaysia; Department of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - M A Islam
- Department of Electrical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
12
|
Biolatti V, Negrin L, Bellora N, Ibañez IL. High-throughput meta-analysis and validation of differentially expressed genes as potential biomarkers of ionizing radiation-response. Radiother Oncol 2020; 154:21-28. [PMID: 32931891 DOI: 10.1016/j.radonc.2020.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 08/20/2020] [Accepted: 09/06/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND AND PURPOSE The high-throughput analysis of gene expression in ionizing radiation (IR)-exposed human peripheral white blood cells (WBC) has emerged as a novel method for biodosimetry markers detection. We aimed to detect IR-exposure differential expressed genes (DEGs) as potential predictive biomarkers for biodosimetry and radioinduced-response. MATERIALS AND METHODS We performed a meta-analysis of raw data from public microarrays of ex vivo low linear energy transfer-irradiated human peripheral WBC. Functional enrichment and transcription factors (TF) detection from resulting DEGs were assessed. Six selected DEGs among studies were validated by qRT-PCR on mRNA from human peripheral blood samples from nine healthy human donors 24 h after ex vivo X-rays-irradiation. RESULTS We identified 275 DEGs after IR-exposure (parameters: |lfc| ≥ 0.7, q value <0.05), enriched in processes such as regulation after IR-exposure, DNA damage checkpoint, signal transduction by p53 and mitotic cell cycle checkpoint. Among these DEGs, DRAM1, NUDT15, PCNA, PLK2 and TIGAR were selected for qRT-PCR validation. Their expression levels significantly increased at 1-4 Gy respect to non-irradiated controls. Particularly, PCNA increased dose dependently. Curiously, TCF4 (Entrez Gene: 6925), detected as overrepresented TF in the radioinduced DEGs set, significantly decreased post-irradiation. CONCLUSION These six DEGs show potential to be proposed as candidates for IR-exposure biomarkers, considering their observed molecular radioinduced-response. Among them, TCF4, bioinformatically detected, was validated herein as an IR-responsive gene.
Collapse
Affiliation(s)
- Vanesa Biolatti
- National Atomic Energy Commission (CNEA), Bariloche Nuclear Medicine and Radiotherapy Integral Center - Institute of Nuclear Technologies for Health Foundation (INTECNUS); Laboratory of Radiobiology and Biodosimetry, S.C. de Bariloche, Argentina.
| | - Lara Negrin
- National Atomic Energy Commission (CNEA), Bariloche Nuclear Medicine and Radiotherapy Integral Center - Institute of Nuclear Technologies for Health Foundation (INTECNUS); Laboratory of Radiobiology and Biodosimetry, S.C. de Bariloche, Argentina.
| | - Nicolás Bellora
- National Scientific and Technical Research Council (CONICET), Scientific Technical Center CONICET - North Patagonia, Patagonian Andean Institute of Biological and Geo-Environmental Technologies (IPATEC), S.C. de Bariloche, Argentina.
| | - Irene L Ibañez
- National Scientific and Technical Research Council (CONICET), Institute of Nanocience and Nanotechnology (INN), Constituyentes Node (C1425FQB), CABA, Argentina; National Atomic Energy Commission (CNEA), Constituyentes Atomic Center, Research and Applications Management, Buenos Aires, Argentina.
| |
Collapse
|
13
|
Hayes RB, Abdelrahman FM. Low level EPR dosimetry of a commercial sugar. Appl Radiat Isot 2020; 157:109038. [DOI: 10.1016/j.apradiso.2020.109038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 11/16/2022]
|
14
|
Hu S, Barzilla JE, Semones E. Acute radiation risk assessment and mitigation strategies in near future exploration spaceflights. LIFE SCIENCES IN SPACE RESEARCH 2020; 24:25-33. [PMID: 31987477 DOI: 10.1016/j.lssr.2019.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 06/10/2023]
Abstract
As more exploration spaceflights are planned to travel beyond the protective Earth magnetosphere to deep space destinations, acute health risks due to possible high radiation doses during severe Solar Particle Events (SPEs) are of greater concern to mission planners and management teams. It is expected that some degree of Acute Radiation Syndromes (ARS) symptoms may be observed, but the specific list of health risks that are relevant to exploration missions has been ambiguous and debatable in the past. This mini-review gives a brief summary of the features of radiation exposure if astronauts encounter severe SPEs beyond Low Earth Orbit (LEO), the evidence of ARS radiobiological studies at exposure levels close to recommended limits, and the shortcomings of previous dose projection approaches for ARS risk assessment. Some ARS biomathematical models, particularly those pertinent to the dose ranges that severe SPEs beyond LEO could generate, are reviewed and evaluated, focusing on their capability to predict the incidence of performance incapacitation and time-phased health effects with subsequent medical care recommendations. Using onboard active dosimeter input for estimating organ doses and likely clinical outcomes for SPEs in real time, a new strategy for ARS assessment and mitigation is described to cope with the potential threats of severe SPEs for planned deep space missions.
Collapse
Affiliation(s)
- S Hu
- KBR, Houston, TX, United States.
| | | | - E Semones
- NASA Johnson Space Center, Houston TX, United States
| |
Collapse
|
15
|
Dainiak N, Albanese J, Kaushik M, Balajee AS, Romanyukha A, Sharp TJ, Blakely WF. CONCEPTS OF OPERATIONS FOR A US DOSIMETRY AND BIODOSIMETRY NETWORK. RADIATION PROTECTION DOSIMETRY 2019; 186:130-138. [PMID: 30726970 DOI: 10.1093/rpd/ncy294] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/11/2018] [Accepted: 01/09/2019] [Indexed: 06/09/2023]
Abstract
The USA must be prepared to provide a prompt, coordinated and integrated response for radiation dose and injury assessment for suspected radiation exposure, whether it involves isolated cases or mass casualties. Dose estimation for radiation accidents typically necessitates a multiple parameter diagnostics approach that includes clinical, biological and physical dosimetry to provide an early-phase radiation dose. A US Individual Dosimetry and Biodosimetry Network (US-IDBN) will increase surge capacity for civilian and military populations in a large-scale incident. The network's goal is to leverage available resources and provide an integrated biodosimetry capability, using multiple parameter diagnostics. Initial operations will be to expand an existing functional integration of two cytogenetic biodosimetry laboratories by developing Standard Operating Procedures, cross-training laboratorians, developing common calibration curves, supporting inter-comparison exercises and obtaining certification to process clinical samples. Integration with certified commercial laboratories will increase surge capacity to meet the needs of a mass-casualty incident.
Collapse
Affiliation(s)
- Nicholas Dainiak
- Department of Therapeutic Radiology, Yale University School of Medicine, 333 Cedar Street, New Haven CT 06520, USA
| | - Joseph Albanese
- Department of Therapeutic Radiology, Yale University School of Medicine, 333 Cedar Street, New Haven CT 06520, USA
| | - Meetu Kaushik
- Department of Therapeutic Radiology, Yale University School of Medicine, 333 Cedar Street, New Haven CT 06520, USA
| | - Adayabalam S Balajee
- Radiation Emergency Assistance Center/Training Site, Oak Ridge Institute for Science and Education, PO Box 117, MS 39, Oak Ridge TN 37831, USA
| | | | - Thad J Sharp
- Naval Dosimetry Center, 8901 Wisconsin Avenue, Bethesda MD 20889, USA
| | - William F Blakely
- Uniformed Services University of the Health Sciences, Armed Forces Radiobiology Research Institute, 4555 South Palmer Road, Bldg. 42, Bethesda MD 20889-5648, USA
| |
Collapse
|
16
|
McKenna MJ, Robinson E, Taylor L, Tompkins C, Cornforth MN, Simon SL, Bailey SM. Chromosome Translocations, Inversions and Telomere Length for Retrospective Biodosimetry on Exposed U.S. Atomic Veterans. Radiat Res 2019; 191:311-322. [PMID: 30714852 PMCID: PMC6492561 DOI: 10.1667/rr15240.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
It has now been over 60 years since U.S. nuclear testing was conducted in the Pacific islands and Nevada, exposing military personnel to varying levels of ionizing radiation. Actual doses are not well-established, as film badges in the 1950s had many limitations. We sought a means of independently assessing dose for comparison with historical film badge records and dose reconstruction conducted in parallel. For the purpose of quantitative retrospective biodosimetry, peripheral blood samples from 12 exposed veterans and 12 age-matched (>80 years) veteran controls were collected and evaluated for radiation-induced chromosome damage utilizing directional genomic hybridization (dGH), a cytogenomics-based methodology that facilitates simultaneous detection of translocations and inversions. Standard calibration curves were constructed from six male volunteers in their mid-20s to reflect the age range of the veterans at time of exposure. Doses were estimated for each veteran using translocation and inversion rates independently; however, combining them by a weighted-average generally improved the accuracy of dose estimations. Various confounding factors were also evaluated for potential effects on chromosome aberration frequencies. Perhaps not surprisingly, smoking and age-associated increases in background frequencies of inversions were observed. Telomere length was also measured, and inverse relationships with both age and combined weighted dose estimates were observed. Interestingly, smokers in the non-exposed control veteran cohort displayed similar telomere lengths as those in the never-smoker exposed veteran group, suggesting that chronic smoking had as much effect on telomere length as a single exposure to radioactive fallout. Taken together, we find that our approach of combined chromosome aberration-based retrospective biodosimetry provided reliable dose estimation capability, particularly on a group average basis, for exposures above statistical detection limits.
Collapse
Affiliation(s)
- Miles J. McKenna
- Cell and Molecular Biology Program Colorado State University, Fort Collins, Colorado
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
- KromaTiD, Inc., Fort Collins, Colorado
| | | | - Lynn Taylor
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| | | | - Michael N. Cornforth
- Cell and Molecular Biology Program Colorado State University, Fort Collins, Colorado
- Department of Radiation Oncology, University of Texas Medical Branch, Galveston, Texas
| | - Steven L. Simon
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Susan M. Bailey
- Cell and Molecular Biology Program Colorado State University, Fort Collins, Colorado
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
- KromaTiD, Inc., Fort Collins, Colorado
| |
Collapse
|
17
|
Establishment of conversion coefficient of whole body effective dose by human tissue of electron paramagnetic resonance (EPR). Radiat Phys Chem Oxf Engl 1993 2019. [DOI: 10.1016/j.radphyschem.2018.08.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Kobayashi K, Dong R, Nicolalde RJ, Calderon P, Du G, Williams BB, Lee MCI, Swartz HM, Flood AB. Development of a novel mouth model as an alternative tool to test the effectiveness of an in vivo EPR dosimetry system. Phys Med Biol 2018; 63:165002. [PMID: 30033935 DOI: 10.1088/1361-6560/aad518] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In a large-scale radiation event, thousands may be exposed to unknown amounts of radiation, some of which may be life-threatening without immediate attention. In such situations, a method to quickly and reliably estimate dose would help medical responders triage victims to receive life-saving care. We developed such a method using electron paramagnetic resonance (EPR) to make in vivo measurements of the maxillary incisors. This report provides evidence that the use of in vitro studies can provide data that are fully representative of the measurements made in vivo. This is necessary because, in order to systematically test and improve the reliability and accuracy of the dose estimates made with our EPR dosimetry system, it is important to conduct controlled studies in vitro using irradiated human teeth. Therefore, it is imperative to validate whether our in vitro models adequately simulate the measurements made in vivo, which are intended to help guide decisions on triage after a radiation event. Using a healthy volunteer with a dentition gap that allows using a partial denture, human teeth were serially irradiated in vitro and then, using a partial denture, placed in the volunteer's mouth for measurements. We compared dose estimates made using in vivo measurements made in the volunteer's mouth to measurements made on the same teeth in our complex mouth model that simulates electromagnetic and anatomic properties of the mouth. Our results demonstrate that this mouth model can be used in in vitro studies to develop the system because these measurements appropriately model in vivo conditions.
Collapse
Affiliation(s)
- Kyo Kobayashi
- EPR Center for the Study of Viable Systems, Radiology Department, Geisel School of Medicine at Dartmouth, HB 7785, Williamson Translational Research Bldg, Lebanon, NH, United States of America
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ratliff ST, Barry K. Characterization of Ivoclar Vivadent Dental Restoration Material for 137CS Retrospective Radiation Dosimetry. HEALTH PHYSICS 2018; 115:212-220. [PMID: 29889699 DOI: 10.1097/hp.0000000000000806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Retrospective dosimetry is the method of using materials on or near a person who is exposed to ionizing radiation to determine the amount of radiation received by the person. A possible candidate material for retrospective dosimetry is Ivoclar Vivadent IPS e.max® CAD ceramic dental restoration material, which exhibits radiation-induced thermoluminescence when exposed to gamma- and x-ray radiation from a Cs source. The purpose of this paper is to characterize the material and study the behavior of the thermoluminescence signal with radiation dose and with delay time between radiation exposure and thermoluminescence measurement. The first glow peak is well-modeled by a first-order glow curve deconvolution formula. The height of the first glow peak is approximately linear with dose. The fading of the signal with time is approximately described by a power law curve with cutoff. The material appears to be suitable for retrospective radiation dosimetry.
Collapse
Affiliation(s)
- Steven T Ratliff
- Department of Physics and Astronomy, Saint Cloud State University, 720 Fourth Avenue South, Saint Cloud, MN 56301
| | - Kawsu Barry
- Department of Physics and Astronomy, Saint Cloud State University
| |
Collapse
|
20
|
|
21
|
Hayes RB, Sholom S. Retrospective Imaging and Characterization of Nuclear Material. HEALTH PHYSICS 2017; 113:91-101. [PMID: 28658054 DOI: 10.1097/hp.0000000000000680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Modern techniques for detection of covert nuclear material requires some combination of real time measurement and/or sampling of the material. More common is real time measurement of the ionizing emission caused by radioactive decay or through the materials measured in response to external interrogation radiation. One can expose the suspect material with various radiation types, including high energy photons such as x rays or with larger particles such as neutrons and muons, to obtain images or measure nuclear reactions induced in the material. Stand-off detection using imaging modalities similar to those in the medical field can be accomplished, or simple collimated detectors can be used to localize radioactive materials. In all such cases, the common feature is that some or all of the nuclear materials have to be present for the measurement, which makes sense; as one might ask, "How you can measure something that is not there?" The current work and results show how to do exactly that: characterize nuclear materials after they have been removed from an area leaving no chemical trace. This new approach is demonstrated to be fully capable of providing both previous source spatial distribution and emission energy grouping. The technique uses magnetic resonance for organic insulators and/or luminescence techniques on ubiquitous refractory materials similar in theory to the way the nuclear industry carries out worker personnel dosimetry. Spatial information is obtained by acquiring gridded samples for dosimetric measurements, while energy information comes through dose depth profile results that are functions of the incident radiation energies.
Collapse
Affiliation(s)
- Robert B Hayes
- *North Carolina State University, Nuclear Engineering Department, 2500 Stinson Dr., Raleigh, NC 27695-7909; †Oklahoma State University, Physics Department, 1110 S. Innovation Way Dr., Stillwater, OK 74074
| | | |
Collapse
|
22
|
Abstract
This paper revisits and reiterates the needs, purposes and requirements of biodosimetric assays for long-term dose and health risk assessments. While the most crucial need for biodosimetric assays is to guide medical response for radiation accidents, the value of such techniques for improving our understanding of radiation health risk by supporting epidemiological (long-term health risk) studies is significant. As new cohorts of exposed persons are identified and new health risk studies are undertaken with the hopes that studying the exposed will result in a deeper understanding of radiation risk, the value of reliable dose reconstruction is underscored. The ultimate application of biodosimetry in long-term health risk studies would be to completely replace model-based dose reconstruction-a complex suite of methods for retrospectively estimating dose that is commonly fraught with large uncertainties due to the absence of important exposure-related information, as well as imperfect models. While biodosimetry could potentially supplant model-based doses, there are numerous limitations of presently available techniques that constrain their widespread application in health risk research, including limited ability to assess doses received far in the past, high cost, great inter-individual variability, invasiveness, higher than preferred detection limits and the inability to assess internal dose (for the most part). These limitations prevent the extensive application of biodosimetry to large cohorts and should be considered a challenge to researchers to develop new and more flexible techniques that meet the demands of long-term health risk research. Events in recent years, e.g. the Fukushima reactor accident and the increased threat of nuclear terrorism, underscore that any event that results in significant radiation exposures of a group of people will also produce a much larger population, exposed at lower levels, but that likewise needs (or demands) an exposure assessment. Hence, the needs for retrospective dose estimation are likely to be greater in the future. The value of biodosimetry can be considerably enhanced with the development of new or improved methods, particularly with suitability for application at long periods of time after exposure.
Collapse
Affiliation(s)
- Steven L Simon
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | - André Bouville
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
23
|
Gallez B. Contribution of Harold M. Swartz to In Vivo EPR and EPR Dosimetry. RADIATION PROTECTION DOSIMETRY 2016; 172:16-37. [PMID: 27421469 DOI: 10.1093/rpd/ncw157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In 2015, we are celebrating half a century of research in the application of Electron Paramagnetic Resonance (EPR) as a biodosimetry tool to evaluate the dose received by irradiated people. During the EPR Biodose 2015 meeting, a special session was organized to acknowledge the pioneering contribution of Harold M. (Hal) Swartz in the field. The article summarizes his main contribution in physiology and medicine. Four emerging themes have been pursued continuously along his career since its beginning: (1) radiation biology; (2) oxygen and oxidation; (3) measuring physiology in vivo; and (4) application of these measurements in clinical medicine. The common feature among all these different subjects has been the use of magnetic resonance techniques, especially EPR. In this article, you will find an impressionist portrait of Hal Swartz with the description of the 'making of' this pioneer, a time-line perspective on his career with the creation of three National Institutes of Health-funded EPR centers, a topic-oriented perspective on his career with a description of his major contributions to Science, his role as a mentor and his influence on his academic children, his active role as founder of scientific societies and organizer of scientific meetings, and the well-deserved international recognition received so far.
Collapse
Affiliation(s)
- Bernard Gallez
- Université Catholique de Louvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Avenue Mounier 73.08, B-1200, Brussels, Belgium
| |
Collapse
|
24
|
Grinberg O, Sidabras JW, Tipikin DS, Krymov V, Mariani M, Feldman MM, Kmiec MM, Petryakov SV, Brugger S, Carr B, Schreiber W, Swarts SG, Swartz HM. Dielectric-Backed Aperture Resonators for X-Band in vivo EPR Nail Dosimetry. RADIATION PROTECTION DOSIMETRY 2016; 172:121-126. [PMID: 27412507 PMCID: PMC5225980 DOI: 10.1093/rpd/ncw163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A new resonator for X-band in vivo EPR nail dosimetry, the dielectric-backed aperture resonator (DAR), is developed based on rectangular TE102 geometry. This novel geometry for surface spectroscopy improves at least a factor of 20 compared to a traditional non-backed aperture resonator. Such an increase in EPR sensitivity is achieved by using a non-resonant dielectric slab, placed on the aperture inside the cavity. The dielectric slab provides an increased magnetic field at the aperture and sample, while minimizing sensitive aperture resonance conditions. This work also introduces a DAR semi-spherical (SS)-TE011 geometry. The SS-TE011 geometry is attractive due to having twice the incident magnetic field at the aperture for a fixed input power. It has been shown that DAR provides sufficient sensitivity to make biologically relevant measurements both in vitro and in vivo Although in vivo tests have shown some effects of physiological motions that suggest the necessity of a more robust finger holder, equivalent dosimetry sensitivity of approximately 1.4 Gy has been demonstrated.
Collapse
Affiliation(s)
- Oleg Grinberg
- Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Jason W Sidabras
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53211, USA
| | | | - Vladimir Krymov
- Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Michael Mariani
- Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | | | - Maciej M Kmiec
- Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | | | - Spencer Brugger
- Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Brandon Carr
- Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | | | - Steven G Swarts
- Department of Radiation Oncology, University of Florida, Gainesville, FL 32610, USA
| | - Harold M Swartz
- Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
25
|
Blakely WF, Romanyukha A, Hayes SM, Reyes RA, Stewart HM, Hoefer MH, Williams A, Sharp T, Huff LA. U.S. Department of Defense Multiple-Parameter Biodosimetry Network. RADIATION PROTECTION DOSIMETRY 2016; 172:58-71. [PMID: 27886989 DOI: 10.1093/rpd/ncw295] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/12/2016] [Indexed: 06/06/2023]
Abstract
The U.S. Department of Defense (USDOD) service members are at risk of exposure to ionizing radiation due to radiation accidents, terrorist attacks and national defense activities. The use of biodosimetry is a standard of care for the triage and treatment of radiation injuries. Resources and procedures need to be established to implement a multiple-parameter biodosimetry system coupled with expert medial guidance to provide an integrated radiation diagnostic system to meet USDOD requirements. Current USDOD biodosimetry capabilities were identified and recommendations to fill the identified gaps are provided. A USDOD Multi-parametric Biodosimetry Network, based on the expertise that resides at the Armed Forces Radiobiology Research Institute and the Naval Dosimetry Center, was designed. This network based on the use of multiple biodosimetry modalities would provide diagnostic and triage capabilities needed to meet USDOD requirements. These are not available with sufficient capacity elsewhere but could be needed urgently after a major radiological/nuclear event.
Collapse
Affiliation(s)
- William F Blakely
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Avenue, Bethesda, MD 20889-5603, USA
| | | | | | - Ricardo A Reyes
- Defense Health Agency, Walter Reed National Military Medical Command, Bethesda, MD 20889, USA
| | | | - Matthew H Hoefer
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Avenue, Bethesda, MD 20889-5603, USA
| | | | - Thad Sharp
- Naval Dosimetry Center, Bethesda, MD 20889, USA
| | - L Andrew Huff
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Avenue, Bethesda, MD 20889-5603, USA
| |
Collapse
|
26
|
Bailiff I, Sholom S, McKeever S. Retrospective and emergency dosimetry in response to radiological incidents and nuclear mass-casualty events: A review. RADIAT MEAS 2016. [DOI: 10.1016/j.radmeas.2016.09.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
27
|
Trompier F, Burbidge C, Bassinet C, Baumann M, Bortolin E, De Angelis C, Eakins J, Della Monaca S, Fattibene P, Quattrini MC, Tanner R, Wieser A, Woda C. Overview of physical dosimetry methods for triage application integrated in the new European network RENEB. Int J Radiat Biol 2016; 93:65-74. [DOI: 10.1080/09553002.2016.1221545] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
| | - Christopher Burbidge
- C2TN, Instituto Superior Técnico, Universidade de Lisboa, Portugal, now at SUERC, University of Glasgow, UK
| | - Céline Bassinet
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), France
| | - Marion Baumann
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), France
| | | | | | - Jonathan Eakins
- Public Health England Centre for Radiation, Chemical and Environmental Hazards (PHE), UK
| | | | | | | | - Rick Tanner
- Public Health England Centre for Radiation, Chemical and Environmental Hazards (PHE), UK
| | | | | |
Collapse
|
28
|
McKeever S, Sholom S. Biodosimetry versus physical dosimetry for emergency dose assessment following large-scale radiological exposures. RADIAT MEAS 2016. [DOI: 10.1016/j.radmeas.2016.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
29
|
Rodrigues MA, Probst CE, Beaton-Green LA, Wilkins RC. Optimized automated data analysis for the cytokinesis-block micronucleus assay using imaging flow cytometry for high throughput radiation biodosimetry. Cytometry A 2016; 89:653-62. [PMID: 27272602 PMCID: PMC5089661 DOI: 10.1002/cyto.a.22887] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 05/05/2016] [Accepted: 05/10/2016] [Indexed: 01/23/2023]
Abstract
The cytokinesis-block micronucleus (CBMN) assay is a well-established technique that can be employed in triage radiation biodosimetry to estimate whole body doses of radiation to potentially exposed individuals through quantitation of the frequency of micronuclei (MN) in binucleated lymphocyte cells (BNCs). The assay has been partially automated using traditional microscope-based methods and most recently has been modified for application on the ImageStream(X) (IS(X) ) imaging flow cytometer. This modification has allowed for a similar number of BNCs to be automatically scored as compared to traditional microscopy in a much shorter time period. However, the MN frequency measured was much lower than both manual and automated slide-based methods of performing the assay. This work describes the optimized analysis template which implements newly developed functions in the IDEAS(®) data analysis software for the IS(X) that enhances specificity for BNCs and increases the frequency of scored MN. A new dose response calibration curve is presented in which the average rate of MN per BNC is of similar magnitude to those presented in the literature using automated CBMN slide scoring methods. In addition, dose estimates were generated for nine irradiated, blinded samples and were found to be within ±0.5 Gy of the delivered dose. Results demonstrate that the improved identification accuracy for MN and BNCs in the IS(X) -based version of the CBMN assay will translate to increased accuracy when estimating unknown radiation doses received by exposed individuals following large-scale radiological or nuclear emergencies. © 2016 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of ISAC.
Collapse
Affiliation(s)
- M A Rodrigues
- Amnis - MilliporeSigma, Seattle, WA, 98119.,Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - C E Probst
- Amnis - MilliporeSigma, Seattle, WA, 98119
| | - L A Beaton-Green
- Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - R C Wilkins
- Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
30
|
Mishra DR, Soni A, Rawat NS, Bokam G. Study of thermoluminescence (TL) and optically stimulated luminescence (OSL) from α-keratin protein found in human hairs and nails: potential use in radiation dosimetry. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2016; 55:255-264. [PMID: 26846648 DOI: 10.1007/s00411-016-0634-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 01/16/2016] [Indexed: 06/05/2023]
Abstract
The thermoluminescence (TL) and optically stimulated luminescence (OSL) properties of human nails and hairs containing α-keratin proteins have been investigated. For the present studies, black hairs and finger nails were selectively collected from individuals with ages between 25 and 35 years. The collected hairs/nails were cut to a size of < 1 mm and cleaned with distilled water to remove dirt and other potential physical sources of contamination. All samples were optically beached with 470 nm of LED light at 60 mW/cm(2) intensity and irradiated by a (60)Co γ source. The hair and nail samples showed overlapping multiple TL glow peaks in the temperature range from 70 to 210 ° C. Continuous wave (CW)-OSL measurements of hair samples at a wavelength of 470 nm showed the presence of two distinct OSL components with photoionization cross section (PIC) values of about 1.65 × 10(-18) cm(2) and about 3.48 × 10(-19) cm(2), while measurements of nail samples showed PIC values of about 6.98 × 10(-18) cm(2) and about 8.7 × 10(-19) cm(2), respectively. This difference in PIC values for hair and nail samples from the same individual is attributed to different arrangement of α-keratin protein concentrations in the samples. The OSL sensitivity was found to vary ± 5 times among nail and hair samples from different individuals, with significant fading (60% in 11 h) at room temperature. The remaining signal (after fading) can be useful for dose estimation when a highly sensitive OSL reader is used. In the absorbed dose range of 100 mGy-100 Gy, both the TL and OSL signals of hair and nail samples showed linear dose dependence. The results obtained in the present study suggest that OSL using hair and nail samples may provide a supplementary method of dose estimation in radiological and nuclear emergencies.
Collapse
Affiliation(s)
- D R Mishra
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai, 400 085, India.
| | - A Soni
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai, 400 085, India
| | - N S Rawat
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai, 400 085, India
| | - G Bokam
- Radiological Safety Division, Atomic Energy Regulatory Board, Mumbai, 400 094, India
| |
Collapse
|
31
|
Rodrigues MA, Beaton-Green LA, Wilkins RC. Validation of the Cytokinesis-block Micronucleus Assay Using Imaging Flow Cytometry for High Throughput Radiation Biodosimetry. HEALTH PHYSICS 2016; 110:29-36. [PMID: 26606062 DOI: 10.1097/hp.0000000000000371] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The cytokinesis-block micronucleus assay can be employed in triage radiation biodosimetry to determine the dose of radiation to an exposed individual by quantifying the frequency of micronuclei in binucleated lymphocyte cells. Partially automated analysis of the assay has been applied to traditional microscope-based methods, and most recently, the assay has been adapted to an automated imaging flow cytometry method. This method is able to automatically score a larger number of binucleated cells than are typically scored by microscopy. Whole blood samples were irradiated, divided into 2 mL and 200 μL aliquots, cultured for 48 h and 72 h, and processed to generate calibration curves from 0-4 Gy. To validate the method for use in radiation biodosimetry, nine separate whole blood samples were then irradiated to known doses, blinded, and processed. Results indicate that dose estimations can be determined to within ±0.5 Gy of the delivered dose after only 48 h of culture time with an initial blood volume of 200 μL. By performing the cytokinesis-block micronucleus assay using imaging flow cytometry, a significant reduction in the culture time and volume requirements is possible, which greatly increases the applicability of the assay in high throughput triage radiation biodosimetry.
Collapse
Affiliation(s)
- Matthew A Rodrigues
- *Consumer and Clinical Radiation Protection Bureau, Health Canada, 775 Brookfield Rd., K1A 1C1, Ottawa, Ontario, Canada; †Department of Physics, Carleton University, 1125 Colonel By Drive, K1S 5B6, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
32
|
Şahiner E, Meriç N, Polymeris GS. Impact of different mechanical pre-treatment to the EPR signals of human fingernails towards studying dose response and fading subjected to UV exposure or beta irradiation. RADIAT MEAS 2015. [DOI: 10.1016/j.radmeas.2015.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Yu Z, Romanyukha A, Eaton SS, Eaton GR. X-Band Rapid-Scan Electron Paramagnetic Resonance of Radiation-Induced Defects in Tooth Enamel. Radiat Res 2015. [PMID: 26207683 DOI: 10.1667/rr14032.1.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
X-band rapid-scan electron paramagnetic resonance (EPR) spectra from tooth enamel samples irradiated with doses of 0.5, 1 and 10 Gy had substantially improved signal-to-noise relative to conventional continuous wave EPR. The radiation-induced signal in a 60 mg of a tooth enamel sample irradiated with a 0.5 Gy dose was readily characterized in spectra recorded with 34 min data acquisition times. The coefficient of variance of the calculated dose for a 1 Gy irradiated sample, based on simulation of the first-derivative spectra for three replicates as the sum of native and radiation-induced signals, was 3.9% for continuous wave and 0.4% for rapid scan.
Collapse
Affiliation(s)
- Zhelin Yu
- a Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208; and
| | | | - Sandra S Eaton
- a Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208; and
| | - Gareth R Eaton
- a Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208; and
| |
Collapse
|
34
|
Hu S, Blakely WF, Cucinotta FA. HEMODOSE: A Biodosimetry Tool Based on Multi-type Blood Cell Counts. HEALTH PHYSICS 2015; 109:54-68. [PMID: 26011498 PMCID: PMC4482456 DOI: 10.1097/hp.0000000000000295] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Peripheral blood cell counts are important biomarkers of radiation exposure. In this work, a simplified compartmental modeling approach is applied to simulate the perturbation of the hematopoiesis system in humans after radiation exposure, and HemoDose software is reported to estimate individuals' absorbed doses based on multi-type blood cell counts. Testing with patient data in some historical accidents indicates that either single or serial granulocyte, lymphocyte, leukocyte, and platelet counts after exposure can be robust indicators of the absorbed doses. In addition, such correlation exists not only in the early time window (1 or 2 d) but also in the late phase (up to 4 wk) after exposure, when the four types of cell counts are combined for analysis. These demonstrate the capability of HemoDose as a rapid point-of-care diagnostic or centralized high-throughput assay system for personnel exposed to unintended high doses of radiation, especially in large-scale nuclear/radiological disaster scenarios involving mass casualties.
Collapse
Affiliation(s)
- Shaowen Hu
- *Wyle Laboratories, NASA Johnson Space Center, Houston, TX 77058; †Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889; ‡University of Nevada, Las Vegas, NV 89154
| | - William F. Blakely
- *Wyle Laboratories, NASA Johnson Space Center, Houston, TX 77058; †Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889; ‡University of Nevada, Las Vegas, NV 89154
| | - Francis A. Cucinotta
- *Wyle Laboratories, NASA Johnson Space Center, Houston, TX 77058; †Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889; ‡University of Nevada, Las Vegas, NV 89154
| |
Collapse
|
35
|
Meriç N, Şahiner E, Bariş A, Polymeris GS. Thermoluminescence properties of irradiated commercial color pencils for accidental retrospective dosimetry. Appl Radiat Isot 2015; 99:97-104. [DOI: 10.1016/j.apradiso.2015.02.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 12/24/2014] [Accepted: 02/23/2015] [Indexed: 11/28/2022]
|
36
|
Trompier F, Romanyukha A, Swarts S, Reyes R, Gourier D. Influence of nails polish in EPR dosimetry with human nails. RADIAT MEAS 2015. [DOI: 10.1016/j.radmeas.2015.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
37
|
Ekendahl D, Bulánek B, Judas L. Comparative measurements of external radiation exposure using mobile phones, dental ceramic, household salt and conventional personal dosemeters. RADIAT MEAS 2015. [DOI: 10.1016/j.radmeas.2014.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
38
|
Bassinet C, Pirault N, Baumann M, Clairand I. Radiation accident dosimetry: TL properties of mobile phone screen glass. RADIAT MEAS 2014. [DOI: 10.1016/j.radmeas.2014.03.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
39
|
Tepe Çam S, Polat M, Seyhan N. The use of human hair as biodosimeter. Appl Radiat Isot 2014; 94:272-281. [DOI: 10.1016/j.apradiso.2014.08.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 08/26/2014] [Accepted: 08/28/2014] [Indexed: 10/24/2022]
|
40
|
Bassinet C, Woda C, Bortolin E, Della Monaca S, Fattibene P, Quattrini M, Bulanek B, Ekendahl D, Burbidge C, Cauwels V, Kouroukla E, Geber-Bergstrand T, Mrozik A, Marczewska B, Bilski P, Sholom S, McKeever S, Smith R, Veronese I, Galli A, Panzeri L, Martini M. Retrospective radiation dosimetry using OSL of electronic components: Results of an inter-laboratory comparison. RADIAT MEAS 2014. [DOI: 10.1016/j.radmeas.2014.03.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
41
|
|
42
|
De Amicis A, De Sanctis S, Di Cristofaro S, Franchini V, Regalbuto E, Mammana G, Lista F. Dose estimation using dicentric chromosome assay and cytokinesis block micronucleus assay: comparison between manual and automated scoring in triage mode. HEALTH PHYSICS 2014; 106:787-797. [PMID: 24776913 DOI: 10.1097/hp.0000000000000097] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In cases of an accidental overexposure to ionizing radiation, it is essential to estimate the individual absorbed dose of a potentially radiation-exposed person. For this purpose, biological dosimetry can be performed to confirm, complement or even replace physical dosimetry when this proves to be unavailable. The most validated biodosimetry techniques for dose estimation are the dicentric chromosome assay, the "gold standard" for individual dose assessment, and cytokinesis-block micronucleus assay. However, both assays are time consuming and require skilled scorers. In case of large-scale accidents, different strategies have been developed to increase the throughput of cytogenetic service laboratories. These are the decrease of cell numbers to be scored for triage dosimetry; the automation of procedures including the scoring of, for example, aberrant chromosomes and micronuclei; and the establishment of laboratory networks in order to enable mutual assistance if necessary. In this study, the authors compared the accuracy of triage mode biodosimetry by dicentric chromosome analysis and the cytokinesis block micronucleus assay performing both the manual and the automated scoring mode. For dose estimation using dicentric chromosome assay of 10 blind samples irradiated up to 6.4 Gy of x-rays, a number of metaphase spreads were analyzed ranging from 20 up to 50 cells for the manual and from 20 up to 500 cells for the automatic scoring mode. For dose estimation based on the cytokinesis block micronucleus assay, the micronucleus frequency in both 100 and 200 binucleated cells was determined by manual and automatic scoring. The results of both assays and scoring modes were compared and analyzed considering the sensitivity, specificity, and accuracy of dose estimation with regard to the discrimination power of clinically relevant binary categories of exposure doses.
Collapse
Affiliation(s)
- Andrea De Amicis
- *Sezione di Immunologia e Tossicologia, Centro Studi e Ricerche di Sanità e Veterinaria, Via Santo Stefano Rotondo, 4 00184 Roma, Italy
| | | | | | | | | | | | | |
Collapse
|
43
|
Rogan PK, Li Y, Wickramasinghe A, Subasinghe A, Caminsky N, Khan W, Samarabandu J, Wilkins R, Flegal F, Knoll JH. Automating dicentric chromosome detection from cytogenetic biodosimetry data. RADIATION PROTECTION DOSIMETRY 2014; 159:95-104. [PMID: 24757176 PMCID: PMC4067226 DOI: 10.1093/rpd/ncu133] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We present a prototype software system with sufficient capacity and speed to estimate radiation exposures in a mass casualty event by counting dicentric chromosomes (DCs) in metaphase cells from many individuals. Top-ranked metaphase cell images are segmented by classifying and defining chromosomes with an active contour gradient vector field (GVF) and by determining centromere locations along the centreline. The centreline is extracted by discrete curve evolution (DCE) skeleton branch pruning and curve interpolation. Centromere detection minimises the global width and DAPI-staining intensity profiles along the centreline. A second centromere is identified by reapplying this procedure after masking the first. Dicentrics can be identified from features that capture width and intensity profile characteristics as well as local shape features of the object contour at candidate pixel locations. The correct location of the centromere is also refined in chromosomes with sister chromatid separation. The overall algorithm has both high sensitivity (85 %) and specificity (94 %). Results are independent of the shape and structure of chromosomes in different cells, or the laboratory preparation protocol followed. The prototype software was recoded in C++/OpenCV; image processing was accelerated by data and task parallelisation with Message Passaging Interface and Intel Threading Building Blocks and an asynchronous non-blocking I/O strategy. Relative to a serial process, metaphase ranking, GVF and DCE are, respectively, 100 and 300-fold faster on an 8-core desktop and 64-core cluster computers. The software was then ported to a 1024-core supercomputer, which processed 200 metaphase images each from 1025 specimens in 1.4 h.
Collapse
Affiliation(s)
- Peter K Rogan
- University of Western Ontario, 1151 Richmond Street, London, ON, Canada N6A 3K7
| | - Yanxin Li
- University of Western Ontario, 1151 Richmond Street, London, ON, Canada N6A 3K7
| | | | - Akila Subasinghe
- University of Western Ontario, 1151 Richmond Street, London, ON, Canada N6A 3K7
| | - Natasha Caminsky
- University of Western Ontario, 1151 Richmond Street, London, ON, Canada N6A 3K7
| | - Wahab Khan
- University of Western Ontario, 1151 Richmond Street, London, ON, Canada N6A 3K7
| | - Jagath Samarabandu
- University of Western Ontario, 1151 Richmond Street, London, ON, Canada N6A 3K7
| | - Ruth Wilkins
- Health Canada, 775 Brookfield Road, PL 6303B, Ottawa, ON, Canada K1A 1C1
| | - Farrah Flegal
- Atomic Energy of Canada Ltd., STN 51, Bldg 513, Chalk River, ON, Canada K0J 1J0
| | - Joan H Knoll
- University of Western Ontario, 1151 Richmond Street, London, ON, Canada N6A 3K7
| |
Collapse
|
44
|
Flood AB, Boyle HK, Du G, Demidenko E, Nicolalde RJ, Williams BB, Swartz HM. Advances in a framework to compare bio-dosimetry methods for triage in large-scale radiation events. RADIATION PROTECTION DOSIMETRY 2014; 159:77-86. [PMID: 24729594 PMCID: PMC4067227 DOI: 10.1093/rpd/ncu120] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Planning and preparation for a large-scale nuclear event would be advanced by assessing the applicability of potentially available bio-dosimetry methods. Using an updated comparative framework the performance of six bio-dosimetry methods was compared for five different population sizes (100-1,000,000) and two rates for initiating processing of the marker (15 or 15,000 people per hour) with four additional time windows. These updated factors are extrinsic to the bio-dosimetry methods themselves but have direct effects on each method's ability to begin processing individuals and the size of the population that can be accommodated. The results indicate that increased population size, along with severely compromised infrastructure, increases the time needed to triage, which decreases the usefulness of many time intensive dosimetry methods. This framework and model for evaluating bio-dosimetry provides important information for policy-makers and response planners to facilitate evaluation of each method and should advance coordination of these methods into effective triage plans.
Collapse
Affiliation(s)
- Ann Barry Flood
- Geisel School of Medicine at Dartmouth, EPR Center, Hanover, NH 03768, USA
| | - Holly K Boyle
- Geisel School of Medicine at Dartmouth, EPR Center, Hanover, NH 03768, USA
| | - Gaixin Du
- Geisel School of Medicine at Dartmouth, EPR Center, Hanover, NH 03768, USA
| | - Eugene Demidenko
- Geisel School of Medicine at Dartmouth, EPR Center, Hanover, NH 03768, USA
| | | | | | - Harold M Swartz
- Geisel School of Medicine at Dartmouth, EPR Center, Hanover, NH 03768, USA
| |
Collapse
|
45
|
Ciesielski B, Krefft K, Penkowski M, Kaminska J, Drogoszewska B. Effects of water treatment and sample granularity on radiation sensitivity and stability of EPR signals in X-ray irradiated bone samples. RADIATION PROTECTION DOSIMETRY 2014; 159:141-148. [PMID: 24729593 DOI: 10.1093/rpd/ncu121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The article describes effects of sample conditions during its irradiation and electron paramagnetic resonance (EPR) measurements on the background (BG) and dosimetric EPR signals in bone. Intensity of the BG signal increased up to two to three times after crushing of bone to sub-millimetre grains. Immersion of samples in water caused about 50 % drop in intensity of the BG component followed by its regrowth in 1-2 months. Irradiation of bone samples produced an axial dosimetric EPR signal (radiation-induced signal) attributed to hydroxyapatite component of bone. This signal was stable and was not affected by water. In samples irradiated in dry conditions, EPR signal similar to the native BG was also generated by radiation. In samples irradiated in wet conditions, this BG-like component was initially much smaller than in bone irradiated as dry, but increased in time, reaching similar levels as in dry-irradiated samples. It is concluded that accuracy of EPR dosimetry in bones can be improved, if calibration of the samples is done by their irradiations in wet conditions.
Collapse
Affiliation(s)
- Bartlomiej Ciesielski
- Department of Physics and Biophysics, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
| | - Karolina Krefft
- Department of Physics and Biophysics, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
| | - Michal Penkowski
- Department of Physics and Biophysics, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
| | - Joanna Kaminska
- Department of Oncology and Radiotherapy, Medical University of Gdansk, Debinki 7, 80-211 Gdansk, Poland
| | - Barbara Drogoszewska
- Department of Oral and Maxillofacial Surgery, Medical University of Gdansk, Smoluchowskiego 17, 80-214 Gdańsk, Poland
| |
Collapse
|
46
|
Williams BB, Flood AB, Salikhov I, Kobayashi K, Dong R, Rychert K, Du G, Schreiber W, Swartz HM. In vivo EPR tooth dosimetry for triage after a radiation event involving large populations. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2014; 53:335-46. [PMID: 24711003 PMCID: PMC11064839 DOI: 10.1007/s00411-014-0534-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 02/27/2014] [Indexed: 05/26/2023]
Abstract
The management of radiation injuries following a catastrophic event where large numbers of people may have been exposed to life-threatening doses of ionizing radiation will rely critically on the availability and use of suitable biodosimetry methods. In vivo electron paramagnetic resonance (EPR) tooth dosimetry has a number of valuable and unique characteristics and capabilities that may help enable effective triage. We have produced a prototype of a deployable EPR tooth dosimeter and tested it in several in vitro and in vivo studies to characterize the performance and utility at the state of the art. This report focuses on recent advances in the technology, which strengthen the evidence that in vivo EPR tooth dosimetry can provide practical, accurate, and rapid measurements in the context of its intended use to help triage victims in the event of an improvised nuclear device. These advances provide evidence that the signal is stable, accurate to within 0.5 Gy, and can be successfully carried out in vivo. The stability over time of the radiation-induced EPR signal from whole teeth was measured to confirm its long-term stability and better characterize signal behavior in the hours following irradiation. Dosimetry measurements were taken for five pairs of natural human upper central incisors mounted within a simple anatomic mouth model that demonstrates the ability to achieve 0.5 Gy standard error of inverse dose prediction. An assessment of the use of intact upper incisors for dose estimation and screening was performed with volunteer subjects who have not been exposed to significant levels of ionizing radiation and patients who have undergone total body irradiation as part of bone marrow transplant procedures. Based on these and previous evaluations of the performance and use of the in vivo tooth dosimetry system, it is concluded that this system could be a very valuable resource to aid in the management of a massive radiological event.
Collapse
Affiliation(s)
- Benjamin B Williams
- Department of Radiology, EPR Center for the Study of Viable Systems, Geisel School of Medicine at Dartmouth, Hanover, NH, USA,
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Swartz HM, Williams BB, Flood AB. Overview of the principles and practice of biodosimetry. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2014; 53:221-32. [PMID: 24519326 PMCID: PMC5982531 DOI: 10.1007/s00411-014-0522-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 02/02/2014] [Indexed: 05/05/2023]
Abstract
The principle of biodosimetry is to utilize changes induced in the individual by ionizing radiation to estimate the dose and, if possible, to predict or reflect the clinically relevant response, i.e., the biological consequences of the dose. Ideally, the changes should be specific for ionizing radiation, and the response should be unaffected by prior medical or physiological variations among subjects, including changes that might be caused by the stress and trauma from a radiation event. There are two basic types of biodosimetry with different and often complementary characteristics: those based on changes in biological parameters such as gene activation or chromosomal abnormalities and those based on physical changes in tissues (detected by techniques such as EPR). In this paper, we consider the applicability of the various techniques for different scenarios: small- and large-scale exposures to levels of radiation that could lead to the acute radiation syndrome and exposures with lower doses that do not need immediate care, but should be followed for evidence of long-term consequences. The development of biodosimetry has been especially stimulated by the needs after a large-scale event where it is essential to have a means to identify those individuals who would benefit from being brought into the medical care system. Analyses of the conventional methods officially recommended for responding to such events indicate that these methods are unlikely to achieve the results needed for timely triage of thousands of victims. Emerging biodosimetric methods can fill this critically important gap.
Collapse
Affiliation(s)
- Harold M Swartz
- EPR Center for the Study of Viable Systems, Geisel School of Medicine at Dartmouth, Hanover, NH, USA,
| | | | | |
Collapse
|
48
|
Ekendahl D, Judas L, Sukupova L. OSL and TL retrospective dosimetry with a fluorapatite glass-ceramic used for dental restorations. RADIAT MEAS 2013. [DOI: 10.1016/j.radmeas.2013.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
49
|
Tangen JM, Jaworska A. Treatment of acute radiation injuries. TIDSSKRIFT FOR DEN NORSKE LEGEFORENING 2013; 133:2164-6. [PMID: 24172631 DOI: 10.4045/tidsskr.13.0218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
50
|
Romm H, Barnard S, Boulay-Greene H, De Amicis A, De Sanctis S, Franco M, Herodin F, Jones A, Kulka U, Lista F, Martigne P, Moquet J, Oestreicher U, Rothkamm K, Thierens H, Valente M, Vandersickel V, Vral A, Braselmann H, Meineke V, Abend M, Beinke C. Laboratory Intercomparison of the Cytokinesis-Block Micronucleus Assay. Radiat Res 2013; 180:120-8. [DOI: 10.1667/rr3234.1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|