1
|
Wehbi M, Harkemanne E, Mignion L, Joudiou N, Tromme I, Baurain JF, Gallez B. Towards Characterization of Skin Melanoma in the Clinic by Electron Paramagnetic Resonance (EPR) Spectroscopy and Imaging of Melanin. Mol Imaging Biol 2024; 26:382-390. [PMID: 37389709 PMCID: PMC11211150 DOI: 10.1007/s11307-023-01836-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/05/2023] [Accepted: 06/23/2023] [Indexed: 07/01/2023]
Abstract
The incidence of melanoma is continuously increasing over time. Melanoma is the most aggressive skin cancer, significantly reducing quality of life and survival rates of patients at advanced stages. Therefore, early diagnosis remains the key to change the prognosis of patients with melanoma. In this context, advanced technologies are under evaluation to increase the accuracy of the diagnostic, to better characterize the lesions and visualize their possible invasiveness in the epidermis. Among the innovative methods, because melanin is paramagnetic, clinical low frequency electron paramagnetic resonance (EPR) that characterizes the melanin content in the lesion has the potential to be an adjunct diagnostic method of melanoma. In this review, we first summarize the challenges faced by dermatologists and oncologists in melanoma diagnostic and management. We also provide a historical perspective on melanin detection with a focus on EPR spectroscopy/imaging of melanomas. We describe key elements that allow EPR to move from in vitro studies to in vivo and finally to patients for melanoma studies. Finally, we provide a critical view on challenges to meet to make EPR operational in the clinic to characterize pigmented lesions.
Collapse
Affiliation(s)
- Mohammad Wehbi
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université catholique de Louvain (UCLouvain), Avenue Mounier 73.08, B -, 1200, Brussels, Belgium
| | - Evelyne Harkemanne
- Department of Dermatology, Melanoma Clinic, King Albert II Institute, St Luc Hospital, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Lionel Mignion
- Nuclear and Electron Spin Technologies (NEST) Platform, Louvain Drug Research Institute, |Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Nicolas Joudiou
- Nuclear and Electron Spin Technologies (NEST) Platform, Louvain Drug Research Institute, |Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Isabelle Tromme
- Department of Dermatology, Melanoma Clinic, King Albert II Institute, St Luc Hospital, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Jean-François Baurain
- Department of Oncology, Melanoma Clinic, King Albert II Institute, St Luc Hospital, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Bernard Gallez
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université catholique de Louvain (UCLouvain), Avenue Mounier 73.08, B -, 1200, Brussels, Belgium.
- Nuclear and Electron Spin Technologies (NEST) Platform, Louvain Drug Research Institute, |Université catholique de Louvain (UCLouvain), Brussels, Belgium.
| |
Collapse
|
2
|
Wehbi M, Mignion L, Joudiou N, Harkemanne E, Gallez B. Highly Sensitive Detection of Melanin in Melanomas Using Multi-harmonic Low Frequency EPR. Mol Imaging Biol 2024; 26:484-494. [PMID: 38519805 PMCID: PMC11211186 DOI: 10.1007/s11307-024-01911-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
PURPOSE Low frequency EPR can noninvasively detect endogenous free radical melanin in melanocytic skin lesions and could potentially discriminate between benign atypical nevi and malignant melanoma lesions. We recently succeeded in demonstrating the ability of clinical EPR to noninvasively detect the endogenous melanin free radical in skin lesions of patients. However, the signal-to-noise ratio (SNR) was extremely low warranting further research to boost the sensitivity of detection. In the present study, we assessed the performance of a clinical EPR system with the capability to perform multi-harmonic (MH) analysis for the detection of melanin. PROCEDURES The sensitivity of MH-EPR was compared with a classical continuous wave (CW)-EPR (1st harmonic) detection in vitro in melanin phantoms, in vivo in melanoma models with cells implanted in the skin, in lymph nodes and having colonized the lungs, and finally on phantoms placed at the surface of human skin. RESULTS In vitro, we observed an increase in SNR by a factor of 10 in flat melanin phantoms when using MH analysis compared to CW combined with an increase in modulation amplitude. In B16 melanomas having grown in the skin of hairless mice, we observed a boost in sensitivity in vivo similar to that observed in vitro with the capability to detect melanoma cells at an earlier stage of development. MH-EPR was also able to detect non-invasively the melanin signal coming from melanoma cells present in lymph nodes as well as in lungs. We also observed a boost of sensitivity using phantoms of melanin placed at the surface of human skin. CONCLUSIONS Overall, our results are paving the way for new clinical trials that will use MH clinical EPR for the characterization of pigmented skin lesions.
Collapse
Affiliation(s)
- Mohammad Wehbi
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Lionel Mignion
- Nuclear and Electron Spin Technologies (NEST) Platform, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Nicolas Joudiou
- Nuclear and Electron Spin Technologies (NEST) Platform, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Evelyne Harkemanne
- Dermatology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Bernard Gallez
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Université Catholique de Louvain (UCLouvain), Brussels, Belgium.
| |
Collapse
|
3
|
Choi K, Koo CU, Oh J, Kim J, Park JI, Kim SH, Lee JH, Kang DG, Ye SJ. Enhanced Dosimetric Accuracy Using Quality Factor Compensation Method for In Vivo Electron Paramagnetic Resonance Tooth Dosimetry. HEALTH PHYSICS 2023; 125:352-361. [PMID: 37565831 DOI: 10.1097/hp.0000000000001727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
ABSTRACT We aim to develop a dose assessment method compensating for quality factors (Q factor) observed during in vivo EPR tooth dosimetry. A pseudo-in-vivo phantom made of tissue-equivalent material was equipped with one each of four extracted human central incisors. A range of Q factors was measured at tooth-depths of -2, 0, and 2 mm in the pseudo-in-vivo phantom. In addition, in vivo Q factors were measured from nine human volunteers. For the dose-response data, the above four sample teeth were irradiated at 0, 1, 2, 5, and 10 Gy, and the radiation-induced signals were measured at the same tooth-depths using an in vivo EPR tooth dosimetry system. To validate the method, the signals of two post-radiotherapy patients and three unirradiated volunteers were measured using the same system. The interquartile range of the Q factors measured in the pseudo-in-vivo phantom covered that observed from the human volunteers, which implied that the phantom represented the Q factor distribution of in vivo conditions. The dosimetric sensitivities and background signals were decreased as increasing the tooth-depth in the phantom due to the decrease in Q factors. By compensating for Q factors, the diverged dose-response data due to various Q factors were converged to improve the dosimetric accuracy in terms of the standard error of inverse prediction (SEIP). The Q factors of patient 1 and patient 2 were 98 and 64, respectively, while the three volunteers were 100, 92, and 99. The assessed doses of patient 1 and patient 2 were 2.73 and 12.53 Gy, respectively, while expecting 4.43 and 13.29 Gy, respectively. The assessed doses of the unirradiated volunteers were 0.53, 0.50, and - 0.22 Gy. We demonstrated that the suggested Q factor compensation could mitigate the uncertainty induced by the variation of Q factors.
Collapse
Affiliation(s)
- Kwon Choi
- Program in Biomedical Radiation Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea
| | - Chang Uk Koo
- Program in Biomedical Radiation Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea
| | - Jeonghun Oh
- Program in Biomedical Radiation Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea
| | - Jiwon Kim
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea
| | - Jong In Park
- Ionizing Radiation Metrology Group, Korea Research Institute of Standards and Science, Daejeon 34113, Korea
| | - Sung Hwan Kim
- Department of Radiation Oncology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon 16247, Korea
| | - Jong Hoon Lee
- Department of Radiation Oncology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon 16247, Korea
| | - Dae Gyu Kang
- Department of Radiation Oncology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon 16247, Korea
| | | |
Collapse
|
4
|
Swartz HM, Flood AB. EPR biodosimetry: challenges and opportunities. RADIATION PROTECTION DOSIMETRY 2023; 199:1441-1449. [PMID: 37721062 DOI: 10.1093/rpd/ncad009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/27/2022] [Accepted: 01/10/2023] [Indexed: 09/19/2023]
Abstract
This paper briefly examines electron paramagnetic resonance (EPR) techniques to measure dose from exposure to external radiation, assessing their current status, potential future uses and the challenges impacting their progress. We conclude the uses and potential value of different EPR techniques depend on the number of victims and whether they characterize short- or long-term risks from exposure. For large populations, EPR biodosimetry based on in vivo measurements or using co-located inanimate objects offer the greatest promise for assessing acute, life-threatening risk and the magnitude and extent of such risk. To assess long-term risk, ex vivo EPR methods using concentrated enamel from exfoliated teeth are most impactful. For small groups, ex vivo EPR biodosimetry based on available samples of teeth, nails and/or bones are most useful. The most important challenges are common to all approaches: improve the technique's technical capabilities and advance recognition by planning groups of the relative strengths EPR techniques offer for each population size. The most useful applications are likely to be for triage and medical guidance in large events and for radiation epidemiology to evaluate long-term risks.
Collapse
Affiliation(s)
- Harold M Swartz
- Radiology Department, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
- Clin-EPR, LLC, Lyme, NH, USA
| | - Ann Barry Flood
- Radiology Department, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
- Clin-EPR, LLC, Lyme, NH, USA
| |
Collapse
|
5
|
Mignion L, Desmet CM, Harkemanne E, Tromme I, Joudiou N, Wehbi M, Baurain JF, Gallez B. Noninvasive detection of the endogenous free radical melanin in human skin melanomas using electron paramagnetic resonance (EPR). Free Radic Biol Med 2022; 190:226-233. [PMID: 35987421 DOI: 10.1016/j.freeradbiomed.2022.08.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 11/20/2022]
Abstract
We explored the capability of low-frequency Electron Paramagnetic Resonance (EPR) to noninvasively detect melanin (a stable semiquinone free radical) in the human skin. As previous in vitro studies on biopsies suggested that the EPR signal from melanin was different when measured in skin melanomas or benign nevi, we conducted a prospective first-in-man clinical EPR study in patients with skin lesions suspicious of melanoma. EPR spectra were obtained using a spectrometer operating at 1 GHz, with a surface coil placed over the area of interest. Two clinical studies were carried out: 1) healthy volunteers (n = 45) presenting different skin phototypes; 2) patients (n = 88) with skin lesions suspicious of melanoma (n = 100) requiring surgical resection. EPR data obtained before surgery were compared with histopathology results. The method was not sensitive enough to measure differences in melanin content due to changes in skin pigmentation. In patients, 92% of the spectra were analyzable. The EPR signal of melanin was significantly higher (p < 0.0001) in melanoma lesions (n = 26) than that in benign atypical nevi (n = 62). A trend toward a higher signal intensity (though not significant) was observed in high Breslow depth melanomas (a marker of skin invasion) than in low Breslow lesions. To date, no naturally occurring free radicals have been detected by low-frequency EPR systems adapted for clinical studies. Here, we demonstrated for the first time the ability of this technology to detect an endogenous free radical, opening new avenues for evaluating clinical EPR as a potential aid in the diagnosis of pigmented skin lesions.
Collapse
Affiliation(s)
- Lionel Mignion
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Université Catholique de Louvain (UCLouvain), Brussels, Belgium; Louvain Drug Research Institute, Nuclear and Electron Spin Technologies Platform, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Celine M Desmet
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Evelyne Harkemanne
- Dermatology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Isabelle Tromme
- Dermatology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Nicolas Joudiou
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Université Catholique de Louvain (UCLouvain), Brussels, Belgium; Louvain Drug Research Institute, Nuclear and Electron Spin Technologies Platform, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Mohammad Wehbi
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | | | - Bernard Gallez
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Université Catholique de Louvain (UCLouvain), Brussels, Belgium.
| |
Collapse
|
6
|
Karim ET, Szalai V, Cumberland L, Myers AF, Takagi S, Frukhtbeyn SA, Pazos I, Chow LC. Electron Paramagnetic Resonance Characterization of Sodium- and Carbonate-Containing Hydroxyapatite Cement. Inorg Chem 2022; 61:13022-13033. [PMID: 35930806 PMCID: PMC9400659 DOI: 10.1021/acs.inorgchem.2c01177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ionizing radiation-induced paramagnetic defects in calcified tissues like tooth enamel are indicators of irradiation dose. Hydroxyapatite (HA), the principal constituent in these materials, incorporates a variety of anions (CO32-, F-, Cl-, and SiO44-) and cations (Mn2+, Li+, Cu2+, Fe3+, Mg2+, and Na+) that directly or indirectly contribute to the formation of stable paramagnetic centers upon irradiation. Here, we used an underexploited synthesis method based on the ambient temperature setting reaction of a self-hardening calcium phosphate cement (CPC) to create carbonate-containing hydroxyapatite (CHA) and investigate its paramagnetic properties following γ-irradiation. Powder X-ray diffraction and IR spectroscopic characterization of the hardened CHA samples indicate the formation of pure B-type CHA cement. CHA samples exposed to γ-radiation doses ranging from 1 Gy to 150 kGy exhibited an electron paramagnetic resonance (EPR) signal from an orthorhombic CO2•- free radical. At γ-radiation doses from 30 to 150 kGy, a second signal emerged that is assigned to the CO3•- free radical. We observed that the formation of this second species is dose-dependent, which provided a means to extend the useful dynamic range of irradiated CHA to doses >30 kGy. These results indicate that CHA synthesized via a CPC cement is a promising substrate for EPR-based dosimetry. Further studies on the CHA cement are underway to determine the suitability of these materials for a range of biological and industrial dosimetry applications.
Collapse
Affiliation(s)
- Eaman T Karim
- American Dental Association Science and Research Institute, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Veronika Szalai
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Lonnie Cumberland
- Radiation Physics Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Alline F Myers
- Center for Nanoscale Science and Technology, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Shozo Takagi
- American Dental Association Science and Research Institute, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Stanislav A Frukhtbeyn
- American Dental Association Science and Research Institute, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Ileana Pazos
- Radiation Physics Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Laurence C Chow
- American Dental Association Science and Research Institute, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
7
|
Hyde JS, Strangeway RA, Sidabras JW. Dispersion EPR: Considerations for Low-Frequency Experiments. APPLIED MAGNETIC RESONANCE 2022; 53:193-206. [PMID: 35464635 PMCID: PMC9030583 DOI: 10.1007/s00723-021-01352-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/28/2021] [Accepted: 05/12/2021] [Indexed: 06/14/2023]
Abstract
The hypothesis is made that the dispersion electron paramagnetic resonance (EPR) spectrum can yield a higher signal-to-noise ratio than the absorption spectrum in diagnostic examinations if phase noise in the bridge is under control. The rationale for this hypothesis is based on the observation that the dispersion spectrum becomes more intense than the absorption spectrum at high incident powers. The rationale is dependent on optimization of high microwave efficiency (Λ; mT/W1/2) and low quality factor (Q-value) resonators as well as the use of microwave sources with reduced phase noise. Microwave frequencies from 1.2 to 94 GHz are considered. Although the dispersion display appears to be observable with an adequate signal-to-noise ratio for most EPR research initiatives, a weakness of microwave bridges for studies at high incident microwave power was identified. Spurious leakage of incident microwave power through the circulator, thereby bypassing the probe leading to the resonator, can result in a decreased signal-to-noise ratio in both absorption and dispersion because of phase noise. For dispersion EPR with low Q-value sample resonators, this leakage is the primary contributor to phase noise at the receiver. In this work, we focus on the design of microwave reflection bridges and discuss possible methods to ameliorate this source of noise.
Collapse
Affiliation(s)
- James S. Hyde
- Medical College of Wisconsin, Department of Biophysics, Milwaukee, WI, USA
| | - Robert A. Strangeway
- Medical College of Wisconsin, Department of Biophysics, Milwaukee, WI, USA
- Milwaukee School of Engineering, Department of Electrical Engineering and Computer Science, Milwaukee, WI, USA
| | - Jason W. Sidabras
- Medical College of Wisconsin, Department of Biophysics, Milwaukee, WI, USA
| |
Collapse
|
8
|
Swartz HM, Wilkins RC, Ainsbury E, Port M, Barry Flood A, Trompier F, Roy L, Swarts SG. What if a major radiation incident happened during a pandemic? - Considerations of the impact on biodosimetry. Int J Radiat Biol 2021; 98:825-830. [PMID: 34730484 DOI: 10.1080/09553002.2021.2000659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Harold M Swartz
- Radiology Department, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Ruth C Wilkins
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Canada
| | - Elizabeth Ainsbury
- Public Health England Centre for Radiation, Chemical and Environmental Hazards, Oxford, UK
| | - Matthias Port
- Bundeswehr Institute of Radiobiology, Affiliated to the University of Ulm, Munich, Germany
| | - Ann Barry Flood
- Radiology Department, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - François Trompier
- Department for Research on Dosimetry, IRSN, Fontenay-aux-roses, France
| | - Laurence Roy
- Department for Research on the Biological and Health Effects of Ionising Radiation, IRSN, Fontenay-aux-roses, France
| | - Steven G Swarts
- Department of Radiation Oncology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
9
|
X-band TE101 rectangular aperture cavity for in vivo EPR tooth dosimetry after radiation emergency. Appl Radiat Isot 2021; 178:109958. [PMID: 34598040 DOI: 10.1016/j.apradiso.2021.109958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/25/2021] [Accepted: 09/16/2021] [Indexed: 11/22/2022]
Abstract
The TE101 mode rectangle EPR cavity was newly developed to achieve X-band in vivo EPR tooth dosimetry for the rescue of nuclear emergency. An aperture for sample detection was opened on the cavity's surface. Its characteristics were evaluated by measuring DPPH and intact human incisor samples. Remarkable radiation induced signal from EPR spectrum of 1Gy-8Gy irradiated teeth was observed. In vivo measurements of rat was performed to verify its application for in vivo tooth dosimetry.
Collapse
|
10
|
The design of X-band EPR cavity with narrow detection aperture for in vivo fingernail dosimetry after accidental exposure to ionizing radiation. Sci Rep 2021; 11:2883. [PMID: 33558592 PMCID: PMC7870891 DOI: 10.1038/s41598-021-82462-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 01/20/2021] [Indexed: 11/13/2022] Open
Abstract
For the purpose of assessing the radiation dose of the victims involved in the nuclear emergency or radiation accident, a new type of X-band EPR resonant cavity for in vivo fingernail EPR dosimetry was designed and a homemade EPR spectrometer for in vivo fingernail detection was constructed. The microwave resonant mode of the cavity was rectangular TE101, and there was a narrow aperture for fingernail detection opened on the cavity’s wall at the position of high detection sensitivity. The DPPH dot sample and the fingernail samples were measured based on the in vivo fingernail EPR spectrometer. The measurements of the DPPH dot sample verified the preliminary functional applicable of the EPR spectrometer and illustrated the microwave power and modulation response features. The fingernails after irradiation by gamma-ray were measured and the radiation-induced signal was acquired. The results indicated that the cavity and the in vivo EPR dosimeter instrument was able to detect the radiation-induced signal in irradiated fingernail, and preliminarily verified the basic function of the instrument and its potential for emergency dose estimate after a radiation accident.
Collapse
|
11
|
Park JI, Choi K, Koo CU, Oh J, Hirata H, Swartz HM, Ye SJ. Dependence of Radiation-induced Signals on Geometry of Tooth Enamel Using a 1.15 GHz Electron Paramagnetic Resonance Spectrometer: Improvement of Dosimetric Accuracy. HEALTH PHYSICS 2021; 120:152-162. [PMID: 32701613 DOI: 10.1097/hp.0000000000001292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
ABSTRACT We aim to improve the accuracy of electron paramagnetic resonance (EPR)-based in vivo tooth dosimetry using the relationship between tooth geometry and radiation-induced signals (RIS). A homebuilt EPR spectrometer at L-band frequency of 1.15 GHz originally designed for non-invasive and in vivo measurements of intact teeth was used to measure the RIS of extracted human teeth. Twenty human central incisors were scanned by microCT and irradiated by 220 kVp x-rays. The RISs of the samples were measured by the EPR spectrometer as well as simulated by using the finite element analysis of the electromagnetic field. A linear relationship between simulated RISs and tooth geometric dimensions, such as enamel area, enamel volume, and labial enamel volume, was confirmed. The dose sensitivity was quantified as a slope of the calibration curve (i.e., RIS vs. dose) for each tooth sample. The linear regression of these dose sensitivities was established for each of three tooth geometric dimensions. Based on these findings, a method for the geometry correction was developed by use of expected dose sensitivity of a certain tooth for one of the tooth geometric dimensions. Using upper incisors, the mean absolute deviation (MAD) without correction was 1.48 Gy from an estimated dose of 10 Gy; however, the MAD corrected by enamel area, volume, and labial volume was reduced to 1.04 Gy, 0.77 Gy, and 0.83 Gy, respectively. In general, the method corrected by enamel volume showed the best accuracy in this study. This homebuilt EPR spectrometer for the purpose of non-invasive and in vivo tooth dosimetry was successfully tested for achieving measurements in situ. We demonstrated that the developed correction method could reduce dosimetric uncertainties resulting from the variations in tooth geometric dimensions.
Collapse
Affiliation(s)
| | | | | | - Jeonghun Oh
- Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hiroshi Hirata
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo, 060-0814, Japan
| | - Harold M Swartz
- Geisel School of Medicine, HB 7785 Dartmouth College, Hanover, NH 03755
| | | |
Collapse
|
12
|
Sun L, Inaba Y, Kanzaki N, Bekal M, Chida K, Moritake T. Identification of Potential Biomarkers of Radiation Exposure in Blood Cells by Capillary Electrophoresis Time-of-Flight Mass Spectrometry. Int J Mol Sci 2020; 21:ijms21030812. [PMID: 32012663 PMCID: PMC7037449 DOI: 10.3390/ijms21030812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/14/2020] [Accepted: 01/24/2020] [Indexed: 01/06/2023] Open
Abstract
Biodosimetry is a useful method for estimating personal exposure doses to ionizing radiation. Studies have identified metabolites in non-cellular biofluids that can be used as markers in biodosimetry. Levels of metabolites in blood cells may reflect health status or environmental stresses differentially. Here, we report changes in the levels of murine blood cell metabolites following exposure to X-rays in vivo. Levels of blood cell metabolites were measured by capillary electrophoresis time-of-flight mass spectrometry. The levels of 100 metabolites were altered substantially following exposure. We identified 2-aminobutyric acid, 2'-deoxycytidine, and choline as potentially useful markers of radiation exposure and established a potential prediction panel of the exposure dose using stepwise regression. Levels of blood cell metabolites may be useful biomarkers in estimating exposure doses during unexpected radiation incidents.
Collapse
Affiliation(s)
- Lue Sun
- Health Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Yohei Inaba
- Course of Radiological Technology, Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan
- Department of Radiation Disaster Medicine, International Research Institute of Disaster Science, Tohoku University, Aramaki Aza-Aoba 468-1, Aoba-ku, Sendai 980-0845, Japan
| | - Norie Kanzaki
- Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency, 1550 Kamisaibara, Kagamino-cho, Tomata-gun, Okayama 708-0698, Japan
| | - Mahesh Bekal
- Department of Radiological Health Science, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Koichi Chida
- Course of Radiological Technology, Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan
- Department of Radiation Disaster Medicine, International Research Institute of Disaster Science, Tohoku University, Aramaki Aza-Aoba 468-1, Aoba-ku, Sendai 980-0845, Japan
| | - Takashi Moritake
- Department of Radiological Health Science, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
- Correspondence: ; Tel.: +81-93-691-7549
| |
Collapse
|
13
|
Kobayashi K, Dong R, Nicolalde RJ, Calderon P, Du G, Williams BB, Lee MCI, Swartz HM, Flood AB. Development of a novel mouth model as an alternative tool to test the effectiveness of an in vivo EPR dosimetry system. Phys Med Biol 2018; 63:165002. [PMID: 30033935 DOI: 10.1088/1361-6560/aad518] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In a large-scale radiation event, thousands may be exposed to unknown amounts of radiation, some of which may be life-threatening without immediate attention. In such situations, a method to quickly and reliably estimate dose would help medical responders triage victims to receive life-saving care. We developed such a method using electron paramagnetic resonance (EPR) to make in vivo measurements of the maxillary incisors. This report provides evidence that the use of in vitro studies can provide data that are fully representative of the measurements made in vivo. This is necessary because, in order to systematically test and improve the reliability and accuracy of the dose estimates made with our EPR dosimetry system, it is important to conduct controlled studies in vitro using irradiated human teeth. Therefore, it is imperative to validate whether our in vitro models adequately simulate the measurements made in vivo, which are intended to help guide decisions on triage after a radiation event. Using a healthy volunteer with a dentition gap that allows using a partial denture, human teeth were serially irradiated in vitro and then, using a partial denture, placed in the volunteer's mouth for measurements. We compared dose estimates made using in vivo measurements made in the volunteer's mouth to measurements made on the same teeth in our complex mouth model that simulates electromagnetic and anatomic properties of the mouth. Our results demonstrate that this mouth model can be used in in vitro studies to develop the system because these measurements appropriately model in vivo conditions.
Collapse
Affiliation(s)
- Kyo Kobayashi
- EPR Center for the Study of Viable Systems, Radiology Department, Geisel School of Medicine at Dartmouth, HB 7785, Williamson Translational Research Bldg, Lebanon, NH, United States of America
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Zou J, Guo J, Dong G, Ma L, Cong J, Liu Y, Tian Y, Wu K. Effect of the tooth surface water on the accuracy of dose reconstructions in the X-band in vivo EPR dosimetry. Appl Radiat Isot 2018; 139:86-90. [PMID: 29729486 DOI: 10.1016/j.apradiso.2018.04.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 10/17/2022]
Abstract
The X-band in vivo EPR tooth dosimetry is promising as a tool for the initial triage after a large-scale radiation accident. The dielectric losses caused by water on the tooth surface (WTS) are one of the major sources of inaccuracies in this method. The effect was studied by theoretical simulation calculations and experiments with water films of various thicknesses on teeth. The results demonstrate the possibility of sufficiently accurate measurements of the radiation-induced signal of the tooth enamel provided that the thickness of the water film on the tooth is below 60 µm. The sensitivity of the cavity decreases with increasing thickness of the water layer. The interference of WTS can be diminished by normalization of the radiation-induced signal to the signal of a reference sample permanently present in the cavity.
Collapse
Affiliation(s)
- Jierui Zou
- Beijing Institute of Radiation Medicine, Beijing Key Laboratory of Radiation Biology (No. BZ0325), China
| | - Junwang Guo
- Beijing Institute of Radiation Medicine, Beijing Key Laboratory of Radiation Biology (No. BZ0325), China
| | - Guofu Dong
- Beijing Institute of Radiation Medicine, Beijing Key Laboratory of Radiation Biology (No. BZ0325), China
| | - Lei Ma
- Beijing Institute of Radiation Medicine, Beijing Key Laboratory of Radiation Biology (No. BZ0325), China
| | - Jianbo Cong
- Beijing Institute of Radiation Medicine, Beijing Key Laboratory of Radiation Biology (No. BZ0325), China
| | - Ye Liu
- Beijing Institute of Radiation Medicine, Beijing Key Laboratory of Radiation Biology (No. BZ0325), China
| | - Ye Tian
- Beijing Institute of Radiation Medicine, Beijing Key Laboratory of Radiation Biology (No. BZ0325), China
| | - Ke Wu
- Beijing Institute of Radiation Medicine, Beijing Key Laboratory of Radiation Biology (No. BZ0325), China.
| |
Collapse
|
15
|
Li L, Xiao R, Wang Q, Rong Z, Zhang X, Zhou P, Fu H, Wang S, Wang Z. SERS detection of radiation injury biomarkers in mouse serum. RSC Adv 2018; 8:5119-5126. [PMID: 35542392 PMCID: PMC9078126 DOI: 10.1039/c7ra12238a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/19/2018] [Indexed: 11/26/2022] Open
Abstract
In a large-scale radiological catastrophe, it is expected that hundreds and thousands of people could be exposed to radiation. A rapid method is required for triage of casualties to determine proper medical treatment. In this article, mice were exposed to different radiation doses and sera of mice were investigated by surface-enhanced Raman spectroscopy (SERS) and orthogonal projections to latent structure discriminant analysis (OPLS-DA) after total body irradiation (TBI). The results of the present study indicated that differences have widened over time. The different radiation groups showed a slight overlap at 24 h and 72 h but were completely distinct at the 10th day after TBI. The SERS spectrum between the normal group and the irradiated group showed a significant difference at 24 hours. The same trend was depicted in scatting score plots. Significant differences in Raman peaks were found, such as 744 and 1495 cm−1 corresponding to riboflavin and 593 and 1204 cm−1 corresponding to l-tryptophan. The lack of riboflavin and l-tryptophan will influence metabolism levels. Above all, these results bear potential in the development of label-free and rapid tools for on-site detection and screening of irradiation injuries. A rapid and on-site detection method would be needed to triage of casualties and proper medical treatment in a large scale radiological catastrophe. The detection method of SERS would be a effective approach.![]()
Collapse
Affiliation(s)
- Liansheng Li
- Anhui Medical University
- P R China
- Department of Radiation Toxicology and Oncology
- Beijing Key Laboratory for Radiobiology
- Beijing Institute of Radiation Medicine
| | - Rui Xiao
- Key Laboratory of New Molecular Diagnosis Techniques for Infectious Diseases
- Beijing Institute of Radiation Medicine
- Beijing 100850
- P R China
| | - Qi Wang
- Department of Radiation Toxicology and Oncology
- Beijing Key Laboratory for Radiobiology
- Beijing Institute of Radiation Medicine
- Beijing 100850
- P R China
| | - Zhen Rong
- Key Laboratory of New Molecular Diagnosis Techniques for Infectious Diseases
- Beijing Institute of Radiation Medicine
- Beijing 100850
- P R China
| | - Xueqing Zhang
- Department of Radiation Toxicology and Oncology
- Beijing Key Laboratory for Radiobiology
- Beijing Institute of Radiation Medicine
- Beijing 100850
- P R China
| | - Pingkun Zhou
- Anhui Medical University
- P R China
- Department of Radiation Toxicology and Oncology
- Beijing Key Laboratory for Radiobiology
- Beijing Institute of Radiation Medicine
| | - Hanjiang Fu
- Anhui Medical University
- P R China
- Department of Radiation Toxicology and Oncology
- Beijing Key Laboratory for Radiobiology
- Beijing Institute of Radiation Medicine
| | - Shengqi Wang
- Anhui Medical University
- P R China
- Key Laboratory of New Molecular Diagnosis Techniques for Infectious Diseases
- Beijing Institute of Radiation Medicine
- Beijing 100850
| | - Zhidong Wang
- Anhui Medical University
- P R China
- Department of Radiation Toxicology and Oncology
- Beijing Key Laboratory for Radiobiology
- Beijing Institute of Radiation Medicine
| |
Collapse
|
16
|
Sproull MT, Camphausen KA, Koblentz GD. Biodosimetry: A Future Tool for Medical Management of Radiological Emergencies. Health Secur 2017; 15:599-610. [PMID: 29193982 PMCID: PMC5734138 DOI: 10.1089/hs.2017.0050] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 12/13/2022] Open
Abstract
With the threat of future radiological or nuclear events, there is a need to model and develop new medical countermeasures for managing large-scale population exposures to radiation. The field of radiation biodosimetry has advanced far beyond its original objectives to identify new methodologies to quantitate unknown levels of radiation exposure that may be applied in a mass screening setting. New research in the areas of genomics, proteomics, metabolomics, transcriptomics, and electron paramagnetic resonance (EPR) applications have identified novel biological indicators of radiation injury from a diverse array of biological sample materials, and studies continue to develop more advanced models of radiation exposure and injury. In this article, we identify the urgent need for new biodosimetry assessment technologies, describe how biodosimetry diagnostics work in the context of a broad range of radiation exposure types and scenarios, review the current state of the science, and assess how well integrated biodosimetry resources are in the national radiological emergency response framework.
Collapse
|
17
|
Umakoshi M, Yamaguchi I, Hirata H, Kunugita N, Williams BB, Swartz HM, Miyake M. In Vivo Electron Paramagnetic Resonance Tooth Dosimetry: Dependence of Radiation-Induced Signal Amplitude on the Enamel Thickness and Surface Area of Ex Vivo Human Teeth. HEALTH PHYSICS 2017; 113:262-270. [PMID: 28796750 DOI: 10.1097/hp.0000000000000698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In vivo L-band electron paramagnetic resonance tooth dosimetry is a newly developed and very promising method for retrospective biodosimetry in individuals who may have been exposed to significant levels of ionizing radiation. The present study aimed to determine the relationships among enamel thickness, enamel area, and measured electron paramagnetic resonance signal amplitude with a view to improve the quantitative accuracy of the dosimetry technique. Ten isolated incisors were irradiated using well-characterized doses, and their radiation-induced electron paramagnetic resonance signals were measured. Following the measurements, the enamel thickness and area of each tooth were measured using micro-focus computed tomography. Linear regression showed that the enamel area at each measurement position significantly affected the radiation-induced electron paramagnetic resonance signal amplitude (p < 0.001). Simulation data agreed well with this result. These results indicate that it is essential to properly consider enamel thickness and area when interpreting electron paramagnetic resonance tooth dosimetry measurements to optimize the accuracy of dose estimation.
Collapse
Affiliation(s)
- Michitaka Umakoshi
- *Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Kagawa University, Kagawa,761-0793, Japan; †Department of Environmental Health, National Institute of Public Health, Wako, 351-0197, Japan; ‡Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo, 060-0814, Japan; §EPR Center for the Study of Viable Systems, Department of Radiology, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03766
| | | | | | | | | | | | | |
Collapse
|
18
|
Miyake M, Nakai Y, Yamaguchi I, Hirata H, Kunugita N, Williams BB, Swartz HM. IN-VIVO RADIATION DOSIMETRY USING PORTABLE L BAND EPR: ON-SITE MEASUREMENT OF VOLUNTEERS IN FUKUSHIMA PREFECTURE, JAPAN. RADIATION PROTECTION DOSIMETRY 2016; 172:248-253. [PMID: 27522046 PMCID: PMC5225973 DOI: 10.1093/rpd/ncw214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The aim of this study was to make direct measurements of the possible radiation-induced EPR signals in the teeth of volunteers who were residents in Fukushima within 80 km distance from the Fukushima Nuclear Power plant at the time of the disaster, and continued to live there for at least 3 month after the disaster. Thirty four volunteers were enrolled in this study. These measurements were made using a portable L-band EPR spectrometer, which was originally developed in the EPR Center at Dartmouth. All measurements were performed using surface loop resonators that have been specifically designed for the upper incisor teeth. Potentially these signals include not only radiation-induced signals induced by the incident but also background signals including those from prior radiation exposure from the environment and medical exposure. We demonstrated that it is feasible to transport the dosimeter to the measurement site and make valid measurements. The intensity of the signals that were obtained was not significantly above those seen in volunteers who had not had potential radiation exposures at Fukushima.
Collapse
Affiliation(s)
- Minoru Miyake
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Kagawa University, 750-1 Ikenobe, Miki-cho, Kita-gun , Kagawa Prefecture 761-0793, Japan
| | - Yasuhiro Nakai
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Kagawa University, 750-1 Ikenobe, Miki-cho, Kita-gun , Kagawa Prefecture 761-0793, Japan
| | - Ichiro Yamaguchi
- Department of Environmental Health, NIPH (National Institute of Public Health ), 2-3-6 Minami, Wako-shi , Saitama 351-0197, Japan
| | - Hiroshi Hirata
- EPR group in the Division of Bioengineering and Bioinformatics, Hokkaido University, Kita 14, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0814, Japan
| | - Naoki Kunugita
- Department of Environmental Health, NIPH (National Institute of Public Health ), 2-3-6 Minami, Wako-shi , Saitama 351-0197, Japan
| | - Benjamin B Williams
- Dartmouth EPR Center, Department of Radiology, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Harold M Swartz
- Dartmouth EPR Center, Department of Radiology, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| |
Collapse
|
19
|
Guo J, Zou J, Dong G, Ma L, Cong J, Fan K, Yang G, Wu K. The Application and Distribution of Magnetic Field Modulation in the Detection Apertures of X-band EPR Cavities for In Vivo Tooth Dosimetry. RADIATION PROTECTION DOSIMETRY 2016; 172:103-111. [PMID: 27473705 PMCID: PMC5225977 DOI: 10.1093/rpd/ncw173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In vivo electron paramagnetic resonance tooth dosimetry could be a practical and ideal tool for quick mass triage of victims in the rescue following a disaster event involving irradiation radiation. Magnetic field modulation is an important issue to improve the sensitivity of X-band in vivo tooth dosimetry. We designed a couple of trapezoidal modulation coil sets fixed on the magnet poles that could be used to apply sufficient magnet field modulation into the detection aperture of the resonant cavity. Measurements of irradiated teeth with such coil sets demonstrated significant radiation-induced signals. The modulation generation efficiencies and magnetic field distributions in apertures with different cavity geometries were analytically calculated, simulated by a finite element method and evaluated by measurements of a free radical point sample to study the influences caused by the geometries of the apertures and other factors.
Collapse
Affiliation(s)
- Junwang Guo
- Beijing Key Laboratory of Radiation Biology (No. BZ0325), Beijing Institute of Radiation Medicine, No. 27 Tai Ping Road, Beijing, China
| | - Jierui Zou
- Beijing Key Laboratory of Radiation Biology (No. BZ0325), Beijing Institute of Radiation Medicine, No. 27 Tai Ping Road, Beijing, China
| | - Guofu Dong
- Beijing Key Laboratory of Radiation Biology (No. BZ0325), Beijing Institute of Radiation Medicine, No. 27 Tai Ping Road, Beijing, China
| | - Lei Ma
- Beijing Key Laboratory of Radiation Biology (No. BZ0325), Beijing Institute of Radiation Medicine, No. 27 Tai Ping Road, Beijing, China
| | - Jianbo Cong
- Beijing Key Laboratory of Radiation Biology (No. BZ0325), Beijing Institute of Radiation Medicine, No. 27 Tai Ping Road, Beijing, China
| | - Kai Fan
- Beijing Key Laboratory of Radiation Biology (No. BZ0325), Beijing Institute of Radiation Medicine, No. 27 Tai Ping Road, Beijing, China
| | - Guoshan Yang
- Beijing Key Laboratory of Radiation Biology (No. BZ0325), Beijing Institute of Radiation Medicine, No. 27 Tai Ping Road, Beijing, China
| | - Ke Wu
- Beijing Key Laboratory of Radiation Biology (No. BZ0325), Beijing Institute of Radiation Medicine, No. 27 Tai Ping Road, Beijing, China
| |
Collapse
|
20
|
Gallez B. Contribution of Harold M. Swartz to In Vivo EPR and EPR Dosimetry. RADIATION PROTECTION DOSIMETRY 2016; 172:16-37. [PMID: 27421469 DOI: 10.1093/rpd/ncw157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In 2015, we are celebrating half a century of research in the application of Electron Paramagnetic Resonance (EPR) as a biodosimetry tool to evaluate the dose received by irradiated people. During the EPR Biodose 2015 meeting, a special session was organized to acknowledge the pioneering contribution of Harold M. (Hal) Swartz in the field. The article summarizes his main contribution in physiology and medicine. Four emerging themes have been pursued continuously along his career since its beginning: (1) radiation biology; (2) oxygen and oxidation; (3) measuring physiology in vivo; and (4) application of these measurements in clinical medicine. The common feature among all these different subjects has been the use of magnetic resonance techniques, especially EPR. In this article, you will find an impressionist portrait of Hal Swartz with the description of the 'making of' this pioneer, a time-line perspective on his career with the creation of three National Institutes of Health-funded EPR centers, a topic-oriented perspective on his career with a description of his major contributions to Science, his role as a mentor and his influence on his academic children, his active role as founder of scientific societies and organizer of scientific meetings, and the well-deserved international recognition received so far.
Collapse
Affiliation(s)
- Bernard Gallez
- Université Catholique de Louvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Avenue Mounier 73.08, B-1200, Brussels, Belgium
| |
Collapse
|
21
|
Desmet CM, Levêque P, Gallez B. Factors Affecting the Quality of Tooth Enamel for In Vivo EPR-Based Retrospective Biodosimetry. RADIATION PROTECTION DOSIMETRY 2016; 172:96-102. [PMID: 27473693 PMCID: PMC5225974 DOI: 10.1093/rpd/ncw212] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In vivo electron paramagnetic resonance biodosimetry on tooth enamel is likely to be an important technology for triage of overexposed individuals after a major radiological incident. The accuracy and robustness of the technique relies on various properties of the enamel such as the geometry of the tooth, the presence of restorations, whitening treatments or exposition to sunlight. Those factors are reviewed, and their influence on dosimetry specifically for triage purposes is discussed.
Collapse
Affiliation(s)
- Céline M Desmet
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Avenue Mounier 73 - B1.73.08, B-1200 Brussels, Belgium
| | - Philippe Levêque
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Avenue Mounier 73 - B1.73.08, B-1200 Brussels, Belgium
| | - Bernard Gallez
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Avenue Mounier 73 - B1.73.08, B-1200 Brussels, Belgium
| |
Collapse
|
22
|
Schreiber W, Petryakov SV, Kmiec MM, Feldman MA, Meaney PM, Wood VA, Boyle HK, Flood AB, Williams BB, Swartz HM. FLEXIBLE, WIRELESS, INDUCTIVELY COUPLED SURFACE COIL RESONATOR FOR EPR TOOTH DOSIMETRY. RADIATION PROTECTION DOSIMETRY 2016; 172:87-95. [PMID: 27421470 PMCID: PMC6287419 DOI: 10.1093/rpd/ncw153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Managing radiation injuries following a catastrophic event where large numbers of people may have been exposed to life-threatening doses of ionizing radiation relies on the availability of biodosimetry to assess whether individuals need to be triaged for care. Electron Paramagnetic Resonance (EPR) tooth dosimetry is a viable method to accurately estimate the amount of ionizing radiation to which an individual has been exposed. In the intended measurement conditions and scenario, it is essential that the measurement process be fast, straightforward and provides meaningful and accurate dose estimations for individuals in the expected measurement conditions. The sensing component of a conventional L-band EPR spectrometer used for tooth dosimetry typically consists of a surface coil resonator that is rigidly, physically attached to the coupler. This design can result in cumbersome operation, limitations in teeth geometries that may be measured and hinder the overall utility of the dosimeter. A novel surface coil resonator has been developed for the currently existing L-band (1.15 GHz) EPR tooth dosimeter for the intended use as a point of care device by minimally trained operators. This resonator development provides further utility to the dosimeter, and increases the usability of the dosimeter by non-expert operators in the intended use scenario.
Collapse
Affiliation(s)
- Wilson Schreiber
- Department of Radiology, EPR Center for the Study of Viable Systems, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Sergey V Petryakov
- Department of Radiology, EPR Center for the Study of Viable Systems, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Maciej M Kmiec
- Department of Radiology, EPR Center for the Study of Viable Systems, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Matthew A Feldman
- Department of Radiology, EPR Center for the Study of Viable Systems, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Paul M Meaney
- Department of Radiology, EPR Center for the Study of Viable Systems, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
- Thayer School of Engineering at Dartmouth, Hanover, NH 03755, USA
| | - Victoria A Wood
- Department of Radiology, EPR Center for the Study of Viable Systems, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Holly K Boyle
- Department of Radiology, EPR Center for the Study of Viable Systems, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Ann Barry Flood
- Department of Radiology, EPR Center for the Study of Viable Systems, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Benjamin B Williams
- Department of Radiology, EPR Center for the Study of Viable Systems, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Harold M Swartz
- Department of Radiology, EPR Center for the Study of Viable Systems, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
23
|
Bailiff I, Sholom S, McKeever S. Retrospective and emergency dosimetry in response to radiological incidents and nuclear mass-casualty events: A review. RADIAT MEAS 2016. [DOI: 10.1016/j.radmeas.2016.09.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
24
|
Sproull M, Camphausen K. State-of-the-Art Advances in Radiation Biodosimetry for Mass Casualty Events Involving Radiation Exposure. Radiat Res 2016; 186:423-435. [PMID: 27710702 DOI: 10.1667/rr14452.1] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
With the possibility of large-scale terrorist attacks around the world, the need for modeling and development of new medical countermeasures for potential future chemical, biological, radiological and nuclear (CBRN) has been well established. Project Bioshield, initiated in 2004, provided a framework to develop and expedite research in the field of CBRN exposures. To respond to large-scale population exposures from a nuclear event or radiation dispersal device (RDD), new methods for determining received dose using biological modeling became necessary. The field of biodosimetry has advanced significantly beyond this original initiative, with expansion into the fields of genomics, proteomics, metabolomics and transcriptomics. Studies are ongoing to evaluate the use of lymphocyte kinetics for dose assessment, as well as the development of field-deployable EPR technology. In addition, expansion of traditional cytogenetic assessment methods through the use of automated platforms and the development of laboratory surge capacity networks have helped to advance our biodefense preparedness. In this review of the latest advances in the field of biodosimetry we evaluate our progress and identify areas that still need to be addressed to achieve true field-deployment readiness.
Collapse
Affiliation(s)
- Mary Sproull
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - Kevin Camphausen
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
25
|
Trompier F, Burbidge C, Bassinet C, Baumann M, Bortolin E, De Angelis C, Eakins J, Della Monaca S, Fattibene P, Quattrini MC, Tanner R, Wieser A, Woda C. Overview of physical dosimetry methods for triage application integrated in the new European network RENEB. Int J Radiat Biol 2016; 93:65-74. [DOI: 10.1080/09553002.2016.1221545] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
| | - Christopher Burbidge
- C2TN, Instituto Superior Técnico, Universidade de Lisboa, Portugal, now at SUERC, University of Glasgow, UK
| | - Céline Bassinet
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), France
| | - Marion Baumann
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), France
| | | | | | - Jonathan Eakins
- Public Health England Centre for Radiation, Chemical and Environmental Hazards (PHE), UK
| | | | | | | | - Rick Tanner
- Public Health England Centre for Radiation, Chemical and Environmental Hazards (PHE), UK
| | | | | |
Collapse
|
26
|
|
27
|
Flood AB, Ali AN, Boyle HK, Du G, Satinsky VA, Swarts SG, Williams BB, Demidenko E, Schreiber W, Swartz HM. Evaluating the Special Needs of The Military for Radiation Biodosimetry for Tactical Warfare Against Deployed Troops: Comparing Military to Civilian Needs for Biodosimetry Methods. HEALTH PHYSICS 2016; 111:169-82. [PMID: 27356061 PMCID: PMC4930006 DOI: 10.1097/hp.0000000000000538] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The aim of this paper is to delineate characteristics of biodosimetry most suitable for assessing individuals who have potentially been exposed to significant radiation from a nuclear device explosion when the primary population targeted by the explosion and needing rapid assessment for triage is civilians vs. deployed military personnel. The authors first carry out a systematic analysis of the requirements for biodosimetry to meet the military's needs to assess deployed troops in a warfare situation, which include accomplishing the military mission. Then the military's special capabilities to respond and carry out biodosimetry for deployed troops in warfare are compared and contrasted systematically, in contrast to those available to respond and conduct biodosimetry for civilians who have been targeted by terrorists, for example. Then the effectiveness of different biodosimetry methods to address military vs. civilian needs and capabilities in these scenarios was compared and, using five representative types of biodosimetry with sufficient published data to be useful for the simulations, the number of individuals are estimated who could be assessed by military vs. civilian responders within the timeframe needed for triage decisions. Analyses based on these scenarios indicate that, in comparison to responses for a civilian population, a wartime military response for deployed troops has both more complex requirements for and greater capabilities to use different types of biodosimetry to evaluate radiation exposure in a very short timeframe after the exposure occurs. Greater complexity for the deployed military is based on factors such as a greater likelihood of partial or whole body exposure, conditions that include exposure to neutrons, and a greater likelihood of combined injury. These simulations showed, for both the military and civilian response, that a very fast rate of initiating the processing (24,000 d) is needed to have at least some methods capable of completing the assessment of 50,000 people within a 2- or 6-d timeframe following exposure. This in turn suggests a very high capacity (i.e., laboratories, devices, supplies and expertise) would be necessary to achieve these rates. These simulations also demonstrated the practical importance of the military's superior capacity to minimize time to transport samples to offsite facilities and use the results to carry out triage quickly. Assuming sufficient resources and the fastest daily rate to initiate processing victims, the military scenario revealed that two biodosimetry methods could achieve the necessary throughput to triage 50,000 victims in 2 d (i.e., the timeframe needed for injured victims), and all five achieved the targeted throughput within 6 d. In contrast, simulations based on the civilian scenario revealed that no method could process 50,000 people in 2 d and only two could succeed within 6 d.
Collapse
Affiliation(s)
- Ann Barry Flood
- EPR Center for the Study of Viable Systems, Radiology Department, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Arif N. Ali
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA
| | - Holly K. Boyle
- EPR Center for the Study of Viable Systems, Radiology Department, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Gaixin Du
- EPR Center for the Study of Viable Systems, Radiology Department, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | | | - Steven G. Swarts
- Department of Radiation Oncology, College of Medicine, University of Florida, Gainesville, FL
| | - Benjamin B. Williams
- EPR Center for the Study of Viable Systems, Radiology Department, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
- Radiation Oncology Division, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Eugene Demidenko
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Wilson Schreiber
- EPR Center for the Study of Viable Systems, Radiology Department, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Harold M. Swartz
- EPR Center for the Study of Viable Systems, Radiology Department, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
- Radiation Oncology Division, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|
28
|
Mishra DR, Soni A, Rawat NS, Bokam G. Study of thermoluminescence (TL) and optically stimulated luminescence (OSL) from α-keratin protein found in human hairs and nails: potential use in radiation dosimetry. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2016; 55:255-264. [PMID: 26846648 DOI: 10.1007/s00411-016-0634-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 01/16/2016] [Indexed: 06/05/2023]
Abstract
The thermoluminescence (TL) and optically stimulated luminescence (OSL) properties of human nails and hairs containing α-keratin proteins have been investigated. For the present studies, black hairs and finger nails were selectively collected from individuals with ages between 25 and 35 years. The collected hairs/nails were cut to a size of < 1 mm and cleaned with distilled water to remove dirt and other potential physical sources of contamination. All samples were optically beached with 470 nm of LED light at 60 mW/cm(2) intensity and irradiated by a (60)Co γ source. The hair and nail samples showed overlapping multiple TL glow peaks in the temperature range from 70 to 210 ° C. Continuous wave (CW)-OSL measurements of hair samples at a wavelength of 470 nm showed the presence of two distinct OSL components with photoionization cross section (PIC) values of about 1.65 × 10(-18) cm(2) and about 3.48 × 10(-19) cm(2), while measurements of nail samples showed PIC values of about 6.98 × 10(-18) cm(2) and about 8.7 × 10(-19) cm(2), respectively. This difference in PIC values for hair and nail samples from the same individual is attributed to different arrangement of α-keratin protein concentrations in the samples. The OSL sensitivity was found to vary ± 5 times among nail and hair samples from different individuals, with significant fading (60% in 11 h) at room temperature. The remaining signal (after fading) can be useful for dose estimation when a highly sensitive OSL reader is used. In the absorbed dose range of 100 mGy-100 Gy, both the TL and OSL signals of hair and nail samples showed linear dose dependence. The results obtained in the present study suggest that OSL using hair and nail samples may provide a supplementary method of dose estimation in radiological and nuclear emergencies.
Collapse
Affiliation(s)
- D R Mishra
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai, 400 085, India.
| | - A Soni
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai, 400 085, India
| | - N S Rawat
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai, 400 085, India
| | - G Bokam
- Radiological Safety Division, Atomic Energy Regulatory Board, Mumbai, 400 094, India
| |
Collapse
|
29
|
Desmet CM, Djurkin A, Dos Santos-Goncalvez AM, Dong R, Kmiec MM, Kobayashi K, Rychert K, Beun S, Leprince JG, Leloup G, Levêque P, Gallez B. Tooth Retrospective Dosimetry Using Electron Paramagnetic Resonance: Influence of Irradiated Dental Composites. PLoS One 2015; 10:e0131913. [PMID: 26125565 PMCID: PMC4488324 DOI: 10.1371/journal.pone.0131913] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/08/2015] [Indexed: 11/25/2022] Open
Abstract
In the aftermath of a major radiological accident, the medical management of overexposed individuals will rely on the determination of the dose of ionizing radiations absorbed by the victims. Because people in the general population do not possess conventional dosimeters, after the fact dose reconstruction methods are needed. Free radicals are induced by radiations in the tooth enamel of victims, in direct proportion to dose, and can be quantified using Electron Paramagnetic Resonance (EPR) spectrometry, a technique that was demonstrated to be very appropriate for mass triage. The presence of dimethacrylate based restorations on teeth can interfere with the dosimetric signal from the enamel, as free radicals could also be induced in the various composites used. The aim of the present study was to screen irradiated composites for a possible radiation-induced EPR signal, to characterize it, and evaluate a possible interference with the dosimetric signal of the enamel. We investigated the most common commercial composites, and experimental compositions, for a possible class effect. The effect of the dose was studied between 10 Gy and 100 Gy using high sensitivity X-band spectrometer. The influence of this radiation-induced signal from the composite on the dosimetric signal of the enamel was also investigated using a clinical L-Band EPR spectrometer, specifically developed in the EPR center at Dartmouth College. In X-band, a radiation-induced signal was observed for high doses (25-100 Gy); it was rapidly decaying, and not detected after only 24h post irradiation. At 10 Gy, the signal was in most cases not measurable in the commercial composites tested, with the exception of 3 composites showing a significant intensity. In L-band study, only one irradiated commercial composite influenced significantly the dosimetric signal of the tooth, with an overestimation about 30%. In conclusion, the presence of the radiation-induced signal from dental composites should not significantly influence the dosimetry for early dose assessment.
Collapse
Affiliation(s)
- Céline M. Desmet
- Biomedical Magnetic Resonance Research group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Andrej Djurkin
- School of Dentistry and Stomatology, Université catholique de Louvain, Brussels, Belgium
| | - Ana Maria Dos Santos-Goncalvez
- Advanced Drug Delivery and Biomaterials Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Ruhong Dong
- EPR Center for the Study of Viable Systems, Geisel School of Medicine at Dartmouth, Hanover, NH, United States of America
| | - Maciej M. Kmiec
- EPR Center for the Study of Viable Systems, Geisel School of Medicine at Dartmouth, Hanover, NH, United States of America
| | - Kyo Kobayashi
- EPR Center for the Study of Viable Systems, Geisel School of Medicine at Dartmouth, Hanover, NH, United States of America
| | - Kevin Rychert
- EPR Center for the Study of Viable Systems, Geisel School of Medicine at Dartmouth, Hanover, NH, United States of America
| | - Sébastien Beun
- School of Dentistry and Stomatology, Université catholique de Louvain, Brussels, Belgium
| | - Julian G. Leprince
- Advanced Drug Delivery and Biomaterials Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
- Center for Research and Engineering on Biomaterials CRIBIO, Université catholique de Louvain, Brussels, Belgium
| | - Gaëtane Leloup
- Advanced Drug Delivery and Biomaterials Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
- Center for Research and Engineering on Biomaterials CRIBIO, Université catholique de Louvain, Brussels, Belgium
| | - Philippe Levêque
- Biomedical Magnetic Resonance Research group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Bernard Gallez
- Biomedical Magnetic Resonance Research group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
- Center for Research and Engineering on Biomaterials CRIBIO, Université catholique de Louvain, Brussels, Belgium
- * E-mail:
| |
Collapse
|
30
|
Meaney PM, Williams BB, Geimer SD, Flood AB, Swartz HM. A Coaxial Dielectric Probe Technique for Distinguishing Tooth Enamel from Dental Resin. ACTA ACUST UNITED AC 2015; 3:8-17. [PMID: 27182531 DOI: 10.14355/aber.2015.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
For purposes of biodosimetry in the event of a large scale radiation disaster, one major and very promising point-of contact device is assessing dose using tooth enamel. This technique utilizes the capabilities of electron paramagnetic resonance to measure free radicals and other unpaired electron species, and the fact that the deposition of energy from ionizing radiation produces free radicals in most materials. An important stipulation for this strategy is that the measurements, need to be performed on a central incisor that is basically intact, i.e. which has an area of enamel surface that is as large as the probing tip of the resonator that is without decay or restorative care that replaces the enamel. Therefore, an important consideration is how to quickly assess whether the tooth has sufficient enamel to be measured for dose and whether there is resin present on the tooth being measured and to be able to characterize the amount of surface that is impacted. While there is a relatively small commercially available dielectric probe which could be used in this context, it has several disadvantages for the intended use. Therefore, a smaller, 1.19mm diameter 50 ohm, open-ended, coaxial dielectric probe has been developed as an alternative. The performance of the custom probe was validated against measurement results of known standards. Measurements were taken of multiple teeth enamel and dental resin samples using both probes. While the probe contact with the teeth samples was imperfect and added to measurement variability, the inherent dielectric contrast between the enamel and resin was sufficient that the probe measurements could be used as a robust means of distinguishing the two material types. The smaller diameter probe produced markedly more definitive results in terms of distinguishing the two materials.
Collapse
Affiliation(s)
- Paul M Meaney
- Thayer School of Engineering, Dartmouth College, Hanover, NH USA
| | | | | | - Ann B Flood
- Geisel School of Medicine, Dartmouth College, Hanover, NH USA
| | - Harold M Swartz
- Geisel School of Medicine, Dartmouth College, Hanover, NH USA
| |
Collapse
|
31
|
Soni A, Mishra DR, Polymeris GS, Bhatt BC, Kulkarni MS. OSL and thermally assisted OSL response in dental enamel for its possible application in retrospective dosimetry. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2014; 53:763-774. [PMID: 24929347 DOI: 10.1007/s00411-014-0554-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 06/07/2014] [Indexed: 06/03/2023]
Abstract
Dental enamel was studied for its thermoluminescence (TL) and optically stimulated luminescence (OSL) defects. The TL studies showed a wide glow curve with multiple peaks. The thermally assisted OSL (TA-OSL) studies showed that the integrated TA-OSL and thus OSL signal increases with readout temperature between 100 and 250 °C, due to the temperature dependence of OSL. The thermally assisted energy E A associated with this increase is found to be 0.21 ± 0.015 eV. On the other hand, the signal intensity decreases with temperature between 260 and 450 °C. This decrease could be due to depletion of OSL active traps or possible thermal quenching. The increase of the OSL signal at increased temperature can be used to enhance the sensitivity of dental enamel for ex vivo measurements in retrospective dosimetry. The emission and excitation spectra of its luminescence centers were studied by photoluminescence and were found to be at 412 and 324 nm, respectively. It was found to possess multiple OSL active traps having closely lying photoionization cross sections characterized by continuous wave OSL and nonlinear OSL methods. The investigated dental enamel samples showed a linear OSL dose response up to 500 Gy. The dose threshold was found to be 100 mGy using a highly sensitive compact OSL reader with blue LED (470 nm) stimulation.
Collapse
Affiliation(s)
- Anuj Soni
- Radiological Physics and Advisory Division, Bhabha Atomic Research Center, Trombay, 400 085, Mumbai, India,
| | | | | | | | | |
Collapse
|
32
|
Jiao L, Liu ZC, Ding YQ, Ruan SZ, Wu Q, Fan SJ, Zhang WY. Comparison study of tooth enamel ESR spectra of cows, goats and humans. JOURNAL OF RADIATION RESEARCH 2014; 55:1101-6. [PMID: 25037102 PMCID: PMC4229931 DOI: 10.1093/jrr/rru066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The ESR radiation dosimetric properties of tooth enamel samples from cows and goats were investigated and compared with those of human samples. Samples were prepared first mechanically, and then chemically. The study results showed that the native signals from cow and goat samples were weaker than those from human samples; the radiation sensitivities for cow and goat samples were very close to those of human tooth enamel samples. These results indicated that cow and goat teeth could be alternative materials for radiation dose estimation.
Collapse
Affiliation(s)
- Ling Jiao
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences, 238 Baidi Road, Nankai District, Tianjin 300192, China
| | - Zhong-Chao Liu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences, 238 Baidi Road, Nankai District, Tianjin 300192, China
| | - Yan-Qiu Ding
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences, 238 Baidi Road, Nankai District, Tianjin 300192, China
| | - Shu-Zhou Ruan
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences, 238 Baidi Road, Nankai District, Tianjin 300192, China
| | - Quan Wu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences, 238 Baidi Road, Nankai District, Tianjin 300192, China
| | - Sai-Jun Fan
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences, 238 Baidi Road, Nankai District, Tianjin 300192, China
| | - Wen-Yi Zhang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences, 238 Baidi Road, Nankai District, Tianjin 300192, China
| |
Collapse
|
33
|
New developed cylindrical TM010 mode EPR cavity for X-band in vivo tooth dosimetry. PLoS One 2014; 9:e106587. [PMID: 25222483 PMCID: PMC4164439 DOI: 10.1371/journal.pone.0106587] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 07/30/2014] [Indexed: 11/20/2022] Open
Abstract
EPR tooth in vivo dosimetry is an attractive approach for initial triage after unexpected nuclear events. An X-band cylindrical TM010 mode resonant cavity was developed for in vivo tooth dosimetry and used in EPR applications for the first time. The cavity had a trapezoidal measuring aperture at the exact position of the cavity's cylindrical wall where strong microwave magnetic field H1 concentrated and weak microwave electric field E1 distributed. Theoretical calculations and simulations were used to design and optimize the cavity parameters. The cavity features were evaluated by measuring DPPH sample, intact incisor samples embed in a gum model and the rhesus monkey teeth. The results showed that the cavity worked at designed frequency and had the ability to make EPR spectroscopy in relative high sensitivity. Sufficient modulation amplitude and microwave power could be applied into the aperture. Radiation induced EPR signal could be observed remarkably from 1 Gy irradiated intact incisor within only 30 seconds, which was among the best in scan time and detection limit. The in vivo spectroscopy was also realized by acquiring the radiation induced EPR signal from teeth of rhesus monkey whose teeth was irradiated by dose of 2 Gy. The results suggested that the cavity was sensitive to meet the demand to assess doses of significant level in short time. This cavity provided a very potential option for the development of X-band in vivo dosimetry.
Collapse
|
34
|
Flood AB, Boyle HK, Du G, Demidenko E, Nicolalde RJ, Williams BB, Swartz HM. Advances in a framework to compare bio-dosimetry methods for triage in large-scale radiation events. RADIATION PROTECTION DOSIMETRY 2014; 159:77-86. [PMID: 24729594 PMCID: PMC4067227 DOI: 10.1093/rpd/ncu120] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Planning and preparation for a large-scale nuclear event would be advanced by assessing the applicability of potentially available bio-dosimetry methods. Using an updated comparative framework the performance of six bio-dosimetry methods was compared for five different population sizes (100-1,000,000) and two rates for initiating processing of the marker (15 or 15,000 people per hour) with four additional time windows. These updated factors are extrinsic to the bio-dosimetry methods themselves but have direct effects on each method's ability to begin processing individuals and the size of the population that can be accommodated. The results indicate that increased population size, along with severely compromised infrastructure, increases the time needed to triage, which decreases the usefulness of many time intensive dosimetry methods. This framework and model for evaluating bio-dosimetry provides important information for policy-makers and response planners to facilitate evaluation of each method and should advance coordination of these methods into effective triage plans.
Collapse
Affiliation(s)
- Ann Barry Flood
- Geisel School of Medicine at Dartmouth, EPR Center, Hanover, NH 03768, USA
| | - Holly K Boyle
- Geisel School of Medicine at Dartmouth, EPR Center, Hanover, NH 03768, USA
| | - Gaixin Du
- Geisel School of Medicine at Dartmouth, EPR Center, Hanover, NH 03768, USA
| | - Eugene Demidenko
- Geisel School of Medicine at Dartmouth, EPR Center, Hanover, NH 03768, USA
| | | | | | - Harold M Swartz
- Geisel School of Medicine at Dartmouth, EPR Center, Hanover, NH 03768, USA
| |
Collapse
|
35
|
Sugawara H, Hirata H, Petryakov S, Lesniewski P, Williams BB, Flood AB, Swartz HM. Design and Evaluation of a 1.1-GHz Surface Coil Resonator for Electron Paramagnetic Resonance-Based Tooth Dosimetry. IEEE Trans Biomed Eng 2014; 61:1894-901. [DOI: 10.1109/tbme.2014.2310217] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
36
|
Williams BB, Flood AB, Salikhov I, Kobayashi K, Dong R, Rychert K, Du G, Schreiber W, Swartz HM. In vivo EPR tooth dosimetry for triage after a radiation event involving large populations. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2014; 53:335-46. [PMID: 24711003 PMCID: PMC11064839 DOI: 10.1007/s00411-014-0534-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 02/27/2014] [Indexed: 05/26/2023]
Abstract
The management of radiation injuries following a catastrophic event where large numbers of people may have been exposed to life-threatening doses of ionizing radiation will rely critically on the availability and use of suitable biodosimetry methods. In vivo electron paramagnetic resonance (EPR) tooth dosimetry has a number of valuable and unique characteristics and capabilities that may help enable effective triage. We have produced a prototype of a deployable EPR tooth dosimeter and tested it in several in vitro and in vivo studies to characterize the performance and utility at the state of the art. This report focuses on recent advances in the technology, which strengthen the evidence that in vivo EPR tooth dosimetry can provide practical, accurate, and rapid measurements in the context of its intended use to help triage victims in the event of an improvised nuclear device. These advances provide evidence that the signal is stable, accurate to within 0.5 Gy, and can be successfully carried out in vivo. The stability over time of the radiation-induced EPR signal from whole teeth was measured to confirm its long-term stability and better characterize signal behavior in the hours following irradiation. Dosimetry measurements were taken for five pairs of natural human upper central incisors mounted within a simple anatomic mouth model that demonstrates the ability to achieve 0.5 Gy standard error of inverse dose prediction. An assessment of the use of intact upper incisors for dose estimation and screening was performed with volunteer subjects who have not been exposed to significant levels of ionizing radiation and patients who have undergone total body irradiation as part of bone marrow transplant procedures. Based on these and previous evaluations of the performance and use of the in vivo tooth dosimetry system, it is concluded that this system could be a very valuable resource to aid in the management of a massive radiological event.
Collapse
Affiliation(s)
- Benjamin B Williams
- Department of Radiology, EPR Center for the Study of Viable Systems, Geisel School of Medicine at Dartmouth, Hanover, NH, USA,
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Swartz HM, Williams BB, Flood AB. Overview of the principles and practice of biodosimetry. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2014; 53:221-32. [PMID: 24519326 PMCID: PMC5982531 DOI: 10.1007/s00411-014-0522-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 02/02/2014] [Indexed: 05/05/2023]
Abstract
The principle of biodosimetry is to utilize changes induced in the individual by ionizing radiation to estimate the dose and, if possible, to predict or reflect the clinically relevant response, i.e., the biological consequences of the dose. Ideally, the changes should be specific for ionizing radiation, and the response should be unaffected by prior medical or physiological variations among subjects, including changes that might be caused by the stress and trauma from a radiation event. There are two basic types of biodosimetry with different and often complementary characteristics: those based on changes in biological parameters such as gene activation or chromosomal abnormalities and those based on physical changes in tissues (detected by techniques such as EPR). In this paper, we consider the applicability of the various techniques for different scenarios: small- and large-scale exposures to levels of radiation that could lead to the acute radiation syndrome and exposures with lower doses that do not need immediate care, but should be followed for evidence of long-term consequences. The development of biodosimetry has been especially stimulated by the needs after a large-scale event where it is essential to have a means to identify those individuals who would benefit from being brought into the medical care system. Analyses of the conventional methods officially recommended for responding to such events indicate that these methods are unlikely to achieve the results needed for timely triage of thousands of victims. Emerging biodosimetric methods can fill this critically important gap.
Collapse
Affiliation(s)
- Harold M Swartz
- EPR Center for the Study of Viable Systems, Geisel School of Medicine at Dartmouth, Hanover, NH, USA,
| | | | | |
Collapse
|
38
|
Tucker JD, Joiner MC, Thomas RA, Grever WE, Bakhmutsky MV, Chinkhota CN, Smolinski JM, Divine GW, Auner GW. Accurate Gene Expression-Based Biodosimetry Using a Minimal Set of Human Gene Transcripts. Int J Radiat Oncol Biol Phys 2014; 88:933-9. [DOI: 10.1016/j.ijrobp.2013.11.248] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 11/26/2013] [Accepted: 11/30/2013] [Indexed: 10/25/2022]
|
39
|
Tucker JD, Divine GW, Grever WE, Thomas RA, Joiner MC, Smolinski JM, Auner GW. Gene expression-based dosimetry by dose and time in mice following acute radiation exposure. PLoS One 2013; 8:e83390. [PMID: 24358280 PMCID: PMC3865163 DOI: 10.1371/journal.pone.0083390] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 11/04/2013] [Indexed: 11/19/2022] Open
Abstract
Rapid and reliable methods for performing biological dosimetry are of paramount importance in the event of a large-scale nuclear event. Traditional dosimetry approaches lack the requisite rapid assessment capability, ease of use, portability and low cost, which are factors needed for triaging a large number of victims. Here we describe the results of experiments in which mice were acutely exposed to (60)Co gamma rays at doses of 0 (control) to 10 Gy. Blood was obtained from irradiated mice 0.5, 1, 2, 3, 5, and 7 days after exposure. mRNA expression levels of 106 selected genes were obtained by reverse-transcription real time PCR. Stepwise regression of dose received against individual gene transcript expression levels provided optimal dosimetry at each time point. The results indicate that only 4-7 different gene transcripts are needed to explain ≥ 0.69 of the variance (R(2)), and that receiver-operator characteristics, a measure of sensitivity and specificity, of ≥ 0.93 for these statistical models were achieved at each time point. These models provide an excellent description of the relationship between the actual and predicted doses up to 6 Gy. At doses of 8 and 10 Gy there appears to be saturation of the radiation-response signals with a corresponding diminution of accuracy. These results suggest that similar analyses in humans may be advantageous for use in a field-portable device designed to assess exposures in mass casualty situations.
Collapse
Affiliation(s)
- James D. Tucker
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, United States of America
| | - George W. Divine
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - William E. Grever
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, United States of America
| | - Robert A. Thomas
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, United States of America
| | - Michael C. Joiner
- Department of Radiation Oncology, Wayne State University, Detroit, Michigan, United States of America
| | - Joseph M. Smolinski
- Department of Electrical and Computer Engineering, Wayne State University, Detroit, Michigan, United States of America
| | - Gregory W. Auner
- Department of Electrical and Computer Engineering, Wayne State University, Detroit, Michigan, United States of America
| |
Collapse
|
40
|
Sullivan JM, Prasanna PGS, Grace MB, Wathen L, Wallace RL, Koerner JF, Coleman CN. Assessment of biodosimetry methods for a mass-casualty radiological incident: medical response and management considerations. HEALTH PHYSICS 2013; 105:540-54. [PMID: 24162058 PMCID: PMC3810609 DOI: 10.1097/hp.0b013e31829cf221] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Following a mass-casualty nuclear disaster, effective medical triage has the potential to save tens of thousands of lives. In order to best use the available scarce resources, there is an urgent need for biodosimetry tools to determine an individual's radiation dose. Initial triage for radiation exposure will include location during the incident, symptoms, and physical examination. Stepwise triage will include point of care assessment of less than or greater than 2 Gy, followed by secondary assessment, possibly with high throughput screening, to further define an individual's dose. Given the multisystem nature of radiation injury, it is unlikely that any single biodosimetry assay can be used as a standalone tool to meet the surge in capacity with the timeliness and accuracy needed. As part of the national preparedness and planning for a nuclear or radiological incident, the authors reviewed the primary literature to determine the capabilities and limitations of a number of biodosimetry assays currently available or under development for use in the initial and secondary triage of patients. Understanding the requirements from a response standpoint and the capability and logistics for the various assays will help inform future biodosimetry technology development and acquisition. Factors considered include: type of sample required, dose detection limit, time interval when the assay is feasible biologically, time for sample preparation and analysis, ease of use, logistical requirements, potential throughput, point-of-care capability, and the ability to support patient diagnosis and treatment within a therapeutically relevant time point.
Collapse
Affiliation(s)
- Julie M. Sullivan
- Office of Preparedness and Emergency Operations, Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC
- AAAS Science and Technology Policy Fellow, Washington DC
| | - Pataje G. S. Prasanna
- Radia on Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | - Marcy B. Grace
- Biomedical Advanced Research & Development Authority, Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC
| | - Lynne Wathen
- Biomedical Advanced Research & Development Authority, Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC
| | - Rodney L. Wallace
- Biomedical Advanced Research & Development Authority, Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC
| | - John F. Koerner
- Office of Preparedness and Emergency Operations, Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC
| | - C. Norman Coleman
- Office of Preparedness and Emergency Operations, Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC
- Radia on Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| |
Collapse
|
41
|
Swartz HM, Flood AB, Williams BB, Dong R, Swarts SG, He X, Grinberg O, Sidabras J, Demidenko E, Gui J, Gladstone DJ, Jarvis LA, Kmiec MM, Kobayashi K, Lesniewski PN, Marsh SDP, Matthews TP, Nicolalde RJ, Pennington PM, Raynolds T, Salikhov I, Wilcox DE, Zaki BI. Electron paramagnetic resonance dosimetry for a large-scale radiation incident. HEALTH PHYSICS 2012; 103:255-67. [PMID: 22850230 PMCID: PMC3649772 DOI: 10.1097/hp.0b013e3182588d92] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
With possibilities for radiation terrorism and intensified concerns about nuclear accidents since the recent Fukushima Daiichi event, the potential exposure of large numbers of individuals to radiation that could lead to acute clinical effects has become a major concern. For the medical community to cope with such an event and avoid overwhelming the medical care system, it is essential to identify not only individuals who have received clinically significant exposures and need medical intervention but also those who do not need treatment. The ability of electron paramagnetic resonance to measure radiation-induced paramagnetic species, which persist in certain tissues (e.g., teeth, fingernails, toenails, bone, and hair), has led to this technique becoming a prominent method for screening significantly exposed individuals. Although the technical requirements needed to develop this method for effective application in a radiation event are daunting, remarkable progress has been made. In collaboration with General Electric and through funding committed by the Biomedical Advanced Research and Development Authority, electron paramagnetic resonance tooth dosimetry of the upper incisors is being developed to become a Food and Drug Administration-approved and manufacturable device designed to carry out triage for a threshold dose of 2 Gy. Significant progress has also been made in the development of electron paramagnetic resonance nail dosimetry based on measurements of nails in situ under point-of-care conditions, and in the near future this may become a second field-ready technique. Based on recent progress in measurements of nail clippings, it is anticipated that this technique may be implementable at remotely located laboratories to provide additional information when the measurements of dose on-site need to be supplemented. The authors conclude that electron paramagnetic resonance dosimetry is likely to be a useful part of triage for a large-scale radiation incident.
Collapse
|
42
|
Wieser A. Review of reconstruction of radiation incident air kerma by measurement of absorbed dose in tooth enamel with EPR. RADIATION PROTECTION DOSIMETRY 2012; 149:71-78. [PMID: 22128353 DOI: 10.1093/rpd/ncr446] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Electron paramagnetic resonance dosimetry with tooth enamel has been proved to be a reliable method to determine retrospectively exposures from photon fields with minimal detectable doses of 100 mGy or lower, which is lower than achievable with cytogenetic dose reconstruction methods. For risk assessment or validating dosimetry systems for specific radiation incidents, the relevant dose from the incident has to be calculated from the total absorbed dose in enamel by subtracting additional dose contributions from the radionuclide content in teeth, natural external background radiation and medical exposures. For calculating organ doses or evaluating dosimetry systems the absorbed dose in enamel from a radiation incident has to be converted to air kerma using dose conversion factors depending on the photon energy spectrum and geometry of the exposure scenario. This paper outlines the approach to assess individual dose contributions to absorbed dose in enamel and calculate individual air kerma of a radiation incident from the absorbed dose in tooth enamel.
Collapse
Affiliation(s)
- A Wieser
- Helmholtz Zentrum München-German Research Center for Environmental Health, Institute of Radiation Protection, D-85764 Neuherberg, Germany.
| |
Collapse
|
43
|
Flood AB, Nicolalde RJ, Demidenko E, Williams BB, Shapiro A, Wiley AL, Swartz HM. A Framework for Comparative Evaluation of Dosimetric Methods to Triage a Large Population Following a Radiological Event. RADIAT MEAS 2011; 46:916-922. [PMID: 21949481 PMCID: PMC3178340 DOI: 10.1016/j.radmeas.2011.02.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND: To prepare for a possible major radiation disaster involving large numbers of potentially exposed people, it is important to be able to rapidly and accurately triage people for treatment or not, factoring in the likely conditions and available resources. To date, planners have had to create guidelines for triage based on methods for estimating dose that are clinically available and which use evidence extrapolated from unrelated conditions. Current guidelines consequently focus on measuring clinical symptoms (e.g., time-to-vomiting), which may not be subject to the same verification of standard methods and validation processes required for governmental approval processes of new and modified procedures. Biodosimeters under development have not yet been formally approved for this use. Neither set of methods has been tested in settings involving large-scale populations at risk for exposure. OBJECTIVE: To propose a framework for comparative evaluation of methods for such triage and to evaluate biodosimetric methods that are currently recommended and new methods as they are developed. METHODS: We adapt the NIH model of scientific evaluations and sciences needed for effective translational research to apply to biodosimetry for triaging very large populations following a radiation event. We detail criteria for translating basic science about dosimetry into effective multi-stage triage of large populations and illustrate it by analyzing 3 current guidelines and 3 advanced methods for biodosimetry. CONCLUSIONS: This framework for evaluating dosimetry in large populations is a useful technique to compare the strengths and weaknesses of different dosimetry methods. It can help policy-makers and planners not only to compare the methods' strengths and weaknesses for their intended use but also to develop an integrated approach to maximize their effectiveness. It also reveals weaknesses in methods that would benefit from further research and evaluation.
Collapse
Affiliation(s)
- Ann Barry Flood
- Dartmouth Physically Based Biodosimetry Center for Medical Countermeasures Against Radiation (Dart-Dose CMCR), Dartmouth Medical School, Hanover, NH 03768 USA
| | - Roberto J. Nicolalde
- Dartmouth Physically Based Biodosimetry Center for Medical Countermeasures Against Radiation (Dart-Dose CMCR), Dartmouth Medical School, Hanover, NH 03768 USA
| | - Eugene Demidenko
- Dartmouth Physically Based Biodosimetry Center for Medical Countermeasures Against Radiation (Dart-Dose CMCR), Dartmouth Medical School, Hanover, NH 03768 USA
| | - Benjamin B. Williams
- Dartmouth Physically Based Biodosimetry Center for Medical Countermeasures Against Radiation (Dart-Dose CMCR), Dartmouth Medical School, Hanover, NH 03768 USA
| | - Alla Shapiro
- Food and Drug Administration (FDA), Rockville, MD USA
| | - Albert L. Wiley
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN USA
| | - Harold M. Swartz
- Dartmouth Physically Based Biodosimetry Center for Medical Countermeasures Against Radiation (Dart-Dose CMCR), Dartmouth Medical School, Hanover, NH 03768 USA
| |
Collapse
|