1
|
Wang JW, Ji P, Zeng JY, Liang JL, Cheng Q, Liu MD, Chen WH, Zhang XZ. Engineered bacterium-metal-organic framework biohybrids for boosting radiotherapy with multiple effects. Biomaterials 2024; 314:122901. [PMID: 39447307 DOI: 10.1016/j.biomaterials.2024.122901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/16/2024] [Accepted: 10/19/2024] [Indexed: 10/26/2024]
Abstract
Hypoxia and lactate-overexpressed tumor microenvironment always lead to poor therapeutic effect of radiotherapy. Here, platinum nanoparticles-embellished hafnium metal-organic framework (Hf-MOF-Pt NPs) were elaborately integrated with Shewanella oneidensis MR-1 (SO) to construct an engineered biohybrid platform (SO@Hf-MOF-Pt) for enhancing radiotherapy. Benefiting from the tumor-targeting and metabolic respiration characteristics of SO, SO@Hf-MOF-Pt could enrich in tumor sites and continuously metabolize the overexpressed lactate, which specifically downregulated the expression of hypoxia-inducible factor (HIF-1α), thereby relieving the radiosuppressive tumor microenvironment to some extent. Moreover, SO@Hf-MOF-Pt would react with tumor-overexpressed hydrogen peroxide (H2O2) to generate oxygen (O2) and further inhibit the expression of HIF-1α, resulting in the downregulation of lactate dehydrogenase (LDHA) and subsequently reducing the lactate production. Under these multiple cascaded effects, the radiosuppressive tumor microenvironment was significantly reshaped, thus potentiating the radiosentization of SO@Hf-MOF-Pt and remarkably amplifying the therapeutic outcomes of radiotherapy. The designed biohybrid SO@Hf-MOF-Pt represented promising prospects in sensitizing radiotherapy via bacterium-based metabolic regulation.
Collapse
Affiliation(s)
- Jia-Wei Wang
- Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, PR China; Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China; Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Ping Ji
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Jin-Yue Zeng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Jun-Long Liang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Qian Cheng
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Miao-Deng Liu
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Wei-Hai Chen
- Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, PR China; Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China.
| | - Xian-Zheng Zhang
- Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, PR China; Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China.
| |
Collapse
|
2
|
Jędrzejczak P, Saramowicz K, Kuś J, Barczuk J, Rozpędek-Kamińska W, Siwecka N, Galita G, Wiese W, Majsterek I. SEPT9_i1 and Septin Dynamics in Oncogenesis and Cancer Treatment. Biomolecules 2024; 14:1194. [PMID: 39334960 PMCID: PMC11430720 DOI: 10.3390/biom14091194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Despite significant advancements in the field of oncology, cancers still pose one of the greatest challenges of modern healthcare. Given the cytoskeleton's pivotal role in regulating mechanisms critical to cancer development, further studies of the cytoskeletal elements could yield new practical applications. Septins represent a group of relatively well-conserved GTP-binding proteins that constitute the fourth component of the cytoskeleton. Septin 9 (SEPT9) has been linked to a diverse spectrum of malignancies and appears to be the most notable septin member in that category. SEPT9 constitutes a biomarker of colorectal cancer (CRC) and has been positively correlated with a high clinical stage in breast cancer, cervical cancer, and head and neck squamous cell carcinoma. SEPT9_i1 represents the most extensively studied isoform of SEPT9, which substantially contributes to carcinogenesis, metastasis, and treatment resistance. Nevertheless, the mechanistic basis of SEPT9_i1 oncogenicity remains to be fully elucidated. In this review, we highlight SEPT9's and SEPT9_i1's structures and interactions with Hypoxia Inducible Factor α (HIF-1 α) and C-Jun N-Terminal Kinase (JNK), as well as discuss SEPT9_i1's contribution to aneuploidy, cell invasiveness, and taxane resistance-key phenomena in the progression of malignancies. Finally, we emphasize forchlorfenuron and other septin inhibitors as potential chemotherapeutics and migrastatics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (P.J.); (K.S.); (J.K.); (J.B.); (W.R.-K.); (N.S.); (G.G.); (W.W.)
| |
Collapse
|
3
|
Hefny SM, El-Moselhy TF, El-Din N, Ammara A, Angeli A, Ferraroni M, El-Dessouki AM, Shaldam MA, Yahya G, Al-Karmalawy AA, Supuran CT, Tawfik HO. A new framework for novel analogues of pazopanib as potent and selective human carbonic anhydrase inhibitors: Design, repurposing rational, synthesis, crystallographic, in vivo and in vitro biological assessments. Eur J Med Chem 2024; 274:116527. [PMID: 38810335 DOI: 10.1016/j.ejmech.2024.116527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024]
Abstract
Herein, we describe the design and synthesis of novel aryl pyrimidine benzenesulfonamides APBSs 5a-n, 6a-c, 7a-b, and 8 as pazopanib analogues to explore new potent and selective inhibitors for the CA IX. All APBSs were examined in vitro for their promising inhibition activity against a small panel of hCAs (isoforms I, II, IX, and XII). The X-ray crystal structure of CA I in adduct with a representative APBS analogue was solved. APBS-5m, endowed with the best hCA IX inhibitory efficacy and selectivity, was evaluated for antiproliferative activity against a small panel of different cancer cell lines, SK-MEL-173, MDA-MB-231, A549, HCT-116, and HeLa, and it demonstrated one-digit IC50 values range from 2.93 μM (MDA-MB-231) to 5.86 μM (A549). Furthermore, compound APBS-5m was evaluated for its influence on hypoxia-inducible factor (HIF-1α) production, apoptosis induction, and colony formation in MDA-MB-231 cancer cells. The in vivo efficacy of APBS-5m as an antitumor agent was additionally investigated in an animal model of Solid Ehrlich Carcinoma (SEC). In order to offer perceptions into the conveyed hCA IX inhibitory efficacy and selectivity in silico, a molecular docking investigation was also carried out.
Collapse
Affiliation(s)
- Salma M Hefny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| | - Tarek F El-Moselhy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Nabaweya El-Din
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Andrea Ammara
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo, Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Andrea Angeli
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo, Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Marta Ferraroni
- University of Florence, Department of Chemistry, Via della Lastruccia, 50019, Sesto Fiorentino, Italy
| | - Ahmed M El-Dessouki
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, 12566, Egypt
| | - Moataz A Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Al Sharqia, 44519, Egypt; Molecular Biology Institute of Barcelona, Spanish National Research Council (IBMB-CSIC), 08028, Barcelona, Catalonia, Spain
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, 12566, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo, Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.
| | - Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
4
|
Al-Ostoot FH, Salah S, Khanum SA. An Overview of Cancer Biology, Pathophysiological Development and It's Treatment Modalities: Current Challenges of Cancer anti-Angiogenic Therapy. Cancer Invest 2024; 42:559-604. [PMID: 38874308 DOI: 10.1080/07357907.2024.2361295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 11/22/2021] [Accepted: 05/25/2024] [Indexed: 06/15/2024]
Abstract
A number of conditions and factors can cause the transformation of normal cells in the body into malignant tissue by changing the normal functions of a wide range of regulatory, apoptotic, and signal transduction pathways. Despite the current deficiency in fully understanding the mechanism of cancer action accurately and clearly, numerous genes and proteins that are causally involved in the initiation, progression, and metastasis of cancer have been identified. But due to the lack of space and the abundance of details on this complex topic, we have emphasized here more recent advances in our understanding of the principles implied tumor cell transformation, development, invasion, angiogenesis, and metastasis. Inhibition of angiogenesis is a significant strategy for the treatment of various solid tumors, that essentially depend on cutting or at least limiting the supply of blood to micro-regions of tumors, leading to pan-hypoxia and pan-necrosis inside solid tumor tissues. Researchers have continued to enhance the efficiency of anti-angiogenic drugs over the past two decades, to identify their potential in the drug interaction, and to discover reasonable interpretations for possible resistance to treatment. In this review, we have discussed an overview of cancer history and recent methods use in cancer therapy, focusing on anti-angiogenic inhibitors targeting angiogenesis formation. Further, this review has explained the molecular mechanism of action of these anti-angiogenic inhibitors in various tumor types and their limitations use. In addition, we described the synergistic mechanisms of immunotherapy and anti-angiogenic therapy and summarizes current clinical trials of these combinations. Many phase III trials found that combining immunotherapy and anti-angiogenic therapy improved survival. Therefore, targeting the source supply of cancer cells to grow and spread with new anti-angiogenic agents in combination with different conventional therapy is a novel method to reduce cancer progression. The aim of this paper is to overview the varying concepts of cancer focusing on mechanisms involved in tumor angiogenesis and provide an overview of the recent trends in anti-angiogenic strategies for cancer therapy.
Collapse
Affiliation(s)
- Fares Hezam Al-Ostoot
- Department of Chemistry, Yuvaraja's College, University of Mysore, Mysuru, India
- Department of Biochemistry, Faculty of Education & Science, Albaydha University, Al-Baydha, Yemen
| | - Salma Salah
- Faculty of Medicine and Health Sciences, Thamar University, Dhamar, Yemen
| | - Shaukath Ara Khanum
- Department of Chemistry, Yuvaraja's College, University of Mysore, Mysuru, India
| |
Collapse
|
5
|
Taghizadeh-Hesary F. "Reinforcement" by Tumor Microenvironment: The Seventh "R" of Radiobiology. Int J Radiat Oncol Biol Phys 2024; 119:727-733. [PMID: 38032584 DOI: 10.1016/j.ijrobp.2023.09.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/11/2023] [Accepted: 09/16/2023] [Indexed: 12/01/2023]
Affiliation(s)
- Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Clinical Oncology Department, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Zhao X, Luo T, Qiu Y, Yang Z, Wang D, Wang Z, Zeng J, Bi Z. Mechanisms of traditional Chinese medicine overcoming of radiotherapy resistance in breast cancer. Front Oncol 2024; 14:1388750. [PMID: 38993643 PMCID: PMC11237312 DOI: 10.3389/fonc.2024.1388750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/30/2024] [Indexed: 07/13/2024] Open
Abstract
Breast cancer stands as the most prevalent malignancy among women, with radiotherapy serving as a primary treatment modality. Despite radiotherapy, a subset of breast cancer patients experiences local recurrence, attributed to the intrinsic resistance of tumors to radiation. Therefore, there is a compelling need to explore novel approaches that can enhance cytotoxic effects through alternative mechanisms. Traditional Chinese Medicine (TCM) and its active constituents exhibit diverse pharmacological actions, including anti-tumor effects, offering extensive possibilities to identify effective components capable of overcoming radiotherapy resistance. This review delineates the mechanisms underlying radiotherapy resistance in breast cancer, along with potential candidate Chinese herbal medicines that may sensitize breast cancer cells to radiotherapy. The exploration of such herbal interventions holds promise for improving therapeutic outcomes in the context of breast cancer radiotherapy resistance.
Collapse
Affiliation(s)
- Xiaohui Zhao
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Oncology, Shenshan Medical Centre, Memorial Hospital of Sun Yat-Sen University, Shanwei, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ting Luo
- Department of Oncology, Shenshan Medical Centre, Memorial Hospital of Sun Yat-Sen University, Shanwei, China
| | - Yuting Qiu
- Department of Oncology, Shenshan Medical Centre, Memorial Hospital of Sun Yat-Sen University, Shanwei, China
| | - Zhiwei Yang
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Danni Wang
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zairui Wang
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiale Zeng
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhuofei Bi
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Montúfar-Romero M, Valenzuela-Muñoz V, Valenzuela-Miranda D, Gallardo-Escárate C. Hypoxia in the Blue Mussel Mytilus chilensis Induces a Transcriptome Shift Associated with Endoplasmic Reticulum Stress, Metabolism, and Immune Response. Genes (Basel) 2024; 15:658. [PMID: 38927594 PMCID: PMC11203016 DOI: 10.3390/genes15060658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/01/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024] Open
Abstract
The increase in hypoxia events, a result of climate change in coastal and fjord ecosystems, impacts the health and survival of mussels. These organisms deploy physiological and molecular responses as an adaptive mechanism to maintain cellular homeostasis under environmental stress. However, the specific effects of hypoxia on mussels of socioeconomic interest, such as Mytilus chilensis, are unknown. Using RNA-seq, we investigated the transcriptomic profiles of the gills, digestive gland, and adductor muscle of M. chilensis under hypoxia (10 days at 2 mg L-1) and reoxygenation (10 days at 6 mg L-1). There were 15,056 differentially expressed transcripts identified in gills, 11,864 in the digestive gland, and 9862 in the adductor muscle. The response varied among tissues, showing chromosomal changes in Chr1, Chr9, and Chr10 during hypoxia. Hypoxia regulated signaling genes in the Toll-like, mTOR, citrate cycle, and apoptosis pathways in gills, indicating metabolic and immunological alterations. These changes suggest that hypoxia induced a metabolic shift in mussels, reducing reliance on aerobic respiration and increasing reliance on anaerobic metabolism. Furthermore, hypoxia appeared to suppress the immune response, potentially increasing disease susceptibility, with negative implications for the mussel culture industry and natural bed populations. This study provides pivotal insights into metabolic and immunological adaptations to hypoxia in M. chilensis, offering candidate genes for adaptive traits.
Collapse
Affiliation(s)
- Milton Montúfar-Romero
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, P.O. Box 160-C, Concepción 4030000, Chile; (M.M.-R.); (V.V.-M.); (D.V.-M.)
- Biotecnology Center, Universidad de Concepción, Concepción 4030000, Chile
- Instituto Público de Investigación de Acuicultura y Pesca (IPIAP), Guayaquil 090314, Ecuador
| | - Valentina Valenzuela-Muñoz
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, P.O. Box 160-C, Concepción 4030000, Chile; (M.M.-R.); (V.V.-M.); (D.V.-M.)
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Naturaleza, Universidad San Sebastián, Concepción 4030000, Chile
| | - Diego Valenzuela-Miranda
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, P.O. Box 160-C, Concepción 4030000, Chile; (M.M.-R.); (V.V.-M.); (D.V.-M.)
- Biotecnology Center, Universidad de Concepción, Concepción 4030000, Chile
| | - Cristian Gallardo-Escárate
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, P.O. Box 160-C, Concepción 4030000, Chile; (M.M.-R.); (V.V.-M.); (D.V.-M.)
- Biotecnology Center, Universidad de Concepción, Concepción 4030000, Chile
| |
Collapse
|
8
|
Zeng T, Ling C, Liang Y. Exploring active ingredients and mechanisms of Coptidis Rhizoma-ginger against colon cancer using network pharmacology and molecular docking. Technol Health Care 2024; 32:523-542. [PMID: 38759074 PMCID: PMC11191530 DOI: 10.3233/thc-248046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
BACKGROUND Colon cancer is the most prevalent and rapidly increasing malignancy globally. It has been suggested that some of the ingredients in the herb pair of Coptidis Rhizoma and ginger (Zingiber officinale), a traditional Chinese medicine, have potential anti-colon cancer properties. OBJECTIVE This study aimed to investigate the molecular mechanisms underlying the effects of the Coptidis Rhizoma-ginger herb pair in treating colon cancer, using an integrated approach combining network pharmacology and molecular docking. METHODS The ingredients of the herb pair Coptidis Rhizoma-ginger, along with their corresponding protein targets, were obtained from the Traditional Chinese Medicine System Pharmacology and Swiss Target Prediction databases. Target genes associated with colon cancer were retrieved from the GeneCards and OMIM databases. Then, the protein targets of the active ingredients in the herb pair were identified, and the disease-related overlapping targets were determined using the Venn online tool. The protein-protein interaction (PPI) network was constructed using STRING database and analyzed using Cytoscape 3.9.1 to identify key targets. Then, a compound-target-disease-pathway network map was constructed. The intersecting target genes were subjected to Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses for colon cancer treatment. Molecular docking was performed using the Molecular Operating Environment (MOE) software to predict the binding affinity between the key targets and active compounds. RESULTS Besides 1922 disease-related targets, 630 targets associated with 20 potential active compounds of the herb pair Coptidis Rhizoma-ginger were collected. Of these, 229 intersection targets were obtained. Forty key targets, including STAT3, Akt1, SRC, and HSP90AA1, were further analyzed using the ClueGO plugin in Cytoscape. These targets are involved in biological processes such as miRNA-mediated gene silencing, phosphatidylinositol 3-kinase (PI3K) signaling, and telomerase activity. KEGG enrichment analysis showed that PI3K-Akt and hypoxia-inducible factor 1 (HIF-1) signaling pathways were closely related to colon cancer prevention by the herb pair Coptidis Rhizoma-ginger. Ten genes (Akt1, TP53, STAT3, SRC, HSP90AA1, JAK2, CASP3, PTGS2, BCl2, and ESR1) were identified as key genes for validation through molecular docking simulation. CONCLUSIONS This study demonstrated that the herb pair Coptidis Rhizoma-ginger exerted preventive effects against colon cancer by targeting multiple genes, utilizing various active compounds, and modulating multiple pathways. These findings might provide the basis for further investigations into the molecular mechanisms underlying the therapeutic effects of Coptidis Rhizoma-ginger in colon cancer treatment, potentially leading to the development of novel drugs for combating this disease.
Collapse
Affiliation(s)
- Ting Zeng
- Institute of Systems Engineering and Collaborative Laboratory for Intelligent Science and Systems, Macau University of Science and Technology, Taipa, Macao, China
| | - Caijin Ling
- Faculty of Information Technology, Macau University of Science and Technology, Taipa, Macao, China
| | - Yong Liang
- Peng Cheng Laboratory, Shenzhen, Guangdong, China
| |
Collapse
|
9
|
Biziotis O, Tsakiridis EE, Ali A, Ahmadi E, Wu J, Wang S, Mekhaeil B, Singh K, Menjolian G, Farrell T, Abdulkarim B, Sur RK, Mesci A, Ellis P, Berg T, Bramson JL, Muti P, Steinberg GR, Tsakiridis T. Canagliflozin mediates tumor suppression alone and in combination with radiotherapy in non-small cell lung cancer (NSCLC) through inhibition of HIF-1α. Mol Oncol 2023; 17:2235-2256. [PMID: 37584455 PMCID: PMC10620129 DOI: 10.1002/1878-0261.13508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/26/2023] [Accepted: 08/14/2023] [Indexed: 08/17/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) has a poor prognosis, and effective therapeutic strategies are lacking. The diabetes drug canagliflozin inhibits NSCLC cell proliferation and the mammalian target of rapamycin (mTOR) pathway, which mediates cell growth and survival, but it is unclear whether this drug can enhance response rates when combined with cytotoxic therapy. Here, we evaluated the effects of canagliflozin on human NSCLC response to cytotoxic therapy in tissue cultures and xenografts. Ribonucleic acid sequencing (RNA-seq), real-time quantitative PCR (RT-qPCR), metabolic function, small interfering ribonucleic acid (siRNA) knockdown, and protein expression assays were used in mechanistic analyses. We found that canagliflozin inhibited proliferation and clonogenic survival of NSCLC cells and augmented the efficacy of radiotherapy to mediate these effects and inhibit NSCLC xenograft growth. Canagliflozin treatment alone moderately inhibited mitochondrial oxidative phosphorylation and exhibited greater antiproliferative capacity than specific mitochondrial complex-I inhibitors. The treatment downregulated genes mediating hypoxia-inducible factor (HIF)-1α stability, metabolism and survival, activated adenosine monophosphate-activated protein kinase (AMPK) and inhibited mTOR, a critical activator of hypoxia-inducible factor-1α (HIF-1α) signaling. HIF-1α knockdown and stabilization experiments suggested that canagliflozin mediates antiproliferative effects, in part, through suppression of HIF-1α. Transcriptional regulatory network analysis pinpointed histone deacetylase 2 (HDAC2), a gene suppressed by canagliflozin, as a key mediator of canagliflozin's transcriptional reprogramming. HDAC2 knockdown eliminated HIF-1α levels and enhanced the antiproliferative effects of canagliflozin. HDAC2-regulated genes suppressed by canagliflozin are associated with poor prognosis in several clinical NSCLC datasets. In addition, we include evidence that canagliflozin also improves NSCLC response to chemotherapy. In summary, canagliflozin may be a promising therapy to develop in combination with cytotoxic therapy in NSCLC.
Collapse
Affiliation(s)
- Olga‐Demetra Biziotis
- Centre for Metabolism, Obesity and Diabetes ResearchMcMaster UniversityHamiltonCanada
- Centre for Discovery in Cancer ResearchMcMaster UniversityHamiltonCanada
- Department of OncologyMcMaster UniversityHamiltonCanada
| | - Evangelia Evelyn Tsakiridis
- Centre for Metabolism, Obesity and Diabetes ResearchMcMaster UniversityHamiltonCanada
- Department of MedicineMcMaster UniversityHamiltonCanada
| | - Amr Ali
- Centre for Metabolism, Obesity and Diabetes ResearchMcMaster UniversityHamiltonCanada
- Centre for Discovery in Cancer ResearchMcMaster UniversityHamiltonCanada
- Department of OncologyMcMaster UniversityHamiltonCanada
| | - Elham Ahmadi
- Centre for Metabolism, Obesity and Diabetes ResearchMcMaster UniversityHamiltonCanada
- Centre for Discovery in Cancer ResearchMcMaster UniversityHamiltonCanada
- Department of OncologyMcMaster UniversityHamiltonCanada
| | - Jianhan Wu
- Centre for Metabolism, Obesity and Diabetes ResearchMcMaster UniversityHamiltonCanada
- Department of MedicineMcMaster UniversityHamiltonCanada
| | - Simon Wang
- Centre for Metabolism, Obesity and Diabetes ResearchMcMaster UniversityHamiltonCanada
- Centre for Discovery in Cancer ResearchMcMaster UniversityHamiltonCanada
- Department of OncologyMcMaster UniversityHamiltonCanada
| | | | - Kanwaldeep Singh
- Centre for Discovery in Cancer ResearchMcMaster UniversityHamiltonCanada
- Department of OncologyMcMaster UniversityHamiltonCanada
| | - Gabe Menjolian
- Radiotherapy ProgramJuravinski Cancer CentreHamiltonCanada
| | - Thomas Farrell
- Radiation Physics ProgramJuravinski Cancer CentreHamiltonCanada
| | | | - Ranjan K. Sur
- Department of OncologyMcMaster UniversityHamiltonCanada
- Division of Radiation OncologyJuravinski Cancer CentreHamiltonCanada
| | - Aruz Mesci
- Department of OncologyMcMaster UniversityHamiltonCanada
| | - Peter Ellis
- Department of OncologyMcMaster UniversityHamiltonCanada
| | - Tobias Berg
- Centre for Discovery in Cancer ResearchMcMaster UniversityHamiltonCanada
- Department of OncologyMcMaster UniversityHamiltonCanada
| | - Jonathan L Bramson
- Department of OncologyMcMaster UniversityHamiltonCanada
- Department of Pathology and Molecular MedicineMcMaster UniversityHamiltonCanada
- Michael DeGroote Institute for Infectious Disease ResearchMcMaster UniversityHamiltonCanada
| | - Paola Muti
- Department of OncologyMcMaster UniversityHamiltonCanada
- Department of Biomedical, Surgical and Dental SciencesUniversity of MilanItaly
| | - Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes ResearchMcMaster UniversityHamiltonCanada
- Department of MedicineMcMaster UniversityHamiltonCanada
- Department of Biochemistry and Biomedical SciencesMcMaster UniversityHamiltonCanada
| | - Theodoros Tsakiridis
- Centre for Metabolism, Obesity and Diabetes ResearchMcMaster UniversityHamiltonCanada
- Centre for Discovery in Cancer ResearchMcMaster UniversityHamiltonCanada
- Department of OncologyMcMaster UniversityHamiltonCanada
- Division of Radiation OncologyJuravinski Cancer CentreHamiltonCanada
- Department of Pathology and Molecular MedicineMcMaster UniversityHamiltonCanada
| |
Collapse
|
10
|
Chittineedi P, Pandrangi SL, Neira Mosquera JA, Sánchez Llaguno SN, Mohiddin GJ. Aqueous Nyctanthes arbortristis and doxorubicin conjugated gold nanoparticles synergistically induced mTOR-dependent autophagy-mediated ferritinophagy in paclitaxel-resistant breast cancer stem cells. Front Pharmacol 2023; 14:1201319. [PMID: 37841922 PMCID: PMC10568009 DOI: 10.3389/fphar.2023.1201319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/14/2023] [Indexed: 10/17/2023] Open
Abstract
Aim: Nyctanthes arbortristis Linn is a potential anti-diabetic drug that reduces glucose levels by delaying carbohydrate digestion. The tumor microenvironment is characterized by elevated glucose levels that activate various genes, such as mTOR. mTOR plays a critical role in maintaining the hypoxic environment and inhibiting autophagy. Although natural compounds pose fewer side effects, their hydrophobic nature makes these compounds not suitable as therapeutics. Hence, we conjugated aqueous NAT into gold nanoparticles (AuNP) in the current study and evaluated the ability of the chosen drugs to induce cell death in breast cancer cells resistant to Paclitaxel. Materials and methods: Particle size analyzer, UV-Vis spectrophotometer, FTIR, and XRD were used in the present study to characterize NAT and Doxorubicin encapsulated AuNPs. To check the cytotoxic effect of AuNP-NAT and AuNP-doxorubicin on PacR/MCF-7 stem cells MTT assay was performed. RT-PCR was performed to check the altered expression of ferritinophagy-related genes. The proliferation and migration potential of the cells before and after treatment with the desired drug combinations was evaluated by clonogenic and scratch assays, respectively. Flow cytometry analysis was done to quantify apoptotic bodies and cell cycle arrest. Cellular ROS was determined using DCD-FA staining. Results and conclusion: NAT and doxorubicin loaded into AuNP showed enhanced stability and induced ferritinophagy in PacR/MCF-7 stem cells. The obtained results suggest that AuNP-NAT, combined with a low AuNP-Doxorubicin nanoconjugate dose, might be an effective anti-neoplastic drug targeting the necroptosis-autophagy axis, thereby reducing the adverse side-effects induced by the conventional chemotherapeutic drugs.
Collapse
Affiliation(s)
- Prasanthi Chittineedi
- Onco-Stem Cell Research Laboratory, Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be) University, Visakhapatnam, India
| | - Santhi Latha Pandrangi
- Onco-Stem Cell Research Laboratory, Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be) University, Visakhapatnam, India
| | | | | | - Gooty Jaffer Mohiddin
- Department of Life Sciences and Agriculture, Armed Forces University-ESPE, Santo Domingo, Ecuador, South America
| |
Collapse
|
11
|
Taghizadeh-Hesary F, Houshyari M, Farhadi M. Mitochondrial metabolism: a predictive biomarker of radiotherapy efficacy and toxicity. J Cancer Res Clin Oncol 2023; 149:6719-6741. [PMID: 36719474 DOI: 10.1007/s00432-023-04592-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/18/2023] [Indexed: 02/01/2023]
Abstract
INTRODUCTION Radiotherapy is a mainstay of cancer treatment. Clinical studies revealed a heterogenous response to radiotherapy, from a complete response to even disease progression. To that end, finding the relative prognostic factors of disease outcomes and predictive factors of treatment efficacy and toxicity is essential. It has been demonstrated that radiation response depends on DNA damage response, cell cycle phase, oxygen concentration, and growth rate. Emerging evidence suggests that altered mitochondrial metabolism is associated with radioresistance. METHODS This article provides a comprehensive evaluation of the role of mitochondria in radiotherapy efficacy and toxicity. In addition, it demonstrates how mitochondria might be involved in the famous 6Rs of radiobiology. RESULTS In terms of this idea, decreasing the mitochondrial metabolism of cancer cells may increase radiation response, and enhancing the mitochondrial metabolism of normal cells may reduce radiation toxicity. Enhancing the normal cells (including immune cells) mitochondrial metabolism can potentially improve the tumor response by enhancing immune reactivation. Future studies are invited to examine the impacts of mitochondrial metabolism on radiation efficacy and toxicity. Improving radiotherapy response with diminishing cancer cells' mitochondrial metabolism, and reducing radiotherapy toxicity with enhancing normal cells' mitochondrial metabolism.
Collapse
Affiliation(s)
- Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Clinical Oncology Department, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Houshyari
- Clinical Oncology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Farhadi
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Farhana A, Alsrhani A, Khan YS, Rasheed Z. Cancer Bioenergetics and Tumor Microenvironments-Enhancing Chemotherapeutics and Targeting Resistant Niches through Nanosystems. Cancers (Basel) 2023; 15:3836. [PMID: 37568652 PMCID: PMC10416858 DOI: 10.3390/cancers15153836] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/16/2023] [Indexed: 08/13/2023] Open
Abstract
Cancer is an impending bottleneck in the advanced scientific workflow to achieve diagnostic, prognostic, and therapeutic success. Most cancers are refractory to conventional diagnostic and chemotherapeutics due to their limited targetability, specificity, solubility, and side effects. The inherent ability of each cancer to evolve through various genetic and epigenetic transformations and metabolic reprogramming underlies therapeutic limitations. Though tumor microenvironments (TMEs) are quite well understood in some cancers, each microenvironment differs from the other in internal perturbations and metabolic skew thereby impeding the development of appropriate diagnostics, drugs, vaccines, and therapies. Cancer associated bioenergetics modulations regulate TME, angiogenesis, immune evasion, generation of resistant niches and tumor progression, and a thorough understanding is crucial to the development of metabolic therapies. However, this remains a missing element in cancer theranostics, necessitating the development of modalities that can be adapted for targetability, diagnostics and therapeutics. In this challenging scenario, nanomaterials are modular platforms for understanding TME and achieving successful theranostics. Several nanoscale particles have been successfully researched in animal models, quite a few have reached clinical trials, and some have achieved clinical success. Nanoparticles exhibit an intrinsic capability to interact with diverse biomolecules and modulate their functions. Furthermore, nanoparticles can be functionalized with receptors, modulators, and drugs to facilitate specific targeting with reduced toxicity. This review discusses the current understanding of different theranostic nanosystems, their synthesis, functionalization, and targetability for therapeutic modulation of bioenergetics, and metabolic reprogramming of the cancer microenvironment. We highlight the potential of nanosystems for enhanced chemotherapeutic success emphasizing the questions that remain unanswered.
Collapse
Affiliation(s)
- Aisha Farhana
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Aljouf, Saudi Arabia
| | - Abdullah Alsrhani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Aljouf, Saudi Arabia
| | - Yusuf Saleem Khan
- Department of Anatomy, College of Medicine, Jouf University, Sakaka 72388, Aljouf, Saudi Arabia
| | - Zafar Rasheed
- Department of Pathology, College of Medicine, Qassim University, P.O. Box 6655, Buraidah 51452, Qassim, Saudi Arabia
| |
Collapse
|
13
|
Wu Y, Song Y, Wang R, Wang T. Molecular mechanisms of tumor resistance to radiotherapy. Mol Cancer 2023; 22:96. [PMID: 37322433 PMCID: PMC10268375 DOI: 10.1186/s12943-023-01801-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/03/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Cancer is the most prevalent cause of death globally, and radiotherapy is considered the standard of care for most solid tumors, including lung, breast, esophageal, and colorectal cancers and glioblastoma. Resistance to radiation can lead to local treatment failure and even cancer recurrence. MAIN BODY In this review, we have extensively discussed several crucial aspects that cause resistance of cancer to radiation therapy, including radiation-induced DNA damage repair, cell cycle arrest, apoptosis escape, abundance of cancer stem cells, modification of cancer cells and their microenvironment, presence of exosomal and non-coding RNA, metabolic reprogramming, and ferroptosis. We aim to focus on the molecular mechanisms of cancer radiotherapy resistance in relation to these aspects and to discuss possible targets to improve treatment outcomes. CONCLUSIONS Studying the molecular mechanisms responsible for radiotherapy resistance and its interactions with the tumor environment will help improve cancer responses to radiotherapy. Our review provides a foundation to identify and overcome the obstacles to effective radiotherapy.
Collapse
Affiliation(s)
- Yu Wu
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042 Liaoning Province China
- School of Graduate, Dalian Medical University, Dalian, 116044 China
| | - Yingqiu Song
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042 Liaoning Province China
| | - Runze Wang
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042 Liaoning Province China
- School of Graduate, Dalian Medical University, Dalian, 116044 China
| | - Tianlu Wang
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042 Liaoning Province China
- Faculty of Medicine, Dalian University of Technology, Dalian, 116024 China
| |
Collapse
|
14
|
Jafari S, Dabiri S, Mehdizadeh Aghdam E, Fathi E, Saeedi N, Montazersaheb S, Farahzadi R. Synergistic effect of chrysin and radiotherapy against triple-negative breast cancer (TNBC) cell lines. Clin Transl Oncol 2023:10.1007/s12094-023-03141-5. [PMID: 36964888 DOI: 10.1007/s12094-023-03141-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/27/2023] [Indexed: 03/26/2023]
Abstract
PURPOSE Triple-negative breast cancer (TNBC) is the most aggressive form of breast cancer, accounting for 20% of cases. Due to the lack of a molecular target, limited options are available for TNBC treatment. Radiation therapy (RT) is a treatment modality for the management of TNBC following surgery; however, it has a detrimental effect on surrounding healthy tissues/cells at a higher rate. METHODS We examined the effect of RT in combination with chrysin as a possible radiosensitizing agent in an MDA-MB-231 cell line as a model of a TNBC. The growth inhibitory effects of chrysin were examined using an MTT assay. Flow cytometry was performed to evaluate apoptosis and expression of hypoxia-induced factor-1α (HIF-1α). The protein expression of p-STAT3/STAT3 and Cyclin D1 was examined using western blotting. Real-time PCR determined apoptotic-related genes (Bax, BCL2, p53). RESULTS Treatment of MDA-MB-231 cells with chrysin in combination with RT caused synergistic antitumor effects, with an optimum combination index (CI) of 0.495. Our results indicated that chrysin synergistically potentiated RT-induced apoptosis in MDA-MB-231 compared with monotherapies (chrysin and/or RT alone). Expression of HIF-1α was decreased in the cells exposed to combinational therapy. The apoptotic effect of combinational therapy was correlated with increased Bax (pro-apoptotic gene) and p53 levels along with reduced expression of Bcl-2 (anti-apoptotic gene). Increased apoptosis was associated with reduced expression of Cyclin D1, p-STAT3. CONCLUSION These findings highlight the potential effect of chrysin as a radiosensitizer, indicating the synergistic anti-cancer effect of chrysin and RT in TNBC. Further investigation is warranted in this regard.
Collapse
Affiliation(s)
- Sevda Jafari
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sheida Dabiri
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elnaz Mehdizadeh Aghdam
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Nazli Saeedi
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614731, Iran.
| | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614731, Iran.
| |
Collapse
|
15
|
Thöni V, Mauracher D, Ramalingam A, Fiechtner B, Sandbichler AM, Egg M. Quantum based effects of therapeutic nuclear magnetic resonance persistently reduce glycolysis. iScience 2022; 25:105536. [PMID: 36444297 PMCID: PMC9700021 DOI: 10.1016/j.isci.2022.105536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/04/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022] Open
Abstract
Electromagnetic fields are known to induce the clock protein cryptochrome to modulate intracellular reactive oxygen species (ROS) via the quantum based radical pair mechanism (RPM) in mammalian cells. Recently, therapeutic Nuclear Magnetic Resonance (tNMR) was shown to alter protein levels of the circadian clock associated Hypoxia Inducible Factor-1α (HIF-1α) in a nonlinear dose response relationship. Using synchronized NIH3T3 cells, we show that tNMR under normoxia and hypoxia persistently modifies cellular metabolism. After normoxic tNMR treatment, glycolysis is reduced, as are lactate production, extracellular acidification rate, the ratio of ADP/ATP and cytosolic ROS, whereas mitochondrial and extracellular ROS, as well as cellular proliferation are increased. Remarkably, these effects are even more pronounced after hypoxic tNMR treatment, driving cellular metabolism to a reduced glycolysis while mitochondrial respiration is kept constant even during reoxygenation. Hence, we propose tNMR as a potential therapeutic tool in ischemia driven diseases like inflammation, infarct, stroke and cancer.
Collapse
Affiliation(s)
- Viktoria Thöni
- Institute of Zoology, University Innsbruck, Innsbruck, Tyrol A-6020, Austria
| | - David Mauracher
- Institute of Zoology, University Innsbruck, Innsbruck, Tyrol A-6020, Austria
| | - Anil Ramalingam
- Institute of Zoology, University Innsbruck, Innsbruck, Tyrol A-6020, Austria
| | - Birgit Fiechtner
- Institute of Zoology, University Innsbruck, Innsbruck, Tyrol A-6020, Austria
| | | | - Margit Egg
- Institute of Zoology, University Innsbruck, Innsbruck, Tyrol A-6020, Austria
| |
Collapse
|
16
|
Exploring hypoxic biology to improve radiotherapy outcomes. Expert Rev Mol Med 2022; 24:e21. [DOI: 10.1017/erm.2022.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Mudassar F, Shen H, Cook KM, Hau E. Improving the synergistic combination of programmed death‐1/programmed death ligand‐1 blockade and radiotherapy by targeting the hypoxic tumour microenvironment. J Med Imaging Radiat Oncol 2022; 66:560-574. [PMID: 35466515 PMCID: PMC9322583 DOI: 10.1111/1754-9485.13416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/05/2022] [Accepted: 04/10/2022] [Indexed: 11/28/2022]
Abstract
Immune checkpoint inhibition with PD‐1/PD‐L1 blockade is a promising area in the field of anti‐cancer therapy. Although clinical data have revealed success of PD‐1/PD‐L1 blockade as monotherapy or in combination with CTLA‐4 or chemotherapy, the combination with radiotherapy could further boost anti‐tumour immunity and enhance clinical outcomes due to the immunostimulatory effects of radiation. However, the synergistic combination of PD‐1/PD‐L1 blockade and radiotherapy can be challenged by the complex nature of the tumour microenvironment (TME), including the presence of tumour hypoxia. Hypoxia is a major barrier to the effectiveness of both radiotherapy and PD‐1/PD‐L1 blockade immunotherapy. Thus, targeting the hypoxic TME is an attractive strategy to enhance the efficacy of the combination. Addition of compounds that directly or indirectly reduce hypoxia, to the combination of PD‐1/PD‐L1 inhibitors and radiotherapy may optimize the success of the combination and improve therapeutic outcomes. In this review, we will discuss the synergistic combination of PD‐1/PD‐L1 blockade and radiotherapy and highlight the role of hypoxic TME in impeding the success of both therapies. In addition, we will address the potential approaches for targeting tumour hypoxia and how exploiting these strategies could benefit the combination of PD‐1/PD‐L1 blockade and radiotherapy.
Collapse
Affiliation(s)
- Faiqa Mudassar
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research The Westmead Institute for Medical Research Sydney New South Wales Australia
- Sydney Medical School The University of Sydney Sydney New South Wales Australia
| | - Han Shen
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research The Westmead Institute for Medical Research Sydney New South Wales Australia
- Sydney Medical School The University of Sydney Sydney New South Wales Australia
| | - Kristina M Cook
- Sydney Medical School The University of Sydney Sydney New South Wales Australia
- Charles Perkins Centre The University of Sydney Sydney New South Wales Australia
| | - Eric Hau
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research The Westmead Institute for Medical Research Sydney New South Wales Australia
- Sydney Medical School The University of Sydney Sydney New South Wales Australia
- Department of Radiation Oncology, Crown Princess Mary Cancer Centre Westmead Hospital Sydney New South Wales Australia
- Blacktown Hematology and Cancer Centre Blacktown Hospital Sydney New South Wales Australia
| |
Collapse
|
18
|
Katz RR, West JL. Reductionist Three-Dimensional Tumor Microenvironment Models in Synthetic Hydrogels. Cancers (Basel) 2022; 14:cancers14051225. [PMID: 35267532 PMCID: PMC8909517 DOI: 10.3390/cancers14051225] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/15/2022] [Accepted: 02/22/2022] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Tumors exist in a complex, three-dimensional environment which helps them to survive, grow, metastasize, and resist drug treatment. Simple, reproducible, in vitro models of this environment are necessary in order to better understand tumor behavior. Naturally derived polymers are great 3D cell culture substrates, but they often lack the tunability and batch-to-batch consistency which can be found in synthetic polymer systems. In this review, we describe the current state of and future directions for tumor microenvironment models in synthetic hydrogels. Abstract The tumor microenvironment (TME) plays a determining role in everything from disease progression to drug resistance. As such, in vitro models which can recapitulate the cell–cell and cell–matrix interactions that occur in situ are key to the investigation of tumor behavior and selecting effective therapeutic drugs. While naturally derived matrices can retain the dimensionality of the native TME, they lack tunability and batch-to-batch consistency. As such, many synthetic polymer systems have been employed to create physiologically relevant TME cultures. In this review, we discussed the common semi-synthetic and synthetic polymers used as hydrogel matrices for tumor models. We reviewed studies in synthetic hydrogels which investigated tumor cell interactions with vasculature and immune cells. Finally, we reviewed the utility of these models as chemotherapeutic drug-screening platforms, as well as the future directions of the field.
Collapse
Affiliation(s)
- Rachel R. Katz
- Department of Biomedical Engineering, Duke University, Durham, NC 27705, USA;
| | - Jennifer L. West
- Department of Biomedical Engineering, Duke University, Durham, NC 27705, USA;
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA
- Correspondence:
| |
Collapse
|
19
|
Baran M, Yay A, Onder GO, Canturk Tan F, Yalcin B, Balcioglu E, Yıldız OG. Hepatotoxicity and renal toxicity induced by radiation and the protective effect of quercetin in male albino rats. Int J Radiat Biol 2022; 98:1473-1483. [PMID: 35171756 DOI: 10.1080/09553002.2022.2033339] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE Although radiation is one of the basic methods commonly used in cancer treatment, it inevitably enters the field of treatment in healthy tissues and is adversely affected by the acute and chronic side effects of radiation. This study evaluated the possible protective effects of quercetin, an antioxidant agent, against liver and kidney damage in rats exposed to a whole-body single dose of radiation (10 Gy of gamma-ray). MATERIALS AND METHODS The study groups were formed as control, sham, quercetin, radiation, quercetin + radiation and radiation + quercetin using 60 male Wistar albino (200-250 g, 3 months old) rats, including 10 rats in each group. The gamma-ray provided by the Co60 teletherapy machine was given to the whole body as external irradiation. According to the groups, quercetin was administered to rats at 50 mg/kg/day via oral gavage before or after radiation administration. The rats were sacrificed the day after irradiation and the extracted tissue samples from all groups were compared histologically and immunohistochemically. DNA damage was determined by the neutral comet assay technique. Also, malondialdehyde (MDA) and glutathione peroxidase (GSH) were evaluated in liver and kidney tissues by the ELISA method. RESULTS Histopathological changes were observed altered morphology of liver and kidney tissues in the radiation groups. Sinusoidal dilatations, vacuolization, and hepatic parenchyma necrosis in the liver, while in kidneys, glomerular shrinkage, widened Bowman's space, tubular dilatation, and inflammation were evident. TNF-α, IL1-α, HIF1-α, and caspase 3 immunoreactivities in tissues were determined by immunohistochemistry. High caspase 3 positive cell number confirmed apoptosis, the comet parameters were decreased in the quercetin + radiation group. When compared to the control group, the exposure to radiation showed a marked elevation in MDA which was accompanied by high GSH. This damage was reduced in the quercetin + radiation group. CONCLUSIONS With the results obtained from the study; Quercetin is thought to have a protective potential against radiation-induced liver and kidney damage due to its radioprotective effect.
Collapse
Affiliation(s)
- Munevver Baran
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Arzu Yay
- Department of Histology and Embryology, Erciyes University, Faculty of Medicine, Kayseri, Turkey.,Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| | - Gozde Ozge Onder
- Department of Histology and Embryology, Erciyes University, Faculty of Medicine, Kayseri, Turkey
| | - Fazile Canturk Tan
- Department of Biophysics, Erciyes University, Faculty of Medicine, Kayseri, Turkey
| | - Betul Yalcin
- Department of Histology and Embryology, Erciyes University, Faculty of Medicine, Kayseri, Turkey
| | - Esra Balcioglu
- Department of Histology and Embryology, Erciyes University, Faculty of Medicine, Kayseri, Turkey.,Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| | - Oguz Galip Yıldız
- Department of Radiation Oncology, Erciyes University, Faculty of Medicine, Kayseri, Turkey
| |
Collapse
|
20
|
Read GH, Bailleul J, Vlashi E, Kesarwala AH. Metabolic response to radiation therapy in cancer. Mol Carcinog 2022; 61:200-224. [PMID: 34961986 PMCID: PMC10187995 DOI: 10.1002/mc.23379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 11/11/2022]
Abstract
Tumor metabolism has emerged as a hallmark of cancer and is involved in carcinogenesis and tumor growth. Reprogramming of tumor metabolism is necessary for cancer cells to sustain high proliferation rates and enhanced demands for nutrients. Recent studies suggest that metabolic plasticity in cancer cells can decrease the efficacy of anticancer therapies by enhancing antioxidant defenses and DNA repair mechanisms. Studying radiation-induced metabolic changes will lead to a better understanding of radiation response mechanisms as well as the identification of new therapeutic targets, but there are few robust studies characterizing the metabolic changes induced by radiation therapy in cancer. In this review, we will highlight studies that provide information on the metabolic changes induced by radiation and oxidative stress in cancer cells and the associated underlying mechanisms.
Collapse
Affiliation(s)
- Graham H. Read
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Justine Bailleul
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Erina Vlashi
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California
| | - Aparna H. Kesarwala
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
21
|
Yan S, Gao S, Zhou P. Multi-functions of exonuclease 1 in DNA damage response and cancer susceptibility. RADIATION MEDICINE AND PROTECTION 2021. [DOI: 10.1016/j.radmp.2021.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
22
|
Biological consequences of cancer radiotherapy in the context of oral squamous cell carcinoma. Head Face Med 2021; 17:35. [PMID: 34446029 PMCID: PMC8390213 DOI: 10.1186/s13005-021-00286-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/16/2021] [Indexed: 11/10/2022] Open
Abstract
Approximately 50% of subjects with cancer have been treated with ionizing radiation (IR) either as a curative, adjuvant, neoadjuvant or as a palliative agent, at some point during the clinical course of their disease. IR kills cancer cells directly by injuring their DNA, and indirectly by inducing immunogenic cell killing mediated by cytotoxic T cells; but it can also induce harmful biological responses to non-irradiated neighbouring cells (bystander effect) and to more distant cells (abscopal effect) outside the primary tumour field of irradiation.Although IR can upregulate anti-tumour immune reactions, it can also promote an immunosuppressive tumour microenvironment. Consequently, radiotherapy by itself is seldom sufficient to generate an effective long lasting immune response that is capable to control growth of metastasis, recurrence of primary tumours and development of second primary cancers. Therefore, combining radiotherapy with the use of immunoadjuvants such as immune checkpoint inhibitors, can potentiate IR-mediated anti-tumour immune reactions, bringing about a synergic immunogenic cell killing effect.The purpose of this narrative review is to discuss some aspects of IR-induced biological responses, including factors that contributes to tumour radiosensitivity/radioresistance, immunogenic cell killing, and the abscopal effect.
Collapse
|
23
|
Telarovic I, Wenger RH, Pruschy M. Interfering with Tumor Hypoxia for Radiotherapy Optimization. J Exp Clin Cancer Res 2021; 40:197. [PMID: 34154610 PMCID: PMC8215813 DOI: 10.1186/s13046-021-02000-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/30/2021] [Indexed: 12/11/2022] Open
Abstract
Hypoxia in solid tumors is an important predictor of treatment resistance and poor clinical outcome. The significance of hypoxia in the development of resistance to radiotherapy has been recognized for decades and the search for hypoxia-targeting, radiosensitizing agents continues. This review summarizes the main hypoxia-related processes relevant for radiotherapy on the subcellular, cellular and tissue level and discusses the significance of hypoxia in radiation oncology, especially with regard to the current shift towards hypofractionated treatment regimens. Furthermore, we discuss the strategies to interfere with hypoxia for radiotherapy optimization, and we highlight novel insights into the molecular pathways involved in hypoxia that might be utilized to increase the efficacy of radiotherapy.
Collapse
Affiliation(s)
- Irma Telarovic
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Roland H Wenger
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Martin Pruschy
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland.
| |
Collapse
|
24
|
van Gisbergen MW, Zwilling E, Dubois LJ. Metabolic Rewiring in Radiation Oncology Toward Improving the Therapeutic Ratio. Front Oncol 2021; 11:653621. [PMID: 34041023 PMCID: PMC8143268 DOI: 10.3389/fonc.2021.653621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
To meet the anabolic demands of the proliferative potential of tumor cells, malignant cells tend to rewire their metabolic pathways. Although different types of malignant cells share this phenomenon, there is a large intracellular variability how these metabolic patterns are altered. Fortunately, differences in metabolic patterns between normal tissue and malignant cells can be exploited to increase the therapeutic ratio. Modulation of cellular metabolism to improve treatment outcome is an emerging field proposing a variety of promising strategies in primary tumor and metastatic lesion treatment. These strategies, capable of either sensitizing or protecting tissues, target either tumor or normal tissue and are often focused on modulating of tissue oxygenation, hypoxia-inducible factor (HIF) stabilization, glucose metabolism, mitochondrial function and the redox balance. Several compounds or therapies are still in under (pre-)clinical development, while others are already used in clinical practice. Here, we describe different strategies from bench to bedside to optimize the therapeutic ratio through modulation of the cellular metabolism. This review gives an overview of the current state on development and the mechanism of action of modulators affecting cellular metabolism with the aim to improve the radiotherapy response on tumors or to protect the normal tissue and therefore contribute to an improved therapeutic ratio.
Collapse
Affiliation(s)
- Marike W van Gisbergen
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands.,Department of Dermatology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Emma Zwilling
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Ludwig J Dubois
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
25
|
Poon DJJ, Tay LM, Ho D, Chua MLK, Chow EKH, Yeo ELL. Improving the therapeutic ratio of radiotherapy against radioresistant cancers: Leveraging on novel artificial intelligence-based approaches for drug combination discovery. Cancer Lett 2021; 511:56-67. [PMID: 33933554 DOI: 10.1016/j.canlet.2021.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/14/2021] [Accepted: 04/25/2021] [Indexed: 12/15/2022]
Abstract
Despite numerous advances in cancer radiotherapy, tumor radioresistance remain one of the major challenges limiting treatment efficacy of radiotherapy. Conventional strategies to overcome radioresistance involve understanding the underpinning molecular mechanisms, and subsequently using combinatorial treatment strategies involving radiation and targeted drug combinations against these radioresistant tumors. These strategies exploit and target the molecular fingerprint and vulnerability of the radioresistant clones to achieve improved efficacy in tumor eradication. However, conventional drug-screening approaches for the discovery of new drug combinations have been proven to be inefficient, limited and laborious. With the increasing availability of computational resources in recent years, novel approaches such as Quadratic Phenotypic Optimization Platform (QPOP), CURATE.AI and Drug Combination and Prediction and Testing (DCPT) platform have emerged to aid in drug combination discovery and the longitudinally optimized modulation of combination therapy dosing. These platforms could overcome the limitations of conventional screening approaches, thereby facilitating the discovery of more optimal drug combinations to improve the therapeutic ratio of combinatorial treatment. The use of better and more accurate models and methods with rapid turnover can thus facilitate a rapid translation in the clinic, hence, resulting in a better patient outcome. Here, we reviewed the clinical observations, molecular mechanisms and proposed treatment strategies for tumor radioresistance and discussed how novel approaches may be applied to enhance drug combination discovery, with the aim to further improve the therapeutic ratio and treatment efficacy of radiotherapy against radioresistant cancers.
Collapse
Affiliation(s)
- Dennis Jun Jie Poon
- Division of Radiation Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, 169610, Singapore.
| | - Li Min Tay
- Cancer Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore.
| | - Dean Ho
- The N.1 Institute of Health (N.1), National University of Singapore, 117456, Singapore; Department of Bioengineering, National University of Singapore, 117583, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore; The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, 117456, Singapore.
| | - Melvin Lee Kiang Chua
- Division of Radiation Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, 169610, Singapore; Division of Medical Sciences, National Cancer Centre Singapore, 11 Hospital Crescent, 169610, Singapore; Oncology Academic Clinical Program, Duke-NUS Medical School, 8 College Road, 169857, Singapore.
| | - Edward Kai-Hua Chow
- Cancer Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore; The N.1 Institute of Health (N.1), National University of Singapore, 117456, Singapore; Department of Bioengineering, National University of Singapore, 117583, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore; The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, 117456, Singapore.
| | - Eugenia Li Ling Yeo
- Division of Medical Sciences, National Cancer Centre Singapore, 11 Hospital Crescent, 169610, Singapore.
| |
Collapse
|
26
|
Wijaya DA, Louisa M, Wibowo H, Taslim A, Permata TBM, Handoko H, Nuryadi E, Kodrat H, Gondhowiardjo SA. The future potential of Annona muricata L. extract and its bioactive compounds as radiation sensitizing agent: proposed mechanisms based on a systematic review. JOURNAL OF HERBMED PHARMACOLOGY 2021. [DOI: 10.34172/jhp.2021.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Despite technological advances in cancer treatment, especially in radiotherapy, many efforts are being made in improving cancer cell radio-sensitivity to increase therapeutic ratio and overcome cancer cell radio-resistance. In the present review, we evaluated the anticancer mechanism of Annona muricata L. (AM) leaves extract and its bioactive compounds such as annonaceous acetogenins, annomuricin, annonacin, or curcumin; and further correlated them with the potential of the mechanism to increase or to reduce cancer cells radio-sensitivity based on literature investigation. We see that AM has a promising future potential as a radio-sensitizer agent.
Collapse
Affiliation(s)
- David Andi Wijaya
- Department of Radiation Oncology, Dr. Cipto Mangunkusumo National General Hospital - Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia
| | - Melva Louisa
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia
| | - Heri Wibowo
- Laboratorium Terpadu, Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia
| | - Aslim Taslim
- Department of Radiation Oncology, Dr. Cipto Mangunkusumo National General Hospital - Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia
| | - Tiara Bunga Mayang Permata
- Department of Radiation Oncology, Dr. Cipto Mangunkusumo National General Hospital - Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia
| | - Handoko Handoko
- Department of Radiation Oncology, Dr. Cipto Mangunkusumo National General Hospital - Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia
| | - Endang Nuryadi
- Department of Radiation Oncology, Dr. Cipto Mangunkusumo National General Hospital - Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia
| | - Henry Kodrat
- Department of Radiation Oncology, Dr. Cipto Mangunkusumo National General Hospital - Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia
| | - Soehartati Argadikoesoema Gondhowiardjo
- Department of Radiation Oncology, Dr. Cipto Mangunkusumo National General Hospital - Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia
| |
Collapse
|
27
|
Olivares-Urbano MA, Griñán-Lisón C, Marchal JA, Núñez MI. CSC Radioresistance: A Therapeutic Challenge to Improve Radiotherapy Effectiveness in Cancer. Cells 2020; 9:cells9071651. [PMID: 32660072 PMCID: PMC7407195 DOI: 10.3390/cells9071651] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
Radiotherapy (RT) is a modality of oncologic treatment that can be used to treat approximately 50% of all cancer patients either alone or in combination with other treatment modalities such as surgery, chemotherapy, immunotherapy, and therapeutic targeting. Despite the technological advances in RT, which allow a more precise delivery of radiation while progressively minimizing the impact on normal tissues, issues like radioresistance and tumor recurrence remain important challenges. Tumor heterogeneity is responsible for the variation in the radiation response of the different tumor subpopulations. A main factor related to radioresistance is the presence of cancer stem cells (CSC) inside tumors, which are responsible for metastases, relapses, RT failure, and a poor prognosis in cancer patients. The plasticity of CSCs, a process highly dependent on the epithelial–mesenchymal transition (EMT) and associated to cell dedifferentiation, complicates the identification and eradication of CSCs and it might be involved in disease relapse and progression after irradiation. The tumor microenvironment and the interactions of CSCs with their niches also play an important role in the response to RT. This review provides a deep insight into the characteristics and radioresistance mechanisms of CSCs and into the role of CSCs and tumor microenvironment in both the primary tumor and metastasis in response to radiation, and the radiobiological principles related to the CSC response to RT. Finally, we summarize the major advances and clinical trials on the development of CSC-based therapies combined with RT to overcome radioresistance. A better understanding of the potential therapeutic targets for CSC radiosensitization will provide safer and more efficient combination strategies, which in turn will improve the live expectancy and curability of cancer patients.
Collapse
Affiliation(s)
| | - Carmen Griñán-Lisón
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18100 Granada, Spain;
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18100 Granada, Spain;
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
- Correspondence: (J.A.M.); (M.I.N.); Tel.: +34-958-249321 (J.A.M.); +34-958-242077 (M.I.N.)
| | - María Isabel Núñez
- Department of Radiology and Physical Medicine, University of Granada, 18016 Granada, Spain;
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18100 Granada, Spain;
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- Correspondence: (J.A.M.); (M.I.N.); Tel.: +34-958-249321 (J.A.M.); +34-958-242077 (M.I.N.)
| |
Collapse
|
28
|
Could Protons and Carbon Ions Be the Silver Bullets Against Pancreatic Cancer? Int J Mol Sci 2020; 21:ijms21134767. [PMID: 32635552 PMCID: PMC7369903 DOI: 10.3390/ijms21134767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is a very aggressive cancer type associated with one of the poorest prognostics. Despite several clinical trials to combine different types of therapies, none of them resulted in significant improvements for patient survival. Pancreatic cancers demonstrate a very broad panel of resistance mechanisms due to their biological properties but also their ability to remodel the tumour microenvironment. Radiotherapy is one of the most widely used treatments against cancer but, up to now, its impact remains limited in the context of pancreatic cancer. The modern era of radiotherapy proposes new approaches with increasing conformation but also more efficient effects on tumours in the case of charged particles. In this review, we highlight the interest in using charged particles in the context of pancreatic cancer therapy and the impact of this alternative to counteract resistance mechanisms.
Collapse
|