1
|
Aghbash PS, Hemmat N, Fathi H, Baghi HB. Monoclonal antibodies in cervical malignancy-related HPV. Front Oncol 2022; 12:904790. [PMID: 36276117 PMCID: PMC9582116 DOI: 10.3389/fonc.2022.904790] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/20/2022] [Indexed: 11/20/2022] Open
Abstract
Despite many efforts to treat HPV infection, cervical cancer survival is still poor for several reasons, including resistance to chemotherapy and relapse. Numerous treatments such as surgery, radiation therapy, immune cell-based therapies, siRNA combined with various drugs, and immunotherapy are being studied and performed to provide the best treatment. Depending on the stage and size of the tumor, methods such as radical hysterectomy, pelvic lymphadenectomy, or chemotherapy can be utilized to treat cervical cancer. While accepted, these treatments lead to interruptions in cellular pathways and immune system homeostasis. In addition to a low survival rate, cervical neoplasm incidence has been rising significantly. However, new strategies have been proposed to increase patient survival while reducing the toxicity of chemotherapy, including targeted therapy and monoclonal antibodies. In this article, we discuss the types and potential therapeutic roles of monoclonal antibodies in cervical cancer.
Collapse
Affiliation(s)
- Parisa Shiri Aghbash
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamidreza Fathi
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Li E, Xia M, Du Y, Long K, Ji F, Pan F, He L, Hu Z, Guo Z. METTL3 promotes homologous recombination repair and modulates chemotherapeutic response in breast cancer by regulating the EGF/Rad51 axis. eLife 2022; 11:75231. [PMID: 35502895 PMCID: PMC9094751 DOI: 10.7554/elife.75231] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
METTL3 and N6-methyladenosine (m6A) are involved in many types of biological and pathological processes, including DNA repair. However, the function and mechanism of METTL3 in DNA repair and chemotherapeutic response remain largely unknown. In present study, we identified that METTL3 participates in the regulation of homologous recombination repair (HR), which further influences chemotherapeutic response in both MCF-7 and MDA-MB-231 breast cancer (BC) cells. Knockdown of METTL3 sensitized these BC cells to Adriamycin (ADR; also named as doxorubicin) treatment and increased accumulation of DNA damage. Mechanically, we demonstrated that inhibition of METTL3 impaired HR efficiency and increased ADR-induced DNA damage by regulating m6A modification of EGF/RAD51 axis. METTL3 promoted EGF expression through m6A modification, which further upregulated RAD51 expression, resulting in enhanced HR activity. We further demonstrated that the m6A 'reader', YTHDC1, bound to the m6A modified EGF transcript and promoted EGF synthesis, which enhanced HR and cell survival during ADR treatment in breast cancer cells. Our findings reveal a pivotal mechanism of METTL3-mediated HR and chemotherapeutic drug response, which may contribute to cancer therapy.
Collapse
Affiliation(s)
- Enjie Li
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University, Nanjing, China
| | - Mingyue Xia
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University, Nanjing, China
| | - Yu Du
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University, Nanjing, China
| | - Kaili Long
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University, Nanjing, China
| | - Feng Ji
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University, Nanjing, China
| | - Feiyan Pan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University, Nanjing, China
| | - Lingfeng He
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University, Nanjing, China
| | - Zhigang Hu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University, Nanjing, China
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University, Nanjing, China
| |
Collapse
|
3
|
Poly(ADP-Ribose) Polymerase Inhibitor Combination Therapy. Cancer J 2021; 27:506-510. [PMID: 34904814 DOI: 10.1097/ppo.0000000000000565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT The introduction of poly(ADP-ribose) polymerase (PARP) inhibitors has led to significant improvements in outcome for several cancer types, most notably high-grade serous ovarian cancer. However, in general, benefit is restricted to tumors characterized by either BRCA1/2 mutation or homologous recombination deficiency. Combination therapy offers the potential to overcome innate and acquired PARP inhibitor resistance by either working synergistically with PARP inhibitors or by targeting the homologous recombination repair pathway through an alternate strategy, to restore homologous recombination deficiency. Several biological agents have been studied in combination with PARP inhibitors, including inhibitors of vascular endothelial growth factor (vascular endothelial growth factor; bevacizumab, cediranib), AKT (capivasertib), PI3K inhibitors (buparlisib, alpelisib), epidermal growth factor receptor and BET inhibitors. In general, PARP inhibitor and biological agent combinations are well tolerated, and early data suggest that they are clinically effective in both BRCA1/2 mutant and wild-type cancers. In this review, we discuss multiple clinical trials that are underway examining the antitumor activity of the most promising combination strategies.
Collapse
|
4
|
Berry MR, Fan TM. Target-Based Radiosensitization Strategies: Concepts and Companion Animal Model Outlook. Front Oncol 2021; 11:768692. [PMID: 34746010 PMCID: PMC8564182 DOI: 10.3389/fonc.2021.768692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
External beam radiotherapy is indicated in approximately 50-60% of human cancer patients. The prescribed dose of ionizing radiation that can be delivered to a tumor is determined by the sensitivity of the normal surrounding tissues. Despite dose intensification provided by highly conformal radiotherapy, durable locoregional tumor control remains a clinical barrier for recalcitrant tumor histologies, and contributes to cancer morbidity and mortality. Development of target-based radiosensitization strategies that selectively sensitizes tumor tissue to ionizing radiation is expected to improve radiotherapy efficacy. While exploration of radiosensitization strategies has vastly expanded with technological advances permitting the precise and conformal delivery of radiation, maximal clinical benefit derived from radiotherapy will require complementary discoveries that exploit molecularly-based vulnerabilities of tumor cells, as well as the assessment of investigational radiotherapy strategies in animal models that faithfully recapitulate radiobiologic responses of human cancers. To address these requirements, the purpose of this review is to underscore current and emerging concepts of molecularly targeted radiosensitizing strategies and highlight the utility of companion animal models for improving the predictive value of radiotherapy investigations.
Collapse
Affiliation(s)
- Matthew R Berry
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Timothy M Fan
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
5
|
Stringer-Reasor EM, May JE, Olariu E, Caterinicchia V, Li Y, Chen D, Della Manna DL, Rocque GB, Vaklavas C, Falkson CI, Nabell LM, Acosta EP, Forero-Torres A, Yang ES. An open-label, pilot study of veliparib and lapatinib in patients with metastatic, triple-negative breast cancer. Breast Cancer Res 2021; 23:30. [PMID: 33663560 PMCID: PMC7934554 DOI: 10.1186/s13058-021-01408-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/18/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Poly (ADP-ribose)-polymerase inhibitors (PARPi) have been approved for cancer patients with germline BRCA1/2 (gBRCA1/2) mutations, and efforts to expand the utility of PARPi beyond BRCA1/2 are ongoing. In preclinical models of triple-negative breast cancer (TNBC) with intact DNA repair, we have previously shown an induced synthetic lethality with combined EGFR inhibition and PARPi. Here, we report the safety and clinical activity of lapatinib and veliparib in patients with metastatic TNBC. METHODS A first-in-human, pilot study of lapatinib and veliparib was conducted in metastatic TNBC (NCT02158507). The primary endpoint was safety and tolerability. Secondary endpoints were objective response rates and pharmacokinetic evaluation. Gene expression analysis of pre-treatment tumor biopsies was performed. Key eligibility included TNBC patients with measurable disease and prior anthracycline-based and taxane chemotherapy. Patients with gBRCA1/2 mutations were excluded. RESULTS Twenty patients were enrolled, of which 17 were evaluable for response. The median number of prior therapies in the metastatic setting was 1 (range 0-2). Fifty percent of patients were Caucasian, 45% African-American, and 5% Hispanic. Of evaluable patients, 4 demonstrated a partial response and 2 had stable disease. There were no dose-limiting toxicities. Most AEs were limited to grade 1 or 2 and no drug-drug interactions noted. Exploratory gene expression analysis suggested baseline DNA repair pathway score was lower and baseline immunogenicity was higher in the responders compared to non-responders. CONCLUSIONS Lapatinib plus veliparib therapy has a manageable safety profile and promising antitumor activity in advanced TNBC. Further investigation of dual therapy with EGFR inhibition and PARP inhibition is needed. TRIAL REGISTRATION ClinicalTrials.gov , NCT02158507 . Registered on 12 September 2014.
Collapse
Affiliation(s)
- Erica M Stringer-Reasor
- Department of Medicine, Division of Hematology Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jori E May
- Department of Medicine, Division of Hematology Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Eva Olariu
- Department of Medicine, Brookwood Baptist Health, Birmingham, AL, USA
| | - Valerie Caterinicchia
- Department of Medicine, Division of Hematology Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yufeng Li
- Department of Medicine, Division of Hematology Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dongquan Chen
- Department of Medicine, Division of Hematology Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Deborah L Della Manna
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gabrielle B Rocque
- Department of Medicine, Division of Hematology Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Christos Vaklavas
- Department of Medicine, Division of Hematology Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Carla I Falkson
- Department of Medicine, Division of Hematology Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lisle M Nabell
- Department of Medicine, Division of Hematology Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Edward P Acosta
- Department of Pharmacology/Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andres Forero-Torres
- Department of Medicine, Division of Hematology Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Eddy S Yang
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA. .,O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, 1700 6th Avenue South, HSROC Suite 2232 (176F), Birmingham, AL, 35249, USA.
| |
Collapse
|
6
|
Chabot T, Cheraud Y, Fleury F. Relationships between DNA repair and RTK-mediated signaling pathways. Biochim Biophys Acta Rev Cancer 2020; 1875:188495. [PMID: 33346130 DOI: 10.1016/j.bbcan.2020.188495] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/06/2020] [Accepted: 12/13/2020] [Indexed: 10/22/2022]
Abstract
Receptor Tyrosine Kinases (RTK) are an important family involved in numerous signaling pathways essential for proliferation, cell survival, transcription or cell-cycle regulation. Their role and involvement in cancer cell survival have been widely described in the literature, and are generally associated with overexpression and/or excessive activity in the cancer pathology. Because of these characteristics, RTKs are relevant targets in the fight against cancer. In the last decade, increasingly numerous works describe the role of RTK signaling in the modulation of DNA repair, thus providing evidence of the relationship between RTKs and the protein actors in the repair pathways. In this review, we propose a summary of RTKs described as potential modulators of double-stranded DNA repair pathways in order to put forward new lines of research aimed at the implementation of new therapeutic strategies targeting both DNA repair pathways and RTK-mediated signaling pathways.
Collapse
Affiliation(s)
- Thomas Chabot
- Mechanism and regulation of DNA repair team, UFIP, CNRS UMR 6286, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes, France
| | - Yvonnick Cheraud
- Mechanism and regulation of DNA repair team, UFIP, CNRS UMR 6286, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes, France
| | - Fabrice Fleury
- Mechanism and regulation of DNA repair team, UFIP, CNRS UMR 6286, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes, France.
| |
Collapse
|
7
|
Wang TH, Chen CC, Huang KY, Shih YM, Chen CY. High levels of EGFR prevent sulforaphane-induced reactive oxygen species-mediated apoptosis in non-small-cell lung cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 64:152926. [PMID: 31454652 DOI: 10.1016/j.phymed.2019.152926] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/07/2019] [Accepted: 04/08/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Sulforaphane (SFN) has been shown to induce the production of reactive oxygen species (ROS) and inhibit epidermal growth factor receptor (EGFR)-mediated signaling in non-small-cell lung cancer (NSCLC). NSCLC cells harboring constitutively active EGFR mutations are more sensitive to SFN treatment than cells with wild-type EGFR, but whether NSCLC cells with high levels of EGFR expression are more resistant or sensitive to SFN treatment is not known. STUDY DESIGN We employed a pair of cell lines, CL1-0 and CL1-5, which have the same genetic background but different levels of EGFR expression, to examine the effects of high EGFR level in the sensitivity to SFN. METHODS The effect of SFN on cell viability and tumorigenicity was examined by trypan blue dye-exclusion assay, clonogenic assays, flow cytometry, and immunoblotting in vitro as well as tumorigenicity study in vivo. ROS levels in cells were assessed by flow cytometry using the ROS-reactive fluorescent indicator CM-H2DCFDA. Knockdown of EGFR in CL1-5 cells was infected with an EGFR-targeting small hairpin (interfering) RNA (shRNA)-containing lentivirus. RESULTS We present evidence that cells with high-level EGFR expression (CL1-5) are more resistant to SFN treatment than those with low-level expression (CL1-0). SFN treatment produced a similar increase in ROS and caused arrest of a cell population at S-phase accompanied by the induction of γH2AX, a DNA damage-response marker, in both cell sublines. However, SFN induced apoptosis only in the high-EGFR-expressing CL1-0 subline. Pretreatment with the antioxidant N-acetyl-L-cysteine prevented SFN-induced apoptosis in CL1-0 cells and production of γH2AX in both CL1-0 and CL1-5 cells. shRNA-mediated knockdown of EGFR in CL1-5 cells rendered the cells susceptible to SFN-induced apoptosis. CONCLUSION The cellular effects produced by SFN in NSCLC cells are largely mediated by SFN-induced production of ROS. Cells with higher levels of EGFR were more resistant to SFN treatment and showed resistance to SFN-induced apoptosis, suggesting that high EGFR levels protect cells from SFN-induced apoptosis. Despite this, we found that SFN retained the ability to inhibit the growth of NSCLC tumors with high-level EGFR expression in vivo.
Collapse
Affiliation(s)
- Tong-Hong Wang
- Graduate Institute of Health Industry Technology and Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Tao-Yuan 333, Taiwan; Tissue Bank, Chang Gung Memorial Hospital, Tao-Yuan 333, Taiwan
| | - Chin-Chuan Chen
- Tissue Bank, Chang Gung Memorial Hospital, Tao-Yuan 333, Taiwan; Graduate Institute of Natural Products, Chang Gung University, Tao-Yuan 333, Taiwan
| | - Kuo-Yen Huang
- Graduate Institute of Health Industry Technology and Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Tao-Yuan 333, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Ya-Min Shih
- Graduate Institute of Health Industry Technology and Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Tao-Yuan 333, Taiwan
| | - Chi-Yuan Chen
- Graduate Institute of Health Industry Technology and Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Tao-Yuan 333, Taiwan; Tissue Bank, Chang Gung Memorial Hospital, Tao-Yuan 333, Taiwan.
| |
Collapse
|
8
|
Toulany M. Targeting DNA Double-Strand Break Repair Pathways to Improve Radiotherapy Response. Genes (Basel) 2019; 10:genes10010025. [PMID: 30621219 PMCID: PMC6356315 DOI: 10.3390/genes10010025] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/07/2018] [Accepted: 12/27/2018] [Indexed: 12/13/2022] Open
Abstract
More than half of cancer patients receive radiotherapy as a part of their cancer treatment. DNA double-strand breaks (DSBs) are considered as the most lethal form of DNA damage and a primary cause of cell death and are induced by ionizing radiation (IR) during radiotherapy. Many malignant cells carry multiple genetic and epigenetic aberrations that may interfere with essential DSB repair pathways. Additionally, exposure to IR induces the activation of a multicomponent signal transduction network known as DNA damage response (DDR). DDR initiates cell cycle checkpoints and induces DSB repair in the nucleus by non-homologous end joining (NHEJ) or homologous recombination (HR). The canonical DSB repair pathways function in both normal and tumor cells. Thus, normal-tissue toxicity may limit the targeting of the components of these two pathways as a therapeutic approach in combination with radiotherapy. The DSB repair pathways are also stimulated through cytoplasmic signaling pathways. These signaling cascades are often upregulated in tumor cells harboring mutations or the overexpression of certain cellular oncogenes, e.g., receptor tyrosine kinases, PIK3CA and RAS. Targeting such cytoplasmic signaling pathways seems to be a more specific approach to blocking DSB repair in tumor cells. In this review, a brief overview of cytoplasmic signaling pathways that have been reported to stimulate DSB repair is provided. The state of the art of targeting these pathways will be discussed. A greater understanding of the underlying signaling pathways involved in DSB repair may provide valuable insights that will help to design new strategies to improve treatment outcomes in combination with radiotherapy.
Collapse
Affiliation(s)
- Mahmoud Toulany
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Roentgenweg 11, 72076 Tuebingen, Germany.
| |
Collapse
|
9
|
Chen X, Mims J, Huang X, Singh N, Motea E, Planchon SM, Beg M, Tsang AW, Porosnicu M, Kemp ML, Boothman DA, Furdui CM. Modulators of Redox Metabolism in Head and Neck Cancer. Antioxid Redox Signal 2018; 29:1660-1690. [PMID: 29113454 PMCID: PMC6207163 DOI: 10.1089/ars.2017.7423] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 11/04/2017] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Head and neck squamous cell cancer (HNSCC) is a complex disease characterized by high genetic and metabolic heterogeneity. Radiation therapy (RT) alone or combined with systemic chemotherapy is widely used for treatment of HNSCC as definitive treatment or as adjuvant treatment after surgery. Antibodies against epidermal growth factor receptor are used in definitive or palliative treatment. Recent Advances: Emerging targeted therapies against other proteins of interest as well as programmed cell death protein 1 and programmed death-ligand 1 immunotherapies are being explored in clinical trials. CRITICAL ISSUES The disease heterogeneity, invasiveness, and resistance to standard of care RT or chemoradiation therapy continue to constitute significant roadblocks for treatment and patients' quality of life (QOL) despite improvements in treatment modality and the emergence of new therapies over the past two decades. FUTURE DIRECTIONS As reviewed here, alterations in redox metabolism occur at all stages of HNSCC management, providing opportunities for improved prevention, early detection, response to therapies, and QOL. Bioinformatics and computational systems biology approaches are key to integrate redox effects with multiomics data from cells and clinical specimens and to identify redox modifiers or modifiable target proteins to achieve improved clinical outcomes. Antioxid. Redox Signal.
Collapse
Affiliation(s)
- Xiaofei Chen
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Jade Mims
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Xiumei Huang
- Departments of Pharmacology, Radiation Oncology, and Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| | - Naveen Singh
- Departments of Pharmacology, Radiation Oncology, and Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| | - Edward Motea
- Departments of Pharmacology, Radiation Oncology, and Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| | | | - Muhammad Beg
- Department of Internal Medicine, Division of Hematology-Oncology, UT Southwestern Medical Center, Dallas, Texas
| | - Allen W. Tsang
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Mercedes Porosnicu
- Department of Internal Medicine, Section of Hematology and Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Melissa L. Kemp
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - David A. Boothman
- Departments of Pharmacology, Radiation Oncology, and Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| | - Cristina M. Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
10
|
Wang N, Wang L, Meng X, Wang J, Zhu L, Liu C, Li S, Zheng L, Yang Z, Xing L, Yu J. Osimertinib (AZD9291) increases radio‑sensitivity in EGFR T790M non‑small cell lung cancer. Oncol Rep 2018; 41:77-86. [PMID: 30365094 PMCID: PMC6278463 DOI: 10.3892/or.2018.6803] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 10/08/2018] [Indexed: 01/17/2023] Open
Abstract
Osimertinib (AZD9291) is a third generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that has demonstrated significant clinical benefits in patients with EGFR‑sensitizing mutations or the T790M mutation. However, the potential therapeutic effect of osimertinib combined with ionizing irradiation (IR) is not well understood. The present study investigated treatment with osimertinib combined with IR in EGFR T790M non‑small cell lung cancer (NCI‑H1975) in vitro and in vivo. The results revealed that osimertinib inhibited proliferation and clonogenic survival following irradiation, decreased G2/M phase arrest in irradiated cells, and delayed DNA damage repair in a concentration‑ and time‑dependent manner. Furthermore, osimertinib alone or in combination with IR, blocked the phosphorylation of EGFR (Tyr1068/Tyr1173), protein kinase B and extracellular signal‑regulated kinase. Osimertinib also enhanced the antitumor activity of IR in tumor‑bearing nude mice. The results of the present study indicated that osimertinib has therapeutic potential as a radiation‑sensitizer in lung cancer cells harboring the EGFR T790M mutation, providing a rationale for clinically combining osimertinib with irradiation in EGFR T790M non‑small cell lung cancer.
Collapse
Affiliation(s)
- Nannan Wang
- Department of Oncology, School of Medicine and Life Sciences, University of Jinan‑Shandong Academy of Medical Sciences, Jinan, Shandong 250022, P.R. China
| | - Linlin Wang
- Department of Radiation Oncology, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Science, Jinan, Shandong 250117, P.R. China
| | - Xiangjiao Meng
- Department of Radiation Oncology, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Science, Jinan, Shandong 250117, P.R. China
| | - Jia Wang
- Asia Innovative Medicines and Early Development, AstraZeneca, Shanghai 201203, P.R. China
| | - Lifang Zhu
- Asia Innovative Medicines and Early Development, AstraZeneca, Shanghai 201203, P.R. China
| | - Changting Liu
- Asia Innovative Medicines and Early Development, AstraZeneca, Shanghai 201203, P.R. China
| | - Shaorong Li
- Asia Innovative Medicines and Early Development, AstraZeneca, Shanghai 201203, P.R. China
| | - Li Zheng
- Asia Innovative Medicines and Early Development, AstraZeneca, Shanghai 201203, P.R. China
| | - Zhenfan Yang
- Asia Innovative Medicines and Early Development, AstraZeneca, Shanghai 201203, P.R. China
| | - Ligang Xing
- Department of Radiation Oncology, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Science, Jinan, Shandong 250117, P.R. China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Science, Jinan, Shandong 250117, P.R. China
| |
Collapse
|
11
|
Targeting CREB-binding protein overrides LPS induced radioresistance in non-small cell lung cancer cell lines. Oncotarget 2018; 9:28976-28988. [PMID: 29989005 PMCID: PMC6034744 DOI: 10.18632/oncotarget.25665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/04/2018] [Indexed: 12/12/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) has a very poor prognosis even when treated with the best therapies available today often including radiation. NSCLC is frequently complicated by pulmonary infections which appear to impair prognosis as well as therapy, whereby the underlying mechanisms are still not known. It was investigated here, whether the bacterial lipopolysaccharides (LPS) might alter the tumor cell radiosensitivity. LPS were found to induce a radioresistance but solely in cells with an active TLR-4 pathway. Proteome profiling array revealed that LPS combined with irradiation resulted in a strong phosphorylation of cAMP response element-binding protein (CREB). Inhibition of CREB binding protein (CBP) by the specific inhibitor ICG-001 not only abrogated the LPS-induced radioresistance but even led to an increase in radiosensitivity. The sensitization caused by ICG-001 could be attributed to a reduction of DNA double-strand break (DSB) repair. It is shown that in NSCLC cells LPS leads to a CREB dependent radioresistance which is, however, reversible through CBP inhibition by the specific inhibitor ICG-001. These findings indicate that the combined treatment with radiation and CBP inhibition may improve survival of NSCLC patients suffering from pulmonary infections.
Collapse
|
12
|
Kriegs M, Kasten-Pisula U, Riepen B, Hoffer K, Struve N, Myllynen L, Braig F, Binder M, Rieckmann T, Grénman R, Petersen C, Dikomey E, Rothkamm K. Radiosensitization of HNSCC cells by EGFR inhibition depends on the induction of cell cycle arrests. Oncotarget 2018; 7:45122-45133. [PMID: 27281611 PMCID: PMC5216710 DOI: 10.18632/oncotarget.9161] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 04/18/2016] [Indexed: 12/28/2022] Open
Abstract
The increase in cellular radiosensitivity by EGF receptor (EGFR) inhibition has been shown to be attributable to the induction of a G1-arrest in p53-proficient cells. Because EGFR targeting in combination with radiotherapy is used to treat head and neck squamous cell carcinomas (HNSCC) which are predominantly p53 mutated, we tested the effects of EGFR targeting on cellular radiosensitivity, proliferation, apoptosis, DNA repair and cell cycle control using a large panel of HNSCC cell lines. In these experiments EGFR targeting inhibited signal transduction, blocked proliferation and induced radiosensitization but only in some cell lines and only under normal (pre-plating) conditions. This sensitization was not associated with impaired DNA repair (53BP1 foci) or induction of apoptosis. However, it was associated with the induction of a lasting G2-arrest. Both, the radiosensitization and the G2-arrest were abrogated if the cells were re-stimulated (delayed plating) with actually no radiosensitization being detectable in any of the 14 tested cell lines. Therefore we conclude that EGFR targeting can induce a reversible G2 arrest in p53 deficient HNSCC cells, which does not consequently result in a robust cellular radiosensitization. Together with recent animal and clinical studies our data indicate that EGFR inhibition is no effective strategy to increase the radiosensitivity of HNSCC cells.
Collapse
Affiliation(s)
- Malte Kriegs
- Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg - Eppendorf, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, 20246 Hamburg, Germany
| | - Ulla Kasten-Pisula
- Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg - Eppendorf, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, 20246 Hamburg, Germany
| | - Britta Riepen
- Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg - Eppendorf, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, 20246 Hamburg, Germany
| | - Konstantin Hoffer
- Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg - Eppendorf, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, 20246 Hamburg, Germany
| | - Nina Struve
- Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg - Eppendorf, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, 20246 Hamburg, Germany
| | - Laura Myllynen
- Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg - Eppendorf, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, 20246 Hamburg, Germany
| | - Friederike Braig
- Department of Oncology and Hematology, BMT with section Pneumology, University Medical Center Hamburg - Eppendorf, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, 20246 Hamburg, Germany
| | - Mascha Binder
- Department of Oncology and Hematology, BMT with section Pneumology, University Medical Center Hamburg - Eppendorf, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, 20246 Hamburg, Germany
| | - Thorsten Rieckmann
- Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg - Eppendorf, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, 20246 Hamburg, Germany.,Department of Otorhinolaryngology and Head and Neck Surgery, University Medical Center Hamburg - Eppendorf, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, 20246 Hamburg, Germany
| | - Reidar Grénman
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Turku and Turku University Hospital, 20521 Turku, Finland
| | - Cordula Petersen
- Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg - Eppendorf, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, 20246 Hamburg, Germany
| | - Ekkehard Dikomey
- Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg - Eppendorf, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, 20246 Hamburg, Germany
| | - Kai Rothkamm
- Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg - Eppendorf, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, 20246 Hamburg, Germany
| |
Collapse
|
13
|
Toulany M, Iida M, Keinath S, Iyi FF, Mueck K, Fehrenbacher B, Mansour WY, Schaller M, Wheeler DL, Rodemann HP. Dual targeting of PI3K and MEK enhances the radiation response of K-RAS mutated non-small cell lung cancer. Oncotarget 2018; 7:43746-43761. [PMID: 27248324 PMCID: PMC5190057 DOI: 10.18632/oncotarget.9670] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 05/12/2016] [Indexed: 12/16/2022] Open
Abstract
Despite the significant contribution of radiotherapy to non-small lung cancer (NSCLC), radioresistance still occurs. One of the major radioresistance mechanisms is the hyperactivation of the PI3K/Akt pathway in which Akt facilitates the repair of DNA double-strand breaks (DSBs) through the stimulation of DNA-PKcs. We investigated if targeting PI3K would be a potential approach for enhancing the radiosensitivity of K-RAS mutated (K-RASmut) NSCLC cell lines A549 and H460. Short-term (1-2 h) pre-treatment of cells with the PI3K inhibitor PI-103 (1 μM) inhibited Akt/DNA-PKcs activity, blocked DSBs repair and induced radiosensitivity, while long-term (24 h) pre-treatment did not. Lack of an effect after 24 h of PI-103 pre-treatment was due to reactivation of K-Ras/MEK/ERK-dependent Akt. However, long-term treatment with the combination of PI-103 and MEK inhibitor PD98059 completely blocked reactivation of Akt and impaired DSBs repair through non-homologous end joining (NHEJ) leading to radiosensitization. The effect of PI3K inhibition on Akt signaling was also tested in A549 mouse xenografts. P-Akt and P-DNA-PKcs were inhibited 30 min post-irradiation in xenografts, which were pretreated by PI-103 30 min before irradiation. However, Akt was reactivated 30 min post-irradiation in tumors, which were pre-treated for 3 h with PI-103 before irradiation. After a 24 h pretreatment with PI-103, a significant reactivation of Akt was achieved 24 h after irradiation. Thus, due to MEK/ERK-dependent reactivation of Akt, targeting PI3K alone is not a suitable approach for radiosensitizing K-RASmut NSCLC cells, indicating that dual targeting of PI3K and MEK is an efficient approach to improve radiotherapy outcome.
Collapse
Affiliation(s)
- Mahmoud Toulany
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Mari Iida
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Wisconsin Institute for Medical Research, Madison, WI, USA
| | - Simone Keinath
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Firdevs F Iyi
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Katharina Mueck
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | | | - Wael Y Mansour
- Tumor Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt.,Laboratory of Radiobiology and Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Schaller
- Department of Dermatology, University of Tuebingen, Tuebingen, Germany
| | - Deric L Wheeler
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Wisconsin Institute for Medical Research, Madison, WI, USA
| | - H Peter Rodemann
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
14
|
Analyzing the influence of kinase inhibitors on DNA repair by differential proteomics of chromatin-interacting proteins and nuclear phospho-proteins. Oncotarget 2017; 8:110983-110993. [PMID: 29340031 PMCID: PMC5762299 DOI: 10.18632/oncotarget.22424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/25/2017] [Indexed: 11/25/2022] Open
Abstract
The combination of radiotherapy and pharmacological inhibition of cellular signal transduction pathways offers promising strategies for enhanced cancer cell inactivation. However, the molecular effects of kinase inhibitors especially on DNA damage detection and repair after X-irradiation have to be understood to facilitate the development of efficient and personalized treatment regimens. Therefore, we applied differential proteomics for analyzing inhibitor-induced changes in either chromatin-bound or phosphorylated nuclear proteins. The effect of the multi kinase inhibitor sorafenib on DNA repair, chromatin binding and phosphorylation of nuclear proteins was analyzed in UT-SCC 42B head and neck cancer cells using metabolic labeling based differential proteomics (SILAC). Sorafenib significantly inhibited DNA repair but failed to significantly affect chromatin interactions of 90 quantified proteins. In contrast, analyzing nuclear phospho-proteins following sorafenib treatment, we detected quantitative changes in 9 out of 59 proteins, including DNA-repair proteins. In conclusion, the analysis of nuclear phospho-proteins by differential proteomics is an effective tool for determining the molecular effects of kinase inhibitors on X-irradiated cells. Analyzing chromatin binding might be less promising.
Collapse
|
15
|
Piryani SO, Kam AYF, Kliassov EG, Chen BJ, Spector NL, Chute JP, Hsu DS, Chao NJ, Doan PL. Epidermal Growth Factor and Granulocyte Colony Stimulating Factor Signaling Are Synergistic for Hematopoietic Regeneration. Stem Cells 2017; 36:252-264. [PMID: 29086459 DOI: 10.1002/stem.2731] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 10/05/2017] [Accepted: 10/24/2017] [Indexed: 12/11/2022]
Abstract
Hematopoietic regeneration following chemotherapy may be distinct from regeneration following radiation. While we have shown that epidermal growth factor (EGF) accelerates regeneration following radiation, its role following chemotherapy is currently unknown. We sought to identify EGF as a hematopoietic growth factor for chemotherapy-induced myelosuppression. Following 5-fluorouracil (5-FU), EGF accelerated hematopoietic stem cell regeneration and prolonged survival compared with saline-treated mice. To mitigate chemotherapy-induced injury to endothelial cells in vivo, we deleted Bax in VEcadherin+ cells (VEcadherinCre;BaxFL/FL mice). Following 5-FU, VEcadherinCre;BaxFL/FL mice displayed preserved hematopoietic stem/progenitor content compared with littermate controls. 5-FU and EGF treatment resulted in increased cellular proliferation, decreased apoptosis, and increased DNA double-strand break repair by non-homologous end-joining recombination compared with saline-treated control mice. When granulocyte colony stimulating factor (G-CSF) is given with EGF, this combination was synergistic for regeneration compared with either G-CSF or EGF alone. EGF increased G-CSF receptor (G-CSFR) expression following 5-FU. Conversely, G-CSF treatment increased both EGF receptor (EGFR) and phosphorylation of EGFR in hematopoietic stem/progenitor cells. In humans, the expression of EGFR is increased in patients with colorectal cancer treated with 5-FU compared with cancer patients not on 5-FU. Similarly, EGFR signaling is responsive to G-CSF in humans in vivo with both increased EGFR and phospho-EGFR in healthy human donors following G-CSF treatment compared with donors who did not receive G-CSF. These data identify EGF as a hematopoietic growth factor following myelosuppressive chemotherapy and that dual therapy with EGF and G-CSF may be an effective method to accelerate hematopoietic regeneration. Stem Cells 2018;36:252-264.
Collapse
Affiliation(s)
- Sadhna O Piryani
- Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, North Carolina, USA
| | - Angel Y F Kam
- Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, North Carolina, USA
| | - Evelyna G Kliassov
- Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, North Carolina, USA
| | - Benny J Chen
- Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, North Carolina, USA.,Duke Cancer Institute, Duke University, Durham, North Carolina, USA
| | - Neil L Spector
- Duke Cancer Institute, Duke University, Durham, North Carolina, USA.,Division of Medical Oncology, Duke University, Durham, North Carolina, USA
| | - John P Chute
- Division of Medical Oncology, University of California, Los Angeles, Los Angeles, California, USA.,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, California, USA.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California, USA
| | - David S Hsu
- Duke Cancer Institute, Duke University, Durham, North Carolina, USA.,Division of Medical Oncology, Duke University, Durham, North Carolina, USA
| | - Nelson J Chao
- Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, North Carolina, USA.,Duke Cancer Institute, Duke University, Durham, North Carolina, USA
| | - Phuong L Doan
- Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, North Carolina, USA.,Duke Cancer Institute, Duke University, Durham, North Carolina, USA
| |
Collapse
|
16
|
Saki M, Makino H, Javvadi P, Tomimatsu N, Ding LH, Clark JE, Gavin E, Takeda K, Andrews J, Saha D, Story MD, Burma S, Nirodi CS. EGFR Mutations Compromise Hypoxia-Associated Radiation Resistance through Impaired Replication Fork-Associated DNA Damage Repair. Mol Cancer Res 2017; 15:1503-1516. [PMID: 28801308 PMCID: PMC5668182 DOI: 10.1158/1541-7786.mcr-17-0136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/29/2017] [Accepted: 08/03/2017] [Indexed: 12/20/2022]
Abstract
EGFR signaling has been implicated in hypoxia-associated resistance to radiation or chemotherapy. Non-small cell lung carcinomas (NSCLC) with activating L858R or ΔE746-E750 EGFR mutations exhibit elevated EGFR activity and downstream signaling. Here, relative to wild-type (WT) EGFR, mutant (MT) EGFR expression significantly increases radiosensitivity in hypoxic cells. Gene expression profiling in human bronchial epithelial cells (HBEC) revealed that MT-EGFR expression elevated transcripts related to cell cycle and replication in aerobic and hypoxic conditions and downregulated RAD50, a critical component of nonhomologous end joining and homologous recombination DNA repair pathways. NSCLCs and HBEC with MT-EGFR revealed elevated basal and hypoxia-induced γ-H2AX-associated DNA lesions that were coincident with replication protein A in the S-phase nuclei. DNA fiber analysis showed that, relative to WT-EGFR, MT-EGFR NSCLCs harbored significantly higher levels of stalled replication forks and decreased fork velocities in aerobic and hypoxic conditions. EGFR blockade by cetuximab significantly increased radiosensitivity in hypoxic cells, recapitulating MT-EGFR expression and closely resembling synthetic lethality of PARP inhibition.Implications: This study demonstrates that within an altered DNA damage response of hypoxic NSCLC cells, mutant EGFR expression, or EGFR blockade by cetuximab exerts a synthetic lethality effect and significantly compromises radiation resistance in hypoxic tumor cells. Mol Cancer Res; 15(11); 1503-16. ©2017 AACR.
Collapse
Affiliation(s)
- Mohammad Saki
- Department of Oncologic Sciences, University of South Alabama Mitchell Cancer Institute, Mobile, Alabama
| | - Haruhiko Makino
- Division of Medical Oncology and Molecular Respirology, Faculty of Medicine Tottori University, Yonago, Tottori, Japan
| | - Prashanthi Javvadi
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Nozomi Tomimatsu
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Liang-Hao Ding
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jennifer E Clark
- Department of Oncologic Sciences, University of South Alabama Mitchell Cancer Institute, Mobile, Alabama
| | - Elaine Gavin
- Department of Oncologic Sciences, University of South Alabama Mitchell Cancer Institute, Mobile, Alabama
| | - Kenichi Takeda
- Division of Medical Oncology and Molecular Respirology, Faculty of Medicine Tottori University, Yonago, Tottori, Japan
| | - Joel Andrews
- Department of Oncologic Sciences, University of South Alabama Mitchell Cancer Institute, Mobile, Alabama
| | - Debabrata Saha
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Michael D Story
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sandeep Burma
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Chaitanya S Nirodi
- Department of Oncologic Sciences, University of South Alabama Mitchell Cancer Institute, Mobile, Alabama.
| |
Collapse
|
17
|
Abstract
Cellular chromosomal DNA is the principal target through which ionising radiation exerts it diverse biological effects. This chapter summarises the relevant DNA damage signalling and repair pathways used by normal and tumour cells in response to irradiation. Strategies for tumour radiosensitisation are reviewed which exploit tumour-specific DNA repair deficiencies or signalling pathway addictions, with a special focus on growth factor signalling, PARP, cancer stem cells, cell cycle checkpoints and DNA replication. This chapter concludes with a discussion of DNA repair-related candidate biomarkers of tumour response which are of crucial importance for implementing precision medicine in radiation oncology.
Collapse
|
18
|
Trabelsi F, Khlifi R, Goux D, Guillamin M, Hamza-Chaffai A, Sichel F. Cytotoxicity and genotoxicity effects of arsenic trioxide on SQ20B human laryngeal carcinoma cells. ACTA ACUST UNITED AC 2017; 69:349-358. [PMID: 28262482 DOI: 10.1016/j.etp.2017.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 01/04/2017] [Accepted: 02/14/2017] [Indexed: 02/02/2023]
Abstract
This study investigates the cytotoxicity and the genotoxicity induced by arsenic trioxide As2O3in human laryngeal SQ20B carcinoma cell line. SQ20B cells were exposed to graded concentrations of arsenic trioxide (2 and 5μM) for 48h. Comet assay and γ-H2AX foci formation were used for measuring DNA damages, flow cytometry was used to identify cell cycle alterations and apoptosis, while cell morphology was visualized using transmission electron microscopy. The results show a dose-dependent induction of DNA damages and double strand breaks, alterations in cell cycle and morphologic alterations of cells. These results prove that As2O3 is highly cytotoxic and genotoxic at the micromolar range ina human laryngeal carcinoma cell line.
Collapse
Affiliation(s)
- Fatma Trabelsi
- Unit of Marine and Environmental Toxicology, UR 09-03, Sfax University, IPEIS, BP 1172, 3018 Sfax, Tunisia.
| | - Rim Khlifi
- Unit of Marine and Environmental Toxicology, UR 09-03, Sfax University, IPEIS, BP 1172, 3018 Sfax, Tunisia
| | - Didier Goux
- Normandie Univ, UNICAEN, CMABio, SFR ICORE, 14000 Caen, France
| | - Marilyne Guillamin
- Normandie Univ, UNICAEN, CMABio, SFR ICORE, 14000 Caen, France; Normandie Univ, UNICAEN, INSERM, COMETE, 14000 Caen, France
| | - Amel Hamza-Chaffai
- Unit of Marine and Environmental Toxicology, UR 09-03, Sfax University, IPEIS, BP 1172, 3018 Sfax, Tunisia
| | - François Sichel
- Normandie Univ, UNICAEN, ABTE, 14000 Caen, France; Centre François Baclesse, Avenue Général Harris, BP5026, F-14076 Caen Cedex-05, France
| |
Collapse
|
19
|
Cossar LH, Schache AG, Risk JM, Sacco JJ, Jones NJ, Lord R. Modulating the DNA Damage Response to Improve Treatment Response in Cervical Cancer. Clin Oncol (R Coll Radiol) 2017; 29:626-634. [PMID: 28336131 DOI: 10.1016/j.clon.2017.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 02/14/2017] [Accepted: 02/21/2017] [Indexed: 01/06/2023]
Abstract
Cervical cancer is the fourth most common cause of cancer-related death in women worldwide and new therapeutic approaches are needed to improve clinical outcomes for this group of patients. Current treatment protocols for locally advanced and metastatic disease consist of ionising radiation and chemotherapy. Chemoradiation induces cytotoxic levels of DNA double-strand breaks, which activates programmed cell death via the DNA damage response (DDR). Cervical cancers are unique given an almost exclusive association with human papillomavirus (HPV) infection; a potent manipulator of the DDR, with the potential to alter tumour sensitivity to DNA-damaging agents and influence treatment response. This review highlights the wide range of therapeutic strategies in development that have the potential to modulate DDR and sensitise cervical tumours to DNA-damaging agents in the context of HPV oncogenesis.
Collapse
Affiliation(s)
- L H Cossar
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK; Clatterbridge Cancer Centre, Wirral, UK.
| | - A G Schache
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - J M Risk
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - J J Sacco
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK; Clatterbridge Cancer Centre, Wirral, UK
| | - N J Jones
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - R Lord
- Clatterbridge Cancer Centre, Wirral, UK
| |
Collapse
|
20
|
Struve N, Riedel M, Schulte A, Rieckmann T, Grob TJ, Gal A, Rothkamm K, Lamszus K, Petersen C, Dikomey E, Kriegs M. EGFRvIII does not affect radiosensitivity with or without gefitinib treatment in glioblastoma cells. Oncotarget 2016; 6:33867-77. [PMID: 26418954 PMCID: PMC4741808 DOI: 10.18632/oncotarget.5293] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 09/04/2015] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Glioblastomas (GBM) are often characterized by an elevated expression of the epidermal growth factor receptor variant III (EGFRvIII). We used GBM cell lines with native EGFRvIII expression to determine whether this EGFR variant affects radiosensitivity with or without EGFR targeting. METHODS Experiments were performed with GBM cell lines lacking (LN229, U87MG, U251, CAS-1) or endogenously expressing EGFRvIII (BS153, DKMG). The two latter cell lines were also used to establish sublines with a low (-) or a high proportion (+) of cells expressing EGFRvIII. EGFR signaling and the cell cycle were analyzed using Western blot and flow cytometry; cell survival was assessed by colony forming assay and double-strand break repair capacity by immunofluorescence. RESULTS DKMG and BS153 parental cells with heterogeneous EGFRvIII expression were clearly more radiosensitive compared to other GBM cell lines without EGFRvIII expression. However, no significant difference was observed in cell proliferation, clonogenicity or radiosensitivity between the EGFRvIII- and + sublines derived from DKMG and BS153 parental cells. Expression of EGFRvIII was associated with decreased DSB repair capacity for BS153 but not for DKMG cells. The effects of EGFR targeting by gefitinib alone or in combination with irradiation were also found not to depend on EGFRvIII expression. Gefitinib was only observed to influence the proliferation of EGFRvIII- BS153 cells. CONCLUSION The data indicate that EGFRvIII does not alter radiosensitivity with or without anti-EGFR treatment.
Collapse
Affiliation(s)
- Nina Struve
- Department of Radiotherapy and Radio-Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Matthias Riedel
- Department of Radiotherapy and Radio-Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Alexander Schulte
- Department of Neurosurgery, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Thorsten Rieckmann
- Department of Radiotherapy and Radio-Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany.,Department of Otorhinolaryngology and Head and Neck Surgery, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Tobias J Grob
- Department of Pathology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Andreas Gal
- Department of Human Genetics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Kai Rothkamm
- Department of Radiotherapy and Radio-Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Katrin Lamszus
- Department of Neurosurgery, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Cordula Petersen
- Department of Radiotherapy and Radio-Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Ekkehard Dikomey
- Department of Radiotherapy and Radio-Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Malte Kriegs
- Department of Radiotherapy and Radio-Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| |
Collapse
|
21
|
Holler M, Grottke A, Mueck K, Manes J, Jücker M, Rodemann HP, Toulany M. Dual Targeting of Akt and mTORC1 Impairs Repair of DNA Double-Strand Breaks and Increases Radiation Sensitivity of Human Tumor Cells. PLoS One 2016; 11:e0154745. [PMID: 27137757 PMCID: PMC4854483 DOI: 10.1371/journal.pone.0154745] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/18/2016] [Indexed: 12/22/2022] Open
Abstract
Inhibition of mammalian target of rapamycin-complex 1 (mTORC1) induces activation of Akt. Because Akt activity mediates the repair of ionizing radiation-induced DNA double-strand breaks (DNA-DSBs) and consequently the radioresistance of solid tumors, we investigated whether dual targeting of mTORC1 and Akt impairs DNA-DSB repair and induces radiosensitization. Combining mTORC1 inhibitor rapamycin with ionizing radiation in human non-small cell lung cancer (NSCLC) cells (H661, H460, SK-MES-1, HTB-182, A549) and in the breast cancer cell line MDA-MB-231 resulted in radiosensitization of H661 and H460 cells (responders), whereas only a very slight effect was observed in A549 cells, and no effect was observed in SK-MES-1, HTB-182 or MDA-MB-231 cells (non-responders). In responder cells, rapamycin treatment did not activate Akt1 phosphorylation, whereas in non-responders, rapamycin mediated PI3K-dependent Akt activity. Molecular targeting of Akt by Akt inhibitor MK2206 or knockdown of Akt1 led to a rapamycin-induced radiosensitization of non-responder cells. Compared to the single targeting of Akt, the dual targeting of mTORC1 and Akt1 markedly enhanced the frequency of residual DNA-DSBs by inhibiting the non-homologous end joining repair pathway and increased radiation sensitivity. Together, lack of radiosensitization induced by rapamycin was associated with rapamycin-mediated Akt1 activation. Thus, dual targeting of mTORC1 and Akt1 inhibits repair of DNA-DSB leading to radiosensitization of solid tumor cells.
Collapse
Affiliation(s)
- Marina Holler
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, Eberhard Karls University Tuebingen, Roentgenweg 11, 72076, Tuebingen, Germany
| | - Astrid Grottke
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Katharina Mueck
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, Eberhard Karls University Tuebingen, Roentgenweg 11, 72076, Tuebingen, Germany
| | - Julia Manes
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, Eberhard Karls University Tuebingen, Roentgenweg 11, 72076, Tuebingen, Germany
| | - Manfred Jücker
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - H. Peter Rodemann
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, Eberhard Karls University Tuebingen, Roentgenweg 11, 72076, Tuebingen, Germany
| | - Mahmoud Toulany
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, Eberhard Karls University Tuebingen, Roentgenweg 11, 72076, Tuebingen, Germany
- * E-mail:
| |
Collapse
|
22
|
Esposito D, Crescenzi E, Sagar V, Loreni F, Russo A, Russo G. Human rpL3 plays a crucial role in cell response to nucleolar stress induced by 5-FU and L-OHP. Oncotarget 2015; 5:11737-51. [PMID: 25473889 PMCID: PMC4294388 DOI: 10.18632/oncotarget.2591] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 10/11/2014] [Indexed: 11/25/2022] Open
Abstract
Recent evidence showed that a variety of DNA damaging agents including 5-FU and L-OHP impairs ribosomal biogenesis activating a ribosomal stress pathway. Here, we demonstrate that in lung and colon cancer cell lines devoid of p53, the efficacy of 5-FU and L-OHP chemotherapy depends on rpL3 status. Specifically, we demonstrate that ribosomal stress induced by 5-FU and L-OHP is associated to up-regulation of rpL3 and its accumulation as ribosome-free form. We show that rpL3 participates in the cell response to chemotherapy acting as a critical regulator of cell cycle, apoptosis and DNA repair, by modulating p21 expression. Moreover, we demonstrate that rpL3 is able to control DNA repair also independently from p21 status of cell. It is noteworthy that silencing of rpL3 abolishes the cytotoxic effects of 5-FU and L-OH indicating that the loss of rpL3 makes chemotherapy drugs ineffective. Taking together our results shed light on 5-FU and L-OHP mechanism of action and contribute to more effective clinical use of these drugs in cancer therapy.
Collapse
Affiliation(s)
- Davide Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples 80131, Italy. Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elvira Crescenzi
- Institute of Experimental Endocrinology and Oncology-CNR, Naples 80131, Italy
| | - Vinay Sagar
- Department of Biology, University of Rome 'Tor Vergata', Rome 00133, Italy
| | - Fabrizio Loreni
- Department of Biology, University of Rome 'Tor Vergata', Rome 00133, Italy
| | - Annapina Russo
- Department of Pharmacy, University of Naples "Federico II", Naples 80131, Italy
| | - Giulia Russo
- Department of Pharmacy, University of Naples "Federico II", Naples 80131, Italy
| |
Collapse
|
23
|
Myllynen L, Kwiatkowski M, Gleißner L, Riepen B, Hoffer K, Wurlitzer M, Petersen C, Dikomey E, Rothkamm K, Schlüter H, Kriegs M. Quantitative proteomics unveiled: Regulation of DNA double strand break repair by EGFR involves PARP1. Radiother Oncol 2015; 116:423-30. [DOI: 10.1016/j.radonc.2015.09.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/19/2015] [Accepted: 09/14/2015] [Indexed: 11/29/2022]
|
24
|
Wagner W, Ciszewski WM, Kania KD. L- and D-lactate enhance DNA repair and modulate the resistance of cervical carcinoma cells to anticancer drugs via histone deacetylase inhibition and hydroxycarboxylic acid receptor 1 activation. Cell Commun Signal 2015. [PMID: 26208712 PMCID: PMC4514991 DOI: 10.1186/s12964-015-0114-x] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The consideration of lactate as an active metabolite is a newly emerging and attractive concept. Recently, lactate has been reported to regulate gene transcription via the inhibition of histone deacetylases (HDACs) and survival of cancer cells via hydroxycarboxylic acid receptor 1 (HCAR1). This study examined the role of L- and D-lactate in the DNA damage response in cervical cancer cells. METHODS Three cervical cancer cell lines were examined: HeLa, Ca Ski and C33A. The inhibitory activity of lactate on HDACs was analysed using Western blot and biochemical methods. The lactate-mediated stimulation of DNA repair and cellular resistance to neocarzinostatin, doxorubicin and cisplatin were studied using γ-H2AX, comet and clonogenic assays. HCAR1 and DNA repair gene expression was quantified by real-time PCR. DNA-PKcs activity and HCAR1 protein expression were evaluated via immunocytochemistry and Western blot, respectively. HCAR1 activation was investigated by measuring intracellular cAMP accumulation and Erk phosphorylation. HCAR1 expression was silenced using shRNA. RESULTS L- and D-lactate inhibited HDACs, induced histone H3 and H4 hyperacetylation, and decreased chromatin compactness in HeLa cells. Treating cells with lactate increased LIG4, NBS1, and APTX expression by nearly 2-fold and enhanced DNA-PKcs activity. Based on γ-H2AX and comet assays, incubation of cells in lactate-containing medium increased the DNA repair rate. Furthermore, clonogenic assays demonstrated that lactate mediates cellular resistance to clinically used chemotherapeutics. Western blot and immunocytochemistry showed that all studied cell lines express HCAR1 on the cellular surface. Inhibiting HCAR1 function via pertussis toxin pretreatment partially abolished the effects of lactate on DNA repair. Down-regulating HCAR1 decreased the efficiency of DNA repair, abolished the cellular response to L-lactate and decreased the effect of D-lactate. Moreover, HCAR1 shRNA-expressing cells produced significantly lower mRNA levels of monocarboxylate transporter 4. Finally, the enhancement of DNA repair and cell survival by lactate was suppressed by pharmacologically inhibiting monocarboxylate transporters using the inhibitor α-cyano-4-hydroxycinnamic acid (α-CHCA). CONCLUSIONS Our data indicate that L- and D-lactate present in the uterine cervix may participate in the modulation of cellular DNA damage repair processes and in the resistance of cervical carcinoma cells to anticancer therapy.
Collapse
Affiliation(s)
- Waldemar Wagner
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Science, Lodz, Poland.
| | - Wojciech M Ciszewski
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Science, Lodz, Poland.
| | - Katarzyna D Kania
- Laboratory of Transcriptional Regulation, Institute of Medical Biology, Polish Academy of Science, Lodz, Poland.
| |
Collapse
|
25
|
Phosphatidylinositol 3-kinase/Akt signaling as a key mediator of tumor cell responsiveness to radiation. Semin Cancer Biol 2015; 35:180-90. [PMID: 26192967 DOI: 10.1016/j.semcancer.2015.07.003] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/09/2015] [Accepted: 07/13/2015] [Indexed: 02/07/2023]
Abstract
The phosphatidylinositol 3-kinase (PI3K)/Akt pathway is a key cascade downstream of several protein kinases, especially membrane-bound receptor tyrosine kinases, including epidermal growth factor receptor (EGFR) family members. Hyperactivation of the PI3K/Akt pathway is correlated with tumor development, progression, poor prognosis, and resistance to cancer therapies, such as radiotherapy, in human solid tumors. Akt/PKB (Protein Kinase B) members are the major kinases that act downstream of PI3K, and these are involved in a variety of cellular functions, including growth, proliferation, glucose metabolism, invasion, metastasis, angiogenesis, and survival. Accumulating evidence indicates that activated Akt is one of the major predictive markers for solid tumor responsiveness to chemo/radiotherapy. DNA double-strand breaks (DNA-DSB), are the prime cause of cell death induced by ionizing radiation. Preclinical in vitro and in vivo studies have shown that constitutive activation of Akt and stress-induced activation of the PI3K/Akt pathway accelerate the repair of DNA-DSB and, consequently, lead to therapy resistance. Analyzing dysregulations of Akt, such as point mutations, gene amplification or overexpression, which results in the constitutive activation of Akt, might be of special importance in the context of radiotherapy outcomes. Such studies, as well as studies of the mechanism(s) by which activated Akt1 regulates repair of DNA-DSB, might help to identify combinations using the appropriate molecular targeting strategies with conventional radiotherapy to overcome radioresistance in solid tumors. In this review, we discuss the dysregulation of the components of upstream regulators of Akt as well as specific modifications of Akt isoforms that enhance Akt activity. Likewise, the mechanisms by which Akt interferes with repair of DNA after exposure to ionizing radiation, will be reviewed. Finally, the current status of Akt targeting in combination with radiotherapy will be discussed.
Collapse
|
26
|
Möckelmann N, Kriegs M, Lörincz BB, Busch CJ, Knecht R. Molecular targeting in combination with platinum-based chemoradiotherapy in head and neck cancer treatment. Head Neck 2015; 38 Suppl 1:E2173-81. [DOI: 10.1002/hed.24031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2015] [Indexed: 01/13/2023] Open
Affiliation(s)
- Nikolaus Möckelmann
- Department of Otorhinolaryngology and Head and Neck Surgery; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Malte Kriegs
- Laboratory of Radiobiology and Experimental Radiooncology; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Balazs B. Lörincz
- Department of Otorhinolaryngology and Head and Neck Surgery; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Chia-Jung Busch
- Department of Otorhinolaryngology and Head and Neck Surgery; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Rainald Knecht
- Department of Otorhinolaryngology and Head and Neck Surgery; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| |
Collapse
|
27
|
Willers H, Gheorghiu L, Liu Q, Efstathiou JA, Wirth LJ, Krause M, von Neubeck C. DNA Damage Response Assessments in Human Tumor Samples Provide Functional Biomarkers of Radiosensitivity. Semin Radiat Oncol 2015; 25:237-50. [PMID: 26384272 DOI: 10.1016/j.semradonc.2015.05.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Predictive biomarkers are urgently needed for individualization of radiation therapy and treatment with radiosensitizing anticancer agents. Genomic profiling of human cancers provides us with unprecedented insight into the mutational landscape of genes directly or indirectly involved in the response to radiation-induced DNA damage. However, to what extent this wealth of structural information about the cancer genome produces biomarkers of sensitivity to radiation remains to be seen. Investigators are increasingly studying the subnuclear accumulation (ie, foci) of proteins in the DNA damage response (DDR), such as gamma-H2AX, 53BP1, or RAD51, as a surrogate of treatment sensitivity. Recent findings from preclinical studies have demonstrated the predictive potential of DDR foci by correlating foci with clinically relevant end points such as tumor control probability. Therefore, preclinical investigations of DDR foci responses are increasingly moving into cells and tissues from patients, which is the major focus of this review. The advantage of using DDR foci as functional biomarkers is that they can detect alterations in DNA repair due to various mechanisms. Moreover, they provide a global measurement of DDR network function without needing to know the identities of all the components, many of which remain unknown. Foci assays are thus expected to yield functional insight that may complement or supersede genomic information, thereby giving radiation oncologists unique opportunities to individualize cancer treatments in the near future.
Collapse
Affiliation(s)
- Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA.
| | - Liliana Gheorghiu
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA
| | - Qi Liu
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA
| | - Jason A Efstathiou
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA
| | - Lori J Wirth
- Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Mechthild Krause
- German Cancer Consortium (DKTK) Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology, Germany
| | - Cläre von Neubeck
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| |
Collapse
|
28
|
Kriegs M, Gurtner K, Can Y, Brammer I, Rieckmann T, Oertel R, Wysocki M, Dorniok F, Gal A, Grob TJ, Laban S, Kasten-Pisula U, Petersen C, Baumann M, Krause M, Dikomey E. Radiosensitization of NSCLC cells by EGFR inhibition is the result of an enhanced p53-dependent G1 arrest. Radiother Oncol 2015; 115:120-7. [DOI: 10.1016/j.radonc.2015.02.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 02/16/2015] [Accepted: 02/21/2015] [Indexed: 11/30/2022]
|
29
|
Krajewska M, Fehrmann RSN, de Vries EGE, van Vugt MATM. Regulators of homologous recombination repair as novel targets for cancer treatment. Front Genet 2015; 6:96. [PMID: 25852742 PMCID: PMC4367534 DOI: 10.3389/fgene.2015.00096] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/23/2015] [Indexed: 12/20/2022] Open
Abstract
To cope with DNA damage, cells possess a complex signaling network called the ‘DNA damage response’, which coordinates cell cycle control with DNA repair. The importance of this network is underscored by the cancer predisposition that frequently goes along with hereditary mutations in DNA repair genes. One especially important DNA repair pathway in this respect is homologous recombination (HR) repair. Defects in HR repair are observed in various cancers, including hereditary breast, and ovarian cancer. Intriguingly, tumor cells with defective HR repair show increased sensitivity to chemotherapeutic reagents, including platinum-containing agents. These observations suggest that HR-proficient tumor cells might be sensitized to chemotherapeutics if HR repair could be therapeutically inactivated. HR repair is an extensively regulated process, which depends strongly on the activity of various other pathways, including cell cycle pathways, protein-control pathways, and growth factor-activated receptor signaling pathways. In this review, we discuss how the mechanistic wiring of HR is controlled by cell-intrinsic or extracellular pathways. Furthermore, we have performed a meta-analysis on available genome-wide RNA interference studies to identify additional pathways that control HR repair. Finally, we discuss how these HR-regulatory pathways may provide therapeutic targets in the context of radio/chemosensitization.
Collapse
Affiliation(s)
- Małgorzata Krajewska
- Department of Medical Oncology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen Groningen, Netherlands
| | - Rudolf S N Fehrmann
- Department of Medical Oncology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen Groningen, Netherlands
| | - Elisabeth G E de Vries
- Department of Medical Oncology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen Groningen, Netherlands
| | - Marcel A T M van Vugt
- Department of Medical Oncology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen Groningen, Netherlands
| |
Collapse
|
30
|
Wang S, Ma Y, Wang P, Song Z, Liu B, Sun X, Zhang H, Yu J. Knockdown of PKM2 Enhances Radiosensitivity of Non-small cell Lung Cancer. Cell Biochem Biophys 2015; 73:21-6. [DOI: 10.1007/s12013-015-0567-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
31
|
Patel AL, Chen X, Wood ST, Stuart ES, Arcaro KF, Molina DP, Petrovic S, Furdui CM, Tsang AW. Activation of epidermal growth factor receptor is required for Chlamydia trachomatis development. BMC Microbiol 2014; 14:277. [PMID: 25471819 PMCID: PMC4269859 DOI: 10.1186/s12866-014-0277-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 10/27/2014] [Indexed: 01/08/2023] Open
Abstract
Background Chlamydia trachomatis (C. trachomatis) is a clinically significant human pathogen and one of the leading causative agents of sexually transmitted diseases. As obligate intracellular bacteria, C. trachomatis has evolved strategies to redirect the host’s signaling and resources for its own survival and propagation. Despite the clinical notoriety of Chlamydia infections, the molecular interactions between C. trachomatis and its host cell proteins remain elusive. Results In this study, we focused on the involvement of the host cell epidermal growth factor receptor (EGFR) in C. trachomatis attachment and development. A combination of molecular approaches, pharmacological agents and cell lines were used to demonstrate distinct functional requirements of EGFR in C. trachomatis infection. We show that C. trachomatis increases the phosphorylation of EGFR and of its downstream effectors PLCγ1, Akt and STAT5. While both EGFR and platelet-derived growth factor receptor-β (PDGFRβ) are partially involved in bacterial attachment to the host cell surface, it is only the knockdown of EGFR and not PDGFRβ that affects the formation of C. trachomatis inclusions in the host cells. Inhibition of EGFR results in small immature inclusions, and prevents C. trachomatis-induced intracellular calcium mobilization and the assembly of the characteristic F-actin ring at the inclusion periphery. By using complementary approaches, we demonstrate that the coordinated regulation of both calcium mobilization and F-actin assembly by EGFR are necessary for maturation of chlamydial inclusion within the host cells. A particularly important finding of this study is the co-localization of EGFR with the F-actin at the periphery of C. trachomatis inclusion where it may function to nucleate the assembly of signaling protein complexes for cytoskeletal remodeling required for C. trachomatis development. Conclusion Cumulatively, the data reported here connect the function of EGFR to C. trachomatis attachment and development in the host cells, and this could lead to new venues for targeting C. trachomatis infections and associated diseases. Electronic supplementary material The online version of this article (doi:10.1186/s12866-014-0277-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Achchhe L Patel
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27109, USA.
| | - Xiaofei Chen
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27109, USA.
| | - Scott T Wood
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27109, USA.
| | - Elizabeth S Stuart
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, 01003, USA.
| | - Kathleen F Arcaro
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, 01003, USA.
| | - Doris P Molina
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, 27109, USA.
| | - Snezana Petrovic
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, 27109, USA.
| | - Cristina M Furdui
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27109, USA.
| | - Allen W Tsang
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27109, USA.
| |
Collapse
|
32
|
Eren OO, Ozturk MA, Sonmez OU, Oyan B. Should we be more cautious about replacement of vitamin B12 in patients with cancer receiving cytotoxic chemotherapy? Med Hypotheses 2014; 83:726-9. [PMID: 25459143 DOI: 10.1016/j.mehy.2014.09.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 09/08/2014] [Accepted: 09/25/2014] [Indexed: 12/01/2022]
Abstract
Vitamin B12 (Cbl) deficiency may cause hematologic and neurologic dysfunction. Replacement therapy is effective in correcting hematologic abnormalities and improving neurologic symptoms. Cbl is known to have antioxidant activity. This antioxidant activity may antagonize the effects of chemotherapeutics (i.e. genotoxic effects of paclitaxel) on tumor DNA. We claim that Cbl replacement should be done more cautiously in patients receiving cytotoxic chemotherapy.
Collapse
Affiliation(s)
- Orhan Onder Eren
- Department of Medical Oncology, Yeditepe University Hospital, Istanbul, Turkey.
| | - Mehmet Akif Ozturk
- Department of Internal Medicine, Yeditepe University Hospital, Istanbul, Turkey
| | - Ozlem Uysal Sonmez
- Department of Medical Oncology, Yeditepe University Hospital, Istanbul, Turkey
| | - Basak Oyan
- Department of Medical Oncology, Yeditepe University Hospital, Istanbul, Turkey
| |
Collapse
|
33
|
Shen CJ, Sharma A, Vuong DV, Erler JT, Pruschy M, Broggini-Tenzer A. Ionizing radiation induces tumor cell lysyl oxidase secretion. BMC Cancer 2014; 14:532. [PMID: 25052686 PMCID: PMC4223762 DOI: 10.1186/1471-2407-14-532] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 07/16/2014] [Indexed: 11/15/2022] Open
Abstract
Background Ionizing radiation (IR) is a mainstay of cancer therapy, but irradiation can at times also lead to stress responses, which counteract IR-induced cytotoxicity. IR also triggers cellular secretion of vascular endothelial growth factor, transforming growth factor β and matrix metalloproteinases, among others, to promote tumor progression. Lysyl oxidase is known to play an important role in hypoxia-dependent cancer cell dissemination and metastasis. Here, we investigated the effects of IR on the expression and secretion of lysyl oxidase (LOX) from tumor cells. Methods LOX-secretion along with enzymatic activity was investigated in multiple tumor cell lines in response to irradiation. Transwell migration assays were performed to evaluate invasive capacity of naïve tumor cells in response to IR-induced LOX. In vivo studies for confirming IR-enhanced LOX were performed employing immunohistochemistry of tumor tissues and ex vivo analysis of murine blood serum derived from locally irradiated A549-derived tumor xenografts. Results LOX was secreted in a dose dependent way from several tumor cell lines in response to irradiation. IR did not increase LOX-transcription but induced LOX-secretion. LOX-secretion could not be prevented by the microtubule stabilizing agent patupilone. In contrast, hypoxia induced LOX-transcription, and interestingly, hypoxia-dependent LOX-secretion could be counteracted by patupilone. Conditioned media from irradiated tumor cells promoted invasiveness of naïve tumor cells, while conditioned media from irradiated, LOX- siRNA-silenced cells did not stimulate their invasive capacity. Locally applied irradiation to tumor xenografts also increased LOX-secretion in vivo and resulted in enhanced LOX-levels in the murine blood serum. Conclusions These results indicate a differential regulation of LOX-expression and secretion in response to IR and hypoxia, and suggest that LOX may contribute towards an IR-induced migratory phenotype in sublethally-irradiated tumor cells and tumor progression.
Collapse
Affiliation(s)
| | | | | | | | - Martin Pruschy
- Laboratory for Molecular Radiobiology, University Hospital Zurich, 8091 Zürich, Switzerland.
| | | |
Collapse
|
34
|
Deberne M, Levy A, Mondini M, Dessen P, Vivet S, Supiramaniam A, Vozenin MC, Deutsch E. The combination of the antiviral agent cidofovir and anti-EGFR antibody cetuximab exerts an antiproliferative effect on HPV-positive cervical cancer cell lines' in-vitro and in-vivo xenografts. Anticancer Drugs 2013; 24:599-608. [PMID: 23698251 DOI: 10.1097/cad.0b013e3283612a71] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cervical carcinoma remains a leading cause of female mortality worldwide and over 90% of these tumors contain the human papillomavirus (HPV) genome. Cross-talk between the epidermal growth factor receptor and HPV has been reported and is implicated in tumor progression. The combination of the antiviral compound cidofovir (Cd) with the monoclonal antibody antiepidermal growth factor receptor cetuximab (Cx) was evaluated. HPV-positive (HeLa and Me180) and HPV-negative (C33A, H460 and A549) human cancer cell lines were incubated with Cd (1-10 μg/ml) and/or Cx (10 or 50 μg/ml). The antitumor effect of the combination was assessed in vitro using a clonogenic survival assay, cell cycle analysis, and phospho-H2AX level. Tumor growth delay was assayed in vivo using xenograft models. A pan-genomic analysis was carried out to identify the genes expressed differentially in untreated HeLa HPV-positive cells versus cells treated by the Cd-Cx combination. The Cd-Cx combination inhibited proliferation in all the cell lines tested. The association of Cd and Cx exerted a synergistic activity on HPV-positive but not on HPV-negative cell lines. The combination delayed tumor growth of HPV-positive tumors in vivo; however, no efficacy was reported on HPV-negative C33A xenografts nor on cell lines treated by single-drug therapy. The combination induced an S-phase arrest associated with an enhanced level of the double-strand break in Me180 and HeLa cell lines. Gene profiling assays showed a significant differential modulation of genes in HeLa cell lines treated with the combination involving the EGR-1 transcription factor. The current data support a synergistic antiproliferative action of the Cd-Cx combination on HPV-related cervical tumors.
Collapse
Affiliation(s)
- Mélanie Deberne
- INSERM U1030, Molecular Radiotherapy, Paris XI University, France
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Stegeman H, Span PN, Cockx SC, Peters JPW, Rijken PFJW, van der Kogel AJ, Kaanders JHAM, Bussink J. EGFR-Inhibition Enhances Apoptosis in Irradiated Human Head and Neck Xenograft Tumors Independent of Effects on DNA Repair. Radiat Res 2013; 180:414-21. [DOI: 10.1667/rr3349.2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- H. Stegeman
- Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - P. N. Span
- Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - S. C. Cockx
- Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - J. P. W. Peters
- Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - P. F. J. W. Rijken
- Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - A. J. van der Kogel
- Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - J. H. A. M. Kaanders
- Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - J. Bussink
- Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
36
|
Baumann M, Bodis S, Dikomey E, van der Kogel A, Overgaard J, Rodemann HP, Wouters B. Molecular radiation biology/oncology at its best: Cutting edge research presented at the 13th International Wolfsberg Meeting on Molecular Radiation Biology/Oncology. Radiother Oncol 2013; 108:357-61. [DOI: 10.1016/j.radonc.2013.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 10/02/2013] [Indexed: 10/26/2022]
|
37
|
Pfäffle HN, Wang M, Gheorghiu L, Ferraiolo N, Greninger P, Borgmann K, Settleman J, Benes CH, Sequist LV, Zou L, Willers H. EGFR-activating mutations correlate with a Fanconi anemia-like cellular phenotype that includes PARP inhibitor sensitivity. Cancer Res 2013; 73:6254-63. [PMID: 23966292 DOI: 10.1158/0008-5472.can-13-0044] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In patients with lung cancer whose tumors harbor activating mutations in the EGF receptor (EGFR), increased responses to platinum-based chemotherapies are seen compared with wild-type cancers. However, the mechanisms underlying this association have remained elusive. Here, we describe a cellular phenotype of cross-linker sensitivity in a subset of EGFR-mutant lung cancer cell lines that is reminiscent of the defects seen in cells impaired in the Fanconi anemia pathway, including a pronounced G2-M cell-cycle arrest and chromosomal radial formation. We identified a defect downstream of FANCD2 at the level of recruitment of FAN1 nuclease and DNA interstrand cross-link (ICL) unhooking. The effect of EGFR mutation was epistatic with FANCD2. Consistent with the known role of FANCD2 in promoting RAD51 foci formation and homologous recombination repair (HRR), EGFR-mutant cells also exhibited an impaired RAD51 foci response to ICLs, but not to DNA double-strand breaks. EGFR kinase inhibition affected RAD51 foci formation neither in EGFR-mutant nor wild-type cells. In contrast, EGFR depletion or overexpression of mutant EGFR in wild-type cells suppressed RAD51 foci, suggesting an EGFR kinase-independent regulation of DNA repair. Interestingly, EGFR-mutant cells treated with the PARP inhibitor olaparib also displayed decreased FAN1 foci induction, coupled with a putative block in a late HRR step. As a result, EGFR-mutant lung cancer cells exhibited olaparib sensitivity in vitro and in vivo. Our findings provide insight into the mechanisms of cisplatin and PARP inhibitor sensitivity of EGFR-mutant cells, yielding potential therapeutic opportunities for further treatment individualization in this genetically defined subset of lung cancer.
Collapse
Affiliation(s)
- Heike N Pfäffle
- Authors' Affiliations: Laboratory of Cellular & Molecular Radiation Oncology, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Charlestown; Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston; and Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts; Research Oncology, Genentech, Inc., South San Francisco, California; Department of Pharmaceutical Biology, Ludwig Maximilian University of Munich, Munich; and Center for Oncology, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
XRCC3 and RAD51 expression are associated with clinical factors in breast cancer. PLoS One 2013; 8:e72104. [PMID: 23977219 PMCID: PMC3748017 DOI: 10.1371/journal.pone.0072104] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 07/05/2013] [Indexed: 11/19/2022] Open
Abstract
AIMS XRCC3 and RAD51 are two important members in homologous recombination repair pathway. This study was performed to detect the expressions of these two molecules in breast cancer and explore their correlations with clinicopathological factors. METHODS AND RESULTS Immunohistochemistry was used to detect protein expressions of XRCC3 and RAD51 in 248 cases of breast cancer tissue and 78 cases of adjacent non-cancerous tissue. Data showed that expressions for both XRCC3 and RAD51 were significantly increased in breast cancer. High XRCC3 expression was associated with large tumor size and positive PR and HER2 status, while high RAD51 expression was associated with axillary lymph node metastasis and positive PR and HER2 status. The result of multivariate analysis demonstrated that HER2, PR and RAD51 were significantly association with XRCC3. And besides XRCC3, axillary lymph node metastasis and PR were significantly correlated with RAD51. CONCLUSIONS XRCC3 and RAD51 were significantly associated with clinicopathological factors and they might play important roles in the development and progress of breast cancer.
Collapse
|
39
|
Laban S, Steinmeister L, Gleißner L, Grob TJ, Grénman R, Petersen C, Gal A, Knecht R, Dikomey E, Kriegs M. Sorafenib sensitizes head and neck squamous cell carcinoma cells to ionizing radiation. Radiother Oncol 2013; 109:286-92. [PMID: 23953412 DOI: 10.1016/j.radonc.2013.07.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 06/13/2013] [Accepted: 07/05/2013] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND PURPOSE There is a great need to improve the outcome of locoregionally advanced squamous cell carcinomas of the head and neck (HNSCC). Standard treatment includes a combination of surgery, radio- and chemotherapy. The addition of molecular targeting agents to conventional treatment may improve outcomes. In this study the Raf inhibitor sorafenib was used to increase the radiosensitivity of HNSCC cell lines. MATERIAL AND METHODS In a panel of six cell lines (A549, FaDu, UTSCC 60A, UTSCC 42A, UTSCC 42B, UTSCC 29) radiosensitivity was measured by colony formation assay and apoptosis and cell cycle analysis were performed by flow cytometry. DNA repair was analyzed by 53BP1 immunohistochemistry. RESULTS Sorafenib added prior to irradiation resulted in an increased cellular radiosensitivity (DEF0.5=1.11-1.84). Radiosensitization was not caused by an enhanced rate of apoptosis or cell cycle effects. In contrast, sorafenib was shown for the first time to block the repair of DNA double-strand breaks (DSB). CONCLUSION Our data suggest that sorafenib may be used to overcome the radioresistance of HNSCC through the inhibition of DSB repair.
Collapse
Affiliation(s)
- Simon Laban
- Department of Otorhinolaryngology and Head and Neck Surgery, University Medical Center Hamburg Eppendorf, Germany; Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg Eppendorf, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kryeziu K, Jungwirth U, Hoda MA, Ferk F, Knasmüller S, Karnthaler-Benbakka C, Kowol CR, Berger W, Heffeter P. Synergistic anticancer activity of arsenic trioxide with erlotinib is based on inhibition of EGFR-mediated DNA double-strand break repair. Mol Cancer Ther 2013; 12:1073-84. [PMID: 23548265 DOI: 10.1158/1535-7163.mct-13-0065] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Arsenic trioxide (ATO), one of the oldest remedies used in traditional medicine, was recently rediscovered as an anticancer drug and approved for treatment of relapsed acute promyelocytic leukemia. However, its activity against nonhematologic cancers is rather limited so far. Here, we show that inhibition of ATO-mediated EGF receptor (EGFR) activation can be used to potently sensitize diverse solid cancer types against ATO. Thus, combination of ATO and the EGFR inhibitor erlotinib exerted synergistic activity against multiple cancer cell lines. Subsequent analyses revealed that this effect was based on the blockade of ATO-induced EGFR phosphorylation leading to more pronounced G2-M arrest as well as enhanced and more rapid induction of apoptosis. Comparable ATO-sensitizing effects were also found with PI3K/AKT and mitogen-activated protein/extracellular signal-regulated kinase (MEK) inhibitors, suggesting an essential role of the EGFR-mediated downstream signaling pathway in cancer cell protection against ATO. H2AX staining and comet assay revealed that erlotinib significantly increases ATO-induced DNA double-strand breaks (DSB) well in accordance with a role of the EGFR signaling axis in DNA damage repair. Indeed, EGFR inhibition led to downregulation of several DNA DSB repair proteins such as Rad51 and Rad50 as well as reduced phosphorylation of BRCA1. Finally, the combination treatment of ATO and erlotinib was also distinctly superior to both monotreatments against the notoriously therapy-resistant human A549 lung cancer and the orthotopic p31 mesothelioma xenograft model in vivo. In conclusion, this study suggests that combination of ATO and EGFR inhibitors is a promising therapeutic strategy against various solid tumors harboring wild-type EGFR.
Collapse
Affiliation(s)
- Kushtrim Kryeziu
- Department of Medicine I, Institute of Cancer Research, Medical University Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Mladenov E, Magin S, Soni A, Iliakis G. DNA double-strand break repair as determinant of cellular radiosensitivity to killing and target in radiation therapy. Front Oncol 2013; 3:113. [PMID: 23675572 PMCID: PMC3650303 DOI: 10.3389/fonc.2013.00113] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 04/24/2013] [Indexed: 12/29/2022] Open
Abstract
Radiation therapy plays an important role in the management of a wide range of cancers. Besides innovations in the physical application of radiation dose, radiation therapy is likely to benefit from novel approaches exploiting differences in radiation response between normal and tumor cells. While ionizing radiation induces a variety of DNA lesions, including base damages and single-strand breaks, the DNA double-strand break (DSB) is widely considered as the lesion responsible not only for the aimed cell killing of tumor cells, but also for the general genomic instability that leads to the development of secondary cancers among normal cells. Homologous recombination repair (HRR), non-homologous end-joining (NHEJ), and alternative NHEJ, operating as a backup, are the major pathways utilized by cells for the processing of DSBs. Therefore, their function represents a major mechanism of radiation resistance in tumor cells. HRR is also required to overcome replication stress – a potent contributor to genomic instability that fuels cancer development. HRR and alternative NHEJ show strong cell-cycle dependency and are likely to benefit from radiation therapy mediated redistribution of tumor cells throughout the cell-cycle. Moreover, the synthetic lethality phenotype documented between HRR deficiency and PARP inhibition has opened new avenues for targeted therapies. These observations make HRR a particularly intriguing target for treatments aiming to improve the efficacy of radiation therapy. Here, we briefly describe the major pathways of DSB repair and review their possible contribution to cancer cell radioresistance. Finally, we discuss promising alternatives for targeting DSB repair to improve radiation therapy and cancer treatment.
Collapse
Affiliation(s)
- Emil Mladenov
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School Essen, Germany
| | | | | | | |
Collapse
|
42
|
Qiao B, Kerr M, Groselj B, Teo MTW, Knowles MA, Bristow RG, Phillips RM, Kiltie AE. Imatinib radiosensitizes bladder cancer by targeting homologous recombination. Cancer Res 2013; 73:1611-20. [PMID: 23302228 PMCID: PMC3590104 DOI: 10.1158/0008-5472.can-12-1170] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Radiotherapy is a major treatment modality used to treat muscle-invasive bladder cancer, with patient outcomes similar to surgery. However, radioresistance is a significant factor in treatment failure. Cell-free extracts of muscle-invasive bladder tumors are defective in nonhomologous end-joining (NHEJ), and this phenotype may be used clinically by combining radiotherapy with a radiosensitizing drug that targets homologous recombination, thereby sparing normal tissues with intact NHEJ. The response of the homologous recombination protein RAD51 to radiation is inhibited by the small-molecule tyrosine kinase inhibitor imatinib. Stable RT112 bladder cancer Ku knockdown (Ku80KD) cells were generated using short hairpin RNA technology to mimic the invasive tumor phenotype and also RAD51 knockdown (RAD51KD) cells to show imatinib's pathway selectivity. Ku80KD, RAD51KD, nonsilencing vector control, and parental RT112 cells were treated with radiation in combination with either imatinib or lapatinib, which inhibits NHEJ and cell survival assessed by clonogenic assay. Drug doses were chosen at approximately IC40 and IC10 (nontoxic) levels. Imatinib radiosensitized Ku80KD cells to a greater extent than RAD51KD or RT112 cells. In contrast, lapatinib radiosensitized RAD51KD and RT112 cells but not Ku80KD cells. Taken together, our findings suggest a new application for imatinib in concurrent use with radiotherapy to treat muscle-invasive bladder cancer. Cancer Res; 73(5); 1611-20. ©2012 AACR.
Collapse
Affiliation(s)
- Boling Qiao
- Section of Experimental Oncology, Leeds Institute of Molecular Medicine, Leeds, UK
| | - Martin Kerr
- Gray Institute for Radiation Oncology and Biology, University of Oxford, Oxford, UK
| | - Blaz Groselj
- Gray Institute for Radiation Oncology and Biology, University of Oxford, Oxford, UK
| | - Mark TW Teo
- Section of Epidemiology and Biostatistics, Leeds Institute of Molecular Medicine, Leeds, UK
| | - Margaret A Knowles
- Section of Experimental Oncology, Leeds Institute of Molecular Medicine, Leeds, UK
| | - Robert G Bristow
- Ontario Cancer Institute/Princess Margaret Hospital and University of Toronto, Toronto, Canada
| | - Roger M Phillips
- Institute of Cancer Therapeutics, University of Bradford, Bradford, UK
| | - Anne E Kiltie
- Gray Institute for Radiation Oncology and Biology, University of Oxford, Oxford, UK
| |
Collapse
|
43
|
Affiliation(s)
- M Baumann
- Klinik und Poliklinik für Strahlentherapie und Radioonkologie, Universitätsklinikum CG Carus, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden.
| | | | | |
Collapse
|
44
|
Nowsheen S, Cooper T, Stanley JA, Yang ES. Synthetic lethal interactions between EGFR and PARP inhibition in human triple negative breast cancer cells. PLoS One 2012; 7:e46614. [PMID: 23071597 PMCID: PMC3469581 DOI: 10.1371/journal.pone.0046614] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 09/04/2012] [Indexed: 12/15/2022] Open
Abstract
Few therapeutic options exist for the highly aggressive triple negative breast cancers (TNBCs). In this study, we report that a contextual synthetic lethality can be achieved both in vitro and in vivo with combined EGFR and PARP inhibition with lapatinib and ABT-888, respectively. The mechanism involves a transient DNA double strand break repair deficit induced by lapatinib and subsequent activation of the intrinsic pathway of apoptosis. Further dissection of the mechanism reveals that EGFR and BRCA1 can be found in the same protein complex, which is reduced by lapatinib. Interestingly, lapatinib also increases cytosolic BRCA1 and EGFR, away from their nuclear DNA repair substrates. Taken together, these results reveal a novel regulation of homologous recombination repair involving EGFR and BRCA1 interaction and alteration of subcellular localization. Additionally, a contextual synthetic lethality may exist between combined EGFR and PARP inhibitors.
Collapse
Affiliation(s)
- Somaira Nowsheen
- Department of Radiation Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
| | - Tiffiny Cooper
- Department of Radiation Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
| | - Jennifer A. Stanley
- Department of Radiation Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
| | - Eddy S. Yang
- Department of Radiation Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
- Department of Pharmacology and Toxicology, Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
| |
Collapse
|
45
|
Mund A, Schubert T, Staege H, Kinkley S, Reumann K, Kriegs M, Fritsch L, Battisti V, Ait-Si-Ali S, Hoffbeck AS, Soutoglou E, Will H. SPOC1 modulates DNA repair by regulating key determinants of chromatin compaction and DNA damage response. Nucleic Acids Res 2012; 40:11363-79. [PMID: 23034801 PMCID: PMC3526275 DOI: 10.1093/nar/gks868] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Survival time-associated plant homeodomain (PHD) finger protein in Ovarian Cancer 1 (SPOC1, also known as PHF13) is known to modulate chromatin structure and is essential for testicular stem-cell differentiation. Here we show that SPOC1 is recruited to DNA double-strand breaks (DSBs) in an ATM-dependent manner. Moreover, SPOC1 localizes at endogenous repair foci, including OPT domains and accumulates at large DSB repair foci characteristic for delayed repair at heterochromatic sites. SPOC1 depletion enhances the kinetics of ionizing radiation-induced foci (IRIF) formation after γ-irradiation (γ-IR), non-homologous end-joining (NHEJ) repair activity, and cellular radioresistance, but impairs homologous recombination (HR) repair. Conversely, SPOC1 overexpression delays IRIF formation and γH2AX expansion, reduces NHEJ repair activity and enhances cellular radiosensitivity. SPOC1 mediates dose-dependent changes in chromatin association of DNA compaction factors KAP-1, HP1-α and H3K9 methyltransferases (KMT) GLP, G9A and SETDB1. In addition, SPOC1 interacts with KAP-1 and H3K9 KMTs, inhibits KAP-1 phosphorylation and enhances H3K9 trimethylation. These findings provide the first evidence for a function of SPOC1 in DNA damage response (DDR) and repair. SPOC1 acts as a modulator of repair kinetics and choice of pathways. This involves its dose-dependent effects on DNA damage sensors, repair mediators and key regulators of chromatin structure.
Collapse
Affiliation(s)
- Andreas Mund
- Heinrich-Pette-Institute, Leibniz-Institute for Experimental Virology, Department of General Virology, Martinistrasse 52, 20251 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Alpha Particle Emitter Radiolabeled Antibody for Metastatic Cancer: What Can We Learn from Heavy Ion Beam Radiobiology? Antibodies (Basel) 2012. [DOI: 10.3390/antib1020124] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
47
|
Huber SM, Misovic M, Mayer C, Rodemann HP, Dittmann K. EGFR-mediated stimulation of sodium/glucose cotransport promotes survival of irradiated human A549 lung adenocarcinoma cells. Radiother Oncol 2012; 103:373-9. [PMID: 22516777 DOI: 10.1016/j.radonc.2012.03.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 02/13/2012] [Accepted: 03/14/2012] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND PURPOSE Solid tumor cells may adapt to an ischemic microenvironment by upregulation of sodium/glucose cotransport (SGLT) in the plasma membrane which supplies the tumor cell with glucose even at very low extracellular glucose concentration. Since SGLT activity has been shown to depend on the epithelial growth factor receptor (EGFR) and EGFR reportedly is activated by ionizing radiation, we tested for irradiation-induced SGLT activity. MATERIALS AND METHODS A549 lung adenocarcinoma and FaDu head and neck squamous cancer cells were irradiated with 0 and 4 Gy X-ray and electrogenic SGLT transport activity was recorded by patch clamp current clamp in the presence and absence of extracellular glucose (5mM), the SGLT inhibitor phlorizin (500 μM), and the inhibitor of the EGFR tyrosine kinase activity erlotinib (1 μM). In addition, the effect of phlorizin and erlotinib on glucose uptake and clonogenic survival was tested in irradiated and control cells by tracer flux and colony formation assays, respectively. RESULTS Irradiated A549 cells exhibited a significantly lower membrane potential 3h after irradiation than the control cells. Phlorizin, erlotinib or removal of extracellular glucose, hyperpolarized the irradiated A549 cells to a significantly higher extent than the control cells. Similarly, but less pronounced, glucose removal hyperpolarized irradiated FaDu cells. In addition, irradiated A549 cells exhibited a highly increased (3)H-glucose uptake which was sensitive to phlorizin. Finally, phlorizin radiosensitized the A549 and FaDu cells as evident from the colony formation assays. CONCLUSIONS Taken together, these data suggest an irradiation-stimulated and EGFR-mediated increase in SGLT-generated glucose uptake which is required for the survival of the genotoxically stressed tumor cells.
Collapse
Affiliation(s)
- Stephan M Huber
- Department of Radiation Oncology, University of Tübingen, Germany.
| | | | | | | | | |
Collapse
|
48
|
Aziz K, Nowsheen S, Pantelias G, Iliakis G, Gorgoulis VG, Georgakilas AG. Targeting DNA damage and repair: embracing the pharmacological era for successful cancer therapy. Pharmacol Ther 2011; 133:334-50. [PMID: 22197993 DOI: 10.1016/j.pharmthera.2011.11.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 11/30/2011] [Indexed: 12/19/2022]
Abstract
DNA is under constant assault from genotoxic agents which creates different kinds of DNA damage. The precise replication of the genome and the continuous surveillance of its integrity are critical for survival and the avoidance of carcinogenesis. Cells have evolved an arsenal of repair pathways and cell cycle checkpoints to detect and repair DNA damage. When repair fails, typically cell cycle progression is halted and apoptosis is initiated. Here, we review the different sources and types of DNA damage including DNA replication stress and oxidative stress, the repair pathways that cells utilize to repair damaged DNA, and discuss their biological significance, especially with reference to cancer induction and cancer therapy. We also describe the main methodologies currently used for the detection of DNA damage with their strengths and limitations. We conclude with an outline as to how this information can be used to identify novel pharmacological targets for DNA repair pathways or enhancers of DNA damage to develop improved treatment strategies that will benefit cancer patients.
Collapse
Affiliation(s)
- K Aziz
- Department of Radiation Oncology & Molecular Radiation Sciences, Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21231, USA
| | | | | | | | | | | |
Collapse
|