1
|
Zhao X, Huang S, Lin H, Choi JI, Zhu K, Simone CB, Yan X, Kang M. A Novel Dose Rate Optimization Method to Maximize Ultrahigh-Dose-Rate Coverage of Critical Organs at Risk Without Compromising Dosimetry Metrics in Proton Pencil Beam Scanning FLASH Radiation Therapy. Int J Radiat Oncol Biol Phys 2024; 120:1181-1191. [PMID: 38879087 DOI: 10.1016/j.ijrobp.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/12/2024] [Accepted: 06/09/2024] [Indexed: 07/10/2024]
Abstract
PURPOSE This study aimed to investigate a dose rate optimization framework based on the spot-scanning patterns to improve ultrahigh-dose-rate coverage of critical organs at risk (OARs) for proton pencil beam scanning (PBS) FLASH radiation therapy (ultrahigh dose-rate (often referred to as >40 Gy per second) delivery) and present implementation of a genetic algorithm (GA) method for spot sequence optimization to achieve PBS FLASH dose rate optimization under relatively low nozzle beam currents. METHODS AND MATERIALS First, a multifield FLASH plan was developed to meet all the dosimetric goals and optimal FLASH dose rate coverage by considering the deliverable minimum monitor unit constraint. Then, a GA method was implemented into the in-house treatment platform to maximize the dose rate by exploring the best spot delivery sequence. A phantom study was performed to evaluate the effectiveness of the dose rate optimization. Then, 10 consecutive plans for patients with lung cancer previously treated using PBS intensity-modulated proton therapy were optimized using 45 GyRBE in 3 fractions for both transmission and Bragg peak FLASH radiation therapy for further validation. The spot delivery sequence of each treatment field was optimized using this GA. The ultrahigh-dose-rate-volume histogram and dose rate coverage V40GyRBE/s were investigated to assess the efficacy of dose rate optimization quantitatively. RESULTS Using a relatively low monitor unit/spot of 150, corresponding to a nozzle beam current of 65 nA, the FLASH dose rate ratio V40GyRBE/s of the OAR contour of the core was increased from 0% to ∼60% in the phantom study. In the patients with lung cancer, the ultrahigh-dose-rate coverage V40GyRBE/s was improved from 15.2%, 15.5%, 17.6%, and 16.0% before the delivery sequence optimization to 31.8%, 43.5%, 47.6%, and 30.5% after delivery sequence optimization in the lungs-GTV (gross tumor volume), spinal cord, esophagus, and heart (for all, P < .001). When the beam current increased to 130 nA, V40GyRBE/s was improved from 45.1%, 47.1%, 51.2%, and 51.4% to 65.3%, 83.5%, 88.1%, and 69.4% (P < .05). The averaged V40GyRBE/s for the target and OARs increased from 12.9% to 41.6% and 46.3% to 77.5% for 65 and 130 nA, respectively, showing significant improvements based on a clinical proton system. After optimizing the dose rate for the Bragg peak FLASH technique with a beam current of 340 nA, the V40GyRBE/s values for the lung GTV, spinal cord, esophagus, and heart were increased by 8.9%, 15.8%, 22%, and 20.8%, respectively. CONCLUSIONS An optimal plan quality can be maintained as the spot delivery sequence optimization is a separate independent process after the plan optimization. Both the phantom and patient results demonstrated that novel spot delivery sequence optimization can effectively improve the ultrahigh-dose-rate coverage for critical OARs, which can potentially be applied in clinical practice for better OARs-sparing efficacy.
Collapse
Affiliation(s)
- Xingyi Zhao
- State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, Center for Applied Physics and Technology, Peking University, Beijing, China; New York Proton Center, New York, New York
| | - Sheng Huang
- Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Haibo Lin
- New York Proton Center, New York, New York; Departments of Radiation Oncology and Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - J Isabelle Choi
- New York Proton Center, New York, New York; Departments of Radiation Oncology and Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kun Zhu
- State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, Center for Applied Physics and Technology, Peking University, Beijing, China
| | - Charles B Simone
- New York Proton Center, New York, New York; Departments of Radiation Oncology and Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Xueqing Yan
- State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, Center for Applied Physics and Technology, Peking University, Beijing, China.
| | - Minglei Kang
- New York Proton Center, New York, New York; Departments of Radiation Oncology and Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
2
|
Renard S, Parent L, de Marzi L, Tsoutsou P, Kirova Y. Electron radiation therapy: Back to the future? Cancer Radiother 2024; 28:553-559. [PMID: 39389842 DOI: 10.1016/j.canrad.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/18/2024] [Accepted: 07/20/2024] [Indexed: 10/12/2024]
Abstract
Electron radiotherapy has long been preferred to photons for the treatment of superficial lesions because of its physical characteristics (high dose at the surface, rapid decrease in depth). Other characteristics (penumbra, heterogeneity on an oblique or irregular surface) make them difficult to use. In most indications (skin cancers, head and neck, medulloblastoma), with technical progress, in some cases they have been replaced by intensity-modulated conformal radiotherapy, brachytherapy and contact therapy. Other indications (drainage of mesotheliomas or irradiation of benign lesions) have disappeared. The low frequency of use leads to problems of safety and cost-effectiveness. However, modern photon radiotherapy techniques are still less effective than electrons in specific indications such as total skin irradiation (mycosis fungoides) or certain thin chest wall irradiations after total mastectomy, reirradiation or paediatric treatments without protons. Flash therapy, initiated by electrons, has been developed over the last 10 years, providing high-dose irradiation in an extremely short time. Initial results show good efficacy, with fewer side effects than with conventional radiotherapy. These results are leading to clinical technological developments on a larger scale. Although it has been replaced in most indications by more modern techniques, electron radiotherapy remains essential for targeted indications in specialised centres. The emergence of flash therapy will lead to new indications, on machines equipped with this new technology, which have yet to be defined and are currently the responsibility of specialised teams.
Collapse
Affiliation(s)
- Sophie Renard
- Department of Radiation Oncology, Institut de cancérologie de Lorraine, 6, avenue de Bourgogne, 54500 Vandœuvre-lès-Nancy, France.
| | - Laure Parent
- Medical Physics Department, Oncopole Claudius-Regaud, Institut universitaire du cancer de Toulouse, 1, avenue Irène-Joliot-Curie, 31059 Toulouse, France
| | - Ludovic de Marzi
- Radiation Oncology Department, institut Curie, université PSL, université Paris Saclay, Inserm Lito U1288, campus universitaire, bâtiment 101, 91898 Orsay, France
| | - Pelagia Tsoutsou
- Department of Radiation Oncology, Hôpitaux universitaires de Genève (HUG), faculté de médecine, université de Genève, avenue de la Roseraie 53, 1205 Geneva, Switzerland
| | - Youlia Kirova
- Department of Radiation Oncology, institut Curie, 26, rue d'Ulm, 75005 Paris, France; Université Versailles-Saint-Quentin, 78000 Versailles, France
| |
Collapse
|
3
|
Scarmelotto A, Delprat V, Michiels C, Lucas S, Heuskin AC. The oxygen puzzle in FLASH radiotherapy: A comprehensive review and experimental outlook. Clin Transl Radiat Oncol 2024; 49:100860. [PMID: 39381632 PMCID: PMC11458961 DOI: 10.1016/j.ctro.2024.100860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 10/10/2024] Open
Abstract
FLASH radiotherapy is attracting increasing interest because it maintains tumor control while inflicting less damage to normal tissues compared to conventional radiotherapy. This sparing effect, the so-called FLASH effect, is achieved when radiation is delivered at ultra-high dose rates (≥40 Gy/s). Although the FLASH effect has already been demonstrated in several preclinical models, a complete mechanistic description explaining why tumors and normal tissues respond differently is still missing. None of the current hypotheses fully explains the experimental evidence. A common point between many of these is the role of oxygen, which is described as a major factor, either through transient hypoxia in the form of dissolved molecules, or reactive oxygen species (ROS). Therefore, this review focuses on both forms of this molecule, retracing old and more recent theories, while proposing new mechanisms that could provide a complete description of the FLASH effect based on preclinical and experimental evidence. In addition, this manuscript describes a set of experiments designed to provide the FLASH community with new tools for exploring the post-irradiation fate of ROS and their potential biological implications.
Collapse
Affiliation(s)
- Andrea Scarmelotto
- Laboratory for Analysis by Nuclear Reaction (LARN), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Victor Delprat
- Laboratory for Analysis by Nuclear Reaction (LARN), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Carine Michiels
- Unité de Recherche en Biologie Cellulaire (URBC), Namur Research Institute For Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Stéphane Lucas
- Laboratory for Analysis by Nuclear Reaction (LARN), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
- Ion Beam Application (IBA), Chemin du Cyclotron, 6, B-1348 Louvain-La-Neuve, Belgium
| | - Anne-Catherine Heuskin
- Laboratory for Analysis by Nuclear Reaction (LARN), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| |
Collapse
|
4
|
Wang S, Gonzalez G, Owen DR, Sun L, Liu Y, Zwart T, Chen Y, Xiang L. Toward real-time, volumetric dosimetry for FLASH-capable clinical synchrocyclotrons using protoacoustic imaging. Med Phys 2024; 51:8496-8505. [PMID: 39073707 DOI: 10.1002/mp.17318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Radiation delivery with ultra-high dose rate (FLASH) radiotherapy (RT) holds promise for improving treatment outcomes and reducing side effects but poses challenges in radiation delivery accuracy due to its ultra-high dose rates. This necessitates the development of novel imaging and verification technologies tailored to these conditions. PURPOSE Our study explores the effectiveness of proton-induced acoustic imaging (PAI) in tracking the Bragg peak in three dimensions and in real time during FLASH proton irradiations, offering a method for volumetric beam imaging at both conventional and FLASH dose rates. METHODS We developed a three-dimensional (3D) PAI technique using a 256-element ultrasound detector array for FLASH dose rate proton beams. In the study, we tested protoacoustic signal with a beamline of a FLASH-capable synchrocyclotron, setting the distal 90% of the Bragg peak around 35 mm away from the ultrasound array. This configuration allowed us to assess various total proton radiation doses, maintaining a consistent beam output of 21 pC/pulse. We also explored a spectrum of dose rates, from 15 Gy/s up to a FLASH rate of 48 Gy/s, by administering a set number of pulses. Furthermore, we implemented a three-dot scanning beam approach to observe the distinct movements of individual Bragg peaks using PAI. All these procedures utilized a proton beam energy of 180 MeV to achieve the maximum possible dose rate. RESULTS Our findings indicate a strong linear relationship between protoacoustic signal amplitudes and delivered doses (R2 = 0.9997), with a consistent fit across different dose rates. The technique successfully provided 3D renderings of Bragg peaks at FLASH rates, validated through absolute Gamma index values. CONCLUSIONS The protoacoustic system demonstrates effectiveness in 3D visualization and tracking of the Bragg peak during FLASH proton therapy, representing a notable advancement in proton therapy quality assurance. This method promises enhancements in protoacoustic image guidance and real-time dosimetry, paving the way for more accurate and effective treatments in ultra-high dose rate therapy environments.
Collapse
Affiliation(s)
- Siqi Wang
- The Department of Biomedical Engineering, University of California, Irvine, California, USA
| | - Gilberto Gonzalez
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | | - Leshan Sun
- The Department of Biomedical Engineering, University of California, Irvine, California, USA
| | - Yan Liu
- Mevion Medical Systems, Littleton, Massachusetts, USA
| | | | - Yong Chen
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Liangzhong Xiang
- The Department of Biomedical Engineering, University of California, Irvine, California, USA
- Beckman Laser Institute & Medical Clinic, University of California, Irvine, California, USA
- Department of Radiological Sciences, University of California, Irvine, California, USA
| |
Collapse
|
5
|
Guo L, Medin PM, Wang KKH. A microscopic oxygen transport model for ultra-high dose rate radiotherapy in vivo: The impact of physiological conditions on FLASH effect. Med Phys 2024; 51:8623-8637. [PMID: 39284344 DOI: 10.1002/mp.17398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Ultra-high dose rate irradiation (≥40 Gy/s, FLASH) has been shown to reduce normal tissue toxicity, while maintaining tumor control compared to conventional dose-rate radiotherapy. The radiolytic oxygen (O2) depletion (ROD) resulting from FLASH has been proposed to explain the normal tissue protection effect; however, in vivo experiments have not confirmed that FLASH induced global tissue hypoxia. Nonetheless, the experiments reported are based on volume-averaged measurement, which have inherent limitations in detecting microscopic phenomena, including the potential preservation of stem cells niches due to local FLASH-induced O2 depletion. Computational modeling offers a complementary approach to understand the ROD caused by FLASH at the microscopic level. PURPOSE We developed a comprehensive model to describe the spatial and temporal dynamics of O2 consumption and transport in response to irradiation in vivo. The change of oxygen enhancement ratio (OER) was used to quantify and investigate the FLASH effect as a function of physiological and radiation parameters at microscopic scale. METHODS We considered time-dependent O2 supply and consumption in a 3D cylindrical geometry, incorporating blood flow linking the O2 concentration ([O2]) in the capillary to that within the tissue through the Hill equation, radial and axial diffusion of O2, metabolic and zero-order radiolytic O2 consumption, and a pulsed radiation structure. Time-evolved distributions of [O2] were obtained by numerically solving perfusion-diffusion equations. The model enables the computation of dynamic O2 distribution and the relative change of OER (δROD) under various physiological and radiation conditions in vivo. RESULTS Initial [O2] level and the subsequent changes during irradiation determined δROD distribution, which strongly depends on physiological parameters, i.e., intercapillary spacing, ultimately determining the tissue area with enhanced radioresistance. We observed that the δROD/FLASH effect is affected by and sensitive to the interplay effect among physiological and radiation parameters. It renders that the FLASH effect can be tissue environment dependent. The saturation of FLASH normal tissue protection upon dose and dose rate was shown. Beyond ∼60 Gy/s, no significant decrease in radiosensitivity within tissue region was observed. In turn, for a given dose rate, the change of radiosensitivity became saturated after a certain dose level. Pulse structures with the same dose and instantaneous dose rate but with different delivery times were shown to have distinguishable δROD thus tissue sparing, suggesting the average dose rate could be a metric assessing the FLASH effect and demonstrating the capability of our model to support experimental findings. CONCLUSION On a macroscopic scale, the modeling results align with the experimental findings in terms of dose and dose rate thresholds, and it also indicates that pulse structure can vary the FLASH effect. At the microscopic level, this model enables us to examine the spatially resolved FLASH effect based on physiological and irradiation parameters. Our model thus provides a complementary approach to experimental methods for understanding the underlying mechanism of FLASH radiotherapy. Our results show that physiological conditions can potentially determine the FLASH efficacy in tissue protection. The FLASH effect may be observed under optimal combination of physiological parameters, not limited to radiation conditions alone.
Collapse
Affiliation(s)
- Lixiang Guo
- Biomedical Imaging and Radiation Technology Laboratory (BIRTLab), Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Paul M Medin
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ken Kang-Hsin Wang
- Biomedical Imaging and Radiation Technology Laboratory (BIRTLab), Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
6
|
Harrison N, Charyyev S, Oancea C, Stanforth A, Gelover E, Zhou S, Dynan WS, Zhang T, Biegalski S, Lin L. Characterizing devices for validation of dose, dose rate, and LET in ultra high dose rate proton irradiations. Med Phys 2024; 51:8411-8422. [PMID: 39153223 DOI: 10.1002/mp.17359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/19/2024] [Accepted: 07/31/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Ultra high dose rate (UHDR) radiotherapy using ridge filter is a new treatment modality known as conformal FLASH that, when optimized for dose, dose rate (DR), and linear energy transfer (LET), has the potential to reduce damage to healthy tissue without sacrificing tumor killing efficacy via the FLASH effect. PURPOSE Clinical implementation of conformal FLASH proton therapy has been limited by quality assurance (QA) challenges, which include direct measurement of UHDR and LET. Voxel DR distributions and LET spectra at planning target margins are paramount to the DR/LET-related sparing of organs at risk. We hereby present a methodology to achieve experimental validation of these parameters. METHODS Dose, DR, and LET were measured for a conformal FLASH treatment plan involving a 250-MeV proton beam and a 3D-printed ridge filter designed to uniformly irradiate a spherical target. We measured dose and DR simultaneously using a 4D multi-layer strip ionization chamber (MLSIC) under UHDR conditions. Additionally, we developed an "under-sample and recover (USRe)" technique for a high-resolution pixelated semiconductor detector, Timepix3, to avoid event pile-up and to correct measured LET at high-proton-flux locations without undesirable beam modifications. Confirmation of these measurements was done using a MatriXX PT detector and by Monte Carlo (MC) simulations. RESULTS MC conformal FLASH computed doses had gamma passing rates of >95% (3 mm/3% criteria) when compared to MatriXX PT and MLSIC data. At the lateral margin, DR showed average agreement values within 0.3% of simulation at 100 Gy/s and fluctuations ∼10% at 15 Gy/s. LET spectra in the proximal, lateral, and distal margins had Bhattacharyya distances of <1.3%. CONCLUSION Our measurements with the MLSIC and Timepix3 detectors shown that the DR distributions for UHDR scenarios and LET spectra using USRe are in agreement with simulations. These results demonstrate that the methodology presented here can be used effectively for the experimental validation and QA of FLASH treatment plans.
Collapse
Affiliation(s)
| | | | | | | | | | - Shuang Zhou
- Washington University of St. Louis, Saint Louis, Missouri, USA
| | | | - Tiezhi Zhang
- Washington University of St. Louis, Saint Louis, Missouri, USA
| | | | | |
Collapse
|
7
|
Hart A, Dudzic JP, Clarke JW, Eby J, Perlman SJ, Bazalova-Carter M. High-throughput, low-cost FLASH: irradiation of Drosophila melanogaster with low-energy X-rays using time structures spanning conventional and ultrahigh dose rates. JOURNAL OF RADIATION RESEARCH 2024:rrae079. [PMID: 39422537 DOI: 10.1093/jrr/rrae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/16/2024] [Indexed: 10/19/2024]
Abstract
FLASH radiotherapy is an emerging technique in radiation oncology that may improve clinical outcomes by reducing normal tissue toxicities. The physical radiation characteristics needed to induce the radiobiological benefits of FLASH are still an active area of investigation. To determine the dose rate, range of doses and delivery time structure necessary to trigger the FLASH effect, Drosophila melanogaster were exposed to ultrahigh dose rate (UHDR) or conventional radiotherapy dose rate (CONV) 120-kVp X-rays. A conventional X-ray tube outfitted with a shutter system was used to deliver 17- to 44-Gy doses to third-instar D. melanogaster larvae at both UHDR (210 Gy/s) and CONV (0.2-0.4 Gy/s) dose rates. The larvae were then tracked through development to adulthood and scored for eclosion and lifespan. Larvae exposed to UHDR eclosed at higher rates and had longer median survival as adults compared to those treated with CONV at the same doses. Eclosion rates at 24 Gy were 68% higher for the UHDR group (P < 0.05). Median survival from 22 Gy was >22 days for UHDR and 17 days for CONV (P < 0.01). Two normal tissue-sparing effects were observed for D. melanogaster irradiated with UHDR 120-kVp X-rays. The effects appeared only at intermediate doses and may be useful in establishing the dose range over which the benefits of FLASH can be obtained. This work also demonstrates the usefulness of a high-throughput fruit fly model and a low-cost X-ray tube system for radiobiological FLASH research.
Collapse
Affiliation(s)
- Alexander Hart
- Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Jan P Dudzic
- Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Jameson W Clarke
- Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Jonathan Eby
- Institute of Biomedical Engineering, University of Toronto, 164 College St. Toronto, Ontario M5S 3E2, Canada
| | - Steve J Perlman
- Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Magdalena Bazalova-Carter
- Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| |
Collapse
|
8
|
González-Crespo I, Gómez F, López Pouso Ó, Pardo-Montero J. An in-silico study of conventional and FLASH radiotherapy iso-effectiveness: potential impact of radiolytic oxygen depletion on tumor growth curves and tumor control probability. Phys Med Biol 2024; 69:215016. [PMID: 39357538 DOI: 10.1088/1361-6560/ad8291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 10/01/2024] [Indexed: 10/04/2024]
Abstract
Objective. This work aims to investigate the iso-effectiveness of conventional and FLASH radiotherapy on tumors through in-silico mathematical models. We focused on the role of radiolytic oxygen depletion (ROD), which has been argued as a possible factor to explain the FLASH effect.Approach. We used a spatiotemporal reaction-diffusion model, including ROD, to simulate tumor oxygenation and response. From those oxygen distributions we obtained surviving fractions (SFs) using the linear-quadratic (LQ) model with the oxygen enhancement ratios (OERs). We then employed the calculated SFs to describe the evolution of preclinical tumor volumes through a mathematical model of tumor response, and we also extrapolated those results to calculate tumor control probabilities (TCPs) using the Poisson-LQ approach.Main results. Our study suggests that the ROD effect may cause differences in SF between FLASH and conventional radiotherapy, especially in lowα/βandpoorly oxygenatedcells. However, a statistical analysis showed that these changes in SF generally do not result in significant differences in the evolution of preclinical tumor growth curves when the sample size is small, because such differences in SF may not be noticeable in the heterogeneity of the population of animals. Nonetheless, when extrapolating this effect to TCP curves, we observed important differences between both techniques (TCP is lower in FLASH radiotherapy). When analyzing the response of tumors with heterogeneous oxygenations, differences in TCP are more important forwell oxygenatedtumors. This apparent contradiction with the results obtained for homogeneously oxygenated cells is explained by the complex interplay between the heterogeneity of tumor oxygenation, the OER effect, and the ROD effect.Significance. This study supports the experimentally observed iso-effectiveness of FLASH and conventional radiotherapy when analyzing the volume evolution of preclinical tumors (that are far from control). However, this study also hints that tumor growth curves may be less sensitive to small variations in SF than tumor control probability: ROD may lead to increased SF in FLASH radiotherapy, which while not large enough to cause significant differences in tumor growth curves, could lead to important differences in clinical TCPs. Nonetheless, it cannot be discarded that other effects not modeled in this work, like radiation-induced immune effects, can contribute to tumor control and maintain the iso-effectiveness of FLASH radiotherapy. The study of tumor growth curves may not be the ideal experiment to test the iso-effectiveness of FLASH, and experiments reporting TCP orD50may be preferred.
Collapse
Affiliation(s)
- I González-Crespo
- Group of Medical Physics and Biomathematics, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
- Department of Applied Mathematics, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - F Gómez
- Department of Particle Physics, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ó López Pouso
- Group of Medical Physics and Biomathematics, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
- Department of Applied Mathematics, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Galician Centre for Mathematical Research and Technology (CITMAga), Santiago de Compostela, Spain
| | - J Pardo-Montero
- Group of Medical Physics and Biomathematics, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
- Department of Medical Physics, Complexo Hospitalario Universitario de Santiago, Santiago de Compostela, Spain
| |
Collapse
|
9
|
Liu K, Waldrop T, Aguilar E, Mims N, Neill D, Delahoussaye A, Li Z, Swanson D, Lin SH, Koong AC, Taniguchi CM, Loo BW, Mitra D, Schüler E. Redefining FLASH RT: the impact of mean dose rate and dose per pulse in the gastrointestinal tract. Int J Radiat Oncol Biol Phys 2024:S0360-3016(24)03466-7. [PMID: 39424078 DOI: 10.1016/j.ijrobp.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/07/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND The understanding of how varying radiation beam parameter settings affect the induction and magnitude of the FLASH effect remains limited. PURPOSE We sought to systematically evaluate how the magnitude of radiation-induced gastrointestinal (GI) toxicity (RIGIT) depends on the interplay between mean dose rate (MDR) and dose per pulse (DPP). METHODS C57BL/6J mice received total abdominal irradiation (11-14 Gy, single fraction) through either conventional irradiation (low DPP and low MDR, CONV) or through various combinations of DPP and MDR up to ultra-high-dose-rate (UHDR) beam conditions. DPPs ranging from 1 Gy to 6 Gy were evaluated while the total dose and MDR (>100 Gy/s) were kept constant; the effects of MDR were evaluated for the range 0.3-1440 Gy/s while the total dose and DPP were kept constant. RIGIT was quantified in non-tumor-bearing mice through the regenerating crypt assay and survival assessment. Tumor response was evaluated through tumor growth delay. RESULTS Within each tested total dose using a constant MDR (>100 Gy/s), increasing DPP led to an increase in sparing (an increase in number of regenerating crypts), with a more prominent effect seen at 12 and 14 Gy TAI. Interestingly, at DPPs of >4 Gy, similar level of crypt sparing was demonstrated irrespective of the MDR used (from 0.3 to 1440 Gy/s). At a fixed high DPP of 4.7 Gy, survival was equivalently improved relative to CONV irrespective of MDR. However, at a lower DPP of 0.93 Gy, a MDR of 104 Gy/s produced a greater survival effect compared to 0.3 Gy/s. We also confirmed that high DPP, regardless of MDR, produced the same magnitude of tumor growth delay relative to CONV using a clinically relevant melanoma mouse model. CONCLUSIONS This study demonstrates the strong influence that the beam parameter settings have on the magnitude of the FLASH effect. Both high DPP and UHDR appeared independently sufficient to produce FLASH sparing of GI toxicity, while isoeffective tumor response was maintained across all conditions.
Collapse
Affiliation(s)
- Kevin Liu
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Trey Waldrop
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Edgardo Aguilar
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nefetiti Mims
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Denae Neill
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Abagail Delahoussaye
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ziyi Li
- Division of Basic Sciences, Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| | - David Swanson
- Division of Basic Sciences, Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Steven H Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Albert C Koong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cullen M Taniguchi
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Billy W Loo
- Department of Radiation Oncology & Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA USA
| | - Devarati Mitra
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Emil Schüler
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA.
| |
Collapse
|
10
|
Ma Y, Zhang W, Zhao Z, Lv J, Chen J, Yan X, Lin X, Zhang J, Wang B, Gao S, Xiao J, Yang G. Current views on mechanisms of the FLASH effect in cancer radiotherapy. Natl Sci Rev 2024; 11:nwae350. [PMID: 39479528 PMCID: PMC11523052 DOI: 10.1093/nsr/nwae350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 11/02/2024] Open
Abstract
FLASH radiotherapy (FLASH-RT) is a new modality of radiotherapy that delivers doses with ultra-high dose rates. The FLASH effect was defined as the ability of FLASH-RT to suppress tumor growth while sparing normal tissues. Although the FLASH effect has been proven to be valid in various models by different modalities of irradiation and clinical trials of FLASH-RT have achieved promising initial success, the exact underlying mechanism is still unclear. This article summarizes mainstream hypotheses of the FLASH effect at physicochemical and biological levels, including oxygen depletion and free radical reactions, nuclear and mitochondria damage, as well as immune response. These hypotheses contribute reasonable explanations to the FLASH effect and are interconnected according to the chronological order of the organism's response to ionizing radiation. By collating the existing consensus, evidence and hypotheses, this article provides a comprehensive overview of potential mechanisms of the FLASH effect and practical guidance for future investigation in the field of FLASH-RT.
Collapse
Affiliation(s)
- Yuqi Ma
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - Wenkang Zhang
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - Ziming Zhao
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - Jianfeng Lv
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - Junyi Chen
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - Xueqin Yan
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - XiaoJi Lin
- Oncology Discipline Group, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325003, China
| | - Junlong Zhang
- Beijing National Laboratory of Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Bingwu Wang
- Beijing National Laboratory of Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Song Gao
- Beijing National Laboratory of Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Jie Xiao
- KIRI Precision Particle Therapy Flash Technologies Research Center, Guangzhou 510700, China
| | - Gen Yang
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| |
Collapse
|
11
|
Chaikh A, Édouard M, Huet C, Milliat F, Villagrasa C, Isambert A. Towards clinical application of ultra-high dose rate radiotherapy and the FLASH effect: Challenges and current status. Cancer Radiother 2024; 28:463-473. [PMID: 39304401 DOI: 10.1016/j.canrad.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 09/22/2024]
Abstract
Ultra-high dose rate external beam radiotherapy (UHDR-RT) uses dose rates of several tens to thousands of Gy/s, compared with the dose rate of the order of a few Gy/min for conventional radiotherapy techniques, currently used in clinical practice. The use of such dose rate is likely to improve the therapeutic index by obtaining a radiobiological effect, known as the "FLASH" effect. This would maintain tumor control while enhancing tissues protection. To date, this effect has been achieved using beams of electrons, photons, protons, and heavy ions. However, the conditions required to achieve this "FLASH" effect are not well defined, and raise several questions, particularly with regard to the definition of the prescription, including dose fractionation, irradiated volume and the temporal structure of the pulsed beam. In addition, the dose delivered over a very short period induces technical challenges, particularly in terms of detectors, which must be mastered to guarantee safe clinical implementation. IRSN has carried out an in-depth literature review of the UHDR-RT technique, covering various aspects relating to patient radiation protection: the radiobiological mechanisms associated with the FLASH effect, the used temporal structure of the UHDR beams, accelerators and dose control, the properties of detectors to be used with UHDR beams, planning, clinical implementation, and clinical studies already carried out or in progress.
Collapse
Affiliation(s)
| | | | | | - Fabien Milliat
- IRSN/PSE-SANTÉ-SERAMED/LRMed, Fontenay-aux-Roses, France
| | | | | |
Collapse
|
12
|
Gesualdi F, de Marzi L, Dutreix M, Favaudon V, Fouillade C, Heinrich S. A multidisciplinary view of flash irradiation. Cancer Radiother 2024; 28:453-462. [PMID: 39343695 DOI: 10.1016/j.canrad.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 10/01/2024]
Abstract
The delivery of ultra-high dose rates of radiation, called flash irradiation or flash-RT, has emerged as a new modality of radiotherapy shaking up the paradigm of proportionality of effect and dose whatever the method of delivery of the radiation. The hallmark of flash-RT is healthy tissue sparing from the side effects of radiation without decrease of the antitumor efficiency in animal models. In this review we will define its specificities, the molecular mechanisms underlying the flash effect and the ongoing developments to bring this new modality to patient treatment.
Collapse
Affiliation(s)
- Flavia Gesualdi
- Institut Curie, Hospital Division, centre de protonthérapie d'Orsay, université Paris-Saclay, université PSL, centre universitaire, 91948 Orsay cedex, France
| | - Ludovic de Marzi
- Institut Curie, Hospital Division, centre de protonthérapie d'Orsay, université Paris-Saclay, université PSL, centre universitaire, 91948 Orsay cedex, France; Institut Curie, université PSL, université Paris-Saclay, Inserm Lito U1288, centre universitaire, 91898 Orsay, France
| | - Marie Dutreix
- Institut Curie, Research Division, Inserm U 1021-CNRS UMR 3347, université Paris-Saclay, université PSL, centre universitaire, 91401 Orsay cedex, France
| | - Vincent Favaudon
- Institut Curie, Research Division, Inserm U 1021-CNRS UMR 3347, université Paris-Saclay, université PSL, centre universitaire, 91401 Orsay cedex, France
| | - Charles Fouillade
- Institut Curie, Research Division, Inserm U 1021-CNRS UMR 3347, université Paris-Saclay, université PSL, centre universitaire, 91401 Orsay cedex, France
| | - Sophie Heinrich
- Institut Curie, Research Division, Inserm U 1021-CNRS UMR 3347, université Paris-Saclay, université PSL, centre universitaire, 91401 Orsay cedex, France.
| |
Collapse
|
13
|
Marion S, Ghazal L, Roth T, Shanahan K, Thom B, Chino F. Prioritizing Patient-Centered Care in a World of Increasingly Advanced Technologies and Disconnected Care. Semin Radiat Oncol 2024; 34:452-462. [PMID: 39271280 DOI: 10.1016/j.semradonc.2024.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
With more treatment options in oncology lead to better outcomes and more favorable side effect profiles, patients are living longer-with higher quality of life-than ever, with a growing survivor population. As the needs of patients and providers evolve, and technology advances, cancer care is subject to change. This review explores the myriad of changes in the current oncology landscape with a focus on the patient perspective and patient-centered care.
Collapse
Affiliation(s)
- Sarah Marion
- Department of Internal Medicine, The University of Pennsylvania Health System, Philadelphia, PA
| | - Lauren Ghazal
- University of Rochester, School of Nursing, Rochester, NY
| | - Toni Roth
- Memorial Sloan Kettering Cancer Center, Medical Physics, New York, NY
| | | | - Bridgette Thom
- University of North Carolina, School of Social Work, Chapel Hill, NC
| | - Fumiko Chino
- Memorial Sloan Kettering Cancer Center, Radiation Oncology, New York, NY.
| |
Collapse
|
14
|
Cheng C, Xu L, Jing H, Selvaraj B, Lin H, Pennock M, Chhabra AM, Hasan S, Zhai H, Zhang Y, Nie K, Bakst RL, Kabarriti R, Choi JI, Lee NY, Simone CB, Kang M, Wu H. The Potential and Challenges of Proton FLASH in Head and Neck Cancer Reirradiation. Cancers (Basel) 2024; 16:3249. [PMID: 39409872 PMCID: PMC11482542 DOI: 10.3390/cancers16193249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024] Open
Abstract
Ultrahigh-dose-rate therapy, also known as FLASH radiotherapy (RT), is an emerging technique that is garnering significant interest in cancer treatment due to its potential to revolutionize therapy. This method can achieve comparable tumor control to conventional-dose-rate RT while offering the enhanced protection of normal tissue through the FLASH-sparing effect. This innovative technique has demonstrated promising results in preclinical studies involving animals and cell lines. Particularly noteworthy is its potential application in treating head and neck (HN) cancers, especially in patients with challenging recurrent tumors and reirradiation cases, where the toxicity rates with conventional radiotherapy are high. Such applications aim to enhance tumor control while minimizing side effects and preserving patients' quality of life. In comparison to electron or photon FLASH modalities, proton therapy has demonstrated superior dosimetric and delivery characteristics and is a safe and effective FLASH treatment for human malignancies. Compared to the transmission proton FLASH, single-energy Bragg peak FLASH is a novel delivery method that allows highly conformal doses to targets and minimal radiation doses to crucial OARs. Proton Bragg peak FLASH for HN cancer has still not been well studied. This review highlights the significance of proton FLASH in enhancing cancer therapy by examining the advantages and challenges of using it for HN cancer reirradiation.
Collapse
Affiliation(s)
- Chingyun Cheng
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA; (C.C.)
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Liming Xu
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Hao Jing
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | | | - Haibo Lin
- New York Proton Center, New York, NY 10035, USA
| | - Michael Pennock
- Department of Radiation Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA
| | | | | | | | - Yin Zhang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA; (C.C.)
| | - Ke Nie
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA; (C.C.)
| | - Richard L. Bakst
- Department of Radiation Oncology–Radiation Oncology Associates, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rafi Kabarriti
- Department of Radiation Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA
| | - J. Isabelle Choi
- New York Proton Center, New York, NY 10035, USA
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nancy Y. Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Charles B. Simone
- New York Proton Center, New York, NY 10035, USA
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Minglei Kang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA; (C.C.)
- New York Proton Center, New York, NY 10035, USA
| | - Hui Wu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China
| |
Collapse
|
15
|
Bell BI, Velten C, Pennock M, Kang M, Tanaka KE, Selvaraj B, Bookbinder A, Koba W, Vercellino J, English J, Małachowska B, Pandey S, Duddempudi PK, Yang Y, Shajahan S, Hasan S, Choi JI, Simone CB, Yang WL, Tomé WA, Lin H, Guha C. Whole Abdominal Pencil Beam Scanned Proton FLASH Increases Acute Lethality. Int J Radiat Oncol Biol Phys 2024:S0360-3016(24)03327-3. [PMID: 39299552 DOI: 10.1016/j.ijrobp.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/29/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024]
Abstract
PURPOSE Ultrahigh dose-rate FLASH radiation therapy has emerged as a modality that promises to reduce normal tissue toxicity while maintaining tumor control. Previous studies of gastrointestinal toxicity using passively scattered FLASH proton therapy (PRT) have, however, yielded mixed results, suggesting that the requirements for gastrointestinal sparing by FLASH are an open question. Furthermore, the more clinically relevant pencil beam scanned (PBS) FLASH PRT has not yet been assessed in this context, despite differences in the spatiotemporal dose-rate distributions compared with passively scattered PRT. Here, to our knowledge, we provide the first report on the effects of PBS FLASH PRT on acute gastrointestinal injury in mice after whole abdominal irradiation. METHODS AND MATERIALS Whole abdominal irradiation was performed on C57BL/6J mice using the entrance channel of the Bragg curve of a 250 MeV PBS proton beam at field-averaged dose rates of 0.6 Gy/s for conventional (CONV) and 80 to 100 Gy/s for FLASH PRT. A 2D strip ionization chamber array was used to measure the dose and dose rate for each mouse. Survival was assessed at 14 Gy. Intestines were harvested and processed as Swiss rolls for analysis using a novel artificial intelligence-based crypt assay to quantify crypt regeneration 4 days after irradiation. RESULTS Survival was significantly reduced after 14 Gy FLASH PRT compared with CONV (P < .001). Our artificial intelligence-based crypt assays demonstrated no significant difference in intestinal crypts/cm or crypt depth between groups 4 days after irradiation. Furthermore, we found no significant difference in 5-ethynyl-2'-deoxyuridine+ cells/crypt or Olfactomedin4+ intestinal stem cells with FLASH relative to CONV PRT. CONCLUSIONS Overall, our data demonstrate significantly impaired survival after abdominal PBS FLASH PRT without apparent differences in intestinal histology 4 days after irradiation.
Collapse
Affiliation(s)
- Brett I Bell
- Departments of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York; Departments of Radiation Oncology and Pathology, Albert Einstein College of Medicine, Bronx, New York
| | - Christian Velten
- Departments of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York
| | - Michael Pennock
- Departments of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York
| | | | - Kathryn E Tanaka
- Departments of Radiation Oncology and Pathology, Albert Einstein College of Medicine, Bronx, New York
| | | | | | - Wade Koba
- Department of Radiology, Albert Einstein College of Medicine, Bronx, New York
| | - Justin Vercellino
- Departments of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York; Departments of Radiation Oncology and Pathology, Albert Einstein College of Medicine, Bronx, New York
| | - Jeb English
- Departments of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York; Departments of Radiation Oncology and Pathology, Albert Einstein College of Medicine, Bronx, New York
| | - Beata Małachowska
- Departments of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York
| | - Sanjay Pandey
- Departments of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York
| | | | - Yunjie Yang
- New York Proton Center, New York, New York; Departments of Medical Physics and Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Shahin Shajahan
- Departments of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York
| | | | - J Isabelle Choi
- New York Proton Center, New York, New York; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Charles B Simone
- New York Proton Center, New York, New York; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Weng-Lang Yang
- Departments of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York
| | - Wolfgang A Tomé
- Departments of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York; Department of Neurology, Albert Einstein College of Medicine, Bronx, New York
| | - Haibo Lin
- Departments of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York; New York Proton Center, New York, New York; Departments of Medical Physics and Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Chandan Guha
- Departments of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York; Departments of Radiation Oncology and Pathology, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
16
|
Grilj V, Leavitt RJ, El Khatib M, Paisley R, Franco-Perez J, Petit B, Ballesteros-Zebadua P, Vozenin MC. In vivo measurements of change in tissue oxygen level during irradiation reveal novel dose rate dependence. Radiother Oncol 2024; 201:110539. [PMID: 39299575 DOI: 10.1016/j.radonc.2024.110539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND AND PURPOSE This study aimed to investigate the radiochemical oxygen depletion (ROD) in vivo by directly measuring oxygen levels in various mouse tissues during ultra-high dose rate (UHDR) irradiation at clinically relevant doses and dose rates. MATERIALS AND METHODS Mice bearing subcutaneous human glioblastoma (U-87 MG) tumors were used for tumor and normal tissue (skin, muscle, brain) measurements. An oxygen-sensitive phosphorescent probe (Oxyphor PtG4) was injected into the tissues, and oxygen levels were monitored using a fiberoptic phosphorometer during UHDR irradiation with a 6 MeV electron linear accelerator (LINAC). Dose escalation experiments (10-40 Gy) were performed at a dose rate of 1300 Gy/s, and dose rate escalation experiments were conducted at a fixed dose of 40 Gy with dose rates ranging from 2 to 101 Gy/s. RESULTS Radiation-induced change in tissue oxygenation (ΔpO2) increased linearly with dose and correlated with baseline tissue oxygenation levels in the range of 0 - 30 mmHg. At higher baseline tissue oxygenation levels, such as those observed in muscle and brain, there was no corresponding increase in ΔpO2. When we modulated dose rate, ΔpO2 increased steeply up to ∼ 20 Gy/s and plateaued thereafter. The relationship between ΔpO2 and dose rate showcases the interplay between ROD and reoxygenation. CONCLUSION While UHDR irradiation induces measurable oxygen depletion in tissues, the observed changes in oxygenation levels do not support the hypothesis that ROD-induced radioresistance is responsible for the FLASH tissue-sparing effect at clinically relevant doses and dose rates. These findings highlight the need for further investigation into alternative mechanisms underlying the FLASH effect.
Collapse
Affiliation(s)
- Veljko Grilj
- Institute of Radiation Physics, University Hospital and University of Lausanne, Lausanne, Switzerland; Radiation Oncology Laboratory, Department of Radiation Oncology, Lausanne, University Hospital and University of Lausanne, Lausanne, Switzerland.
| | - Ron J Leavitt
- Radiation Oncology Laboratory, Department of Radiation Oncology, Lausanne, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Mirna El Khatib
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, United States
| | - Ryan Paisley
- Institute of Radiation Physics, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Javier Franco-Perez
- Radiation Oncology Laboratory, Department of Radiation Oncology, Lausanne, University Hospital and University of Lausanne, Lausanne, Switzerland; Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, Mexico City, Mexico; LiRR- Laboratory of Innovation in Radiobiology Applied to Radiotherapy, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Benoit Petit
- Radiation Oncology Laboratory, Department of Radiation Oncology, Lausanne, University Hospital and University of Lausanne, Lausanne, Switzerland; Radiotherapy and Radiobiology Sector, Radiation Therapy Service, University Hospital of Geneva, Geneva, Switzerland; LiRR- Laboratory of Innovation in Radiobiology Applied to Radiotherapy, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Paola Ballesteros-Zebadua
- Radiation Oncology Laboratory, Department of Radiation Oncology, Lausanne, University Hospital and University of Lausanne, Lausanne, Switzerland; Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, Mexico City, Mexico; LiRR- Laboratory of Innovation in Radiobiology Applied to Radiotherapy, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Marie-Catherine Vozenin
- Radiation Oncology Laboratory, Department of Radiation Oncology, Lausanne, University Hospital and University of Lausanne, Lausanne, Switzerland; Radiotherapy and Radiobiology Sector, Radiation Therapy Service, University Hospital of Geneva, Geneva, Switzerland; LiRR- Laboratory of Innovation in Radiobiology Applied to Radiotherapy, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
17
|
Drayson OGG, Melemenidis S, Katila N, Viswanathan V, Kramár EA, Zhang R, Kim R, Ru N, Petit B, Dutt S, Manjappa R, Ramish Ashraf M, Lau B, Soto L, Skinner L, Yu AS, Surucu M, Maxim PG, Zebadua-Ballasteros P, Wood MA, Montay-Gruel P, Baulch JE, Vozenin MC, Loo BW, Limoli CL. A multi-institutional study to investigate the sparing effect after whole brain electron FLASH in mice: Reproducibility and temporal evolution of functional, electrophysiological, and neurogenic endpoints. Radiother Oncol 2024; 201:110534. [PMID: 39293721 DOI: 10.1016/j.radonc.2024.110534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/13/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024]
Abstract
BACKGROUND AND PURPOSE Ultra-high dose-rate radiotherapy (FLASH) has been shown to mitigate normal tissue toxicities associated with conventional dose rate radiotherapy (CONV) without compromising tumor killing in preclinical models. A prominent challenge in preclinical radiation research, including FLASH, is validating both the physical dosimetry and the biological effects across multiple institutions. MATERIALS AND METHODS We previously demonstrated dosimetric reproducibility of two different electron FLASH devices at separate institutions using standardized phantoms and dosimeters. In this study, tumor-free adult female mice were given 10 Gy whole brain FLASH and CONV irradiation at both institutions and evaluated for the reproducibility and temporal evolution of multiple neurobiological endpoints. RESULTS FLASH sparing of behavioral performance on novel object recognition (4 months post-irradiation) and of electrophysiologic long-term potentiation (LTP, 5 months post-irradiation) was reproduced between institutions. Differences between FLASH and CONV on the endpoints of hippocampal neurogenesis (Sox2, doublecortin), neuroinflammation (microglial activation), and electrophysiology (LTP) were not observed at early times (48 h to 2 weeks), but recovery of immature neurons by 3 weeks was greater with FLASH. CONCLUSION In summary, we demonstrated reproducible FLASH sparing effects on the brain between two different beams at two different institutions with validated dosimetry. FLASH sparing effects on the endpoints evaluated manifested at later but not the earliest time points.
Collapse
Affiliation(s)
- Olivia G G Drayson
- Department of Radiation Oncology, University of California, Irvine, CA 92697, USA
| | - Stavros Melemenidis
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nikita Katila
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vignesh Viswanathan
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Enikö A Kramár
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Richard Zhang
- Department of Radiation Oncology, University of California, Irvine, CA 92697, USA
| | - Rachel Kim
- Department of Radiation Oncology, University of California, Irvine, CA 92697, USA
| | - Ning Ru
- Department of Radiation Oncology, University of California, Irvine, CA 92697, USA
| | - Benoit Petit
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Suparna Dutt
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rakesh Manjappa
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - M Ramish Ashraf
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Brianna Lau
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Luis Soto
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lawrie Skinner
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amu S Yu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Murat Surucu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peter G Maxim
- Department of Radiation Oncology, University of California, Irvine, CA 92697, USA
| | - Paola Zebadua-Ballasteros
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Switzerland; Laboratorio de Fisica Medica, Instituto Nacional de Neurología y Neurocirugía MVS, México City 14269, Mexico
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Pierre Montay-Gruel
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Switzerland; Radiation Oncology Department, Iridium Netwerk, Wilrijk, Antwerp, Belgium; Antwerp Research in Radiation Oncology (AReRO), Centre for Oncological Research (CORE), University of Antwerp, Antwerp, Belgium
| | - Janet E Baulch
- Department of Radiation Oncology, University of California, Irvine, CA 92697, USA
| | - Marie-Catherine Vozenin
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Switzerland.
| | - Billy W Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
18
|
Angelou C, Patallo IS, Doherty D, Romano F, Schettino G. A review of diamond dosimeters in advanced radiotherapy techniques. Med Phys 2024. [PMID: 39221583 DOI: 10.1002/mp.17370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/08/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
This review article synthesizes key findings from studies on the use of diamond dosimeters in advanced radiotherapy techniques, showcasing their applications, challenges, and contributions to enhancing dosimetric accuracy. The article explores various dosimeters, highlighting synthetic diamond dosimeters as potential candidates especially due to their high spatial resolution and negligible ion recombination effect. The clinically validated commercial dosimeter, PTW microDiamond (mD), faces limitations in small fields, proton and hadron therapy and ultra-high dose per pulse (UHDPP) conditions. Variability in reported values for field sizes < $<$ 2 × $\times$ 2cm 2 ${\rm cm}^2$ is noted, reflecting the competition between volume averaging and density perturbation effects. PTW's introduction of flashDiamond (fD) holds promise for dosimetric measurements in UHDPP conditions and is reliable for commissioning ultra-high dose rate (UHDR) electron beam systems, pending the clinical validation of the device. Other advancements in diamond detectors, such as in 3D configurations and real-time dose per pulse x-ray detectors, are considered valuable in overcoming challenges posed by modern radiotherapy techniques, alongside relative dosimetry and pre-treatment verifications. The studies discussed collectively provide a comprehensive overview of the evolving landscape of diamond dosimetry in the field of radiotherapy, and offer insights into future directions for research and development in the field.
Collapse
Affiliation(s)
- Christina Angelou
- Department of Physics, University of Surrey, Guildford, UK
- Radiotherapy and Radiation Dosimetry, National Physical Laboratory (NPL), Teddington, UK
| | | | - Daniel Doherty
- Department of Physics, University of Surrey, Guildford, UK
| | - Francesco Romano
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Catania, Catania, Italy
| | - Giuseppe Schettino
- Radiotherapy and Radiation Dosimetry, National Physical Laboratory (NPL), Teddington, UK
| |
Collapse
|
19
|
Sørensen BS, Kanouta E, Ankjærgaard C, Kristensen L, Johansen JG, Sitarz MK, Andersen CE, Grau C, Poulsen P. Proton FLASH: Impact of Dose Rate and Split Dose on Acute Skin Toxicity in a Murine Model. Int J Radiat Oncol Biol Phys 2024; 120:265-275. [PMID: 38750904 DOI: 10.1016/j.ijrobp.2024.04.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 04/04/2024] [Accepted: 04/25/2024] [Indexed: 06/01/2024]
Abstract
PURPOSE Preclinical studies have shown a preferential normal tissue sparing effect of FLASH radiation therapy with ultra-high dose rates. The aim of the present study was to use a murine model of acute skin toxicity to investigate the biologic effect of varying dose rates, time structure, and introducing pauses in the dose delivery. METHODS AND MATERIALS The right hind limbs of nonanaesthetized mice were irradiated in the entrance plateau of a pencil beam scanning proton beam with 39.3 Gy. Experiment 1 was with varying field dose rates (0.7-80 Gy/s) without repainting, experiment 2 was with varying field dose rates (0.37-80 Gy/s) with repainting, and in experiment 3, the dose was split into 2, 3, 4, or 6 identical deliveries with 2-minute pauses. In total, 320 mice were included, with 6 to 25 mice per group. The endpoints were skin toxicity of different levels up to 25 days after irradiation. RESULTS The dose rate50, which is the dose rate to induce a response in 50% of the animals, depended on the level of skin toxicity, with the higher toxicity levels displaying a FLASH effect at 0.7-2 Gy/s. Repainting resulted in higher toxicity for the same field dose rate. Splitting the dose into 2 deliveries reduced the FLASH effect, and for 3 or more deliveries, the FLASH effect was almost abolished for lower grades of toxicity. CONCLUSIONS The dose rate that induced a FLASH effect varied for different skin toxicity levels, which are characterized by a differing degree of sensitivity to radiation dosage. Conclusions on a threshold for the dose rate needed to obtain a FLASH effect can therefore be influenced by the dose sensitivity of the used endpoint. Splitting the total dose into more deliveries compromised the FLASH effect. This can have an impact for fractionation as well as for regions where 2 or more FLASH fields overlap within the same treatment session.
Collapse
Affiliation(s)
- Brita Singers Sørensen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Experimental Clinical Oncology, Aarhus University, Denmark; Department of Clinical Medicine, Health, AU; Department of Oncology, Aarhus University Hospital, Aarhus, Denmark.
| | - Eleni Kanouta
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Health, AU
| | | | - Line Kristensen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Experimental Clinical Oncology, Aarhus University, Denmark; Department of Clinical Medicine, Health, AU; Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Jacob G Johansen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Health, AU
| | - Mateusz Krzysztof Sitarz
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Health, AU
| | | | - Cai Grau
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Health, AU
| | - Per Poulsen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Health, AU; Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
20
|
Rank L, Lysakovski P, Major G, Ferrari A, Tessonnier T, Debus J, Mairani A. Development and verification of an electron Monte Carlo engine for applications in intraoperative radiation therapy. Med Phys 2024; 51:6348-6364. [PMID: 38851210 DOI: 10.1002/mp.17180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/21/2024] [Accepted: 04/29/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND In preparation of future clinical trials employing the Mobetron electron linear accelerator to deliver FLASH Intraoperative Radiation Therapy (IORT), the development of a Monte Carlo (MC)-based framework for dose calculation was required. PURPOSE To extend and validate the in-house developed fast MC dose engine MonteRay (MR) for future clinical applications in IORT. METHODS MR is a CPU MC dose calculation engine written in C++ that is capable of simulating therapeutic proton, helium, and carbon ion beams. In this work, development steps are taken to include electrons and photons in MR are presented. To assess MRs accuracy, MR generated simulation results were compared against FLUKA predictions in water, in presence of heterogeneities as well as in an anthropomorphic phantom. Additionally, dosimetric data has been acquired to evaluate MRs accuracy in predicting dose-distributions generated by the Mobetron accelerator. Runtimes of MR were evaluated against those of the general-purpose MC code FLUKA on standard benchmark problems. RESULTS MR generated dose distributions for electron beams incident on a water phantom match corresponding FLUKA calculated distributions within 2.3% with range values matching within 0.01 mm. In terms of dosimetric validation, differences between MR calculated and measured dose values were below 3% for almost all investigated positions within the water phantom. Gamma passing rate (1%/1 mm) for the scenarios with inhomogeneities and gamma passing rate (3%/2 mm) with the anthropomorphic phantom, were > 99.8% and 99.4%, respectively. The average dose differences between MR (FLUKA) and the measurements was 1.26% (1.09%). Deviations between MR and FLUKA were well within 1.5% for all investigated depths and 0.6% on average. In terms of runtime, MR achieved a speedup against reference FLUKA simulations of about 13 for 10 MeV electrons. CONCLUSIONS Validations against general purpose MC code FLUKA predictions and experimental dosimetric data have proven the validity of the physical models implemented in MR for IORT applications. Extending the work presented here, MR will be interfaced with external biophysical models to allow accurate FLASH biological dose predictions in IORT.
Collapse
Affiliation(s)
- Luisa Rank
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Karlsruhe Institute of Technology (KIT), Faculty of Physics, Karlsruhe, Germany
| | - Peter Lysakovski
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Gerald Major
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Alfredo Ferrari
- Karlsruhe Institute of Technology (KIT), Faculty of Physics, Karlsruhe, Germany
| | - Thomas Tessonnier
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jürgen Debus
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University Hospital (UKHD), Heidelberg Faculty of Medicine (MFHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrea Mairani
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University Hospital (UKHD), Heidelberg Faculty of Medicine (MFHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany
- Medical Physics, National Centre of Oncological Hadrontherapy (CNAO), Pavia, Italy
| |
Collapse
|
21
|
Zhang J, Wu X, Qi P, Wang J. Prediction of the treatment effect of FLASH radiotherapy with synchrotron radiation from the Circular Electron-Positron Collider (CEPC). JOURNAL OF SYNCHROTRON RADIATION 2024; 31:1189-1196. [PMID: 39172092 PMCID: PMC11371022 DOI: 10.1107/s1600577524006878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/13/2024] [Indexed: 08/23/2024]
Abstract
The Circular Electron-Positron Collider (CEPC) in China can also work as an excellent powerful synchrotron light source, which can generate high-quality synchrotron radiation. This synchrotron radiation has potential advantages in the medical field as it has a broad spectrum, with energies ranging from visible light to X-rays used in conventional radiotherapy, up to several megaelectronvolts. FLASH radiotherapy is one of the most advanced radiotherapy modalities. It is a radiotherapy method that uses ultra-high dose rate irradiation to achieve the treatment dose in an instant; the ultra-high dose rate used is generally greater than 40 Gy s-1, and this type of radiotherapy can protect normal tissues well. In this paper, the treatment effect of CEPC synchrotron radiation for FLASH radiotherapy was evaluated by simulation. First, a Geant4 simulation was used to build a synchrotron radiation radiotherapy beamline station, and then the dose rate that the CEPC can produce was calculated. A physicochemical model of radiotherapy response kinetics was then established, and a large number of radiotherapy experimental data were comprehensively used to fit and determine the functional relationship between the treatment effect, dose rate and dose. Finally, the macroscopic treatment effect of FLASH radiotherapy was predicted using CEPC synchrotron radiation through the dose rate and the above-mentioned functional relationship. The results show that the synchrotron radiation beam from the CEPC is one of the best beams for FLASH radiotherapy.
Collapse
Affiliation(s)
- Junyu Zhang
- Institute for Advanced StudiesWuhan UniversityWuhanChina
| | - Xiangyu Wu
- Institute for Advanced StudiesWuhan UniversityWuhanChina
| | - Pengyuan Qi
- Cancer Center, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jike Wang
- Institute for Advanced StudiesWuhan UniversityWuhanChina
| |
Collapse
|
22
|
Poulsen PR, Johansen JG, Sitarz MK, Kanouta E, Kristensen L, Grau C, Sørensen BS. Oxygen Enhancement Ratio-Weighted Dose Quantitatively Describes Acute Skin Toxicity Variations in Mice After Pencil Beam Scanning Proton FLASH Irradiation With Changing Doses and Time Structures. Int J Radiat Oncol Biol Phys 2024; 120:276-286. [PMID: 38462015 DOI: 10.1016/j.ijrobp.2024.02.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 02/12/2024] [Accepted: 02/24/2024] [Indexed: 03/12/2024]
Abstract
PURPOSE The aim of this work was to investigate the ability of a biological oxygen enhancement ratio-weighted dose, DOER, to describe acute skin toxicity variations observed in mice after proton pencil beam scanning irradiations with changing doses and beam time structures. METHODS AND MATERIALS In five independent experiments, the right hind leg of a total of 621 CDF1 mice was irradiated previously in the entrance plateau of a pencil beam scanning proton beam. The incidence of acute skin toxicity (of level 1.5-2.0-2.5-3.0-3.5) was scored for 47 different mouse groups that mapped toxicity as function of dose for conventional and FLASH dose rate, toxicity as function of field dose rate with and without repainting, and toxicity when splitting the treatment into 1 to 6 identical deliveries separated by 2 minutes. DOER was calculated for all mouse groups using a simple oxygen kinetics model to describe oxygen depletion. The three independent model parameters (oxygen-depletion rate, oxygen-recovery rate, oxygen level without irradiation) were fitted to the experimental data. The ability of DOER to describe the toxicity variations across all experiments was investigated by comparing DOER-response curves across the five independent experiments. RESULTS After conversion from the independent variable tested in each experiment to DOER, all five experiments had similar MDDOER50 (DOER giving 50% toxicity incidence) with standard deviations of 0.45 - 1.6 Gy for the five toxicity levels. DOER could thus describe the observed toxicity variations across all experiments. CONCLUSIONS DOER described the varying FLASH-sparing effect observed for a wide range of conditions. Calculation of DOER for other irradiation conditions can quantitatively estimate the FLASH-sparing effect for arbitrary irradiations for the investigated murine model. With appropriate fitting parameters DOER also may be able to describe FLASH effect variations with dose and dose rate for other assays and endpoints.
Collapse
Affiliation(s)
- Per Rugaard Poulsen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Jacob Graversen Johansen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mateusz Krzysztof Sitarz
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Eleni Kanouta
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Line Kristensen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Cai Grau
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Brita Singers Sørensen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
23
|
Boucher-Routhier M, Szanto J, Nair V, Thivierge JP. A high-density multi-electrode platform examining the effects of radiation on in vitro cortical networks. Sci Rep 2024; 14:20143. [PMID: 39210021 PMCID: PMC11362598 DOI: 10.1038/s41598-024-71038-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Radiation therapy and stereotactic radiosurgery are common treatments for brain malignancies. However, the impact of radiation on underlying neuronal circuits is poorly understood. In the prefrontal cortex (PFC), neurons communicate via action potentials that control cognitive processes, thus it is important to understand the impact of radiation on these circuits. Here we present a novel protocol to investigate the effect of radiation on the activity and survival of PFC networks in vitro. Escalating doses of radiation were applied to PFC slices using a robotic radiosurgery platform at a standard dose rate of 10 Gy/min. High-density multielectrode array recordings of radiated slices were collected to capture extracellular activity across 4,096 channels. Radiated slices showed an increase in firing rate, functional connectivity, and complexity. Graph-theoretic measures of functional connectivity were altered following radiation. These results were compared to pharmacologically induced epileptic slices where neural complexity was markedly elevated, and functional connections were strong but remained spatially focused. Finally, propidium iodide staining revealed a dose-dependent effect of radiation on apoptosis. These findings provide a novel assay to investigate the impacts of clinically relevant doses of radiation on brain circuits and highlight the acute effects of escalating radiation doses on PFC neurons.
Collapse
Affiliation(s)
- Megan Boucher-Routhier
- School of Psychology, University of Ottawa, 156 Jean-Jacques Lussier, Ottawa, ON, K1N 6N5, Canada
| | - Janos Szanto
- Department of Medical Physics, Division of Radiation Oncology, University of Ottawa, Ottawa, Canada
| | - Vimoj Nair
- Department of Medical Physics, Division of Radiation Oncology, University of Ottawa, Ottawa, Canada
| | - Jean-Philippe Thivierge
- School of Psychology, University of Ottawa, 156 Jean-Jacques Lussier, Ottawa, ON, K1N 6N5, Canada.
- University of Ottawa Brain and Mind Research Institute, 451 Smyth Rd, Ottawa, Canada.
| |
Collapse
|
24
|
Tsai P, Yang Y, Wu M, Chen C, Yu F, Simone CB, Choi JI, Tomé WA, Lin H. A comprehensive pre-clinical treatment quality assurance program using unique spot patterns for proton pencil beam scanning FLASH radiotherapy. J Appl Clin Med Phys 2024; 25:e14400. [PMID: 38831639 PMCID: PMC11302823 DOI: 10.1002/acm2.14400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/14/2024] [Accepted: 05/07/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Quality assurance (QA) for ultra-high dose rate (UHDR) irradiation is a crucial aspect in the emerging field of FLASH radiotherapy (FLASH-RT). This innovative treatment approach delivers radiation at UHDR, demanding careful adoption of QA protocols and procedures. A comprehensive understanding of beam properties and dosimetry consistency is vital to ensure the safe and effective delivery of FLASH-RT. PURPOSE To develop a comprehensive pre-treatment QA program for cyclotron-based proton pencil beam scanning (PBS) FLASH-RT. Establish appropriate tolerances for QA items based on this study's outcomes and TG-224 recommendations. METHODS A 250 MeV proton spot pattern was designed and implemented using UHDR with a 215nA nozzle beam current. The QA pattern that covers a central uniform field area, various spot spacings, spot delivery modes and scanning directions, and enabling the assessment of absolute, relative and temporal dosimetry QA parameters. A strip ionization chamber array (SICA) and an Advanced Markus chamber were utilized in conjunction with a 2 cm polyethylene slab and a range (R80) verification wedge. The data have been monitored for over 3 months. RESULTS The relative dosimetries were compliant with TG-224. The variations of temporal dosimetry for scanning speed, spot dwell time, and spot transition time were within ± 1 mm/ms, ± 0.2 ms, and ± 0.2 ms, respectively. While the beam-to-beam absolute output on the same day reached up to 2.14%, the day-to-day variation was as high as 9.69%. High correlation between the absolute dose and dose rate fluctuations were identified. The dose rate of the central 5 × 5 cm2 field exhibited variations within 5% of the baseline value (155 Gy/s) during an experimental session. CONCLUSIONS A comprehensive QA program for FLASH-RT was developed and effectively assesses the performance of a UHDR delivery system. Establishing tolerances to unify standards and offering direction for future advancements in the evolving FLASH-RT field.
Collapse
Affiliation(s)
| | - Yunjie Yang
- Department of Radiation OncologyMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Mengjou Wu
- New York Proton CenterNew YorkNew YorkUSA
| | | | - Francis Yu
- New York Proton CenterNew YorkNew YorkUSA
| | | | | | - Wolfgang A. Tomé
- Department of Radiation OncologyMontefiore Medical Center and Albert Einstein College of MedicineBronxNew YorkUSA
| | - Haibo Lin
- New York Proton CenterNew YorkNew YorkUSA
- Department of Radiation OncologyMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
- Department of Radiation OncologyMontefiore Medical Center and Albert Einstein College of MedicineBronxNew YorkUSA
| |
Collapse
|
25
|
Held KD, McNamara AL, Daartz J, Bhagwat MS, Rothwell B, Schuemann J. Dose Rate Effects from the 1950s through to the Era of FLASH. Radiat Res 2024; 202:161-176. [PMID: 38954556 PMCID: PMC11426361 DOI: 10.1667/rade-24-00024.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/09/2024] [Indexed: 07/04/2024]
Abstract
Numerous dose rate effects have been described over the past 6-7 decades in the radiation biology and radiation oncology literature depending on the dose rate range being discussed. This review focuses on the impact and understanding of altering dose rates in the context of radiation therapy, but does not discuss dose rate effects as relevant to radiation protection. The review starts with a short historic review of early studies on dose rate effects, considers mechanisms thought to underlie dose rate dependencies, then discusses some current issues in clinical findings with altered dose rates, the importance of dose rate in brachytherapy, and the current timely topic of the use of very high dose rates, so-called FLASH radiotherapy. The discussion includes dose rate effects in vitro in cultured cells, in in vivo experimental systems and in the clinic, including both tumors and normal tissues. Gaps in understanding dose rate effects are identified, as are opportunities for improving clinical use of dose rate modulation.
Collapse
Affiliation(s)
- Kathryn D Held
- Department of Radiation Oncology, Massachusetts General Hospital Hospital/Harvard Medical School, Boston, Massachusetts 02114
- National Council on Radiation Protection and Measurements, Bethesda, Maryland 20814
| | - Aimee L McNamara
- Department of Radiation Oncology, Massachusetts General Hospital Hospital/Harvard Medical School, Boston, Massachusetts 02114
| | - Juliane Daartz
- Department of Radiation Oncology, Massachusetts General Hospital Hospital/Harvard Medical School, Boston, Massachusetts 02114
| | - Mandar S Bhagwat
- Department of Radiation Oncology, Massachusetts General Hospital Hospital/Harvard Medical School, Boston, Massachusetts 02114
| | - Bethany Rothwell
- Department of Radiation Oncology, Massachusetts General Hospital Hospital/Harvard Medical School, Boston, Massachusetts 02114
| | - Jan Schuemann
- Department of Radiation Oncology, Massachusetts General Hospital Hospital/Harvard Medical School, Boston, Massachusetts 02114
| |
Collapse
|
26
|
Ma J, Lin Y, Tang M, Zhu YN, Gan GN, Rotondo RL, Chen RC, Gao H. Simultaneous dose and dose rate optimization via dose modifying factor modeling for FLASH effective dose. Med Phys 2024; 51:5190-5203. [PMID: 38873848 DOI: 10.1002/mp.17251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/28/2024] [Accepted: 05/31/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Although the FLASH radiotherapy (FLASH) can improve the sparing of organs-at-risk (OAR) via the FLASH effect, it is generally a tradeoff between the physical dose coverage and the biological FLASH coverage, for which the concept of FLASH effective dose (FED) is needed to quantify the net improvement of FLASH, compared to the conventional radiotherapy (CONV). PURPOSE This work will develop the first-of-its-kind treatment planning method called simultaneous dose and dose rate optimization via dose modifying factor modeling (SDDRO-DMF) for proton FLASH that directly optimizes FED. METHODS SDDRO-DMF models and optimizes FED using FLASH dose modifying factor (DMF) models, which can be classified into two categories: (1) the phenomenological model of the FLASH effect, such as the FLASH effectiveness model (FEM); (2) the mechanistic model of the FLASH radiobiology, such as the radiolytic oxygen depletion (ROD) model. The general framework of SDDRO-DMF will be developed, with specific DMF models using FEM and ROD, as a demonstration of general applicability of SDDRO-DMF for proton FLASH via transmission beams (TB) or Bragg peaks (BP) with single-field or multi-field irradiation. The FLASH dose rate is modeled as pencil beam scanning dose rate. The solution algorithm for solving the inverse optimization problem of SDDRO-DMF is based on iterative convex relaxation method. RESULTS SDDRO-DMF is validated in comparison with IMPT and a state-of-the-art method called SDDRO, with demonstrated efficacy and improvement for reducing the high dose and the high-dose volume for OAR in terms of FED. For example, in a SBRT lung case of the dose-limiting factor that the max dose of brachial plexus should be no more than 26 Gy, only SDDRO-DMF met this max dose constraint; moreover, SDDRO-DMF completely eliminated the high-dose (V70%) volume to zero for CTV10mm (a high-dose region as a 10 mm ring expansion of CTV). CONCLUSION We have proposed a new proton FLASH optimization method called SDDRO-DMF that directly optimizes FED using phenomenological or mechanistic models of DMF, and have demonstrated the efficacy of SDDO-DMF in reducing the high-dose volume or/and the high-dose value for OAR, compared to IMPT and a state-of-the-art method SDDRO.
Collapse
Affiliation(s)
- Jiangjun Ma
- Institute of Natural Sciences and School of Mathematics, Shanghai Jiao Tong University, Shanghai, China
| | - Yuting Lin
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas city, Kansas, USA
| | - Min Tang
- Institute of Natural Sciences and School of Mathematics, Shanghai Jiao Tong University, Shanghai, China
| | - Ya-Nan Zhu
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas city, Kansas, USA
| | - Gregory N Gan
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas city, Kansas, USA
| | - Ronny L Rotondo
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas city, Kansas, USA
| | - Ronald C Chen
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas city, Kansas, USA
| | - Hao Gao
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas city, Kansas, USA
| |
Collapse
|
27
|
Dickstein DL, Zhang R, Ru N, Vozenin MC, Perry BC, Wang J, Baulch J, Acharya MM, Limoli CL. Structural plasticity of pyramidal cell neurons measured after FLASH and conventional dose-rate irradiation. RESEARCH SQUARE 2024:rs.3.rs-4656938. [PMID: 39108471 PMCID: PMC11302692 DOI: 10.21203/rs.3.rs-4656938/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Evidence shows that ultra-high dose-rate FLASH-radiotherapy (FLASH-RT) protects against normal tissue complications and functional decrements in the irradiated brain. Past work has shown that radiation-induced cognitive impairment, neuroinflammation and reduced structural complexity of granule cell neurons were not observed to the same extent after FLASH-RT (> MGy/s) compared to conventional dose-rate (CONV, 0.1 Gy/s) delivery. To explore the sensitivity of different neuronal populations to cranial irradiation and dose-rate modulation, hippocampal CA1 and medial prefrontal cortex (PFC) pyramidal neurons were analyzed by electron and confocal microscopy. Neuron ultrastructural analyses by electron microscopy after 10 Gy FLASH- or CONV-RT exposures indicated that irradiation had little impact on dendritic complexity and synapse density in the CA1, but did increase length and head diameter of smaller non-perforated synapses. Similarly, irradiation caused no change in PFC prelimbic/infralimbic axospinous synapse density, but reductions in non-perforated synapse diameters. While irradiation resulted in thinner myelin sheaths compared to controls, none of these metrics were dose-rate sensitive. Analysis of fluorescently labeled CA1 neurons revealed no radiation-induced or dose-rate-dependent changes in overall dendritic complexity or spine density, in contrast to our past analysis of granule cell neurons. Super-resolution confocal microscopy following a clinical dosing paradigm (3×10Gy) showed significant reductions in excitatory vesicular glutamate transporter 1 and inhibitory vesicular GABA transporter puncta density within the CA1 that were largely dose-rate independent. Collectively, these data reveal that, compared to granule cell neurons, CA1 and mPFC neurons are more radioresistant irrespective of radiation dose-rate.
Collapse
Affiliation(s)
| | | | - Ning Ru
- University of California, Irvine School of Medicine
| | | | | | - Juan Wang
- Uniformed Services University of Health Sciences
| | - Janet Baulch
- University of California, Irvine School of Medicine
| | | | | |
Collapse
|
28
|
Padilla O, Minns HE, Wei HJ, Fan W, Webster-Carrion A, Tazhibi M, McQuillan NM, Zhang X, Gallitto M, Yeh R, Zhang Z, Hei TK, Szalontay L, Pavisic J, Tan Y, Deoli N, Garty G, Garvin JH, Canoll PD, Vanpouille-Box C, Menon V, Olah M, Rabadan R, Wu CC, Gartrell RD. Immune Response following FLASH and Conventional Radiation in Diffuse Midline Glioma. Int J Radiat Oncol Biol Phys 2024; 119:1248-1260. [PMID: 38364947 PMCID: PMC11209798 DOI: 10.1016/j.ijrobp.2024.01.219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/15/2024] [Accepted: 01/28/2024] [Indexed: 02/18/2024]
Abstract
PURPOSE Diffuse midline glioma (DMG) is a fatal tumor traditionally treated with radiation therapy (RT) and previously characterized as having a noninflammatory tumor immune microenvironment (TIME). FLASH is a novel RT technique using ultra-high dose rate that is associated with decreased toxicity and effective tumor control. However, the effect of FLASH and conventional (CONV) RT on the DMG TIME has not yet been explored. METHODS AND MATERIALS Here, we performed single-cell RNA sequencing (scRNA-seq) and flow cytometry on immune cells isolated from an orthotopic syngeneic murine model of brainstem DMG after the use of FLASH (90 Gy/sec) or CONV (2 Gy/min) dose-rate RT and compared to unirradiated tumor (SHAM). RESULTS At day 4 post-RT, FLASH exerted similar effects as CONV in the predominant microglial (MG) population, including the presence of two activated subtypes. However, at day 10 post-RT, we observed a significant increase in the type 1 interferon α/β receptor (IFNAR+) in MG in CONV and SHAM compared to FLASH. In the non-resident myeloid clusters of macrophages (MACs) and dendritic cells (DCs), we found increased type 1 interferon (IFN1) pathway enrichment for CONV compared to FLASH and SHAM by scRNA-seq. We observed this trend by flow cytometry at day 4 post-RT in IFNAR+ MACs and DCs, which equalized by day 10 post-RT. DMG control and murine survival were equivalent between RT dose rates. CONCLUSIONS Our work is the first to map CONV and FLASH immune alterations of the DMG TIME with single-cell resolution. Although DMG tumor control and survival were similar between CONV and FLASH, we found that changes in immune compartments differed over time. Importantly, although both RT modalities increased IFN1, we found that the timing of this response was cell-type and dose-rate dependent. These temporal differences, particularly in the context of tumor control, warrant further study.
Collapse
Affiliation(s)
- Oscar Padilla
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, New York; Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Hanna E Minns
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York; Oregon Health and Science University School of Medicine, Portland, Oregon
| | - Hong-Jian Wei
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, New York
| | - Weijia Fan
- Mailman School of Public Health, Columbia University, New York, New York
| | | | - Masih Tazhibi
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, New York
| | - Nicholas M McQuillan
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, New York
| | - Xu Zhang
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York; Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, New York; Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York
| | - Matthew Gallitto
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, New York
| | - Rebecca Yeh
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Zhiguo Zhang
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York; Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, New York; Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York
| | - Tom K Hei
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, New York; Center for Radiological Research, Columbia University Irving Medical Center, New York, New York
| | - Luca Szalontay
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Jovana Pavisic
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Yuewen Tan
- Radiological Research Accelerator Facility, Columbia University Irving Medical Center, Irvington, New York
| | - Naresh Deoli
- Radiological Research Accelerator Facility, Columbia University Irving Medical Center, Irvington, New York
| | - Guy Garty
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, New York; Center for Radiological Research, Columbia University Irving Medical Center, New York, New York; Radiological Research Accelerator Facility, Columbia University Irving Medical Center, Irvington, New York
| | - James H Garvin
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Peter D Canoll
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | | | - Vilas Menon
- Department of Neurology, Columbia University Irving Medical Center, New York, New York; Center for Translational and Computational Neuroimmunology, Columbia University Irving Medical Center, New York, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York
| | - Marta Olah
- Department of Neurology, Columbia University Irving Medical Center, New York, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York
| | - Raul Rabadan
- Department of Systems Biology, Columbia University Irving Medical Center, New York, New York; Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, New York; Program for Mathematical Genomics, Columbia University Irving Medical Center, New York, New York
| | - Cheng-Chia Wu
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, New York
| | - Robyn D Gartrell
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York; Department of Oncology, Division of Pediatric Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland.
| |
Collapse
|
29
|
Gjaldbæk BW, Arendt ML, Konradsson E, Bastholm Jensen K, Bäck SÅ, Munck af Rosenschöld P, Ceberg C, Petersson K, Børresen B. Long-term toxicity and efficacy of FLASH radiotherapy in dogs with superficial malignant tumors. Front Oncol 2024; 14:1425240. [PMID: 39077466 PMCID: PMC11284943 DOI: 10.3389/fonc.2024.1425240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
Introduction FLASH radiotherapy (RT) has emerged as a promising modality, demonstrating both a normal tissue sparing effect and anticancer efficacy. We have previously reported on the safety and efficacy of single fraction FLASH RT in the treatment of oral tumors in canine cancer patients, showing tumor response but also a risk of radiation-induced severe late adverse effects (osteoradionecrosis) for doses ≥35 Gy. Accordingly, the objective in this study was to investigate if single fraction high dose FLASH RT is safe for treating non-oral tumors. Methods Privately-owned dogs with superficial tumors or microscopic residual disease were included. Treatment was generally delivered as a single fraction of 15-35 Gy 10 MeV electron FLASH RT, although two dogs were re-irradiated at a later timepoint. Follow-up visits were conducted up to 12 months post-treatment to evaluate treatment efficiency and adverse effects. Results Fourteen dogs with 16 tumors were included, of which nine tumors were treated for gross disease whilst seven tumors were treated post-surgery for microscopic residual disease. Four treatment sites treated with 35 Gy had ulceration post irradiation, which was graded as severe adverse effect. Only mild adverse effects were observed for the remaining treatment sites. None of the patients with microscopic disease experienced recurrence (0/7), and all patients with macroscopic disease showed either a complete (5/9) or a partial response (4/9). Five dogs were euthanized due to clinical disease progression. Discussion Our study demonstrates that single fraction high dose FLASH RT is generally safe, with few severe adverse effects, particularly in areas less susceptible to radiation-induced damage. In addition, our study indicates that FLASH has anti-tumor efficacy in a clinical setting. No osteoradionecrosis was observed in this study, although other types of high-grade adverse effects including ulcer-formations were observed for the highest delivered dose (35 Gy). Overall, we conclude that osteoradionecrosis following single fraction, high dose FLASH does not appear to be a general problem for non-oral tumor locations. Also, as has been shown previously for oral tumors, 30 Gy appeared to be the maximum safe dose to deliver with single fraction FLASH RT.
Collapse
Affiliation(s)
- Bolette W. Gjaldbæk
- Department of Veterinary Clinical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Maja L. Arendt
- Department of Veterinary Clinical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | | | - Sven Å. J. Bäck
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Per Munck af Rosenschöld
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Crister Ceberg
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Kristoffer Petersson
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Betina Børresen
- Department of Veterinary Clinical Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
30
|
Subiel A, Bourgouin A, Kranzer R, Peier P, Frei F, Gomez F, Knyziak A, Fleta C, Bailat C, Schüller A. Metrology for advanced radiotherapy using particle beams with ultra-high dose rates. Phys Med Biol 2024; 69:14TR01. [PMID: 38830362 DOI: 10.1088/1361-6560/ad539d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
Dosimetry of ultra-high dose rate beams is one of the critical components which is required for safe implementation of FLASH radiotherapy (RT) into clinical practice. In the past years several national and international programmes have emerged with the aim to address some of the needs that are required for translation of this modality to clinics. These involve the establishment of dosimetry standards as well as the validation of protocols and dosimetry procedures. This review provides an overview of recent developments in the field of dosimetry for FLASH RT, with particular focus on primary and secondary standard instruments, and provides a brief outlook on the future work which is required to enable clinical implementation of FLASH RT.
Collapse
Affiliation(s)
- Anna Subiel
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, United Kingdom
- University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Alexandra Bourgouin
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany
- National Research Council of Canada (NRC), 1200 Montreal Road, Ottawa, ON, K1A0R6, Canada
| | | | - Peter Peier
- Federal Institute of Metrology METAS, Lindenweg 50, 3003 Bern-Wabern, Switzerland
| | - Franziska Frei
- Federal Institute of Metrology METAS, Lindenweg 50, 3003 Bern-Wabern, Switzerland
| | - Faustino Gomez
- University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Adrian Knyziak
- Central Office of Measures (GUM), Elektoralna 2 Str., 00-139 Warsaw, Poland
| | - Celeste Fleta
- Instituto de Microelectrónica de Barcelona, Centro Nacional de Microelectrónica, IMB-CNM (CSIC), Barcelona, Spain
| | - Claude Bailat
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Andreas Schüller
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany
| |
Collapse
|
31
|
Kristensen L, Poulsen PR, Kanouta E, Rohrer S, Ankjærgaard C, Andersen CE, Johansen JG, Simeonov Y, Weber U, Grau C, Sørensen BS. Spread-out Bragg peak FLASH: quantifying normal tissue toxicity in a murine model. Front Oncol 2024; 14:1427667. [PMID: 39026976 PMCID: PMC11256197 DOI: 10.3389/fonc.2024.1427667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
Objective A favorable effect of ultra-high dose rate (FLASH) radiation on normal tissue-sparing has been indicated in several preclinical studies. In these studies, the adverse effects of radiation damage were reduced without compromising tumor control. Most studies of proton FLASH investigate these effects within the entrance of a proton beam. However, the real advantage of proton therapy lies in the Spread-out Bragg Peak (SOBP), which allows for giving a high dose to a target with a limited dose to healthy tissue at the entrance of the beam. Therefore, a clinically relevant investigation of the FLASH effect would be of healthy tissues within a SOBP. Our study quantified the tissue-sparing effect of FLASH radiation on acute and late toxicity within an SOBP in a murine model. Material/Methods Radiation-induced damage was assessed for acute and late toxicity in the same mice following irradiation with FLASH (Field dose rate of 60 Gy/s) or conventional (CONV, 0.34 Gy/s) dose rates. The right hindleg of unanesthetized female CDF1 mice was irradiated with single-fraction doses between 19.9-49.7 Gy for CONV and 30.4-65.9 Gy for FLASH with 5-8 mice per dose. The leg was placed in the middle of a 5 cm SOBP generated from a mono-energetic beam using a 2D range modulator. Acute skin toxicity quantified by hair loss, moist desquamation and toe separation was monitored daily within 29 days post-treatment. Late toxicity of fibrotic development measured by leg extendibility was monitored biweekly until 30 weeks post-treatment. Results Comparison of acute skin toxicity following radiation indicated a tissue-sparing effect of FLASH compared to conventional single-fraction radiation with a mean protection ratio of 1.40 (1.35-1.46). Fibrotic development similarly indicated normal tissue sparing with a 1.18 (1.17-1.18) protection ratio. The acute skin toxicity tissue sparing was similar to data from entrance-beam irradiations of Sørensen et al. (4). Conclusion Full dose-response curves for acute and late toxicity after CONV and FLASH radiation were obtained. Radiation within the SOBP retains the normal-tissue-sparing effect of FLASH with a dose-modifying factor of 40% for acute skin damage and 18% for fibrotic development.
Collapse
Affiliation(s)
- Line Kristensen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Per Rugaard Poulsen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Eleni Kanouta
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Sky Rohrer
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Jacob G. Johansen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Yuri Simeonov
- Institut für Medizinische Physik und Strahlenschutz, Technische Hochschule Mittelhessen, Giessen, Germany
| | - Uli Weber
- Department for Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Cai Grau
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Brita Singers Sørensen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
32
|
Fenwick JD, Mayhew C, Jolly S, Amos RA, Hawkins MA. Navigating the straits: realizing the potential of proton FLASH through physics advances and further pre-clinical characterization. Front Oncol 2024; 14:1420337. [PMID: 39022584 PMCID: PMC11252699 DOI: 10.3389/fonc.2024.1420337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
Ultra-high dose-rate 'FLASH' radiotherapy may be a pivotal step forward for cancer treatment, widening the therapeutic window between radiation tumour killing and damage to neighbouring normal tissues. The extent of normal tissue sparing reported in pre-clinical FLASH studies typically corresponds to an increase in isotoxic dose-levels of 5-20%, though gains are larger at higher doses. Conditions currently thought necessary for FLASH normal tissue sparing are a dose-rate ≥40 Gy s-1, dose-per-fraction ≥5-10 Gy and irradiation duration ≤0.2-0.5 s. Cyclotron proton accelerators are the first clinical systems to be adapted to irradiate deep-seated tumours at FLASH dose-rates, but even using these machines it is challenging to meet the FLASH conditions. In this review we describe the challenges for delivering FLASH proton beam therapy, the compromises that ensue if these challenges are not addressed, and resulting dosimetric losses. Some of these losses are on the same scale as the gains from FLASH found pre-clinically. We therefore conclude that for FLASH to succeed clinically the challenges must be systematically overcome rather than accommodated, and we survey physical and pre-clinical routes for achieving this.
Collapse
Affiliation(s)
- John D. Fenwick
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Christopher Mayhew
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Simon Jolly
- Department of Physics and Astronomy, University College London, London, United Kingdom
| | - Richard A. Amos
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Maria A. Hawkins
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
- Clinical Oncology, Radiotherapy Department, University College London NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
33
|
Mossahebi S, Byrne K, Jiang K, Gerry A, Deng W, Repetto C, Jackson IL, Sawant A, Poirier Y. A high-throughput focused collimator for OAR-sparing preclinical proton FLASH studies: commissioning and validation. Phys Med Biol 2024; 69:14NT01. [PMID: 38876112 DOI: 10.1088/1361-6560/ad589f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/14/2024] [Indexed: 06/16/2024]
Abstract
Objective. To fabricate and validate a novel focused collimator designed to spare normal tissue in a murine hemithoracic irradiation model using 250 MeV protons delivered at ultra-high dose rates (UHDRs) for preclinical FLASH radiation therapy (FLASH-RT) studies.Approach. A brass collimator was developed to shape 250 MeV UHDR protons from our Varian ProBeam. Six 13 mm apertures, of equivalent size to kV x-ray fields historically used to perform hemithorax irradiations, were precisely machined to match beam divergence, allowing concurrent hemithoracic irradiation of six mice while sparing the contralateral lung and abdominal organs. The collimated field profiles were characterized by film dosimetry, and a radiation survey of neutron activation was performed to ensure the safety of staff positioning animals.Main results. The brass collimator produced 1.2 mm penumbrae radiation fields comparable to kV x-rays used in preclinical studies. The penumbrae in the six apertures are similar, with full-width half-maxima of 13.3 mm and 13.5 mm for the central and peripheral apertures, respectively. The collimator delivered a similar dose at an average rate of 52 Gy s-1for all apertures. While neutron activation produces a high (0.2 mSv h-1) initial ambient equivalent dose rate, a parallel work-flow in which imaging and setup are performed without the collimator ensures safety to staff.Significance. Scanned protons have the greatest potential for future translation of FLASH-RT in clinical treatments due to their ability to treat deep-seated tumors with high conformality. However, the Gaussian distribution of dose in proton spots produces wider lateral penumbrae compared to other modalities. This presents a challenge in small animal pre-clinical studies, where millimeter-scale penumbrae are required to precisely target the intended volume. Offering high-throughput irradiation of mice with sharp penumbrae, our novel collimator-based platform serves as an important benchmark for enabling large-scale, cost-effective radiobiological studies of the FLASH effect in murine models.
Collapse
Affiliation(s)
- Sina Mossahebi
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Kevin Byrne
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Kai Jiang
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Andrew Gerry
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Wei Deng
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Carlo Repetto
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Isabel L Jackson
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States of America
- True North Biopharm, LLC, Rockville, MD, United States of America
| | - Amit Sawant
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Yannick Poirier
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| |
Collapse
|
34
|
Harrison N, Kang M, Liu R, Charyyev S, Wahl N, Liu W, Zhou J, Higgins KA, Simone CB, Bradley JD, Dynan WS, Lin L. A Novel Inverse Algorithm To Solve the Integrated Optimization of Dose, Dose Rate, and Linear Energy Transfer of Proton FLASH Therapy With Sparse Filters. Int J Radiat Oncol Biol Phys 2024; 119:957-967. [PMID: 38104869 DOI: 10.1016/j.ijrobp.2023.11.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/27/2023] [Accepted: 11/25/2023] [Indexed: 12/19/2023]
Abstract
PURPOSE The recently proposed Integrated Physical Optimization Intensity Modulated Proton Therapy (IPO-IMPT) framework allows simultaneous optimization of dose, dose rate, and linear energy transfer (LET) for ultra-high dose rate (FLASH) treatment planning. Finding solutions to IPO-IMPT is difficult because of computational intensiveness. Nevertheless, an inverse solution that simultaneously specifies the geometry of a sparse filter and weights of a proton intensity map is desirable for both clinical and preclinical applications. Such solutions can reduce effective biologic dose to organs at risk in patients with cancer as well as reduce the number of animal irradiations needed to derive extra biologic dose models in preclinical studies. METHODS AND MATERIALS Unlike the initial forward heuristic, this inverse IPO-IMPT solution includes simultaneous optimization of sparse range compensation, sparse range modulation, and spot intensity. The daunting computational tasks vital to this endeavor were resolved iteratively with a distributed computing framework to enable Simultaneous Intensity and Energy Modulation and Compensation (SIEMAC). SIEMAC was demonstrated on a human patient with central lung cancer and a minipig. RESULTS SIEMAC simultaneously improves maps of spot intensities and patient-field-specific sparse range compensators and range modulators. For the patient with lung cancer, at our maximum nozzle current of 300 nA, dose rate coverage above 100 Gy/s increased from 57% to 96% in the lung and from 93% to 100% in the heart, and LET coverage above 4 keV/µm dropped from 68% to 9% in the lung and from 26% to <1% in the heart. For a simple minipig plan, the full-width half-maximum of the dose, dose rate, and LET distributions decreased by 30%, 1.6%, and 57%, respectively, again with similar target dose coverage, thus reducing uncertainty in these quantities for preclinical studies. CONCLUSIONS The inverse solution to IPO-IMPT demonstrated the capability to simultaneously modulate subspot proton energy and intensity distributions for clinical and preclinical studies.
Collapse
Affiliation(s)
| | | | - Ruirui Liu
- Emory University, Atlanta, Georgia; University of Nebraska, Omaha, Nebraska
| | | | - Niklas Wahl
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wei Liu
- Mayo Clinic, Phoenix, Arizona
| | - Jun Zhou
- Emory University, Atlanta, Georgia
| | | | | | | | | | | |
Collapse
|
35
|
Loo BW, Verginadis II, Sørensen BS, Mascia AE, Perentesis JP, Koong AC, Schüler E, Rankin EB, Maxim PG, Limoli CL, Vozenin MC. Navigating the Critical Translational Questions for Implementing FLASH in the Clinic. Semin Radiat Oncol 2024; 34:351-364. [PMID: 38880544 DOI: 10.1016/j.semradonc.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The "FLASH effect" is an increased therapeutic index, that is, reduced normal tissue toxicity for a given degree of anti-cancer efficacy, produced by ultra-rapid irradiation delivered on time scales orders of magnitude shorter than currently conventional in the clinic for the same doses. This phenomenon has been observed in numerous preclinical in vivo tumor and normal tissue models. While the underlying biological mechanism(s) remain to be elucidated, a path to clinical implementation of FLASH can be paved by addressing several critical translational questions. Technological questions pertinent to each beam type (eg, electron, proton, photon) also dictate the logical progression of experimentation required to move forward in safe and decisive clinical trials. Here we review the available preclinical data pertaining to these questions and how they may inform strategies for FLASH cancer therapy clinical trials.
Collapse
Affiliation(s)
- Billy W Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA.
| | - Ioannis I Verginadis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Brita Singers Sørensen
- Danish Centre for Particle Therapy & Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Anthony E Mascia
- Division of Oncology, Cincinnati Children's Hospital and Departments of Pediatrics and Radiation Oncology, College of Medicine, University of Cincinnati, Cincinnati, OH
| | - John P Perentesis
- Division of Oncology, Cincinnati Children's Hospital and Departments of Pediatrics and Radiation Oncology, College of Medicine, University of Cincinnati, Cincinnati, OH
| | - Albert C Koong
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Emil Schüler
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Erinn B Rankin
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA; Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA
| | - Peter G Maxim
- Department of Radiation Oncology, University of California, Irvine School of Medicine, Irvine, CA
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine School of Medicine, Irvine, CA
| | - Marie-Catherine Vozenin
- Secteur Radio-Oncologie et Radiobiologie, Hôpitaux Universitaires de Genève, Geneva, Switzerland; LiRR - laboratory of innovation in radiobiology applied to radiotherapy, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Laboratory of Radiation Oncology, Radiation Oncology Service, Department of Oncology, CHUV Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
36
|
Kyle AH, Karan T, Baker JHE, Püspöky Banáth J, Wang T, Liu A, Mendez C, Peter Petric M, Duzenli C, Minchinton AI. Detection of FLASH-radiotherapy tissue sparing in a 3D-spheroid model using DNA damage response markers. Radiother Oncol 2024; 196:110326. [PMID: 38735536 DOI: 10.1016/j.radonc.2024.110326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/07/2024] [Accepted: 04/28/2024] [Indexed: 05/14/2024]
Abstract
PURPOSE The oxygen depletion hypothesis has been proposed as a rationale to explain the observed phenomenon of FLASH-radiotherapy (FLASH-RT) sparing normal tissues while simultaneously maintaining tumor control. In this study we examined the distribution of DNA Damage Response (DDR) markers in irradiated 3D multicellular spheroids to explore the relationship between FLASH-RT protection and radiolytic-oxygen-consumption (ROC) in tissues. METHODS Studies were performed using a Varian Truebeam linear accelerator delivering 10 MeV electrons with an average dose rate above 50 Gy/s. Irradiations were carried out on 3D spheroids maintained under a range of O2 and temperature conditions to control O2 consumption and create gradients representative of in vivo tissues. RESULTS Staining for pDNA-PK (Ser2056) produced a linear radiation dose response whereas γH2AX (Ser139) showed saturation with increasing dose. Using the pDNA-PK staining, radiation response was then characterised for FLASH compared to standard-dose-rates as a function of depth into the spheroids. At 4 °C, chosen to minimize the development of metabolic oxygen gradients within the tissues, FLASH protection could be observed at all distances under oxygen conditions of 0.3-1 % O2. Whereas at 37 °C a FLASH-protective effect was limited to the outer cell layers of tissues, an effect only observed at 3 % O2. Modelling of changes in the pDNA-PK-based oxygen enhancement ratio (OER) yielded a tissue ROC g0-value estimate of 0.73 ± 0.25 µM/Gy with a km of 5.4 µM at FLASH dose rates. CONCLUSIONS DNA damage response markers are sensitive to the effects of transient oxygen depletion during FLASH radiotherapy. Findings support the rationale that well-oxygenated tissues would benefit more from FLASH-dose-rate protection relative to poorly-oxygenated tissues.
Collapse
Affiliation(s)
| | | | | | | | | | - Anam Liu
- BC Cancer Research Institute, Vancouver, Canada
| | | | | | | | | |
Collapse
|
37
|
Martínez-Rovira I, Montay-Gruel P, Petit B, Leavitt RJ, González-Vegas R, Froidevaux P, Juchaux M, Prezado Y, Yousef I, Vozenin MC. Infrared microspectroscopy to elucidate the underlying biomolecular mechanisms of FLASH radiotherapy. Radiother Oncol 2024; 196:110238. [PMID: 38527626 DOI: 10.1016/j.radonc.2024.110238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
BACKGROUND FLASH-radiotherapy (FLASH-RT) is an emerging modality that uses ultra-high dose rates of radiation to enable curative doses to the tumor while preserving normal tissue. The biological studies showed the potential of FLASH-RT to revolutionize radiotherapy cancer treatments. However, the complex biological basis of FLASH-RT is not fully known yet. AIM Within this context, our aim is to get deeper insights into the biomolecular mechanisms underlying FLASH-RT through Fourier Transform Infrared Microspectroscopy (FTIRM). METHODS C57Bl/6J female mice were whole brain irradiated at 10 Gy with the eRT6-Oriatron system. 10 Gy FLASH-RT was delivered in 1 pulse of 1.8μs and conventional irradiations at 0.1 Gy/s. Brains were sampled and prepared for analysis 24 h post-RT. FTIRM was performed at the MIRAS beamline of ALBA Synchrotron. Infrared raster scanning maps of the whole mice brain sections were collected for each sample condition. Hyperspectral imaging and Principal Component Analysis (PCA) were performed in several regions of the brain. RESULTS PCA results evidenced a clear separation between conventional and FLASH irradiations in the 1800-950 cm-1 region, with a significant overlap between FLASH and Control groups. An analysis of the loading plots revealed that most of the variance accounting for the separation between groups was associated to modifications in the protein backbone (Amide I). This protein degradation and/or conformational rearrangement was concomitant with nucleic acid fragmentation/condensation. Cluster separation between FLASH and conventional groups was also present in the 3000-2800 cm-1 region, being correlated with changes in the methylene and methyl group concentrations and in the lipid chain length. Specific vibrational features were detected as a function of the brain region. CONCLUSION This work provided new insights into the biomolecular effects involved in FLASH-RT through FTIRM. Our results showed that beyond nucleic acid investigations, one should take into account other dose-rate responsive molecules such as proteins, as they might be key to understand FLASH effect.
Collapse
Affiliation(s)
| | - Pierre Montay-Gruel
- Department of Radiation Oncology, Iridium Network, 2610, Wilrijk (Antwerp), Belgium; Centre for Oncological Research (CORE), University of Antwerp, 2610, Antwerp, Belgium
| | - Benoît Petit
- Laboratory of Radiation Oncology, Radiation Oncology Service and Oncology Department, Lausanne University Hospital and University of Lausanne, 1066, Lausanne, Switzerland
| | - Ron J Leavitt
- Laboratory of Radiation Oncology, Radiation Oncology Service and Oncology Department, Lausanne University Hospital and University of Lausanne, 1066, Lausanne, Switzerland
| | - Roberto González-Vegas
- Physics Department, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès (Barcelona), Spain
| | - Pascal Froidevaux
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, 1066, Lausanne, Switzerland
| | - Marjorie Juchaux
- Centre de recherche d'Orsay, Institut Curie, 91401, Orsay, France
| | - Yolanda Prezado
- Centre de recherche d'Orsay, Institut Curie, 91401, Orsay, France
| | - Ibraheem Yousef
- MIRAS Beamline, ALBA Synchotron, 08290, Cerdanyola del Vallès (Barcelona), Spain
| | - Marie-Catherine Vozenin
- Laboratory of Radiation Oncology, Radiation Oncology Service and Oncology Department, Lausanne University Hospital and University of Lausanne, 1066, Lausanne, Switzerland; Radiotherapy and Radiobiology sector, Radiation Therapy service, University hospital of Geneva (Current address), 1205, Geneva, Switzerland
| |
Collapse
|
38
|
Kim K, Pandey PK, Gonzalez G, Chen Y, Xiang L. Simulation study of protoacoustics as a real-time in-line dosimetry tool for FLASH proton therapy. Med Phys 2024; 51:5070-5080. [PMID: 38116792 PMCID: PMC11186976 DOI: 10.1002/mp.16894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/02/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Applying ultra-high dose rates to radiation therapy, otherwise known as FLASH, has been shown to be just as effective while sparing more normal tissue compared to conventional radiation therapy. However, there is a need for a dosimeter that is able to detect such high instantaneous dose, particularly in vivo. To fulfill this need, protoacoustics is introduced, which is an in vivo range verification method with submillimeter accuracy. PURPOSE The purpose of this work is to demonstrate the feasibility of using protoacoustics as a method of in vivo real-time monitoring during FLASH proton therapy and investigating the resulting protoacoustic signal when dose per pulse and pulsewidth are varied through multiple simulation studies. METHODS The dose distribution of a proton pencil beam was calculated through a Monte Carlo toolbox, TOPAS. Next, the k-Wave toolbox in MATLAB was used for performing protoacoustic simulations, where the initial proton dose deposition was inputted to model acoustic propagations, which were also used for reconstructions. Simulations involving the manipulation of the dose per pulse and pulsewidth were performed, and the temporal and spatial resolution for protoacoustic reconstructions were investigated as well. A 3D reconstruction was performed with a multiple beam spot profile to investigate the spatial resolution as well as determine the feasibility of 3D imaging with protoacoustics. RESULTS Our results showed consistent linearity in the increasing dose-per-pulse, even up to rates considered for FLASH. The simulations and reconstructions were performed for a range of pulsewidths from 0.1 to 10 μs. The results show the characteristics of the proton beam after convolving the protoacoustic signal with the varying pulsewidths. 3D reconstruction was successfully performed with each beam being distinguishable using an 8 cm × 8 cm planar array. These simulation results show that measurements using protoacoustics has the potential for in vivo dosimetry in FLASH therapy during patient treatments in real time. CONCLUSION Through this simulation study, the use of protoacoustics in FLASH therapy was verified and explored through observations of varying parameters, such as the dose per pulse and pulsewidth. 2D and 3D reconstructions were also completed. This study shows the significance of using protoacoustics and provides necessary information, which can further be explored in clinical settings.
Collapse
Affiliation(s)
- Kaitlyn Kim
- Department of Biomedical Engineering, University of California, Irvine, California, USA
| | - Prabodh Kumar Pandey
- Department of Radiological Sciences, University of California, Irvine, California, USA
| | - Gilberto Gonzalez
- Department of Radiation Oncology, University of Oklahoma College of Medicine, Oklahoma City, Oklahoma, USA
| | - Yong Chen
- Department of Radiation Oncology, University of Oklahoma College of Medicine, Oklahoma City, Oklahoma, USA
| | - Liangzhong Xiang
- Department of Biomedical Engineering, University of California, Irvine, California, USA
- Department of Radiological Sciences, University of California, Irvine, California, USA
- Beckman Laser Institute & Medical Clinic, University of California, Irvine, California, USA
| |
Collapse
|
39
|
Orobeti S, Sima LE, Porosnicu I, Diplasu C, Giubega G, Cojocaru G, Ungureanu R, Dobrea C, Serbanescu M, Mihalcea A, Stancu E, Staicu CE, Jipa F, Bran A, Axente E, Sandel S, Zamfirescu M, Tiseanu I, Sima F. First in vitro cell co-culture experiments using laser-induced high-energy electron FLASH irradiation for the development of anti-cancer therapeutic strategies. Sci Rep 2024; 14:14866. [PMID: 38937505 PMCID: PMC11211417 DOI: 10.1038/s41598-024-65137-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024] Open
Abstract
Radiation delivery at ultrahigh dose rates (UHDRs) has potential for use as a new anticancer therapeutic strategy. The FLASH effect induced by UHDR irradiation has been shown to maintain antitumour efficacy with a reduction in normal tissue toxicity; however, the FLASH effect has been difficult to demonstrate in vitro. The objective to demonstrate the FLASH effect in vitro is challenging, aiming to reveal a differential response between cancer and normal cells to further identify cell molecular mechanisms. New high-intensity petawatt laser-driven accelerators can deliver very high-energy electrons (VHEEs) at dose rates as high as 1013 Gy/s in very short pulses (10-13 s). Here, we present the first in vitro experiments carried out on cancer cells and normal non-transformed cells concurrently exposed to laser-plasma accelerated (LPA) electrons. Specifically, melanoma cancer cells and normal melanocyte co-cultures grown on chamber slides were simultaneously irradiated with LPA electrons. A non-uniform dose distribution on the cell cultures was revealed by Gafchromic films placed behind the chamber slide supporting the cells. In parallel experiments, cell co-cultures were exposed to pulsed X-ray irradiation, which served as positive controls for radiation-induced nuclear DNA double-strand breaks. By measuring the impact on discrete areas of the cell monolayers, the greatest proportion of the damaged DNA-containing nuclei was attained by the LPA electrons at a cumulative dose one order of magnitude lower than the dose obtained by pulsed X-ray irradiation. Interestingly, in certain discrete areas, we observed that LPA electron exposure had a different effect on the DNA damage in healthy normal human epidermal melanocyte (NHEM) cells than in A375 melanoma cells; here, the normal cells were less affected by the LPA exposure than cancer cells. This result is the first in vitro demonstration of a differential response of tumour and normal cells exposed to FLASH irradiation and may contribute to the development of new cell culture strategies to explore fundamental understanding of FLASH-induced cell effect.
Collapse
Affiliation(s)
- Stefana Orobeti
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, RO-077125, Magurele, Romania
- Department of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, 296 Splaiul Independentei, 060031, Bucharest, Romania
| | - Livia Elena Sima
- Department of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, 296 Splaiul Independentei, 060031, Bucharest, Romania
| | - Ioana Porosnicu
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, RO-077125, Magurele, Romania
| | - Constantin Diplasu
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, RO-077125, Magurele, Romania
| | - Georgiana Giubega
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, RO-077125, Magurele, Romania
| | - Gabriel Cojocaru
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, RO-077125, Magurele, Romania
| | - Razvan Ungureanu
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, RO-077125, Magurele, Romania
| | - Cosmin Dobrea
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, RO-077125, Magurele, Romania
| | - Mihai Serbanescu
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, RO-077125, Magurele, Romania
| | - Alexandru Mihalcea
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, RO-077125, Magurele, Romania
| | - Elena Stancu
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, RO-077125, Magurele, Romania
| | - Cristina Elena Staicu
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, RO-077125, Magurele, Romania
| | - Florin Jipa
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, RO-077125, Magurele, Romania
| | - Alexandra Bran
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, RO-077125, Magurele, Romania
| | - Emanuel Axente
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, RO-077125, Magurele, Romania
| | - Simion Sandel
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, RO-077125, Magurele, Romania
| | - Marian Zamfirescu
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, RO-077125, Magurele, Romania
| | - Ion Tiseanu
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, RO-077125, Magurele, Romania
| | - Felix Sima
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, RO-077125, Magurele, Romania.
| |
Collapse
|
40
|
Wanstall HC, Korysko P, Farabolini W, Corsini R, Bateman JJ, Rieker V, Hemming A, Henthorn NT, Merchant MJ, Santina E, Chadwick AL, Robertson C, Malyzhenkov A, Jones RM. VHEE FLASH sparing effect measured at CLEAR, CERN with DNA damage of pBR322 plasmid as a biological endpoint. Sci Rep 2024; 14:14803. [PMID: 38926450 PMCID: PMC11208499 DOI: 10.1038/s41598-024-65055-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Ultra-high dose rate (UHDR) irradiation has been shown to have a sparing effect on healthy tissue, an effect known as 'FLASH'. This effect has been studied across several radiation modalities, including photons, protons and clinical energy electrons, however, very little data is available for the effect of FLASH with Very High Energy Electrons (VHEE). pBR322 plasmid DNA was used as a biological model to measure DNA damage in response to Very High Energy Electron (VHEE) irradiation at conventional (0.08 Gy/s), intermediate (96 Gy/s) and ultra-high dose rates (UHDR, (2 × 109 Gy/s) at the CERN Linear Electron Accelerator (CLEAR) user facility. UHDRs were used to determine if the biological FLASH effect could be measured in the plasmid model, within a hydroxyl scavenging environment. Two different concentrations of the hydroxyl radical scavenger Tris were used in the plasmid environment to alter the proportions of indirect damage, and to replicate a cellular scavenging capacity. Indirect damage refers to the interaction of ionising radiation with molecules and species to generate reactive species which can then attack DNA. UHDR irradiated plasmid was shown to have significantly reduced amounts of damage in comparison to conventionally irradiated, where single strand breaks (SSBs) was used as the biological endpoint. This was the case for both hydroxyl scavenging capacities. A reduced electron energy within the VHEE range was also determined to increase the DNA damage to pBR322 plasmid. Results indicate that the pBR322 plasmid model can be successfully used to explore and test the effect of UHDR regimes on DNA damage. This is the first study to report FLASH sparing with VHEE, with induced damage to pBR322 plasmid DNA as the biological endpoint. UHDR irradiated plasmid had reduced amounts of DNA single-strand breaks (SSBs) in comparison with conventional dose rates. The magnitude of the FLASH sparing was a 27% reduction in SSB frequency in a 10 mM Tris environment and a 16% reduction in a 100 mM Tris environment.
Collapse
Affiliation(s)
- Hannah C Wanstall
- Department of Physics and Astronomy, Faculty of Science and Engineering, University of Manchester, Schuster Building, Oxford Road, Manchester, M13 9PL, UK.
- Manchester Academic Health Science Centre, Christie NHS Foundation Trust, Wilmslow Road, Manchester, M20 4BX, UK.
- Daresbury Laboratory, The Cockcroft Institute, Daresbury, Warrington, WA4 4AD, UK.
| | - Pierre Korysko
- University of Oxford, Oxford, OX1 2JD, UK
- CERN, Geneva, 1211, Geneva 23, Switzerland
| | | | | | | | - Vilde Rieker
- CERN, Geneva, 1211, Geneva 23, Switzerland
- University of Oslo, 0316, Oslo, Norway
| | - Abigail Hemming
- Manchester Academic Health Science Centre, Christie NHS Foundation Trust, Wilmslow Road, Manchester, M20 4BX, UK
| | - Nicholas T Henthorn
- Manchester Academic Health Science Centre, Christie NHS Foundation Trust, Wilmslow Road, Manchester, M20 4BX, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Michael J Merchant
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Elham Santina
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Amy L Chadwick
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | | | | | - Roger M Jones
- Department of Physics and Astronomy, Faculty of Science and Engineering, University of Manchester, Schuster Building, Oxford Road, Manchester, M13 9PL, UK
- Daresbury Laboratory, The Cockcroft Institute, Daresbury, Warrington, WA4 4AD, UK
| |
Collapse
|
41
|
Yan O, Wang S, Wang Q, Wang X. FLASH Radiotherapy: Mechanisms of Biological Effects and the Therapeutic Potential in Cancer. Biomolecules 2024; 14:754. [PMID: 39062469 PMCID: PMC11275005 DOI: 10.3390/biom14070754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 07/28/2024] Open
Abstract
Radiotherapy is an important treatment for many unresectable advanced malignant tumors, and radiotherapy-associated inflammatory reactions to radiation and other toxic side effects are significant reasons which reduce the quality of life and survival of patients. FLASH-radiotherapy (FLASH-RT), a prominent topic in recent radiation therapy research, is an ultra-high dose rate treatment known for significantly reducing therapy time while effectively targeting tumors. This approach minimizes radiation side effects on at-risk organs and maximally protects surrounding healthy tissues. Despite decades of preclinical exploration and some notable achievements, the mechanisms behind FLASH effects remain debated. Standardization is still required for the type of FLASH-RT rays and dose patterns. This review addresses the current state of FLASH-RT research, summarizing the biological mechanisms behind the FLASH effect. Additionally, it examines the impact of FLASH-RT on immune cells, cytokines, and the tumor immune microenvironment. Lastly, this review will discuss beam characteristics, potential clinical applications, and the relevance and applicability of FLASH-RT in treating advanced cancers.
Collapse
Affiliation(s)
| | | | | | - Xin Wang
- Division of Abdominal Tumor Multimodality Treatment, Department of Radiation Oncology, Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China; (O.Y.); (S.W.); (Q.W.)
| |
Collapse
|
42
|
Yamada R, Nishio T, Kinkawa D, Tanaka T, Omura M, Tabata Y, Yoshimura H, Kataoka J. Preliminary study of luminescence phenomena from various materials under ultra-high dose rate proton beam irradiation for dose management. Sci Rep 2024; 14:14504. [PMID: 38914610 PMCID: PMC11196681 DOI: 10.1038/s41598-024-65513-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024] Open
Abstract
This research aimed to identify materials capable of emitting visible light useful for dose management at ultra-high dose rate (uHDR). Various materials were irradiated with proton beams at a normal dose rate (NDR) and uHDR, and the resulting surface luminescence was captured using a high-sensitivity camera. The luminescence images were compared with the corresponding dose distributions. The luminescence of Tough Water Phantoms (Kyoto Kagaku Co. Ltd.) with various thicknesses was also observed to evaluate the depth distributions. Dose distributions were measured using two-dimensional ionization chamber detector arrays. The Tough Bone Phantom (Kyoto Kagaku Co. Ltd.) exhibited the strongest luminescence among the materials, followed by the Tough Water Phantom. The metals exhibited relatively weak luminescence. The luminescence profiles of the Tough Water Phantom, water, the Tough Lung Phantom (Kyoto Kagaku Co. Ltd.), and an acrylic were similar to the dose profiles. The luminescence distribution of the Tough Water Phantom in the depth direction was similar to that of the dose distributions. The luminescence at uHDR and NDR were approximately equivalent. The Tough Water Phantom was found to be a suitable material for dosimetry, even at uHDR. More detailed measurement data, such as wavelength data, must be collected to elucidate the luminescence mechanism.
Collapse
Affiliation(s)
- Ryosaku Yamada
- Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, Osaka University, Suita-shi, Osaka, Japan
- Department of Radiology, Kouseikai Takai Hospital, Tenri-shi, Nara, Japan
| | - Teiji Nishio
- Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, Osaka University, Suita-shi, Osaka, Japan.
| | - Daiki Kinkawa
- Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, Osaka University, Suita-shi, Osaka, Japan
| | - Taketo Tanaka
- Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, Osaka University, Suita-shi, Osaka, Japan
| | - Mizuki Omura
- Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, Osaka University, Suita-shi, Osaka, Japan
| | - Yoji Tabata
- Department of Radiology, Kouseikai Takai Hospital, Tenri-shi, Nara, Japan
| | - Hitoshi Yoshimura
- Department of Radiology, Kouseikai Takai Hospital, Tenri-shi, Nara, Japan
| | - Jun Kataoka
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Shinjyuku-ku, Tokyo, Japan
| |
Collapse
|
43
|
Liu K, Holmes S, Schüler E, Beddar S. A comprehensive investigation of the performance of a commercial scintillator system for applications in electron FLASH radiotherapy. Med Phys 2024; 51:4504-4512. [PMID: 38507253 PMCID: PMC11147715 DOI: 10.1002/mp.17030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/08/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Dosimetry in ultra-high dose rate (UHDR) beamlines is significantly challenged by limitations in real-time monitoring and accurate measurement of beam output, beam parameters, and delivered doses using conventional radiation detectors, which exhibit dependencies in ultra-high dose-rate (UHDR) and high dose-per-pulse (DPP) beamline conditions. PURPOSE In this study, we characterized the response of the Exradin W2 plastic scintillator (Standard Imaging, Inc.), a water-equivalent detector that provides measurements with a time resolution of 100 Hz, to determine its feasibility for use in UHDR electron beamlines. METHODS The W2 scintillator was exposed to an UHDR electron beam with different beam parameters by varying the pulse repetition frequency (PRF), pulse width (PW), and pulse amplitude settings of an electron UHDR linear accelerator system. The response of the W2 scintillator was evaluated as a function of the total integrated dose delivered, DPP, and mean and instantaneous dose rate. To account for detector radiation damage, the signal sensitivity (pC/Gy) of the W2 scintillator was measured and tracked as a function of dose history. RESULTS The W2 scintillator demonstrated mean dose rate independence and linearity as a function of integrated dose and DPP for DPP ≤ 1.5 Gy (R2 > 0.99) and PRF ≤ 90 Hz. At DPP > 1.5 Gy, nonlinear behavior and signal saturation in the blue and green signals as a function of DPP, PRF, and integrated dose became apparent. In the absence of Cerenkov correction, the W2 scintillator exhibited PW dependence, even at DPP values <1.5 Gy, with a difference of up to 31% and 54% in the measured blue and green signal for PWs ranging from 0.5 to 3.6 µs. The change in signal sensitivity of the W2 scintillator as a function of accumulated dose was approximately 4%/kGy and 0.3%/kGy for the measured blue and green signal responses, respectively, as a function of integrated dose history. CONCLUSION The Exradin W2 scintillator can provide output measurements that are both dose rate independent and linear in response if the DPP is kept ≤1.5 Gy (corresponding to a mean dose rate up to 290 Gy/s in the used system), as long as proper calibration is performed to account for PW and changes in signal sensitivity as a function of accumulated dose. For DPP > 1.5 Gy, the W2 scintillator's response becomes nonlinear, likely due to limitations in the electrometer related to the high signal intensity.
Collapse
Affiliation(s)
- Kevin Liu
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Emil Schüler
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sam Beddar
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
44
|
Cucinotta FA, Smirnova OA. Effects of Partial-Body, Continuous/Pulse Irradiation at Dose Rates from FLASH to Conventional Rates on the Level of Surviving Blood Lymphocytes: Modeling Approach. I. Continuous Irradiation. Radiat Res 2024; 201:535-545. [PMID: 38616047 DOI: 10.1667/rade-23-00222.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/22/2024] [Indexed: 04/16/2024]
Abstract
A mathematical model developed by Cucinotta and Smirnova is extended to describe effects of continuous, partial-body irradiation at high doses D and at dose rates N from FLASH to conventional rates on the level of surviving blood lymphocytes in humans and small laboratory animals (mice). Specifically, whereas the applicability of the model is limited to the exposure times shorter than a single cardiac cycle T0, the extended model is capable of describing such effects for the aforementioned and longer exposure times. The extended model is implemented as the algebraic equations. It predicts that the level of surviving blood lymphocytes in humans and mice increases with increasing the dose rate from N= D/T0 to FLASH rates and approaches the upper limiting level of 1-vR, where vR is the fraction of blood volume in the irradiated part of the blood circulatory system. Levels of surviving blood lymphocytes computed at doses from 10 Gy to 40 Gy and at dose rates N, which equal or exceed 40 Gy/s for humans and 400 Gy/s for mice, are nearly indistinguishable from the upper limiting level. In turn, the level of surviving blood lymphocytes in humans and mice decreases with decreasing the dose rate from N= D/T0 to conventional rates and approaches a lower limiting level. This level strongly depends on the dose D (it is smaller at larger values of D) with a slight dependence on the dose rate N. The model with the parameters specified for mice (together with the model of the dynamics of lymphopoietic system in mice after partial-body irradiation) reproduce, on a quantitative level, the experimental data, according to which the concentration of blood lymphocytes measured in mice in one day after continuous, partial-body irradiation at a high dose and conventional dose rate is smaller at the larger value of vR. Additionally, the model predicts at the same high dose (>10 Gy) a faster restoration of the blood lymphocyte population in humans exposed to continuous, partial-body irradiation at a FLASH dose rate compared to a conventional dose rate.
Collapse
|
45
|
Ma T, Li K, Sang W, Liu X, Luo Q, Peng Y, Wang M, Luo X, Fang J, Wang H, Wang T, Zuo C. Low-dose-rate induces more severe cognitive impairment than high-dose-rate in rats exposed to chronic low-dose γ-radiation. Front Public Health 2024; 12:1387330. [PMID: 38841686 PMCID: PMC11150688 DOI: 10.3389/fpubh.2024.1387330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/07/2024] [Indexed: 06/07/2024] Open
Abstract
Background Owing to the long penetration depth of gamma (γ)-rays, individuals working in ionizing radiation environments are chronically exposed to low-dose γ-radiation, resulting in cognitive changes. Dose rate significantly affects radiation-induced biological effects; however, its role in chronic low-dose γ-irradiation-induced cognitive impairment remains unclear. We aimed to investigate whether chronic low-dose γ-irradiation at low-dose-rate (LDR) could induce cognitive impairment and to compare the cognitive alteration caused by chronic low-dose γ-irradiation at LDR and high-dose-rate (HDR). Methods The rats were exposed to γ-irradiation at a LDR of 6 mGy/h and a HDR of 20 mGy/h for 30 days (5 h/day). Functional imaging was performed to assess the brain inflammation and blood-brain barrier (BBB) destruction of rats. Histological and immunofluorescence analyses were used to reveal the neuron damage and the activation of microglia and astrocytes in the hippocampus. RNA sequencing was conducted to investigate changes in gene expression in hippocampus. Results The rats in the LDR group exhibited more persistent cognitive impairment than those in the HDR group. Furthermore, irradiated rats showed brain inflammation and a compromised BBB. Histologically, the number of hippocampal neurons were comparable in the LDR group but were markedly decreased in the HDR. Additionally, activated M1-like microglia and A1-like astrocytes were observed in the hippocampus of rats in the LDR group; however, only M1-like microglia were activated in the HDR group. Mechanistically, the PI3K-Akt signaling pathway contributed to the different cognitive function change between the LDR group and HDR group. Conclusion Compared with chronic low-dose γ-irradiation at HDR, LDR induced more severe cognitive impairment which might involve PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Tianbao Ma
- School of Medicine, Shanghai University, Shanghai, China
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Kexian Li
- Naval Medical Center, Naval Medical University, Shanghai, China
| | - Wenjuan Sang
- Naval Medical Center, Naval Medical University, Shanghai, China
| | - Xingyu Liu
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Qun Luo
- Naval Medical Center, Naval Medical University, Shanghai, China
| | - Ye Peng
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Mingxing Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xiu Luo
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jingjing Fang
- Naval Medical Center, Naval Medical University, Shanghai, China
| | - Haijun Wang
- Naval Medical Center, Naval Medical University, Shanghai, China
| | - Tao Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Changjing Zuo
- School of Medicine, Shanghai University, Shanghai, China
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
46
|
Taylor E, Létourneau D. How quickly does FLASH need to be delivered? A theoretical study of radiolytic oxygen depletion kinetics in tissues. Phys Med Biol 2024; 69:115008. [PMID: 38608644 DOI: 10.1088/1361-6560/ad3e5e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/12/2024] [Indexed: 04/14/2024]
Abstract
Purpose. Radiation delivered over ultra-short timescales ('FLASH' radiotherapy) leads to a reduction in normal tissue toxicities for a range of tissues in the preclinical setting. Experiments have shown this reduction occurs for total delivery times less than a 'critical' time that varies by two orders of magnitude between brain (∼0.3 s) and skin (⪆10 s), and three orders of magnitude across different bowel experiments, from ∼0.01 to ⪆(1-10) s. Understanding the factors responsible for this broad variation may be important for translation of FLASH into the clinic and understanding the mechanisms behind FLASH.Methods.Assuming radiolytic oxygen depletion (ROD) to be the primary driver of FLASH effects, oxygen diffusion, consumption, and ROD were evaluated numerically for simulated tissues with pseudorandom vasculatures for a range of radiation delivery times, capillary densities, and oxygen consumption rates (OCR's). The resulting time-dependent oxygen partial pressure distribution histograms were used to estimate cell survival in these tissues using the linear quadratic model, modified to incorporate oxygen-enhancement ratio effects.Results. Independent of the capillary density, there was a substantial increase in predicted cell survival when the total delivery time was less than the capillary oxygen tension (mmHg) divided by the OCR (expressed in units of mmHg/s), setting the critical delivery time for FLASH in simulated tissues. Using literature OCR values for different normal tissues, the predicted range of critical delivery times agreed well with experimental values for skin and brain and, modifying our model to allow for fluctuating perfusion, bowel.Conclusions. The broad three-orders-of-magnitude variation in critical irradiation delivery times observed inin vivopreclinical experiments can be accounted for by the ROD hypothesis and differences in the OCR amongst simulated normal tissues. Characterization of these may help guide future experiments and open the door to optimized tissue-specific clinical protocols.
Collapse
Affiliation(s)
- Edward Taylor
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Daniel Létourneau
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
47
|
Chow JCL, Ruda HE. Mechanisms of Action in FLASH Radiotherapy: A Comprehensive Review of Physicochemical and Biological Processes on Cancerous and Normal Cells. Cells 2024; 13:835. [PMID: 38786057 PMCID: PMC11120005 DOI: 10.3390/cells13100835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
The advent of FLASH radiotherapy (FLASH-RT) has brought forth a paradigm shift in cancer treatment, showcasing remarkable normal cell sparing effects with ultra-high dose rates (>40 Gy/s). This review delves into the multifaceted mechanisms underpinning the efficacy of FLASH effect, examining both physicochemical and biological hypotheses in cell biophysics. The physicochemical process encompasses oxygen depletion, reactive oxygen species, and free radical recombination. In parallel, the biological process explores the FLASH effect on the immune system and on blood vessels in treatment sites such as the brain, lung, gastrointestinal tract, skin, and subcutaneous tissue. This review investigated the selective targeting of cancer cells and the modulation of the tumor microenvironment through FLASH-RT. Examining these mechanisms, we explore the implications and challenges of integrating FLASH-RT into cancer treatment. The potential to spare normal cells, boost the immune response, and modify the tumor vasculature offers new therapeutic strategies. Despite progress in understanding FLASH-RT, this review highlights knowledge gaps, emphasizing the need for further research to optimize its clinical applications. The synthesis of physicochemical and biological insights serves as a comprehensive resource for cell biology, molecular biology, and biophysics researchers and clinicians navigating the evolution of FLASH-RT in cancer therapy.
Collapse
Affiliation(s)
- James C. L. Chow
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1X6, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Harry E. Ruda
- Centre of Advance Nanotechnology, Faculty of Applied Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada;
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada
| |
Collapse
|
48
|
Horst F, Bodenstein E, Brand M, Hans S, Karsch L, Lessmann E, Löck S, Schürer M, Pawelke J, Beyreuther E. Dose and dose rate dependence of the tissue sparing effect at ultra-high dose rate studied for proton and electron beams using the zebrafish embryo model. Radiother Oncol 2024; 194:110197. [PMID: 38447870 DOI: 10.1016/j.radonc.2024.110197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
PURPOSE A better characterization of the dependence of the tissue sparing effect at ultra-high dose rate (UHDR) on physical beam parameters (dose, dose rate, radiation quality) would be helpful towards a mechanistic understanding of the FLASH effect and for its broader clinical translation. To address this, a comprehensive study on the normal tissue sparing at UHDR using the zebrafish embryo (ZFE) model was conducted. METHODS One-day-old ZFE were irradiated over a wide dose range (15-95 Gy) in three different beams (proton entrance channel, proton spread out Bragg peak and 30 MeV electrons) at UHDR and reference dose rate. After irradiation the ZFE were incubated for 4 days and then analyzed for four different biological endpoints (pericardial edema, curved spine, embryo length and eye diameter). RESULTS Dose-effect curves were obtained and a sparing effect at UHDR was observed for all three beams. It was demonstrated that proton relative biological effectiveness and UHDR sparing are both relevant to predict the resulting dose response. Dose dependent FLASH modifying factors (FMF) for ZFE were found to be compatible with rodent data from the literature. It was found that the UHDR sparing effect saturates at doses above ∼ 50 Gy with an FMF of ∼ 0.7-0.8. A strong dose rate dependence of the tissue sparing effect in ZFE was observed. The magnitude of the maximum sparing effect was comparable for all studied biological endpoints. CONCLUSION The ZFE model was shown to be a suitable pre-clinical high-throughput model for radiobiological studies on FLASH radiotherapy, providing results comparable to rodent models. This underlines the relevance of ZFE studies for FLASH radiotherapy research.
Collapse
Affiliation(s)
- Felix Horst
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
| | - Elisabeth Bodenstein
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
| | - Michael Brand
- Center for Regenerative Therapies TU Dresden and Cluster of Excellence 'Physics of Life', Technische Universität Dresden, Dresden, Germany
| | - Stefan Hans
- Center for Regenerative Therapies TU Dresden and Cluster of Excellence 'Physics of Life', Technische Universität Dresden, Dresden, Germany
| | - Leonhard Karsch
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
| | - Elisabeth Lessmann
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Dresden, Germany
| | - Steffen Löck
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Schürer
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany; National Center for Tumor Diseases Dresden (NCT/UCC), Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Jörg Pawelke
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
| | - Elke Beyreuther
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Dresden, Germany.
| |
Collapse
|
49
|
Lövgren N, Fagerström Kristensen I, Petersson K. Feasibility and constraints of Bragg peak FLASH proton therapy treatment planning. Front Oncol 2024; 14:1369065. [PMID: 38737902 PMCID: PMC11082391 DOI: 10.3389/fonc.2024.1369065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/02/2024] [Indexed: 05/14/2024] Open
Abstract
Introduction FLASH proton therapy (FLASH-PT) requires ultra-high dose rate (≥ 40 Gy/s) protons to be delivered in a short timescale whilst conforming to a patient-specific target. This study investigates the feasibility and constraints of Bragg peak FLASH-PT treatment planning, and compares the in silico results produced to plans for intensity modulated proton therapy (IMPT). Materials and method Bragg peak FLASH-PT and IMPT treatment plans were generated for bone (n=3), brain (n=3), and lung (n=4) targets using the MIROpt research treatment planning system and the Conformal FLASH library developed by Applications SA from the open-source version of UCLouvain. FLASH-PT beams were simulated using monoenergetic spot-scanned protons traversing through a conformal energy modulator, a range shifter, and an aperture. A dose rate constraint of ≥ 40 Gy/s was included in each FLASH-PT plan optimisation. Results Space limitations in the FLASH-PT adapted beam nozzle imposed a maximum target width constraint, excluding 4 cases from the study. FLASH-PT plans did not satisfy the imposed target dose constraints (D95% ≥ 95% and D2%≤ 105%) but achieved clinically acceptable doses to organs at risk (OARs). IMPT plans adhered to all target and OAR dose constraints. FLASH-PT plans showed a reduction in both target homogeneity (p < 0.001) and dose conformity (non-significant) compared to IMPT. Conclusion Without accounting for a sparing effect, IMPT plans were superior in target coverage, dose conformity, target homogeneity, and OAR sparing compared to FLASH-PT. Further research is warranted in treatment planning optimisation and beam delivery for clinical implementation of Bragg peak FLASH-PT.
Collapse
Affiliation(s)
- Nathalie Lövgren
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Ingrid Fagerström Kristensen
- Clinical Oncology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Haematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Kristoffer Petersson
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
- Department of Haematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
50
|
Liu K, Waldrop T, Aguilar E, Mims N, Neill D, Delahoussaye A, Li Z, Swanson D, Lin SH, Koong AC, Taniguchi CM, Loo BW, Mitra D, Schüler E. Redefining FLASH RT: the impact of mean dose rate and dose per pulse in the gastrointestinal tract. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.590158. [PMID: 38712109 PMCID: PMC11071383 DOI: 10.1101/2024.04.19.590158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Background The understanding of how varying radiation beam parameter settings affect the induction and magnitude of the FLASH effect remains limited. Purpose We sought to evaluate how the magnitude of radiation-induced gastrointestinal (GI) toxicity (RIGIT) depends on the interplay between mean dose rate (MDR) and dose per pulse (DPP). Methods C57BL/6J mice were subjected to total abdominal irradiation (11-14 Gy single fraction) under conventional irradiation (low DPP and low MDR, CONV) and various combinations of DPP and MDR up to ultra-high-dose-rate (UHDR) beam conditions. The effects of DPP were evaluated for DPPs of 1-6 Gy while the total dose and MDR were kept constant; the effects of MDR were evaluated for the range 0.3- 1440 Gy/s while the total dose and DPP were kept constant. RIGIT was quantified in non-tumor-bearing mice through the regenerating crypt assay and survival assessment. Tumor response was evaluated through tumor growth delay. Results Within each tested total dose using a constant MDR (>100 Gy/s), increasing DPP led to better sparing of regenerating crypts, with a more prominent effect seen at 12 and 14 Gy TAI. However, at fixed DPPs >4 Gy, similar sparing of crypts was demonstrated irrespective of MDR (from 0.3 to 1440 Gy/s). At a fixed high DPP of 4.7 Gy, survival was equivalently improved relative to CONV for all MDRs from 0.3 Gy/s to 104 Gy/s, but at a lower DPP of 0.93 Gy, increasing MDR produced a greater survival effect. We also confirmed that high DPP, regardless of MDR, produced the same magnitude of tumor growth delay relative to CONV using a clinically relevant melanoma mouse model. Conclusions This study demonstrates the strong influence that the beam parameter settings have on the magnitude of the FLASH effect. Both high DPP and UHDR appeared independently sufficient to produce FLASH sparing of GI toxicity, while isoeffective tumor response was maintained across all conditions.
Collapse
|