1
|
Tobias Böhlen T, Psoroulas S, Aylward JD, Beddar S, Douralis A, Delpon G, Garibaldi C, Gasparini A, Schüler E, Stephan F, Moeckli R, Subiel A. Recording and reporting of ultra-high dose rate "FLASH" delivery for preclinical and clinical settings. Radiother Oncol 2024; 200:110507. [PMID: 39245070 DOI: 10.1016/j.radonc.2024.110507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024]
Abstract
Treatments at ultra-high dose rate (UHDR) have the potential to improve the therapeutic index of radiation therapy (RT) by sparing normal tissues compared to conventional dose rate irradiations. Insufficient and inconsistent reporting in physics and dosimetry of preclinical and translational studies may have contributed to a reproducibility crisis of radiobiological data in the field. Consequently, the development of a common terminology, as well as common recording, reporting, dosimetry, and metrology standards is required. In the context of UHDR irradiations, the temporal dose delivery parameters are of importance, and under-reporting of these parameters is also a concern.This work proposes a standardization of terminology, recording, and reporting to enhance comparability of both preclinical and clinical UHDR studies and and to allow retrospective analyses to aid the understanding of the conditions which give rise to the FLASH effect.
Collapse
Affiliation(s)
- Till Tobias Böhlen
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Serena Psoroulas
- Center for Proton Therapy, Paul Scherrer Institute, Villigen PSI, Switzerland; Klinik für Radio-Onkologie, UniversitätsSpital Zürich, Switzerland
| | - Jack D Aylward
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK; Medical Physics, School of Applied Sciences, University of the West of England, Bristol, UK
| | - Sam Beddar
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Grégory Delpon
- Institut de Cancérologie de l'Ouest, Medical Physics Department, Saint-Herblain, France; Nantes Université, IMT Atlantique, CNRS/IN2P3, SUBATECH, Nantes, France
| | - Cristina Garibaldi
- IEO, Unit of Radiation Research, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Alessia Gasparini
- CORE, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Medical Physics Department, Iridium Netwerk, Wilrijk, Belgium
| | - Emil Schüler
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Frank Stephan
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - Raphaël Moeckli
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland.
| | - Anna Subiel
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK; University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
2
|
van Marlen P, van de Water S, Slotman BJ, Dahele M, Verbakel W. Technical note: Dosimetry and FLASH potential of UHDR proton PBS for small lung tumors: Bragg-peak-based delivery versus transmission beam and IMPT. Med Phys 2024; 51:7580-7588. [PMID: 38795376 DOI: 10.1002/mp.17185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/19/2024] [Accepted: 05/04/2024] [Indexed: 05/27/2024] Open
Abstract
BACKGROUND High-energy transmission beams (TBs) are currently the main delivery method for proton pencil beam scanning ultrahigh dose-rate (UHDR) FLASH radiotherapy. TBs place the Bragg-peaks behind the target, outside the patient, making delivery practical and achievement of high dose-rates more likely. However, they lead to higher integral dose compared to conventional intensity-modulated proton therapy (IMPT), in which Bragg-peaks are placed within the tumor. It is hypothesized that, when energy changes are not required and high beam currents are possible, Bragg-peak-based beams can not only achieve more conformal dose distributions than TBs, but also have more FLASH-potential. PURPOSE This works aims to verify this hypothesis by taking three different Bragg-peak-based delivery techniques and comparing them with TB and IMPT-plans in terms of dosimetry and FLASH-potential for single-fraction lung stereotactic body radiotherapy (SBRT). METHODS For a peripherally located lung target of various sizes, five different proton plans were made using "matRad" and inhouse-developed algorithms for spot/energy-layer/beam reduction and minimum monitor unit maximization: (1) IMPT-plan, reference for dosimetry, (2) TB-plan, reference for FLASH-amount, (3) pristine Bragg-peak plan (non-depth-modulated Bragg-peaks), (4) Bragg-peak plan using generic ridge filter, and (5) Bragg-peak plan using 3D range-modulated ridge filter. RESULTS Bragg-peak-based plans are able to achieve sufficient plan quality and high dose-rates. IMPT-plans resulted in lowest OAR-dose and integral dose (also after a FLASH sparing-effect of 30%) compared to both TB-plans and Bragg-peak-based plans. Bragg-peak-based plans vary only slightly between themselves and generally achieve lower integral dose than TB-plans. However, TB-plans nearly always resulted in lower mean lung dose than Bragg-peak-based plans and due to a higher amount of FLASH-dose for TB-plans, this difference increased after including a FLASH sparing-effect. CONCLUSION This work indicates that there is no benefit in using Bragg-peak-based beams instead of TBs for peripherally located, UHDR stereotactic lung radiotherapy, if lung dose is the priority.
Collapse
Affiliation(s)
- Patricia van Marlen
- Department of Radiation Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Steven van de Water
- Department of Radiation Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Ben J Slotman
- Department of Radiation Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Max Dahele
- Department of Radiation Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | | |
Collapse
|
3
|
Gesualdi F, de Marzi L, Dutreix M, Favaudon V, Fouillade C, Heinrich S. A multidisciplinary view of flash irradiation. Cancer Radiother 2024; 28:453-462. [PMID: 39343695 DOI: 10.1016/j.canrad.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 10/01/2024]
Abstract
The delivery of ultra-high dose rates of radiation, called flash irradiation or flash-RT, has emerged as a new modality of radiotherapy shaking up the paradigm of proportionality of effect and dose whatever the method of delivery of the radiation. The hallmark of flash-RT is healthy tissue sparing from the side effects of radiation without decrease of the antitumor efficiency in animal models. In this review we will define its specificities, the molecular mechanisms underlying the flash effect and the ongoing developments to bring this new modality to patient treatment.
Collapse
Affiliation(s)
- Flavia Gesualdi
- Institut Curie, Hospital Division, centre de protonthérapie d'Orsay, université Paris-Saclay, université PSL, centre universitaire, 91948 Orsay cedex, France
| | - Ludovic de Marzi
- Institut Curie, Hospital Division, centre de protonthérapie d'Orsay, université Paris-Saclay, université PSL, centre universitaire, 91948 Orsay cedex, France; Institut Curie, université PSL, université Paris-Saclay, Inserm Lito U1288, centre universitaire, 91898 Orsay, France
| | - Marie Dutreix
- Institut Curie, Research Division, Inserm U 1021-CNRS UMR 3347, université Paris-Saclay, université PSL, centre universitaire, 91401 Orsay cedex, France
| | - Vincent Favaudon
- Institut Curie, Research Division, Inserm U 1021-CNRS UMR 3347, université Paris-Saclay, université PSL, centre universitaire, 91401 Orsay cedex, France
| | - Charles Fouillade
- Institut Curie, Research Division, Inserm U 1021-CNRS UMR 3347, université Paris-Saclay, université PSL, centre universitaire, 91401 Orsay cedex, France
| | - Sophie Heinrich
- Institut Curie, Research Division, Inserm U 1021-CNRS UMR 3347, université Paris-Saclay, université PSL, centre universitaire, 91401 Orsay cedex, France.
| |
Collapse
|
4
|
Bell BI, Velten C, Pennock M, Kang M, Tanaka KE, Selvaraj B, Bookbinder A, Koba W, Vercellino J, English J, Małachowska B, Pandey S, Duddempudi PK, Yang Y, Shajahan S, Hasan S, Choi JI, Simone CB, Yang WL, Tomé WA, Lin H, Guha C. Whole Abdominal Pencil Beam Scanned Proton FLASH Increases Acute Lethality. Int J Radiat Oncol Biol Phys 2024:S0360-3016(24)03327-3. [PMID: 39299552 DOI: 10.1016/j.ijrobp.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/29/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024]
Abstract
PURPOSE Ultrahigh dose-rate FLASH radiation therapy has emerged as a modality that promises to reduce normal tissue toxicity while maintaining tumor control. Previous studies of gastrointestinal toxicity using passively scattered FLASH proton therapy (PRT) have, however, yielded mixed results, suggesting that the requirements for gastrointestinal sparing by FLASH are an open question. Furthermore, the more clinically relevant pencil beam scanned (PBS) FLASH PRT has not yet been assessed in this context, despite differences in the spatiotemporal dose-rate distributions compared with passively scattered PRT. Here, to our knowledge, we provide the first report on the effects of PBS FLASH PRT on acute gastrointestinal injury in mice after whole abdominal irradiation. METHODS AND MATERIALS Whole abdominal irradiation was performed on C57BL/6J mice using the entrance channel of the Bragg curve of a 250 MeV PBS proton beam at field-averaged dose rates of 0.6 Gy/s for conventional (CONV) and 80 to 100 Gy/s for FLASH PRT. A 2D strip ionization chamber array was used to measure the dose and dose rate for each mouse. Survival was assessed at 14 Gy. Intestines were harvested and processed as Swiss rolls for analysis using a novel artificial intelligence-based crypt assay to quantify crypt regeneration 4 days after irradiation. RESULTS Survival was significantly reduced after 14 Gy FLASH PRT compared with CONV (P < .001). Our artificial intelligence-based crypt assays demonstrated no significant difference in intestinal crypts/cm or crypt depth between groups 4 days after irradiation. Furthermore, we found no significant difference in 5-ethynyl-2'-deoxyuridine+ cells/crypt or Olfactomedin4+ intestinal stem cells with FLASH relative to CONV PRT. CONCLUSIONS Overall, our data demonstrate significantly impaired survival after abdominal PBS FLASH PRT without apparent differences in intestinal histology 4 days after irradiation.
Collapse
Affiliation(s)
- Brett I Bell
- Departments of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York; Departments of Radiation Oncology and Pathology, Albert Einstein College of Medicine, Bronx, New York
| | - Christian Velten
- Departments of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York
| | - Michael Pennock
- Departments of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York
| | | | - Kathryn E Tanaka
- Departments of Radiation Oncology and Pathology, Albert Einstein College of Medicine, Bronx, New York
| | | | | | - Wade Koba
- Department of Radiology, Albert Einstein College of Medicine, Bronx, New York
| | - Justin Vercellino
- Departments of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York; Departments of Radiation Oncology and Pathology, Albert Einstein College of Medicine, Bronx, New York
| | - Jeb English
- Departments of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York; Departments of Radiation Oncology and Pathology, Albert Einstein College of Medicine, Bronx, New York
| | - Beata Małachowska
- Departments of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York
| | - Sanjay Pandey
- Departments of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York
| | | | - Yunjie Yang
- New York Proton Center, New York, New York; Departments of Medical Physics and Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Shahin Shajahan
- Departments of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York
| | | | - J Isabelle Choi
- New York Proton Center, New York, New York; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Charles B Simone
- New York Proton Center, New York, New York; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Weng-Lang Yang
- Departments of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York
| | - Wolfgang A Tomé
- Departments of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York; Department of Neurology, Albert Einstein College of Medicine, Bronx, New York
| | - Haibo Lin
- Departments of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York; New York Proton Center, New York, New York; Departments of Medical Physics and Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Chandan Guha
- Departments of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York; Departments of Radiation Oncology and Pathology, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
5
|
Grilj V, Leavitt RJ, El Khatib M, Paisley R, Franco-Perez J, Petit B, Ballesteros-Zebadua P, Vozenin MC. In vivo measurements of change in tissue oxygen level during irradiation reveal novel dose rate dependence. Radiother Oncol 2024; 201:110539. [PMID: 39299575 DOI: 10.1016/j.radonc.2024.110539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND AND PURPOSE This study aimed to investigate the radiochemical oxygen depletion (ROD) in vivo by directly measuring oxygen levels in various mouse tissues during ultra-high dose rate (UHDR) irradiation at clinically relevant doses and dose rates. MATERIALS AND METHODS Mice bearing subcutaneous human glioblastoma (U-87 MG) tumors were used for tumor and normal tissue (skin, muscle, brain) measurements. An oxygen-sensitive phosphorescent probe (Oxyphor PtG4) was injected into the tissues, and oxygen levels were monitored using a fiberoptic phosphorometer during UHDR irradiation with a 6 MeV electron linear accelerator (LINAC). Dose escalation experiments (10-40 Gy) were performed at a dose rate of 1300 Gy/s, and dose rate escalation experiments were conducted at a fixed dose of 40 Gy with dose rates ranging from 2 to 101 Gy/s. RESULTS Radiation-induced change in tissue oxygenation (ΔpO2) increased linearly with dose and correlated with baseline tissue oxygenation levels in the range of 0 - 30 mmHg. At higher baseline tissue oxygenation levels, such as those observed in muscle and brain, there was no corresponding increase in ΔpO2. When we modulated dose rate, ΔpO2 increased steeply up to ∼ 20 Gy/s and plateaued thereafter. The relationship between ΔpO2 and dose rate showcases the interplay between ROD and reoxygenation. CONCLUSION While UHDR irradiation induces measurable oxygen depletion in tissues, the observed changes in oxygenation levels do not support the hypothesis that ROD-induced radioresistance is responsible for the FLASH tissue-sparing effect at clinically relevant doses and dose rates. These findings highlight the need for further investigation into alternative mechanisms underlying the FLASH effect.
Collapse
Affiliation(s)
- Veljko Grilj
- Institute of Radiation Physics, University Hospital and University of Lausanne, Lausanne, Switzerland; Radiation Oncology Laboratory, Department of Radiation Oncology, Lausanne, University Hospital and University of Lausanne, Lausanne, Switzerland.
| | - Ron J Leavitt
- Radiation Oncology Laboratory, Department of Radiation Oncology, Lausanne, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Mirna El Khatib
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, United States
| | - Ryan Paisley
- Institute of Radiation Physics, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Javier Franco-Perez
- Radiation Oncology Laboratory, Department of Radiation Oncology, Lausanne, University Hospital and University of Lausanne, Lausanne, Switzerland; Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, Mexico City, Mexico; LiRR- Laboratory of Innovation in Radiobiology Applied to Radiotherapy, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Benoit Petit
- Radiation Oncology Laboratory, Department of Radiation Oncology, Lausanne, University Hospital and University of Lausanne, Lausanne, Switzerland; Radiotherapy and Radiobiology Sector, Radiation Therapy Service, University Hospital of Geneva, Geneva, Switzerland; LiRR- Laboratory of Innovation in Radiobiology Applied to Radiotherapy, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Paola Ballesteros-Zebadua
- Radiation Oncology Laboratory, Department of Radiation Oncology, Lausanne, University Hospital and University of Lausanne, Lausanne, Switzerland; Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, Mexico City, Mexico; LiRR- Laboratory of Innovation in Radiobiology Applied to Radiotherapy, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Marie-Catherine Vozenin
- Radiation Oncology Laboratory, Department of Radiation Oncology, Lausanne, University Hospital and University of Lausanne, Lausanne, Switzerland; Radiotherapy and Radiobiology Sector, Radiation Therapy Service, University Hospital of Geneva, Geneva, Switzerland; LiRR- Laboratory of Innovation in Radiobiology Applied to Radiotherapy, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
6
|
Sørensen BS, Kanouta E, Ankjærgaard C, Kristensen L, Johansen JG, Sitarz MK, Andersen CE, Grau C, Poulsen P. Proton FLASH: Impact of Dose Rate and Split Dose on Acute Skin Toxicity in a Murine Model. Int J Radiat Oncol Biol Phys 2024; 120:265-275. [PMID: 38750904 DOI: 10.1016/j.ijrobp.2024.04.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 04/04/2024] [Accepted: 04/25/2024] [Indexed: 06/01/2024]
Abstract
PURPOSE Preclinical studies have shown a preferential normal tissue sparing effect of FLASH radiation therapy with ultra-high dose rates. The aim of the present study was to use a murine model of acute skin toxicity to investigate the biologic effect of varying dose rates, time structure, and introducing pauses in the dose delivery. METHODS AND MATERIALS The right hind limbs of nonanaesthetized mice were irradiated in the entrance plateau of a pencil beam scanning proton beam with 39.3 Gy. Experiment 1 was with varying field dose rates (0.7-80 Gy/s) without repainting, experiment 2 was with varying field dose rates (0.37-80 Gy/s) with repainting, and in experiment 3, the dose was split into 2, 3, 4, or 6 identical deliveries with 2-minute pauses. In total, 320 mice were included, with 6 to 25 mice per group. The endpoints were skin toxicity of different levels up to 25 days after irradiation. RESULTS The dose rate50, which is the dose rate to induce a response in 50% of the animals, depended on the level of skin toxicity, with the higher toxicity levels displaying a FLASH effect at 0.7-2 Gy/s. Repainting resulted in higher toxicity for the same field dose rate. Splitting the dose into 2 deliveries reduced the FLASH effect, and for 3 or more deliveries, the FLASH effect was almost abolished for lower grades of toxicity. CONCLUSIONS The dose rate that induced a FLASH effect varied for different skin toxicity levels, which are characterized by a differing degree of sensitivity to radiation dosage. Conclusions on a threshold for the dose rate needed to obtain a FLASH effect can therefore be influenced by the dose sensitivity of the used endpoint. Splitting the total dose into more deliveries compromised the FLASH effect. This can have an impact for fractionation as well as for regions where 2 or more FLASH fields overlap within the same treatment session.
Collapse
Affiliation(s)
- Brita Singers Sørensen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Experimental Clinical Oncology, Aarhus University, Denmark; Department of Clinical Medicine, Health, AU; Department of Oncology, Aarhus University Hospital, Aarhus, Denmark.
| | - Eleni Kanouta
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Health, AU
| | | | - Line Kristensen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Experimental Clinical Oncology, Aarhus University, Denmark; Department of Clinical Medicine, Health, AU; Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Jacob G Johansen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Health, AU
| | - Mateusz Krzysztof Sitarz
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Health, AU
| | | | - Cai Grau
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Health, AU
| | - Per Poulsen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Health, AU; Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
7
|
Bookbinder A, Selvaraj B, Zhao X, Yang Y, Bell BI, Pennock M, Tsai P, Tomé WA, Isabelle Choi J, Lin H, Simone CB, Guha C, Kang M. Validation and reproducibility of in vivo dosimetry for pencil beam scanned FLASH proton treatment in mice. Radiother Oncol 2024; 198:110404. [PMID: 38942121 DOI: 10.1016/j.radonc.2024.110404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/07/2024] [Accepted: 06/19/2024] [Indexed: 06/30/2024]
Abstract
PURPOSE To investigate quality assurance (QA) techniques for in vivo dosimetry and establish its routine uses for proton FLASH small animal experiments with a saturated monitor chamber. METHODS AND MATERIALS 227 mice were irradiated at FLASH or conventional (CONV) dose rates with a 250 MeV FLASH-capable proton beamline using pencil beam scanning to characterize the proton FLASH effect on abdominal irradiation and examining various endpoints. A 2D strip ionization chamber array (SICA) detector was positioned upstream of collimation and used for in vivo dose monitoring during irradiation. Before each irradiation series, SICA signal was correlated with the isocenter dose at each delivered dose rate. Dose, dose rate, and 2D dose distribution for each mouse were monitored with the SICA detector. RESULTS Calibration curves between the upstream SICA detector signal and the delivered dose at isocenter had good linearity with minimal R2 values of 0.991 (FLASH) and 0.985 (CONV), and slopes were consistent for each modality. After reassigning mice, standard deviations were less than 1.85 % (FLASH) and 0.83 % (CONV) for all dose levels, with no individual subject dose falling outside a ± 3.6 % range of the designated dose. FLASH fields had a field-averaged dose rate of 79.0 ± 0.8 Gy/s and mean local average dose rate of 160.6 ± 3.0 Gy/s. In vivo dosimetry allowed for the accurate detection of variation between the delivered and the planned dose. CONCLUSION In vivo dosimetry benefits FLASH experiments through enabling real-time dose and dose rate monitoring allowing mouse cohort regrouping when beam fluctuation causes delivered dose to vary from planned dose.
Collapse
Affiliation(s)
| | | | | | - Yunjie Yang
- New York Proton Center, New York, NY, USA; Departments of Radiation Oncology and Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brett I Bell
- Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, USA; Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Michael Pennock
- Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, USA
| | - Pingfang Tsai
- New York Proton Center, New York, NY, USA; Departments of Radiation Oncology and Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wolfgang A Tomé
- Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Onco-Physics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - J Isabelle Choi
- New York Proton Center, New York, NY, USA; Departments of Radiation Oncology and Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Haibo Lin
- New York Proton Center, New York, NY, USA; Departments of Radiation Oncology and Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, USA
| | - Charles B Simone
- New York Proton Center, New York, NY, USA; Departments of Radiation Oncology and Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chandan Guha
- Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, USA; Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Onco-Physics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Minglei Kang
- New York Proton Center, New York, NY, USA; Departments of Radiation Oncology and Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
8
|
Poulsen PR, Johansen JG, Sitarz MK, Kanouta E, Kristensen L, Grau C, Sørensen BS. Oxygen Enhancement Ratio-Weighted Dose Quantitatively Describes Acute Skin Toxicity Variations in Mice After Pencil Beam Scanning Proton FLASH Irradiation With Changing Doses and Time Structures. Int J Radiat Oncol Biol Phys 2024; 120:276-286. [PMID: 38462015 DOI: 10.1016/j.ijrobp.2024.02.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 02/12/2024] [Accepted: 02/24/2024] [Indexed: 03/12/2024]
Abstract
PURPOSE The aim of this work was to investigate the ability of a biological oxygen enhancement ratio-weighted dose, DOER, to describe acute skin toxicity variations observed in mice after proton pencil beam scanning irradiations with changing doses and beam time structures. METHODS AND MATERIALS In five independent experiments, the right hind leg of a total of 621 CDF1 mice was irradiated previously in the entrance plateau of a pencil beam scanning proton beam. The incidence of acute skin toxicity (of level 1.5-2.0-2.5-3.0-3.5) was scored for 47 different mouse groups that mapped toxicity as function of dose for conventional and FLASH dose rate, toxicity as function of field dose rate with and without repainting, and toxicity when splitting the treatment into 1 to 6 identical deliveries separated by 2 minutes. DOER was calculated for all mouse groups using a simple oxygen kinetics model to describe oxygen depletion. The three independent model parameters (oxygen-depletion rate, oxygen-recovery rate, oxygen level without irradiation) were fitted to the experimental data. The ability of DOER to describe the toxicity variations across all experiments was investigated by comparing DOER-response curves across the five independent experiments. RESULTS After conversion from the independent variable tested in each experiment to DOER, all five experiments had similar MDDOER50 (DOER giving 50% toxicity incidence) with standard deviations of 0.45 - 1.6 Gy for the five toxicity levels. DOER could thus describe the observed toxicity variations across all experiments. CONCLUSIONS DOER described the varying FLASH-sparing effect observed for a wide range of conditions. Calculation of DOER for other irradiation conditions can quantitatively estimate the FLASH-sparing effect for arbitrary irradiations for the investigated murine model. With appropriate fitting parameters DOER also may be able to describe FLASH effect variations with dose and dose rate for other assays and endpoints.
Collapse
Affiliation(s)
- Per Rugaard Poulsen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Jacob Graversen Johansen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mateusz Krzysztof Sitarz
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Eleni Kanouta
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Line Kristensen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Cai Grau
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Brita Singers Sørensen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
9
|
Dai T, Sloop AM, Ashraf MR, Sunnerberg JP, Clark MA, Bruza P, Pogue BW, Jarvis L, Gladstone DJ, Zhang R. Commissioning an ultra-high-dose-rate electron linac with end-to-end tests. Phys Med Biol 2024; 69:165028. [PMID: 39084661 DOI: 10.1088/1361-6560/ad69fc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/31/2024] [Indexed: 08/02/2024]
Abstract
Objective. The FLASH effect can potentially be used to improve the therapeutic ratio of radiotherapy (RT) through delivery of Ultra-high-dose-rate (UHDR) irradiation. Research is actively being conducted to translate UHDR-RT and for this purpose the Mobetron is capable of producing electron beams at both UHDR and conventional dose rates for FLASH research and translation. This work presents commissioning of an UHDR Mobetron with end-to-end tests developed for preclinical research.Approach. UHDR electron beams were commissioned with an efficient approach utilizing a 3D-printed water tank and film to fully characterize beam characteristics and dependences on field size, pulse width (PW) and pulse repetition frequency (PRF). This commissioning data was used to implement a beam model using the GAMOS Monte Carlo toolkit for the preclinical research. Then, the workflow for preclinical FLASH irradiation was validated with end-to-end tests delivered to a 3D-printed mouse phantom with internal inhomogeneities.Main results.PDDs, profiles and output factors acquired with radiochromic films were precisely measured, with a PRF that showed little effect on the UHDR beam energy and spatial characteristics. Increasing PW reduced theDmaxand R50by 2.08 mmµs-1and 1.28 mmµs-1respectively. An end-to-end test of the preclinical research workflow showed that both profiles in head-foot and lateral directions were in good agreement with the MC calculations for the heterogeneous 3D printed mouse phantom with Gamma index above 93% for 2 mm/2% criteria, and 99% for 3 mm/3%.Significance. The UHDR Mobetron is a versatile tool for FLASH preclinical research and this comprehensive beam model and workflow was validated to meet the requirements for conducting translational FLASH research.
Collapse
Affiliation(s)
- Tianyuan Dai
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250000, People's Republic of China
| | - Austin M Sloop
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America
| | - Muhammad R Ashraf
- Stanford Radiation Oncology, Palo Alto, CA 94304, United States of America
| | - Jacob P Sunnerberg
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America
| | - Megan A Clark
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America
| | - Petr Bruza
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America
| | - Brian W Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, United States of America
- Department of Medical Physics, Wisconsin Institutes for Medical Research, University of Wisconsin, Madison, WI 53705, United States of America
| | - Lesley Jarvis
- Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, United States of America
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, United States of America
| | - David J Gladstone
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America
- Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, United States of America
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, United States of America
| | - Rongxiao Zhang
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America
- Department of Radiation Medicine, New York Medical College, Valhalla, NY 10595, United States of America
| |
Collapse
|
10
|
Tsai P, Yang Y, Wu M, Chen C, Yu F, Simone CB, Choi JI, Tomé WA, Lin H. A comprehensive pre-clinical treatment quality assurance program using unique spot patterns for proton pencil beam scanning FLASH radiotherapy. J Appl Clin Med Phys 2024; 25:e14400. [PMID: 38831639 PMCID: PMC11302823 DOI: 10.1002/acm2.14400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/14/2024] [Accepted: 05/07/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Quality assurance (QA) for ultra-high dose rate (UHDR) irradiation is a crucial aspect in the emerging field of FLASH radiotherapy (FLASH-RT). This innovative treatment approach delivers radiation at UHDR, demanding careful adoption of QA protocols and procedures. A comprehensive understanding of beam properties and dosimetry consistency is vital to ensure the safe and effective delivery of FLASH-RT. PURPOSE To develop a comprehensive pre-treatment QA program for cyclotron-based proton pencil beam scanning (PBS) FLASH-RT. Establish appropriate tolerances for QA items based on this study's outcomes and TG-224 recommendations. METHODS A 250 MeV proton spot pattern was designed and implemented using UHDR with a 215nA nozzle beam current. The QA pattern that covers a central uniform field area, various spot spacings, spot delivery modes and scanning directions, and enabling the assessment of absolute, relative and temporal dosimetry QA parameters. A strip ionization chamber array (SICA) and an Advanced Markus chamber were utilized in conjunction with a 2 cm polyethylene slab and a range (R80) verification wedge. The data have been monitored for over 3 months. RESULTS The relative dosimetries were compliant with TG-224. The variations of temporal dosimetry for scanning speed, spot dwell time, and spot transition time were within ± 1 mm/ms, ± 0.2 ms, and ± 0.2 ms, respectively. While the beam-to-beam absolute output on the same day reached up to 2.14%, the day-to-day variation was as high as 9.69%. High correlation between the absolute dose and dose rate fluctuations were identified. The dose rate of the central 5 × 5 cm2 field exhibited variations within 5% of the baseline value (155 Gy/s) during an experimental session. CONCLUSIONS A comprehensive QA program for FLASH-RT was developed and effectively assesses the performance of a UHDR delivery system. Establishing tolerances to unify standards and offering direction for future advancements in the evolving FLASH-RT field.
Collapse
Affiliation(s)
| | - Yunjie Yang
- Department of Radiation OncologyMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Mengjou Wu
- New York Proton CenterNew YorkNew YorkUSA
| | | | - Francis Yu
- New York Proton CenterNew YorkNew YorkUSA
| | | | | | - Wolfgang A. Tomé
- Department of Radiation OncologyMontefiore Medical Center and Albert Einstein College of MedicineBronxNew YorkUSA
| | - Haibo Lin
- New York Proton CenterNew YorkNew YorkUSA
- Department of Radiation OncologyMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
- Department of Radiation OncologyMontefiore Medical Center and Albert Einstein College of MedicineBronxNew YorkUSA
| |
Collapse
|
11
|
Subiel A, Bourgouin A, Kranzer R, Peier P, Frei F, Gomez F, Knyziak A, Fleta C, Bailat C, Schüller A. Metrology for advanced radiotherapy using particle beams with ultra-high dose rates. Phys Med Biol 2024; 69:14TR01. [PMID: 38830362 DOI: 10.1088/1361-6560/ad539d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
Dosimetry of ultra-high dose rate beams is one of the critical components which is required for safe implementation of FLASH radiotherapy (RT) into clinical practice. In the past years several national and international programmes have emerged with the aim to address some of the needs that are required for translation of this modality to clinics. These involve the establishment of dosimetry standards as well as the validation of protocols and dosimetry procedures. This review provides an overview of recent developments in the field of dosimetry for FLASH RT, with particular focus on primary and secondary standard instruments, and provides a brief outlook on the future work which is required to enable clinical implementation of FLASH RT.
Collapse
Affiliation(s)
- Anna Subiel
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, United Kingdom
- University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Alexandra Bourgouin
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany
- National Research Council of Canada (NRC), 1200 Montreal Road, Ottawa, ON, K1A0R6, Canada
| | | | - Peter Peier
- Federal Institute of Metrology METAS, Lindenweg 50, 3003 Bern-Wabern, Switzerland
| | - Franziska Frei
- Federal Institute of Metrology METAS, Lindenweg 50, 3003 Bern-Wabern, Switzerland
| | - Faustino Gomez
- University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Adrian Knyziak
- Central Office of Measures (GUM), Elektoralna 2 Str., 00-139 Warsaw, Poland
| | - Celeste Fleta
- Instituto de Microelectrónica de Barcelona, Centro Nacional de Microelectrónica, IMB-CNM (CSIC), Barcelona, Spain
| | - Claude Bailat
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Andreas Schüller
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany
| |
Collapse
|
12
|
Kristensen L, Poulsen PR, Kanouta E, Rohrer S, Ankjærgaard C, Andersen CE, Johansen JG, Simeonov Y, Weber U, Grau C, Sørensen BS. Spread-out Bragg peak FLASH: quantifying normal tissue toxicity in a murine model. Front Oncol 2024; 14:1427667. [PMID: 39026976 PMCID: PMC11256197 DOI: 10.3389/fonc.2024.1427667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
Objective A favorable effect of ultra-high dose rate (FLASH) radiation on normal tissue-sparing has been indicated in several preclinical studies. In these studies, the adverse effects of radiation damage were reduced without compromising tumor control. Most studies of proton FLASH investigate these effects within the entrance of a proton beam. However, the real advantage of proton therapy lies in the Spread-out Bragg Peak (SOBP), which allows for giving a high dose to a target with a limited dose to healthy tissue at the entrance of the beam. Therefore, a clinically relevant investigation of the FLASH effect would be of healthy tissues within a SOBP. Our study quantified the tissue-sparing effect of FLASH radiation on acute and late toxicity within an SOBP in a murine model. Material/Methods Radiation-induced damage was assessed for acute and late toxicity in the same mice following irradiation with FLASH (Field dose rate of 60 Gy/s) or conventional (CONV, 0.34 Gy/s) dose rates. The right hindleg of unanesthetized female CDF1 mice was irradiated with single-fraction doses between 19.9-49.7 Gy for CONV and 30.4-65.9 Gy for FLASH with 5-8 mice per dose. The leg was placed in the middle of a 5 cm SOBP generated from a mono-energetic beam using a 2D range modulator. Acute skin toxicity quantified by hair loss, moist desquamation and toe separation was monitored daily within 29 days post-treatment. Late toxicity of fibrotic development measured by leg extendibility was monitored biweekly until 30 weeks post-treatment. Results Comparison of acute skin toxicity following radiation indicated a tissue-sparing effect of FLASH compared to conventional single-fraction radiation with a mean protection ratio of 1.40 (1.35-1.46). Fibrotic development similarly indicated normal tissue sparing with a 1.18 (1.17-1.18) protection ratio. The acute skin toxicity tissue sparing was similar to data from entrance-beam irradiations of Sørensen et al. (4). Conclusion Full dose-response curves for acute and late toxicity after CONV and FLASH radiation were obtained. Radiation within the SOBP retains the normal-tissue-sparing effect of FLASH with a dose-modifying factor of 40% for acute skin damage and 18% for fibrotic development.
Collapse
Affiliation(s)
- Line Kristensen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Per Rugaard Poulsen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Eleni Kanouta
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Sky Rohrer
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Jacob G. Johansen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Yuri Simeonov
- Institut für Medizinische Physik und Strahlenschutz, Technische Hochschule Mittelhessen, Giessen, Germany
| | - Uli Weber
- Department for Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Cai Grau
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Brita Singers Sørensen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
13
|
Fenwick JD, Mayhew C, Jolly S, Amos RA, Hawkins MA. Navigating the straits: realizing the potential of proton FLASH through physics advances and further pre-clinical characterization. Front Oncol 2024; 14:1420337. [PMID: 39022584 PMCID: PMC11252699 DOI: 10.3389/fonc.2024.1420337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
Ultra-high dose-rate 'FLASH' radiotherapy may be a pivotal step forward for cancer treatment, widening the therapeutic window between radiation tumour killing and damage to neighbouring normal tissues. The extent of normal tissue sparing reported in pre-clinical FLASH studies typically corresponds to an increase in isotoxic dose-levels of 5-20%, though gains are larger at higher doses. Conditions currently thought necessary for FLASH normal tissue sparing are a dose-rate ≥40 Gy s-1, dose-per-fraction ≥5-10 Gy and irradiation duration ≤0.2-0.5 s. Cyclotron proton accelerators are the first clinical systems to be adapted to irradiate deep-seated tumours at FLASH dose-rates, but even using these machines it is challenging to meet the FLASH conditions. In this review we describe the challenges for delivering FLASH proton beam therapy, the compromises that ensue if these challenges are not addressed, and resulting dosimetric losses. Some of these losses are on the same scale as the gains from FLASH found pre-clinically. We therefore conclude that for FLASH to succeed clinically the challenges must be systematically overcome rather than accommodated, and we survey physical and pre-clinical routes for achieving this.
Collapse
Affiliation(s)
- John D. Fenwick
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Christopher Mayhew
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Simon Jolly
- Department of Physics and Astronomy, University College London, London, United Kingdom
| | - Richard A. Amos
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Maria A. Hawkins
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
- Clinical Oncology, Radiotherapy Department, University College London NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
14
|
Mossahebi S, Byrne K, Jiang K, Gerry A, Deng W, Repetto C, Jackson IL, Sawant A, Poirier Y. A high-throughput focused collimator for OAR-sparing preclinical proton FLASH studies: commissioning and validation. Phys Med Biol 2024; 69:14NT01. [PMID: 38876112 DOI: 10.1088/1361-6560/ad589f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/14/2024] [Indexed: 06/16/2024]
Abstract
Objective. To fabricate and validate a novel focused collimator designed to spare normal tissue in a murine hemithoracic irradiation model using 250 MeV protons delivered at ultra-high dose rates (UHDRs) for preclinical FLASH radiation therapy (FLASH-RT) studies.Approach. A brass collimator was developed to shape 250 MeV UHDR protons from our Varian ProBeam. Six 13 mm apertures, of equivalent size to kV x-ray fields historically used to perform hemithorax irradiations, were precisely machined to match beam divergence, allowing concurrent hemithoracic irradiation of six mice while sparing the contralateral lung and abdominal organs. The collimated field profiles were characterized by film dosimetry, and a radiation survey of neutron activation was performed to ensure the safety of staff positioning animals.Main results. The brass collimator produced 1.2 mm penumbrae radiation fields comparable to kV x-rays used in preclinical studies. The penumbrae in the six apertures are similar, with full-width half-maxima of 13.3 mm and 13.5 mm for the central and peripheral apertures, respectively. The collimator delivered a similar dose at an average rate of 52 Gy s-1for all apertures. While neutron activation produces a high (0.2 mSv h-1) initial ambient equivalent dose rate, a parallel work-flow in which imaging and setup are performed without the collimator ensures safety to staff.Significance. Scanned protons have the greatest potential for future translation of FLASH-RT in clinical treatments due to their ability to treat deep-seated tumors with high conformality. However, the Gaussian distribution of dose in proton spots produces wider lateral penumbrae compared to other modalities. This presents a challenge in small animal pre-clinical studies, where millimeter-scale penumbrae are required to precisely target the intended volume. Offering high-throughput irradiation of mice with sharp penumbrae, our novel collimator-based platform serves as an important benchmark for enabling large-scale, cost-effective radiobiological studies of the FLASH effect in murine models.
Collapse
Affiliation(s)
- Sina Mossahebi
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Kevin Byrne
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Kai Jiang
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Andrew Gerry
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Wei Deng
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Carlo Repetto
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Isabel L Jackson
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States of America
- True North Biopharm, LLC, Rockville, MD, United States of America
| | - Amit Sawant
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Yannick Poirier
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| |
Collapse
|
15
|
Kanouta E, Johansen JG, Poulsen S, Kristensen L, Sørensen BS, Grau C, Busk M, Poulsen PR. Correlation between local instantaneous dose rate and oxygen pressure reduction during proton pencil beam scanning irradiation. Phys Imaging Radiat Oncol 2024; 31:100614. [PMID: 39157294 PMCID: PMC11327481 DOI: 10.1016/j.phro.2024.100614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 08/20/2024] Open
Abstract
Background and purpose Oxygen dynamics may be important for the tissue-sparing effect observed at ultra-high dose rates (FLASH sparing effect). This study investigated the correlation between local instantaneous dose rate and radiation-induced oxygen pressure reduction during proton pencil beam scanning (PBS) irradiations of a sample and quantified the oxygen consumption g-value. Materials and methods A 0.2 ml phosphorescent sample (1 μM PtG4 Oxyphor probe in saline) was irradiated with a 244 MeV proton PBS beam. Four irradiations were performed with variations of a PBS spot pattern with 5 × 7 spots. During irradiation, the partial oxygen pressure (pO2) was measured with 4.5 Hz temporal resolution with a phosphorometer (Oxyled) that optically excited the probe and recorded the subsequently emitted light. A calibration was performed to calculate the pO2 level from the measured phosphorescence lifetime. A fiber-coupled scintillator simultaneously measured the instantaneous dose rate in the sample with 50 kHz sampling rate. The oxygen consumption g-value was determined on a spot-by-spot level and using the total pO2 change for full spot pattern irradiation. Results A high correlation was found between the local instantaneous dose rate and pO2 reduction rate, with a correlation coefficient of 0.96-0.99. The g-vales were 0.18 ± 0.01 mmHg/Gy on a spot-by-spot level and 0.17 ± 0.01 mmHg/Gy for full spot pattern irradiation. Conclusions The pO2 reduction rate was directly related to the local instantaneous dose rate per delivered spot in PBS deliveries. The methodology presented here can be applied to irradiation at ultra-high dose rates with modifications in the experimental setup.
Collapse
Affiliation(s)
- Eleni Kanouta
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Jacob Graversen Johansen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Sara Poulsen
- Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Line Kristensen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Brita Singers Sørensen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Cai Grau
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Morten Busk
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Per Rugaard Poulsen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
16
|
Dai T, Sloop AM, Rahman MR, Sunnerberg JP, Clark MA, Young R, Adamczyk S, Voigts-Rhetz PV, Patane C, Turk M, Jarvis L, Pogue BW, Gladstone DJ, Bruza P, Zhang R. First Monte Carlo beam model for ultra-high dose rate radiotherapy with a compact electron LINAC. Med Phys 2024; 51:5109-5118. [PMID: 38493501 PMCID: PMC11316970 DOI: 10.1002/mp.17031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024] Open
Abstract
BACKGROUND FLASH radiotherapy based on ultra-high dose rate (UHDR) is actively being studied by the radiotherapy community. Dedicated UHDR electron devices are currently a mainstay for FLASH studies. PURPOSE To present the first Monte Carlo (MC) electron beam model for the UHDR capable Mobetron (FLASH-IQ) as a dose calculation and treatment planning platform for preclinical research and FLASH-radiotherapy (RT) clinical trials. METHODS The initial beamline geometry of the Mobetron was provided by the manufacturer, with the first-principal implementation realized in the Geant4-based GAMOS MC toolkit. The geometry and electron source characteristics, such as energy spectrum and beamline parameters, were tuned to match the central-axis percentage depth dose (PDD) and lateral profiles for the pristine beam measured during machine commissioning. The thickness of the small foil in secondary scatter affected the beam model dominantly and was fine tuned to achieve the best agreement with commissioning data. Validation of the MC beam modeling was performed by comparing the calculated PDDs and profiles with EBT-XD radiochromic film measurements for various combinations of applicators and inserts. RESULTS The nominal 9 MeV electron FLASH beams were best represented by a Gaussian energy spectrum with mean energy of 9.9 MeV and variance (σ) of 0.2 MeV. Good agreement between the MC beam model and commissioning data were demonstrated with maximal discrepancy < 3% for PDDs and profiles. Hundred percent gamma pass rate was achieved for all PDDs and profiles with the criteria of 2 mm/3%. With the criteria of 2 mm/2%, maximum, minimum and mean gamma pass rates were (100.0%, 93.8%, 98.7%) for PDDs and (100.0%, 96.7%, 99.4%) for profiles, respectively. CONCLUSIONS A validated MC beam model for the UHDR capable Mobetron is presented for the first time. The MC model can be utilized for direct dose calculation or to generate beam modeling input required for treatment planning systems for FLASH-RT planning. The beam model presented in this work should facilitate translational and clinical FLASH-RT for trials conducted on the Mobetron FLASH-IQ platform.
Collapse
Affiliation(s)
- Tianyuan Dai
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, USA
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan Shandong 250000, China
| | - Austin M. Sloop
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, USA
| | | | | | - Megan A. Clark
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, USA
| | - Ralph Young
- IntraOp Medical Corporation, Sunnyvale CA 94085, USA
| | | | | | - Chris Patane
- IntraOp Medical Corporation, Sunnyvale CA 94085, USA
| | - Michael Turk
- IntraOp Medical Corporation, Sunnyvale CA 94085, USA
| | - Lesley Jarvis
- Department of Medicine, Geisel School of Medicine, Dartmouth College Hanover NH 03755 USA
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756 USA
| | - Brian W. Pogue
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, USA
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756 USA
- Department of Medical Physics, Wisconsin Institutes for Medical Research, University of Wisconsin, Madison WI 53705 USA
| | - David J. Gladstone
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, USA
- Department of Medicine, Geisel School of Medicine, Dartmouth College Hanover NH 03755 USA
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756 USA
| | - Petr Bruza
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, USA
| | - Rongxiao Zhang
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, USA
- Department of Medicine, Geisel School of Medicine, Dartmouth College Hanover NH 03755 USA
- Department of Radiation Medicine, New York Medical College, Valhalla, NY 10595 USA
| |
Collapse
|
17
|
Loo BW, Verginadis II, Sørensen BS, Mascia AE, Perentesis JP, Koong AC, Schüler E, Rankin EB, Maxim PG, Limoli CL, Vozenin MC. Navigating the Critical Translational Questions for Implementing FLASH in the Clinic. Semin Radiat Oncol 2024; 34:351-364. [PMID: 38880544 DOI: 10.1016/j.semradonc.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The "FLASH effect" is an increased therapeutic index, that is, reduced normal tissue toxicity for a given degree of anti-cancer efficacy, produced by ultra-rapid irradiation delivered on time scales orders of magnitude shorter than currently conventional in the clinic for the same doses. This phenomenon has been observed in numerous preclinical in vivo tumor and normal tissue models. While the underlying biological mechanism(s) remain to be elucidated, a path to clinical implementation of FLASH can be paved by addressing several critical translational questions. Technological questions pertinent to each beam type (eg, electron, proton, photon) also dictate the logical progression of experimentation required to move forward in safe and decisive clinical trials. Here we review the available preclinical data pertaining to these questions and how they may inform strategies for FLASH cancer therapy clinical trials.
Collapse
Affiliation(s)
- Billy W Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA.
| | - Ioannis I Verginadis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Brita Singers Sørensen
- Danish Centre for Particle Therapy & Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Anthony E Mascia
- Division of Oncology, Cincinnati Children's Hospital and Departments of Pediatrics and Radiation Oncology, College of Medicine, University of Cincinnati, Cincinnati, OH
| | - John P Perentesis
- Division of Oncology, Cincinnati Children's Hospital and Departments of Pediatrics and Radiation Oncology, College of Medicine, University of Cincinnati, Cincinnati, OH
| | - Albert C Koong
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Emil Schüler
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Erinn B Rankin
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA; Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA
| | - Peter G Maxim
- Department of Radiation Oncology, University of California, Irvine School of Medicine, Irvine, CA
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine School of Medicine, Irvine, CA
| | - Marie-Catherine Vozenin
- Secteur Radio-Oncologie et Radiobiologie, Hôpitaux Universitaires de Genève, Geneva, Switzerland; LiRR - laboratory of innovation in radiobiology applied to radiotherapy, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Laboratory of Radiation Oncology, Radiation Oncology Service, Department of Oncology, CHUV Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
18
|
Kyle AH, Karan T, Baker JHE, Püspöky Banáth J, Wang T, Liu A, Mendez C, Peter Petric M, Duzenli C, Minchinton AI. Detection of FLASH-radiotherapy tissue sparing in a 3D-spheroid model using DNA damage response markers. Radiother Oncol 2024; 196:110326. [PMID: 38735536 DOI: 10.1016/j.radonc.2024.110326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/07/2024] [Accepted: 04/28/2024] [Indexed: 05/14/2024]
Abstract
PURPOSE The oxygen depletion hypothesis has been proposed as a rationale to explain the observed phenomenon of FLASH-radiotherapy (FLASH-RT) sparing normal tissues while simultaneously maintaining tumor control. In this study we examined the distribution of DNA Damage Response (DDR) markers in irradiated 3D multicellular spheroids to explore the relationship between FLASH-RT protection and radiolytic-oxygen-consumption (ROC) in tissues. METHODS Studies were performed using a Varian Truebeam linear accelerator delivering 10 MeV electrons with an average dose rate above 50 Gy/s. Irradiations were carried out on 3D spheroids maintained under a range of O2 and temperature conditions to control O2 consumption and create gradients representative of in vivo tissues. RESULTS Staining for pDNA-PK (Ser2056) produced a linear radiation dose response whereas γH2AX (Ser139) showed saturation with increasing dose. Using the pDNA-PK staining, radiation response was then characterised for FLASH compared to standard-dose-rates as a function of depth into the spheroids. At 4 °C, chosen to minimize the development of metabolic oxygen gradients within the tissues, FLASH protection could be observed at all distances under oxygen conditions of 0.3-1 % O2. Whereas at 37 °C a FLASH-protective effect was limited to the outer cell layers of tissues, an effect only observed at 3 % O2. Modelling of changes in the pDNA-PK-based oxygen enhancement ratio (OER) yielded a tissue ROC g0-value estimate of 0.73 ± 0.25 µM/Gy with a km of 5.4 µM at FLASH dose rates. CONCLUSIONS DNA damage response markers are sensitive to the effects of transient oxygen depletion during FLASH radiotherapy. Findings support the rationale that well-oxygenated tissues would benefit more from FLASH-dose-rate protection relative to poorly-oxygenated tissues.
Collapse
Affiliation(s)
| | | | | | | | | | - Anam Liu
- BC Cancer Research Institute, Vancouver, Canada
| | | | | | | | | |
Collapse
|
19
|
Kanouta E, Bruza P, Johansen JG, Kristensen L, Sørensen BS, Poulsen PR. Two-dimensional time-resolved scintillating sheet monitoring of proton pencil beam scanning FLASH mouse irradiations. Med Phys 2024; 51:5119-5129. [PMID: 38569159 DOI: 10.1002/mp.17049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Dosimetry in pre-clinical FLASH studies is essential for understanding the beam delivery conditions that trigger the FLASH effect. Resolving the spatial and temporal characteristics of proton pencil beam scanning (PBS) irradiations with ultra-high dose rates (UHDR) requires a detector with high spatial and temporal resolution. PURPOSE To implement a novel camera-based system for time-resolved two-dimensional (2D) monitoring and apply it in vivo during pre-clinical proton PBS mouse irradiations. METHODS Time-resolved 2D beam monitoring was performed with a scintillation imaging system consisting of a 1 mm thick transparent scintillating sheet, imaged by a CMOS camera. The sheet was placed in a water bath perpendicular to a horizontal PBS proton beam axis. The scintillation light was reflected through a system of mirrors and captured by the camera with 500 frames per second (fps) for UHDR and 4 fps for conventional dose rates. The raw images were background subtracted, geometrically transformed, flat field corrected, and spatially filtered. The system was used for 2D spot and field profile measurements and compared to radiochromic films. Furthermore, spot positions were measured for UHDR irradiations. The measured spot positions were compared to the planned positions and the relative instantaneous dose rate to equivalent fiber-coupled point scintillator measurements. For in vivo application, the scintillating sheet was placed 1 cm upstream the right hind leg of non-anaesthetized mice submerged in the water bath. The mouse leg and sheet were both placed in a 5 cm wide spread-out Bragg peak formed from the mono-energetic proton beam by a 2D range modulator. The mouse leg position within the field was identified for both conventional and FLASH irradiations. For the conventional irradiations, the mouse foot position was tracked throughout the beam delivery, which took place through repainting. For FLASH irradiations, the delivered spot positions and relative instantaneous dose rate were measured. RESULTS The pixel size was 0.1 mm for all measurements. The spot and field profiles measured with the scintillating sheet agreed with radiochromic films within 0.4 mm. The standard deviation between measured and planned spot positions was 0.26 mm and 0.35 mm in the horizontal and vertical direction, respectively. The measured relative instantaneous dose rate showed a linear relation with the fiber-coupled scintillator measurements. For in vivo use, the leg position within the field varied between mice, and leg movement up to 3 mm was detected during the prolonged conventional irradiations. CONCLUSIONS The scintillation imaging system allowed for monitoring of UHDR proton PBS delivery in vivo with 0.1 mm pixel size and 2 ms temporal resolution. The feasibility of instantaneous dose rate measurements was demonstrated, and the system was used for validation of the mouse leg position within the field.
Collapse
Affiliation(s)
- Eleni Kanouta
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Petr Bruza
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Jacob Graversen Johansen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Line Kristensen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Brita Singers Sørensen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Per Rugaard Poulsen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
20
|
Kim K, Pandey PK, Gonzalez G, Chen Y, Xiang L. Simulation study of protoacoustics as a real-time in-line dosimetry tool for FLASH proton therapy. Med Phys 2024; 51:5070-5080. [PMID: 38116792 PMCID: PMC11186976 DOI: 10.1002/mp.16894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/02/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Applying ultra-high dose rates to radiation therapy, otherwise known as FLASH, has been shown to be just as effective while sparing more normal tissue compared to conventional radiation therapy. However, there is a need for a dosimeter that is able to detect such high instantaneous dose, particularly in vivo. To fulfill this need, protoacoustics is introduced, which is an in vivo range verification method with submillimeter accuracy. PURPOSE The purpose of this work is to demonstrate the feasibility of using protoacoustics as a method of in vivo real-time monitoring during FLASH proton therapy and investigating the resulting protoacoustic signal when dose per pulse and pulsewidth are varied through multiple simulation studies. METHODS The dose distribution of a proton pencil beam was calculated through a Monte Carlo toolbox, TOPAS. Next, the k-Wave toolbox in MATLAB was used for performing protoacoustic simulations, where the initial proton dose deposition was inputted to model acoustic propagations, which were also used for reconstructions. Simulations involving the manipulation of the dose per pulse and pulsewidth were performed, and the temporal and spatial resolution for protoacoustic reconstructions were investigated as well. A 3D reconstruction was performed with a multiple beam spot profile to investigate the spatial resolution as well as determine the feasibility of 3D imaging with protoacoustics. RESULTS Our results showed consistent linearity in the increasing dose-per-pulse, even up to rates considered for FLASH. The simulations and reconstructions were performed for a range of pulsewidths from 0.1 to 10 μs. The results show the characteristics of the proton beam after convolving the protoacoustic signal with the varying pulsewidths. 3D reconstruction was successfully performed with each beam being distinguishable using an 8 cm × 8 cm planar array. These simulation results show that measurements using protoacoustics has the potential for in vivo dosimetry in FLASH therapy during patient treatments in real time. CONCLUSION Through this simulation study, the use of protoacoustics in FLASH therapy was verified and explored through observations of varying parameters, such as the dose per pulse and pulsewidth. 2D and 3D reconstructions were also completed. This study shows the significance of using protoacoustics and provides necessary information, which can further be explored in clinical settings.
Collapse
Affiliation(s)
- Kaitlyn Kim
- Department of Biomedical Engineering, University of California, Irvine, California, USA
| | - Prabodh Kumar Pandey
- Department of Radiological Sciences, University of California, Irvine, California, USA
| | - Gilberto Gonzalez
- Department of Radiation Oncology, University of Oklahoma College of Medicine, Oklahoma City, Oklahoma, USA
| | - Yong Chen
- Department of Radiation Oncology, University of Oklahoma College of Medicine, Oklahoma City, Oklahoma, USA
| | - Liangzhong Xiang
- Department of Biomedical Engineering, University of California, Irvine, California, USA
- Department of Radiological Sciences, University of California, Irvine, California, USA
- Beckman Laser Institute & Medical Clinic, University of California, Irvine, California, USA
| |
Collapse
|
21
|
Rykkelid AM, Sinha PM, Folefac CA, Horsman MR, Sørensen BS, Søland TM, Schreurs OJF, Malinen E, Edin NFJ. Combination of proton- or X-irradiation with anti-PDL1 immunotherapy in two murine oral cancers. Sci Rep 2024; 14:11569. [PMID: 38773258 PMCID: PMC11109162 DOI: 10.1038/s41598-024-62272-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/15/2024] [Indexed: 05/23/2024] Open
Abstract
Combining radiation therapy with immunotherapy is a strategy to improve both treatments. The purpose of this study was to compare responses for two syngeneic head and neck cancer (HNC) tumor models in mice following X-ray or proton irradiation with or without immune checkpoint inhibition (ICI). MOC1 (immunogenic) and MOC2 (less immunogenic) tumors were inoculated in the right hind leg of each mouse (C57BL/6J, n = 398). Mice were injected with anti-PDL1 (10 mg/kg, twice weekly for 2 weeks), and tumors were treated with single-dose irradiation (5-30 Gy) with X-rays or protons. MOC2 tumors grew faster and were more radioresistant than MOC1 tumors, and all mice with MOC2 tumors developed metastases. Irradiation reduced the tumor volume in a dose-dependent manner. ICI alone reduced the tumor volume for MOC1 with 20% compared to controls, while no reduction was seen for MOC2. For MOC1, there was a clear treatment synergy when combining irradiation with ICI for radiation doses above 5 Gy and there was a tendency for X-rays being slightly more biologically effective compared to protons. For MOC2, there was a tendency of protons being more effective than X-rays, but both radiation types showed a small synergy when combined with ICI. Although the responses and magnitudes of the therapeutic effect varied, the optimal radiation dose for maximal synergy appeared to be in the order of 10-15 Gy, regardless of tumor model.
Collapse
Affiliation(s)
- Anne Marit Rykkelid
- Department of Physics, University of Oslo, P.O. Box 1048, 0316, Blindern, Oslo, Norway
| | | | | | - Michael R Horsman
- Experimental Clinical Oncology - Dept. Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Brita Singers Sørensen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
| | - Tine Merete Søland
- Institute of Oral Biology, University of Oslo, P.O. Box 1052, 0316, Blindern, Oslo, Norway
| | | | - Eirik Malinen
- Department of Physics, University of Oslo, P.O. Box 1048, 0316, Blindern, Oslo, Norway
- Department of Radiation Biology, Oslo University Hospital, P.O. Box 4950, 0424, Nydalen, Oslo, Norway
| | - Nina Frederike J Edin
- Department of Physics, University of Oslo, P.O. Box 1048, 0316, Blindern, Oslo, Norway.
| |
Collapse
|
22
|
Chow JCL, Ruda HE. Mechanisms of Action in FLASH Radiotherapy: A Comprehensive Review of Physicochemical and Biological Processes on Cancerous and Normal Cells. Cells 2024; 13:835. [PMID: 38786057 PMCID: PMC11120005 DOI: 10.3390/cells13100835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
The advent of FLASH radiotherapy (FLASH-RT) has brought forth a paradigm shift in cancer treatment, showcasing remarkable normal cell sparing effects with ultra-high dose rates (>40 Gy/s). This review delves into the multifaceted mechanisms underpinning the efficacy of FLASH effect, examining both physicochemical and biological hypotheses in cell biophysics. The physicochemical process encompasses oxygen depletion, reactive oxygen species, and free radical recombination. In parallel, the biological process explores the FLASH effect on the immune system and on blood vessels in treatment sites such as the brain, lung, gastrointestinal tract, skin, and subcutaneous tissue. This review investigated the selective targeting of cancer cells and the modulation of the tumor microenvironment through FLASH-RT. Examining these mechanisms, we explore the implications and challenges of integrating FLASH-RT into cancer treatment. The potential to spare normal cells, boost the immune response, and modify the tumor vasculature offers new therapeutic strategies. Despite progress in understanding FLASH-RT, this review highlights knowledge gaps, emphasizing the need for further research to optimize its clinical applications. The synthesis of physicochemical and biological insights serves as a comprehensive resource for cell biology, molecular biology, and biophysics researchers and clinicians navigating the evolution of FLASH-RT in cancer therapy.
Collapse
Affiliation(s)
- James C. L. Chow
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1X6, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Harry E. Ruda
- Centre of Advance Nanotechnology, Faculty of Applied Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada;
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada
| |
Collapse
|
23
|
Horst F, Bodenstein E, Brand M, Hans S, Karsch L, Lessmann E, Löck S, Schürer M, Pawelke J, Beyreuther E. Dose and dose rate dependence of the tissue sparing effect at ultra-high dose rate studied for proton and electron beams using the zebrafish embryo model. Radiother Oncol 2024; 194:110197. [PMID: 38447870 DOI: 10.1016/j.radonc.2024.110197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
PURPOSE A better characterization of the dependence of the tissue sparing effect at ultra-high dose rate (UHDR) on physical beam parameters (dose, dose rate, radiation quality) would be helpful towards a mechanistic understanding of the FLASH effect and for its broader clinical translation. To address this, a comprehensive study on the normal tissue sparing at UHDR using the zebrafish embryo (ZFE) model was conducted. METHODS One-day-old ZFE were irradiated over a wide dose range (15-95 Gy) in three different beams (proton entrance channel, proton spread out Bragg peak and 30 MeV electrons) at UHDR and reference dose rate. After irradiation the ZFE were incubated for 4 days and then analyzed for four different biological endpoints (pericardial edema, curved spine, embryo length and eye diameter). RESULTS Dose-effect curves were obtained and a sparing effect at UHDR was observed for all three beams. It was demonstrated that proton relative biological effectiveness and UHDR sparing are both relevant to predict the resulting dose response. Dose dependent FLASH modifying factors (FMF) for ZFE were found to be compatible with rodent data from the literature. It was found that the UHDR sparing effect saturates at doses above ∼ 50 Gy with an FMF of ∼ 0.7-0.8. A strong dose rate dependence of the tissue sparing effect in ZFE was observed. The magnitude of the maximum sparing effect was comparable for all studied biological endpoints. CONCLUSION The ZFE model was shown to be a suitable pre-clinical high-throughput model for radiobiological studies on FLASH radiotherapy, providing results comparable to rodent models. This underlines the relevance of ZFE studies for FLASH radiotherapy research.
Collapse
Affiliation(s)
- Felix Horst
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
| | - Elisabeth Bodenstein
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
| | - Michael Brand
- Center for Regenerative Therapies TU Dresden and Cluster of Excellence 'Physics of Life', Technische Universität Dresden, Dresden, Germany
| | - Stefan Hans
- Center for Regenerative Therapies TU Dresden and Cluster of Excellence 'Physics of Life', Technische Universität Dresden, Dresden, Germany
| | - Leonhard Karsch
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
| | - Elisabeth Lessmann
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Dresden, Germany
| | - Steffen Löck
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Schürer
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany; National Center for Tumor Diseases Dresden (NCT/UCC), Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Jörg Pawelke
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
| | - Elke Beyreuther
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Dresden, Germany.
| |
Collapse
|
24
|
Lövgren N, Fagerström Kristensen I, Petersson K. Feasibility and constraints of Bragg peak FLASH proton therapy treatment planning. Front Oncol 2024; 14:1369065. [PMID: 38737902 PMCID: PMC11082391 DOI: 10.3389/fonc.2024.1369065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/02/2024] [Indexed: 05/14/2024] Open
Abstract
Introduction FLASH proton therapy (FLASH-PT) requires ultra-high dose rate (≥ 40 Gy/s) protons to be delivered in a short timescale whilst conforming to a patient-specific target. This study investigates the feasibility and constraints of Bragg peak FLASH-PT treatment planning, and compares the in silico results produced to plans for intensity modulated proton therapy (IMPT). Materials and method Bragg peak FLASH-PT and IMPT treatment plans were generated for bone (n=3), brain (n=3), and lung (n=4) targets using the MIROpt research treatment planning system and the Conformal FLASH library developed by Applications SA from the open-source version of UCLouvain. FLASH-PT beams were simulated using monoenergetic spot-scanned protons traversing through a conformal energy modulator, a range shifter, and an aperture. A dose rate constraint of ≥ 40 Gy/s was included in each FLASH-PT plan optimisation. Results Space limitations in the FLASH-PT adapted beam nozzle imposed a maximum target width constraint, excluding 4 cases from the study. FLASH-PT plans did not satisfy the imposed target dose constraints (D95% ≥ 95% and D2%≤ 105%) but achieved clinically acceptable doses to organs at risk (OARs). IMPT plans adhered to all target and OAR dose constraints. FLASH-PT plans showed a reduction in both target homogeneity (p < 0.001) and dose conformity (non-significant) compared to IMPT. Conclusion Without accounting for a sparing effect, IMPT plans were superior in target coverage, dose conformity, target homogeneity, and OAR sparing compared to FLASH-PT. Further research is warranted in treatment planning optimisation and beam delivery for clinical implementation of Bragg peak FLASH-PT.
Collapse
Affiliation(s)
- Nathalie Lövgren
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Ingrid Fagerström Kristensen
- Clinical Oncology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Haematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Kristoffer Petersson
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
- Department of Haematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
25
|
Cengel KA, Kim MM, Diffenderfer ES, Busch TM. FLASH Radiotherapy: What Can FLASH's Ultra High Dose Rate Offer to the Treatment of Patients With Sarcoma? Semin Radiat Oncol 2024; 34:218-228. [PMID: 38508786 DOI: 10.1016/j.semradonc.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
FLASH is an emerging treatment paradigm in radiotherapy (RT) that utilizes ultra-high dose rates (UHDR; >40 Gy)/s) of radiation delivery. Developing advances in technology support the delivery of UHDR using electron and proton systems, as well as some ion beam units (eg, carbon ions), while methods to achieve UHDR with photons are under investigation. The major advantage of FLASH RT is its ability to increase the therapeutic index for RT by shifting the dose response curve for normal tissue toxicity to higher doses. Numerous preclinical studies have been conducted to date on FLASH RT for murine sarcomas, alongside the investigation of its effects on relevant normal tissues of skin, muscle, and bone. The tumor control achieved by FLASH RT of sarcoma models is indistinguishable from that attained by treatment with standard RT to the same total dose. FLASH's high dose rates are able to mitigate the severity or incidence of RT side effects on normal tissues as evaluated by endpoints ranging from functional sparing to histological damage. Large animal studies and clinical trials of canine patients show evidence of skin sparing by FLASH vs. standard RT, but also caution against delivery of high single doses with FLASH that exceed those safely applied with standard RT. Also, a human clinical trial has shown that FLASH RT can be delivered safely to bone metastasis. Thus, data to date support continued investigations of clinical translation of FLASH RT for the treatment of patients with sarcoma. Toward this purpose, hypofractionated irradiation schemes are being investigated for FLASH effects on sarcoma and relevant normal tissues.
Collapse
Affiliation(s)
- Keith A Cengel
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania..
| | - Michele M Kim
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Eric S Diffenderfer
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Theresa M Busch
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
26
|
Rank L, Dogan O, Kopp B, Mein S, Verona-Rinati G, Kranzer R, Marinelli M, Mairani A, Tessonnier T. Development and benchmarking of a dose rate engine for raster-scanned FLASH helium ions. Med Phys 2024; 51:2251-2262. [PMID: 37847027 PMCID: PMC10939952 DOI: 10.1002/mp.16793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 09/14/2023] [Accepted: 10/06/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Radiotherapy with charged particles at high dose and ultra-high dose rate (uHDR) is a promising technique to further increase the therapeutic index of patient treatments. Dose rate is a key quantity to predict the so-called FLASH effect at uHDR settings. However, recent works introduced varying calculation models to report dose rate, which is susceptible to the delivery method, scanning path (in active beam delivery) and beam intensity. PURPOSE This work introduces an analytical dose rate calculation engine for raster scanned charged particle beams that is able to predict dose rate from the irradiation plan and recorded beam intensity. The importance of standardized dose rate calculation methods is explored here. METHODS Dose is obtained with an analytical pencil beam algorithm, using pre-calculated databases for integrated depth dose distributions and lateral penumbra. Dose rate is then calculated by combining dose information with the respective particle fluence (i.e., time information) using three dose-rate-calculation models (mean, instantaneous, and threshold-based). Dose rate predictions for all three models are compared to uHDR helium ion beam (145.7 MeV/u, range in water of approximatively 14.6 cm) measurements performed at the Heidelberg Ion Beam Therapy Center (HIT) with a diamond-detector prototype. Three scanning patterns (scanned or snake-like) and four field sizes are used to investigate the dose rate differences. RESULTS Dose rate measurements were in good agreement with in-silico generated distributions using the here introduced engine. Relative differences in dose rate were below 10% for varying depths in water, from 2.3 to 14.8 cm, as well as laterally in a near Bragg peak area. In the entrance channel of the helium ion beam, dose rates were predicted within 7% on average for varying irradiated field sizes and scanning patterns. Large differences in absolute dose rate values were observed for varying calculation methods. For raster-scanned irradiations, the deviation between mean and threshold-based dose rate at the investigated point was found to increase with the field size up to 63% for a 10 mm × 10 mm field, while no significant differences were observed for snake-like scanning paths. CONCLUSIONS This work introduces the first dose rate calculation engine benchmarked to instantaneous dose rate, enabling dose rate predictions for physical and biophysical experiments. Dose rate is greatly affected by varying particle fluence, scanning path, and calculation method, highlighting the need for a consensus among the FLASH community on how to calculate and report dose rate in the future. The here introduced engine could help provide the necessary details for the analysis of the sparing effect and uHDR conditions.
Collapse
Affiliation(s)
- Luisa Rank
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Karlsruhe Institute of Technology (KIT), Faculty of Physics, Karlsruhe, Germany
| | - Ozan Dogan
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg University, Faculty of Physics and Astronomy, Heidelberg, Germany
| | - Benedikt Kopp
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stewart Mein
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University Hospital (UKHD), Heidelberg Faculty of Medicine (MFHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Rafael Kranzer
- PTW-Freiburg, Freiburg, Germany
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University Oldenburg, Germany
| | - Marco Marinelli
- Industrial Engineering Department, University of Rome “Tor Vergata”, Rome, Italy
| | - Andrea Mairani
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University Hospital (UKHD), Heidelberg Faculty of Medicine (MFHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Physics, National Centre of Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Thomas Tessonnier
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University Hospital (UKHD), Heidelberg Faculty of Medicine (MFHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
27
|
Tessonnier T, Verona-Rinati G, Rank L, Kranzer R, Mairani A, Marinelli M. Diamond detectors for dose and instantaneous dose-rate measurements for ultra-high dose-rate scanned helium ion beams. Med Phys 2024; 51:1450-1459. [PMID: 37742343 PMCID: PMC10922163 DOI: 10.1002/mp.16757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 07/13/2023] [Accepted: 09/11/2023] [Indexed: 09/26/2023] Open
Abstract
BACKGROUND The possible emergence of the FLASH effect-the sparing of normal tissue while maintaining tumor control-after irradiations at dose-rates exceeding several tens of Gy per second, has recently spurred a surge of studies attempting to characterize and rationalize the phenomenon. Investigating and reporting the dose and instantaneous dose-rate of ultra-high dose-rate (UHDR) particle radiotherapy beams is crucial for understanding and assessing the FLASH effect, towards pre-clinical application and quality assurance programs. PURPOSE The purpose of the present work is to investigate a novel diamond-based detector system for dose and instantaneous dose-rate measurements in UHDR particle beams. METHODS Two types of diamond detectors, a microDiamond (PTW 60019) and a diamond detector prototype specifically designed for operation in UHDR beams (flashDiamond), and two different readout electronic chains, were investigated for absorbed dose and instantaneous dose-rate measurements. The detectors were irradiated with a helium beam of 145.7 MeV/u under conventional and UHDR delivery. Dose-rate delivery records by the monitoring ionization chamber and diamond detectors were studied for single spot irradiations. Dose linearity at 5 cm depth and in-depth dose response from 2 to 16 cm were investigated for both measurement chains and both detectors in a water tank. Measurements with cylindrical and plane-parallel ionization chambers as well as Monte-Carlo simulations were performed for comparisons. RESULTS Diamond detectors allowed for recording the temporal structure of the beam, in good agreement with the one obtained by the monitoring ionization chamber. A better time resolution of the order of few μs was observed as compared to the approximately 50 μs of the monitoring ionization chamber. Both diamonds detectors show an excellent linearity response in both delivery modalities. Dose values derived by integrating the measured instantaneous dose-rates are in very good agreement with the ones obtained by the standard electrometer readings. Bragg peak curves confirmed the consistency of the charge measurements by the two systems. CONCLUSIONS The proposed novel dosimetric system allows for a detailed investigation of the temporal evolution of UHDR beams. As a result, reliable and accurate determinations of dose and instantaneous dose-rate are possible, both required for a comprehensive characterization of UHDR beams and relevant for FLASH effect assessment in clinical treatments.
Collapse
Affiliation(s)
- Thomas Tessonnier
- Heidelberg Ion Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Luisa Rank
- Heidelberg Ion Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Faculty of Physics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Rafael Kranzer
- PTW-Freiburg, Freiburg, Germany
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | - Andrea Mairani
- Heidelberg Ion Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Physics department, National Centre of Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Marco Marinelli
- Industrial Engineering Department, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
28
|
Yin L, Masumi U, Ota K, Sforza DM, Miles D, Rezaee M, Wong JW, Jia X, Li H. Feasibility of Synchrotron-Based Ultra-High Dose Rate (UHDR) Proton Irradiation with Pencil Beam Scanning for FLASH Research. Cancers (Basel) 2024; 16:221. [PMID: 38201648 PMCID: PMC10778151 DOI: 10.3390/cancers16010221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND This study aims to present the feasibility of developing a synchrotron-based proton ultra-high dose rate (UHDR) pencil beam scanning (PBS) system. METHODS The RF extraction power in the synchrotron system was increased to generate 142.4 MeV pulsed proton beams for UHDR irradiation at ~100 nA beam current. The charge per spill was measured using a Faraday cup. The spill length and microscopic time structure of each spill was measured with a 2D strip transmission ion chamber. The measured UHDR beam fluence was used to derive the spot dwell time for pencil beam scanning. Absolute dose distributions at various depths and spot spacings were measured using Gafchromic films in a solid-water phantom. RESULTS For proton UHDR beams at 142.4 MeV, the maximum charge per spill is 4.96 ± 0.10 nC with a maximum spill length of 50 ms. This translates to an average beam current of approximately 100 nA during each spill. Using a 2 × 2 spot delivery pattern, the delivered dose per spill at 5 cm and 13.5 cm depth is 36.3 Gy (726.3 Gy/s) and 56.2 Gy (1124.0 Gy/s), respectively. CONCLUSIONS The synchrotron-based proton therapy system has the capability to deliver pulsed proton UHDR PBS beams. The maximum deliverable dose and field size per pulse are limited by the spill length and extraction charge.
Collapse
Affiliation(s)
- Lingshu Yin
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (D.M.S.); (D.M.); (M.R.); (J.W.W.); (X.J.); (H.L.)
| | - Umezawa Masumi
- Hitachi, Ltd., Research and Development Group, Center for Technology Innovation–Energy, 7-2-1, Omika-chou, Hitachi-shi 319-1292, Ibaraki-ken, Japan;
| | - Kan Ota
- Pyramid Technical Consultants, Inc., Boston, MA 02452, USA;
| | - Daniel M. Sforza
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (D.M.S.); (D.M.); (M.R.); (J.W.W.); (X.J.); (H.L.)
| | - Devin Miles
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (D.M.S.); (D.M.); (M.R.); (J.W.W.); (X.J.); (H.L.)
| | - Mohammad Rezaee
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (D.M.S.); (D.M.); (M.R.); (J.W.W.); (X.J.); (H.L.)
| | - John W. Wong
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (D.M.S.); (D.M.); (M.R.); (J.W.W.); (X.J.); (H.L.)
| | - Xun Jia
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (D.M.S.); (D.M.); (M.R.); (J.W.W.); (X.J.); (H.L.)
| | - Heng Li
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (D.M.S.); (D.M.); (M.R.); (J.W.W.); (X.J.); (H.L.)
| |
Collapse
|
29
|
Almeida A, Togno M, Ballesteros-Zebadua P, Franco-Perez J, Geyer R, Schaefer R, Petit B, Grilj V, Meer D, Safai S, Lomax T, Weber DC, Bailat C, Psoroulas S, Vozenin MC. Dosimetric and biologic intercomparison between electron and proton FLASH beams. Radiother Oncol 2024; 190:109953. [PMID: 37839557 DOI: 10.1016/j.radonc.2023.109953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND AND PURPOSE The FLASH effect has been validated in different preclinical experiments with electrons (eFLASH) and protons (pFLASH) operating at an average dose rate above 40 Gy/s. However, no systematic intercomparison of the FLASH effect produced by eFLASHvs. pFLASH has yet been performed and constitutes the aim of the present study. MATERIALS AND METHODS The electron eRT6/Oriatron/CHUV/5.5 MeV and proton Gantry1/PSI/170 MeV were used to deliver conventional (0.1 Gy/s eCONV and pCONV) and FLASH (≥110 Gy/s eFLASH and pFLASH) dose rates. Protons were delivered in transmission. Dosimetric and biologic intercomparisons were performed using previously validated dosimetric approaches and experimental murine models. RESULTS The difference between the average absorbed dose measured at Gantry 1 with PSI reference dosimeters and with CHUV/IRA dosimeters was -1.9 % (0.1 Gy/s) and + 2.5 % (110 Gy/s). The neurocognitive capacity of eFLASH and pFLASH irradiated mice was indistinguishable from the control, while both eCONV and pCONV irradiated cohorts showed cognitive decrements. Complete tumor response was obtained after an ablative dose of 20 Gy delivered with the two beams at CONV and FLASH dose rates. Tumor rejection upon rechallenge indicates that anti-tumor immunity was activated independently of the beam-type and the dose-rate. CONCLUSION Despite major differences in the temporal microstructure of proton and electron beams, this study shows that dosimetric standards can be established. Normal brain protection and tumor control were produced by the two beams. More specifically, normal brain protection was achieved when a single dose of 10 Gy was delivered in 90 ms or less, suggesting that the most important physical parameter driving the FLASH sparing effect might be the mean dose rate. In addition, a systemic anti-tumor immunological memory response was observed in mice exposed to high ablative dose of electron and proton delivered at CONV and FLASH dose rate.
Collapse
Affiliation(s)
- A Almeida
- Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - M Togno
- Center for Proton Therapy, Paul Scherrer Institute, 5323, Villigen, Switzerland
| | - P Ballesteros-Zebadua
- Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Instituto Nacional de Neurología y Neurocirugía MVS, Mexico City, Mexico
| | - J Franco-Perez
- Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Instituto Nacional de Neurología y Neurocirugía MVS, Mexico City, Mexico
| | - R Geyer
- Department of Radiation Oncology, lnselspital, Bern University Hospital, University of Bern, Switzerland
| | - R Schaefer
- Center for Proton Therapy, Paul Scherrer Institute, 5323, Villigen, Switzerland
| | - B Petit
- Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - V Grilj
- Institute of Radiation Physics (IRA)/CHUV, Lausanne University Hospital, Lausanne, Switzerland
| | - D Meer
- Center for Proton Therapy, Paul Scherrer Institute, 5323, Villigen, Switzerland
| | - S Safai
- Center for Proton Therapy, Paul Scherrer Institute, 5323, Villigen, Switzerland
| | - T Lomax
- Center for Proton Therapy, Paul Scherrer Institute, 5323, Villigen, Switzerland
| | - D C Weber
- Center for Proton Therapy, Paul Scherrer Institute, 5323, Villigen, Switzerland; Department of Radiation Oncology, lnselspital, Bern University Hospital, University of Bern, Switzerland; Department of Radiation Oncology, University Hospital of Zurich, Switzerland
| | - C Bailat
- Institute of Radiation Physics (IRA)/CHUV, Lausanne University Hospital, Lausanne, Switzerland
| | - S Psoroulas
- Center for Proton Therapy, Paul Scherrer Institute, 5323, Villigen, Switzerland
| | - Marie-Catherine Vozenin
- Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Radiotherapy and Radiobiology sector, Radiation Therapy service, University hospital of Geneva, Geneva, Switzerland.
| |
Collapse
|
30
|
Mascia A, McCauley S, Speth J, Nunez SA, Boivin G, Vilalta M, Sharma RA, Perentesis JP, Sertorio M. Impact of Multiple Beams on the FLASH Effect in Soft Tissue and Skin in Mice. Int J Radiat Oncol Biol Phys 2024; 118:253-261. [PMID: 37541394 DOI: 10.1016/j.ijrobp.2023.07.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/19/2023] [Accepted: 07/14/2023] [Indexed: 08/06/2023]
Abstract
PURPOSE FLASH proton pencil beam scanning (p-PBS) showed a reduction in mouse skin toxicity and fibrosis when delivered as a single, uninterrupted, high-dose fraction. Clinical p-PBS treatment usually requires multiple beams to achieve good conformality, and these beams are separated by minutes to allow patient and equipment repositioning. We evaluate the impact of multibeam versus single-beam proton radiation on the FLASH sparing effect on skin toxicity. METHODS AND MATERIALS The right hind leg of 10-week-old female C57Bl/6j mice was irradiated using a Varian ProBeam proton beam scanning gantry system at conventional (1 Gy/s) or FLASH (100 Gy/s) average field dose rate. We scored the skin toxicity after different doses for 7 weeks. The treatment was delivered as 1, 2, or 3 equal beams with an interruption of 2 minutes. For each beam delivery, the equipment remained in the same position so that there was a full overlap of beams administered. RESULTS Single-beam delivery confirmed a benefit for p-PBS FLASH in this model at 30, 35, and 40 Gy. At 30 and 35 Gy, a single beam interruption of 2 minutes (2 × 15 Gy or 2 × 17.5 Gy) reduced the FLASH sparing effect, which remained significant (P < .001). However, 2 interruptions (3 × 10 Gy or 3 × 11.6 Gy) abrogated the normal tissue sparing effect. CONCLUSIONS Our results indicate that the FLASH sparing effect in areas of beam overlap can be compromised by interruptions in delivery time. Time gap between overlapping beams and spatial arrangement of the delivered beams are important parameters for FLASH studies. The effect of multibeam needs to be studied on different organs of interest.
Collapse
Affiliation(s)
- Anthony Mascia
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, Ohio; Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Shelby McCauley
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Joseph Speth
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, Ohio; Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Stefanno Alarcon Nunez
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, Ohio; Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Gael Boivin
- Varian, a Siemens Healthineers Company, Palo Alto, California
| | - Marta Vilalta
- Varian, a Siemens Healthineers Company, Palo Alto, California
| | - Ricky A Sharma
- Varian, a Siemens Healthineers Company, Palo Alto, California
| | | | - Mathieu Sertorio
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, Ohio; Department of Radiation Oncology, University of Cincinnati Cancer Center, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| |
Collapse
|
31
|
Miles D, Sforza D, Wong JW, Gabrielson K, Aziz K, Mahesh M, Coulter JB, Siddiqui I, Tran PT, Viswanathan AN, Rezaee M. FLASH Effects Induced by Orthovoltage X-Rays. Int J Radiat Oncol Biol Phys 2023; 117:1018-1027. [PMID: 37364800 PMCID: PMC11189000 DOI: 10.1016/j.ijrobp.2023.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/16/2023] [Accepted: 06/11/2023] [Indexed: 06/28/2023]
Abstract
PURPOSE This work describes the first implementation and in vivo study of ultrahigh-dose-rate radiation (>37 Gy/s; FLASH) effects induced by kilovoltage (kV) x-ray from a rotating-anode x-ray source. METHODS AND MATERIALS A high-capacity rotating-anode x-ray tube with an 80-kW generator was implemented for preclinical FLASH radiation research. A custom 3-dimensionally printed immobilization and positioning tool was developed for reproducible irradiation of a mouse hind limb. Calibrated Gafchromic (EBT3) film and thermoluminescent dosimeters (LiF:Mg,Ti) were used for in-phantom and in vivo dosimetry. Healthy FVB/N and FVBN/C57BL/6 outbred mice were irradiated on 1 hind leg to doses up to 43 Gy at FLASH (87 Gy/s) and conventional (CONV; <0.05 Gy/s) dose rates. The radiation doses were delivered using a single pulse with the widths up to 500 ms and 15 minutes at FLASH and CONV dose rates. Histologic assessment of radiation-induced skin damage was performed at 8 weeks posttreatment. Tumor growth suppression was assessed using a B16F10 flank tumor model in C57BL6J mice irradiated to 35 Gy at both FLASH and CONV dose rates. RESULTS FLASH-irradiated mice experienced milder radiation-induced skin injuries than CONV-irradiated mice, visible by 4 weeks posttreatment. At 8 weeks posttreatment, normal tissue injury was significantly reduced in FLASH-irradiated animals compared with CONV-irradiated animals for histologic endpoints including inflammation, ulceration, hyperplasia, and fibrosis. No difference in tumor growth response was observed between FLASH and CONV irradiations at 35 Gy. The normal tissue sparing effects of FLASH irradiations were observed only for high-severity endpoint of ulceration at 43 Gy, which suggests the dependency of biologic endpoints to FLASH radiation dose. CONCLUSIONS Rotating-anode x-ray sources can achieve FLASH dose rates in a single pulse with dosimetric properties suitable for small-animal experiments. We observed FLASH normal tissue sparing of radiation toxicities in mouse skin irradiated at 35 Gy with no sacrifice to tumor growth suppression. This study highlights an accessible new modality for laboratory study of the FLASH effect.
Collapse
Affiliation(s)
- Devin Miles
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Daniel Sforza
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John W Wong
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kathleen Gabrielson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Khaled Aziz
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mahadevappa Mahesh
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jonathan B Coulter
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ismaeel Siddiqui
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Phuoc T Tran
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Akila N Viswanathan
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mohammad Rezaee
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
32
|
Böhlen TT, Germond JF, Petersson K, Ozsahin EM, Herrera FG, Bailat C, Bochud F, Bourhis J, Moeckli R, Adrian G. Effect of Conventional and Ultrahigh Dose Rate FLASH Irradiations on Preclinical Tumor Models: A Systematic Analysis. Int J Radiat Oncol Biol Phys 2023; 117:1007-1017. [PMID: 37276928 DOI: 10.1016/j.ijrobp.2023.05.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 04/19/2023] [Accepted: 05/26/2023] [Indexed: 06/07/2023]
Abstract
PURPOSE Compared with conventional dose rate irradiation (CONV), ultrahigh dose rate irradiation (UHDR) has shown superior normal tissue sparing. However, a clinically relevant widening of the therapeutic window by UHDR, termed "FLASH effect," also depends on the tumor toxicity obtained by UHDR. Based on a combined analysis of published literature, the current study examined the hypothesis of tumor isoefficacy for UHDR versus CONV and aimed to identify potential knowledge gaps to inspire future in vivo studies. METHODS AND MATERIALS A systematic literature search identified publications assessing in vivo tumor responses comparing UHDR and CONV. Qualitative and quantitative analyses were performed, including combined analyses of tumor growth and survival data. RESULTS We identified 66 data sets from 15 publications that compared UHDR and CONV for tumor efficacy. The median number of animals per group was 9 (range 3-15) and the median follow-up period was 30.5 days (range 11-230) after the first irradiation. Tumor growth assays were the predominant model used. Combined statistical analyses of tumor growth and survival data are consistent with UHDR isoefficacy compared with CONV. Only 1 study determined tumor-controlling dose (TCD50) and reported statistically nonsignificant differences. CONCLUSIONS The combined quantitative analyses of tumor responses support the assumption of UHDR isoefficacy compared with CONV. However, the comparisons are primarily based on heterogeneous tumor growth assays with limited numbers of animals and short follow-up, and most studies do not assess long-term tumor control probability. Therefore, the assays may be insensitive in resolving smaller response differences, such as responses of radioresistant tumor subclones. Hence, tumor cure experiments, including additional TCD50 experiments, are needed to confirm the assumption of isoeffectiveness in curative settings.
Collapse
Affiliation(s)
- Till Tobias Böhlen
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Jean-François Germond
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Kristoffer Petersson
- Department of Hematology, Oncology, and Radiation Physics, Skåne University Hospital, Lund, Sweden; MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Esat Mahmut Ozsahin
- Department of Radiation Oncology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Fernanda G Herrera
- Department of Radiation Oncology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Claude Bailat
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - François Bochud
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Jean Bourhis
- Department of Radiation Oncology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Raphaël Moeckli
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland.
| | - Gabriel Adrian
- Department of Hematology, Oncology, and Radiation Physics, Skåne University Hospital, Lund, Sweden; Division of Oncology and Pathology, Department of Clinical Sciences, Skåne University Hospital, Lund University, Lund, Sweden
| |
Collapse
|
33
|
Overgaard CB, Reaz F, Sitarz M, Poulsen P, Overgaard J, Bassler N, Grau C, Sørensen BS. An experimental setup for proton irradiation of a murine leg model for radiobiological studies. Acta Oncol 2023; 62:1566-1573. [PMID: 37603112 DOI: 10.1080/0284186x.2023.2246641] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND The purpose of this study was to introduce an experimental radiobiological setup used for in vivo irradiation of a mouse leg target in multiple positions along a proton beam path to investigate normal tissue- and tumor models with varying linear energy transfer (LET). We describe the dosimetric characterizations and an acute- and late-effect assay for normal tissue damage. METHODS The experimental setup consists of a water phantom that allows the right hind leg of three to five mice to be irradiated at the same time. Absolute dosimetry using a thimble (Semiflex) and a plane parallel (Advanced Markus) ionization chamber and Monte Carlo simulations using Geant4 and SHIELD-HIT12A were applied for dosimetric validation of positioning along the spread-out Bragg peak (SOBP) and at the distal edge and dose fall-off. The mice were irradiated in the center of the SOBP delivered by a pencil beam scanning system. The SOBP was 2.8 cm wide, centered at 6.9 cm depth, with planned physical single doses from 22 to 46 Gy. The biological endpoint was acute skin damage and radiation-induced late damage (RILD) assessed in the mouse leg. RESULTS The dose-response curves illustrate the percentage of mice exhibiting acute skin damage, and at a later point, RILD as a function of physical doses (Gy). Each dose-response curve represents a specific severity score of each assay, demonstrating a higher ED50 (50% responders) as the score increases. Moreover, the results reveal the reversible nature of acute skin damage as a function of time and the irreversible nature of RILD as time progresses. CONCLUSIONS We want to encourage researchers to report all experimental details of their radiobiological setups, including experimental protocols and model descriptions, to facilitate transparency and reproducibility. Based on this study, more experiments are being performed to explore all possibilities this radiobiological experimental setup permits.
Collapse
Affiliation(s)
- Cathrine Bang Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Fardous Reaz
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Danish Centre for Particle Therapy, Aarhus University Hospital, Denmark
| | - Mateusz Sitarz
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Danish Centre for Particle Therapy, Aarhus University Hospital, Denmark
| | - Per Poulsen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Danish Centre for Particle Therapy, Aarhus University Hospital, Denmark
| | - Jens Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Niels Bassler
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Danish Centre for Particle Therapy, Aarhus University Hospital, Denmark
| | - Cai Grau
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Danish Centre for Particle Therapy, Aarhus University Hospital, Denmark
| | - Brita Singers Sørensen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Danish Centre for Particle Therapy, Aarhus University Hospital, Denmark
| |
Collapse
|
34
|
Lin B, Fan M, Niu T, Liang Y, Xu H, Tang W, Du X. Key changes in the future clinical application of ultra-high dose rate radiotherapy. Front Oncol 2023; 13:1244488. [PMID: 37941555 PMCID: PMC10628486 DOI: 10.3389/fonc.2023.1244488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Ultra-high dose rate radiotherapy (FLASH-RT) is an external beam radiotherapy strategy that uses an extremely high dose rate (≥40 Gy/s). Compared with conventional dose rate radiotherapy (≤0.1 Gy/s), the main advantage of FLASH-RT is that it can reduce damage of organs at risk surrounding the cancer and retain the anti-tumor effect. An important feature of FLASH-RT is that an extremely high dose rate leads to an extremely short treatment time; therefore, in clinical applications, the steps of radiotherapy may need to be adjusted. In this review, we discuss the selection of indications, simulations, target delineation, selection of radiotherapy technologies, and treatment plan evaluation for FLASH-RT to provide a theoretical basis for future research.
Collapse
Affiliation(s)
- Binwei Lin
- Department of Oncology, National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology, Mianyang, China
| | - Mi Fan
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Tingting Niu
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yuwen Liang
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Haonan Xu
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Wenqiang Tang
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiaobo Du
- Department of Oncology, National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology, Mianyang, China
| |
Collapse
|
35
|
Konradsson E, Szecsenyi RE, Adrian G, Coskun M, Børresen B, Arendt ML, Erhart K, Bäck SÅ, Petersson K, Ceberg C. Evaluation of intensity-modulated electron FLASH radiotherapy in a clinical setting using veterinary cases. Med Phys 2023; 50:6569-6579. [PMID: 37696040 DOI: 10.1002/mp.16737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/08/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023] Open
Abstract
PURPOSE The increased normal tissue tolerance for FLASH radiotherapy (FLASH-RT), as compared to conventional radiotherapy, was first observed in ultra-high dose rate electron beams. Initial clinical trials in companion animals have revealed a high risk of developing osteoradionecrosis following high-dose single-fraction electron FLASH-RT, which may be related to inhomogeneities in the dose distribution. In the current study, we aim to evaluate the possibilities of intensity-modulated electron FLASH-RT in a clinical setting to ensure a homogeneous dose distribution in future veterinary and human clinical trials. METHODS Our beam model in the treatment planning system electronRT (.decimal, LLC, Sanford, FL, USA) was based on a 10-MeV electron beam from a clinical linear accelerator used to treat veterinary patients with FLASH-RT in a clinical setting. In electronRT, the beam can be intensity-modulated using tungsten island blocks in the electron block cutout, and range-modulated using a customized bolus with variable thickness. Modulations were first validated in a heterogeneous phantom by comparing measured and calculated dose distributions. To evaluate the impact of intensity modulation in superficial single-fraction FLASH-RT, a treatment planning study was conducted, including eight canine cancer patient cases with simulated tumors in the head-and-neck region. For each case, treatment plans with and without intensity modulation were created for a uniform bolus and a range-modulating bolus. Treatment plans were evaluated using a target dose homogeneity index (HI), a conformity index (CI), the near-maximum dose outside the target (D 2 % , Body - PTV ${D_{2{\mathrm{\% }},{\mathrm{\ Body}} - {\mathrm{PTV}}}}$ ), and the near-minimum dose to the target (D 98 % ${D_{98\% }}$ ). RESULTS By adding intensity modulation to plans with a uniform bolus, the HI could be improved (p = 0.017). The combination of a range-modulating bolus and intensity modulation provided a further significant improvement of the HI as compared to using intensity modulation in combination with a uniform bolus (p = 0.036). The range-modulating bolus also improved the CI compared to using a uniform bolus, both with an open beam (p = 0.046) and with intensity modulation (p = 0.018), as well as increased theD 98 % ${D_{98\% }}$ (p = 0.036 with open beam and p = 0.05 with intensity modulation) and reduced the medianD 2 % , Body - PTV ${D_{2\% ,{\mathrm{\ Body}} - {\mathrm{PTV}}}}$ (not significant). CONCLUSIONS By using intensity-modulated electron FLASH-RT in combination with range-modulating bolus, the target dose homogeneity and conformity in canine patients with simulated tumors in complex areas in the head-and-neck region could be improved. By utilizing this technique, we hope to decrease the dose outside the target volume and avoid hot spots in future clinical electron FLASH-RT studies, thereby reducing the risk of radiation-induced toxicity.
Collapse
Affiliation(s)
- Elise Konradsson
- Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Rebecka Ericsson Szecsenyi
- Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Gabriel Adrian
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Mizgin Coskun
- Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Betina Børresen
- Department of Veterinary Clinical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Maja Louise Arendt
- Department of Veterinary Clinical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Sven Åj Bäck
- Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Kristoffer Petersson
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Crister Ceberg
- Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
36
|
Vanreusel V, Gasparini A, Galante F, Mariani G, Pacitti M, Colijn A, Reniers B, Yalvac B, Vandenbroucke D, Peeters M, Leblans P, Felici G, Verellen D, de Freitas Nascimento L. Optically stimulated luminescence system as an alternative for radiochromic film for 2D reference dosimetry in UHDR electron beams. Phys Med 2023; 114:103147. [PMID: 37804712 DOI: 10.1016/j.ejmp.2023.103147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/18/2023] [Accepted: 09/21/2023] [Indexed: 10/09/2023] Open
Abstract
Radiotherapy is part of the treatment of over 50% of cancer patients. Its efficacy is limited by the radiotoxicity to the healthy tissue. FLASH-RT is based on the biological effect that ultra-high dose rates (UHDR) and very short treatment times strongly reduce normal tissue toxicity, while preserving the anti-tumoral effect. Despite many positive preclinical results, the translation of FLASH-RT to the clinic is hampered by the lack of accurate dosimetry for UHDR beams. To date radiochromic film is commonly used for dose assessment but has the drawback of lengthy and cumbersome read out procedures. In this work, we investigate the equivalence of a 2D OSL system to radiochromic film dosimetry in terms of dose rate independency. The comparison of both systems was done using the ElectronFlash linac. We investigated the dose rate dependence by variation of the (1) modality, (2) pulse repetition frequency, (3) pulse length and (4) source to surface distance. Additionally, we compared the 2D characteristics by field size measurements. The OSL calibration showed transferable between conventional and UHDR modality. Both systems are equally independent of average dose rate, pulse length and instantaneous dose rate. The OSL system showed equivalent in field size determination within 3 sigma. We show the promising nature of the 2D OSL system to serve as alternative for radiochromic film in UHDR electron beams. However, more in depth characterization is needed to assess its full potential.
Collapse
Affiliation(s)
- Verdi Vanreusel
- Research in Dosimetric Applications, SCK CEN, Boeretang 200, 2400 Mol, Belgium; CORE, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Iridium Netwerk, Oosterveldlaan 22, 2610 Wilrijk, Belgium.
| | - Alessia Gasparini
- CORE, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Iridium Netwerk, Oosterveldlaan 22, 2610 Wilrijk, Belgium
| | - Federica Galante
- Sordina IORT Technologies S.p.A., Via dell'Industria, 1/A, 04011 Aprilia, Latina, Italy
| | - Giulia Mariani
- Sordina IORT Technologies S.p.A., Via dell'Industria, 1/A, 04011 Aprilia, Latina, Italy
| | - Matteo Pacitti
- Sordina IORT Technologies S.p.A., Via dell'Industria, 1/A, 04011 Aprilia, Latina, Italy
| | - Arnaud Colijn
- CORE, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Brigitte Reniers
- NuTeC, CMK, Hasselt University, Wetenschapspark 27, 3590 Diepenbeek, Belgium
| | - Burak Yalvac
- NuTeC, CMK, Hasselt University, Wetenschapspark 27, 3590 Diepenbeek, Belgium
| | | | | | - Paul Leblans
- Agfa N.V., Septestraat 27, 2640 Mortsel, Belgium
| | - Giuseppe Felici
- Sordina IORT Technologies S.p.A., Via dell'Industria, 1/A, 04011 Aprilia, Latina, Italy
| | - Dirk Verellen
- CORE, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Iridium Netwerk, Oosterveldlaan 22, 2610 Wilrijk, Belgium
| | | |
Collapse
|
37
|
Atkinson J, Bezak E, Le H, Kempson I. The current status of FLASH particle therapy: a systematic review. Phys Eng Sci Med 2023; 46:529-560. [PMID: 37160539 DOI: 10.1007/s13246-023-01266-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/20/2023] [Indexed: 05/11/2023]
Abstract
Particle therapies are becoming increasingly available clinically due to their beneficial energy deposition profile, sparing healthy tissues. This may be further promoted with ultra-high dose rates, termed FLASH. This review comprehensively summarises current knowledge based on studies relevant to proton- and carbon-FLASH therapy. As electron-FLASH literature presents important radiobiological findings that form the basis of proton and carbon-based FLASH studies, a summary of key electron-FLASH papers is also included. Preclinical data suggest three key mechanisms by which proton and carbon-FLASH are able to reduce normal tissue toxicities compared to conventional dose rates, with equipotent, or enhanced, tumour kill efficacy. However, a degree of caution is needed in clinically translating these findings as: most studies use transmission and do not conform the Bragg peak to tumour volume; mechanistic understanding is still in its infancy; stringent verification of dosimetry is rarely provided; biological assays are prone to limitations which need greater acknowledgement.
Collapse
Affiliation(s)
- Jake Atkinson
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, 5095, Australia
| | - Eva Bezak
- Cancer Research Institute, University of South Australia, Adelaide, South Australia, 5000, Australia
- Department of Physics, University of Adelaide, North Terrace, Adelaide, South Australia, 5000, Australia
| | - Hien Le
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, 5000, Australia
| | - Ivan Kempson
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, 5095, Australia.
| |
Collapse
|
38
|
Barna S, Meouchi C, Resch AF, Magrin G, Georg D, Palmans H. 3D printed 2D range modulators preserve radiation quality on a microdosimetric scale in proton and carbon ion beams. Radiother Oncol 2023; 182:109525. [PMID: 36774996 DOI: 10.1016/j.radonc.2023.109525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023]
Abstract
INTRODUCTION Particle therapy using pencil beam scanning (PBS) faces large uncertain- ties related to ranges and target motion. One possibility to improve existing mitigation strategies is a 2D range modulator (2DRM). A 2DRM offers faster irradiation times by reducing the number of layers and spots needed to create a spread-out Bragg peak. We have investigated the impact of 2DRM on microdosimetric spectra measured in proton and carbon ion beams. MATERIALS AND METHODS Two 2DRMs were designed and 3D printed, one for. 124.7 MeV protons and one for 238.6 MeV/u carbon ions. Their dosimetric validation was performed using Roos and PinPoint ionization chamber and EBT3 films. Monte Carlo simulations were done using GATE. A silicon-based solid-state microdosimeter was used to collect pulse-height spectra along three depths for two irradiation modalities, PBS and a single central beam. RESULTS For both particle types, the original pin design had to be optimized via GATE simulations. The difference between the R80 of the simulated and measured depth dose curve was 0.1 mm. The microdosimetric spectra collected with the two irradiation modalities overlap well. Their mean lineal energy values differ over all positions by 5.2 % for the proton 2DRM and 2.1 % for the carbon ion 2DRM. CONCLUSION Radiation quality in terms of lineal energy was independent of the irradiation method. This supports the current approach in reference dosimetry, where the residual range is chosen as a beam quality index to select stopping power ratios.
Collapse
Affiliation(s)
- Sandra Barna
- Department of Radiation Oncology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, Austria.
| | - Cynthia Meouchi
- Atominstitut, Technical University of Vienna, Stadionallee 2, Vienna, Austria
| | - Andreas Franz Resch
- Department of Radiation Oncology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, Austria
| | - Giulio Magrin
- MedAustron Ion Therapy Center, Marie-Curie-Straße 5, Wiener Neustadt, Austria
| | - Dietmar Georg
- Department of Radiation Oncology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, Austria; MedAustron Ion Therapy Center, Marie-Curie-Straße 5, Wiener Neustadt, Austria
| | - Hugo Palmans
- MedAustron Ion Therapy Center, Marie-Curie-Straße 5, Wiener Neustadt, Austria; National Physical Laboratory, Hampton Road, Teddington, United Kingdom
| |
Collapse
|
39
|
Almeida A, Togno M, Ballesteros-Zebadua P, Franco-Perez J, Geyer R, Schaefer R, Petit B, Grilj V, Meer D, Safai S, Lomax T, Weber DC, Bailat C, Psoroulas S, Vozenin MC. Dosimetric and biologic intercomparison between electron and proton FLASH beams. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.20.537497. [PMID: 37131769 PMCID: PMC10153243 DOI: 10.1101/2023.04.20.537497] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Background and purpose The FLASH effect has been validated in different preclinical experiments with electrons (eFLASH) and protons (pFLASH) operating at a mean dose rate above 40 Gy/s. However, no systematic intercomparison of the FLASH effect produced by e vs. pFLASH has yet been performed and constitutes the aim of the present study. Materials and methods The electron eRT6/Oriatron/CHUV/5.5 MeV and proton Gantry1/PSI/170 MeV were used to deliver conventional (0.1 Gy/s eCONV and pCONV) and FLASH (≥100 Gy/s eFLASH and pFLASH) irradiation. Protons were delivered in transmission. Dosimetric and biologic intercomparisons were performed with previously validated models. Results Doses measured at Gantry1 were in agreement (± 2.5%) with reference dosimeters calibrated at CHUV/IRA. The neurocognitive capacity of e and pFLASH irradiated mice was indistinguishable from the control while both e and pCONV irradiated cohorts showed cognitive decrements. Complete tumor response was obtained with the two beams and was similar between e and pFLASH vs. e and pCONV. Tumor rejection was similar indicating that T-cell memory response is beam-type and dose-rate independent. Conclusion Despite major differences in the temporal microstructure, this study shows that dosimetric standards can be established. The sparing of brain function and tumor control produced by the two beams were similar, suggesting that the most important physical parameter driving the FLASH effect is the overall time of exposure which should be in the range of hundreds of milliseconds for WBI in mice. In addition, we observed that immunological memory response is similar between electron and proton beams and is independent off the dose rate.
Collapse
Affiliation(s)
- A Almeida
- Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - M Togno
- Center for Proton Therapy, Paul Scherrer Institute, 5323 Villigen PSI, Switzerland
| | - P Ballesteros-Zebadua
- Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Instituto Nacional de Neurología y Neurocirugía MVS, Mexico City, Mexico
| | - J Franco-Perez
- Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Instituto Nacional de Neurología y Neurocirugía MVS, Mexico City, Mexico
| | - R Geyer
- Department of Radiation Oncology, lnselspital, Bern University Hospital, University of Bern, Switzerland
| | - R Schaefer
- Center for Proton Therapy, Paul Scherrer Institute, 5323 Villigen PSI, Switzerland
| | - B Petit
- Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - V Grilj
- Institute of Radiation Physics (IRA)/CHUV, Lausanne University Hospital, Lausanne, Switzerland
| | - D Meer
- Center for Proton Therapy, Paul Scherrer Institute, 5323 Villigen PSI, Switzerland
| | - S Safai
- Center for Proton Therapy, Paul Scherrer Institute, 5323 Villigen PSI, Switzerland
| | - T Lomax
- Center for Proton Therapy, Paul Scherrer Institute, 5323 Villigen PSI, Switzerland
| | - D C Weber
- Center for Proton Therapy, Paul Scherrer Institute, 5323 Villigen PSI, Switzerland
- Department of Radiation Oncology, lnselspital, Bern University Hospital, University of Bern, Switzerland
- Department of Radiation Oncology, University Hospital of Zurich, Switzerland
| | - C Bailat
- Institute of Radiation Physics (IRA)/CHUV, Lausanne University Hospital, Lausanne, Switzerland
| | - S Psoroulas
- Center for Proton Therapy, Paul Scherrer Institute, 5323 Villigen PSI, Switzerland
| | - M C Vozenin
- Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
40
|
Shibamoto Y, Takano S. Non-Surgical Definitive Treatment for Operable Breast Cancer: Current Status and Future Prospects. Cancers (Basel) 2023; 15:cancers15061864. [PMID: 36980750 PMCID: PMC10046665 DOI: 10.3390/cancers15061864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
This article reviews the results of various non-surgical curative treatments for operable breast cancer. Radiotherapy is considered the most important among such treatments, but conventional radiotherapy alone and concurrent chemoradiotherapy do not achieve high cure rates. As a radiosensitization strategy, intratumoral injection of hydrogen peroxide before radiation has been investigated, and high local control rates (75-97%) were reported. The authors treated 45 patients with whole-breast radiotherapy, followed by stereotactic or intensity-modulated radiotherapy boost, with or without a radiosensitization strategy employing either hydrogen peroxide injection or hyperthermia plus oral tegafur-gimeracil-oteracil potassium. Stages were 0-I in 23 patients, II in 19, and III in 3. Clinical and cosmetic outcomes were good, with 5-year overall, progression-free, and local recurrence-free survival rates of 97, 86, and 88%, respectively. Trials of carbon ion radiotherapy are ongoing, with promising interim results. Radiofrequency ablation, focused ultrasound, and other image-guided ablation treatments yielded complete ablation rates of 20-100% (mostly ≥70%), but long-term cure rates remain unclear. In these treatments, combination with radiotherapy seems necessary to treat the extensive intraductal components. Non-surgical treatment of breast cancer is evolving steadily, with radiotherapy playing a major role. In the future, proton therapy with the ultra-high-dose-rate FLASH mode is expected to further improve outcomes.
Collapse
Affiliation(s)
- Yuta Shibamoto
- Department of Radiation Oncology, Narita Memorial Proton Center, 78 Shirakawa-cho, Toyohashi 441-8021, Japan
- Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita-shi 565-0871, Japan
| | - Seiya Takano
- Department of Radiology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| |
Collapse
|
41
|
Liew H, Mein S, Tessonnier T, Abdollahi A, Debus J, Dokic I, Mairani A. Do We Preserve Tumor Control Probability (TCP) in FLASH Radiotherapy? A Model-Based Analysis. Int J Mol Sci 2023; 24:5118. [PMID: 36982185 PMCID: PMC10049554 DOI: 10.3390/ijms24065118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
Reports of concurrent sparing of normal tissue and iso-effective treatment of tumors at ultra-high dose-rates (uHDR) have fueled the growing field of FLASH radiotherapy. However, iso-effectiveness in tumors is often deduced from the absence of a significant difference in their growth kinetics. In a model-based analysis, we investigate the meaningfulness of these indications for the clinical treatment outcome. The predictions of a previously benchmarked model of uHDR sparing in the "UNIfied and VERSatile bio response Engine" (UNIVERSE) are combined with existing models of tumor volume kinetics as well as tumor control probability (TCP) and compared to experimental data. The potential TCP of FLASH radiotherapy is investigated by varying the assumed dose-rate, fractionation schemes and oxygen concentration in the target. The developed framework describes the reported tumor growth kinetics appropriately, indicating that sparing effects could be present in the tumor but might be too small to be detected with the number of animals used. The TCP predictions show the possibility of substantial loss of treatment efficacy for FLASH radiotherapy depending on several variables, including the fractionation scheme, oxygen level, and DNA repair kinetics. The possible loss of TCP should be seriously considered when assessing the clinical viability of FLASH treatments.
Collapse
Affiliation(s)
- Hans Liew
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University Hospital and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Stewart Mein
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University Hospital and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104-6303, USA
| | - Thomas Tessonnier
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Amir Abdollahi
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University Hospital and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Jürgen Debus
- Division of Molecular and Translational Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University Hospital and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), University Hospital Heidelberg, National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Ivana Dokic
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University Hospital and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Andrea Mairani
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Medical Physics Unit, National Centre of Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy
| |
Collapse
|
42
|
Charyyev S, Chang CW, Zhu M, Lin L, Langen K, Dhabaan A. Characterization of 250 MeV Protons from the Varian ProBeam PBS System for FLASH Radiation Therapy. Int J Part Ther 2023; 9:279-289. [PMID: 37169007 PMCID: PMC10166018 DOI: 10.14338/ijpt-22-00027.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/24/2023] [Indexed: 03/05/2023] Open
Abstract
Shoot-through proton FLASH radiation therapy has been proposed where the highest energy is extracted from a cyclotron to maximize the dose rate (DR). Although our proton pencil beam scanning system can deliver 250 MeV (the highest energy), this energy is not used clinically, and as such, 250 MeV has yet to be characterized during clinical commissioning. We aim to characterize the 250-MeV proton beam from the Varian ProBeam system for FLASH and assess the usability of the clinical monitoring ionization chamber (MIC) for FLASH use. We measured the following data for beam commissioning: integral depth dose curve, spot sigma, and absolute dose. To evaluate the MIC, we measured output as a function of beam current. To characterize a 250 MeV FLASH beam, we measured (1) the central axis DR as a function of current and spot spacing and arrangement, (2) for a fixed spot spacing, the maximum field size that achieves FLASH DR (ie, > 40 Gy/s), and (3) DR reproducibility. All FLASH DR measurements were performed using an ion chamber for the absolute dose, and irradiation times were obtained from log files. We verified dose measurements using EBT-XD films and irradiation times using a fast, pixelated spectral detector. R90 and R80 from integral depth dose were 37.58 and 37.69 cm, and spot sigma at the isocenter were σx = 3.336 and σy = 3.332 mm, respectively. The absolute dose output was measured as 0.343 Gy*mm2/MU for the commissioning conditions. Output was stable for beam currents up to 15 nA and gradually increased to 12-fold for 115 nA. Dose and DR depended on beam current, spot spacing, and arrangement and could be reproduced with 6.4% and 4.2% variations, respectively. Although FLASH was achieved and the largest field size that delivers FLASH DR was determined as 35 × 35 mm2, the current MIC has DR dependence, and users should measure dose and DR independently each time for their FLASH applications.
Collapse
Affiliation(s)
- Serdar Charyyev
- Department of Radiation Oncology, Stanford University, Palo Alto, CA, USA
| | - Chih-Wei Chang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Mingyao Zhu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Liyong Lin
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Katja Langen
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Anees Dhabaan
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| |
Collapse
|
43
|
Zhang Q, Gerweck LE, Cascio E, Yang Q, Huang P, Niemierko A, Bertolet A, Nesteruk KP, McNamara A, Schuemann J. Proton FLASH effects on mouse skin at different oxygen tensions. Phys Med Biol 2023; 68:10.1088/1361-6560/acb888. [PMID: 36731139 PMCID: PMC11164666 DOI: 10.1088/1361-6560/acb888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 02/02/2023] [Indexed: 02/04/2023]
Abstract
Objective. Irradiation at FLASH dose rates (>40 Gy s-1) has received great attention due to its reported normal tissue sparing effect. The FLASH effect was originally observed in electron irradiations but has since been shown to also occur with both photon and proton beams. Several mechanisms have been proposed to explain the tissue sparing at high dose rates, including effects involving oxygen, such as depletion of oxygen within the irradiated cells. In this study, we investigated the protective role of FLASH proton irradiation on the skin when varying the oxygen concentration.Approach. Our double scattering proton system provided a 1.2 × 1.6 cm2elliptical field at a dose rate of ∼130 Gy s-1. The conventional dose rate was ∼0.4 Gy s-1. The legs of the FVB/N mice were marked with two tattooed dots and fixed in a holder for exposure. To alter the skin oxygen concentration, the mice were breathing pure oxygen or had their legs tied to restrict blood flow. The distance between the two dots was measured to analyze skin contraction over time.Main results. FLASH irradiation mitigated skin contraction by 15% compared to conventional dose rate irradiation. The epidermis thickness and collagen deposition at 75 d following 25 to 30 Gy exposure suggested a long-term protective function in the skin from FLASH irradiation. Providing the mice with oxygen or reducing the skin oxygen concentration removed the dose-rate-dependent difference in response.Significance. FLASH proton irradiation decreased skin contraction, epidermis thickness and collagen deposition compared to standard dose rate irradiations. The observed oxygen-dependence of the FLASH effect is consistent with, but not conclusive of, fast oxygen depletion during the exposure.
Collapse
Affiliation(s)
- Qixian Zhang
- Physics Division, Department of Radiation Oncology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States of America
| | - Leo E Gerweck
- Physics Division, Department of Radiation Oncology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States of America
| | - Ethan Cascio
- Physics Division, Department of Radiation Oncology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States of America
| | - Qingyuan Yang
- Physics Division, Department of Radiation Oncology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States of America
| | - Peigen Huang
- Physics Division, Department of Radiation Oncology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States of America
| | - Andrzej Niemierko
- Physics Division, Department of Radiation Oncology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States of America
| | - Alejandro Bertolet
- Physics Division, Department of Radiation Oncology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States of America
| | - Konrad Pawel Nesteruk
- Physics Division, Department of Radiation Oncology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States of America
| | - Aimee McNamara
- Physics Division, Department of Radiation Oncology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States of America
| | - Jan Schuemann
- Physics Division, Department of Radiation Oncology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
44
|
Kanouta E, Poulsen PR, Kertzscher G, Sitarz MK, Sørensen BS, Johansen JG. Time-resolved dose rate measurements in pencil beam scanning proton FLASH therapy with a fiber-coupled scintillator detector system. Med Phys 2022; 50:2450-2462. [PMID: 36508162 DOI: 10.1002/mp.16156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/08/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The spatial and temporal dose rate distribution of pencil beam scanning (PBS) proton therapy is important in ultra-high dose rate (UHDR) or FLASH irradiations. Validation of the temporal structure of the dose rate is crucial for quality assurance and may be performed using detectors with high temporal resolution and large dynamic range. PURPOSE To provide time-resolved in vivo dose rate measurements using a scintillator-based detector during proton PBS pre-clinical mouse experiments with dose rates ranging from conventional to UHDR. METHODS All irradiations were performed at the entrance plateau of a 250 MeV PBS proton beam. A detector system with four fiber-coupled ZnSe:O inorganic scintillators and 20 μs temporal resolution was used for dose rate measurements. The system was first characterized in terms of precision and stem signal. The detector precision was determined through repeated irradiations with the same field. The stem signal contribution was quantified by irradiating two of the detector probes alongside a bare fiber (fiber without a coupled scintillator). Next, the detector system was calibrated against an ionization chamber (IC) with all four detector probes and the IC placed in a water bath at 2 cm depth. A scan pattern covering 9.6 × 9.6 cm was used. Multiple irradiations with different requested nozzle currents provided instantaneous dose rates at the detector positions in the range of 7-1270 Gy/s. The correspondence of the detector signal (in Volts) to the instantaneous dose rate (in Gy/s) was found. The instantaneous dose rate was calculated from the beam current and the spot-to-detector distance assuming a Gaussian beam profile at distances up to 8 mm from the spot. Afterwards, the calibrated system was used in vivo, in mouse experiments, where mouse legs were irradiated with a constant dose and varying field dose rates of 0.7-87.5 Gy/s. The instantaneous dose rate was measured for each delivered spot and the delivered dose was determined as the integrated instantaneous dose rate. The spot dose profile and PBS dose rate map were calculated. The dose contamination to neighbouring mice were measured together with the upper limit of the dose to the mouse body. RESULTS The detectors showed high precision with ≤0.4% fluctuations in the measured dose. The stem signal exceeded 10% for spots <5 mm from the optical fiber and >18 mm from the scintillator. It contributed up to 0.2% to the total dose, which was considered negligible. All four detectors showed a non-linear relation between signal and instantaneous dose rate, which was modelled with a polynomial response function. In the mouse experiments, the measured scintillator dose showed 1.8% fluctuations, independent of the field dose rate. The in vivo measured spot dose profile had tails that deviated from a Gaussian profile with measurable dose contributions from spots up to 85 mm from the detector. Neighbour mouse irradiation contributed ∼1% of the total mouse dose. The upper limit of the mouse body dose was 6% of the mouse leg dose. CONCLUSIONS A fiber-coupled inorganic scintillator-based detector system can provide high precision in vivo measurements of the instantaneous dose rate if correction for the non-linear dose rate dependency is applied.
Collapse
Affiliation(s)
- Eleni Kanouta
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Per Rugaard Poulsen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark.,Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Mateusz Krzysztof Sitarz
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Brita Singers Sørensen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark.,Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Jacob Graversen Johansen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark.,Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
45
|
Calvo FA, Ayestaran A, Serrano J, Cambeiro M, Palma J, Meiriño R, Morcillo MA, Lapuente F, Chiva L, Aguilar B, Azcona D, Pedrero D, Pascau J, Delgado JM, Aristu J, Prezado Y. Practice-oriented solutions integrating intraoperative electron irradiation and personalized proton therapy for recurrent or unresectable cancers: Proof of concept and potential for dual FLASH effect. Front Oncol 2022; 12:1037262. [PMID: 36452493 PMCID: PMC9703091 DOI: 10.3389/fonc.2022.1037262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/26/2022] [Indexed: 11/15/2022] Open
Abstract
Background Oligo-recurrent disease has a consolidated evidence of long-term surviving patients due to the use of intense local cancer therapy. The latter combines real-time surgical exploration/resection with high-energy electron beam single dose of irradiation. This results in a very precise radiation dose deposit, which is an essential element of contemporary multidisciplinary individualized oncology. Methods Patient candidates to proton therapy were evaluated in Multidisciplinary Tumor Board to consider improved treatment options based on the institutional resources and expertise. Proton therapy was delivered by a synchrotron-based pencil beam scanning technology with energy levels from 70.2 to 228.7 MeV, whereas intraoperative electrons were generated in a miniaturized linear accelerator with dose rates ranging from 22 to 36 Gy/min (at Dmax) and energies from 6 to 12 MeV. Results In a period of 24 months, 327 patients were treated with proton therapy: 218 were adults, 97 had recurrent cancer, and 54 required re-irradiation. The specific radiation modalities selected in five cases included an integral strategy to optimize the local disease management by the combination of surgery, intraoperative electron boost, and external pencil beam proton therapy as components of the radiotherapy management. Recurrent cancer was present in four cases (cervix, sarcoma, melanoma, and rectum), and one patient had a primary unresectable locally advanced pancreatic adenocarcinoma. In re-irradiated patients (cervix and rectum), a tentative radical total dose was achieved by integrating beams of electrons (ranging from 10- to 20-Gy single dose) and protons (30 to 54-Gy Relative Biological Effectiveness (RBE), in 10-25 fractions). Conclusions Individual case solution strategies combining intraoperative electron radiation therapy and proton therapy for patients with oligo-recurrent or unresectable localized cancer are feasible. The potential of this combination can be clinically explored with electron and proton FLASH beams.
Collapse
Affiliation(s)
- Felipe A Calvo
- Department of Radiation Oncology, Clinica Universidad de Navarra, Madrid, Spain
| | - Adriana Ayestaran
- Department of Radiation Oncology, Clinica Universidad de Navarra, Madrid, Spain
| | - Javier Serrano
- Department of Radiation Oncology, Clinica Universidad de Navarra, Madrid, Spain
| | - Mauricio Cambeiro
- Department of Radiation Oncology, Clinica Universidad de Navarra, Madrid, Spain
| | - Jacobo Palma
- Department of Radiation Oncology, Clinica Universidad de Navarra, Madrid, Spain
| | - Rosa Meiriño
- Department of Radiation Oncology, Clinica Universidad de Navarra, Madrid, Spain
| | - Miguel A Morcillo
- Medical Applications Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Fernando Lapuente
- Department of Surgery, Clinica Universidad de Navarra, Madrid, Spain
| | - Luis Chiva
- Department of Gynecology and Obstretics, Clinica Universidad de Navarra, Madrid, Spain
| | - Borja Aguilar
- Department of Medical Physics, Clinica Universidad de Navarra, Madrid, Spain
| | - Diego Azcona
- Department of Medical Physics, Clinica Universidad de Navarra, Madrid, Spain
| | - Diego Pedrero
- Department of Medical Physics, Clinica Universidad de Navarra, Madrid, Spain
| | - Javier Pascau
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid, Madrid, Spain
| | - José Miguel Delgado
- Department of Radiation Oncology, Clinica Universidad de Navarra, Madrid, Spain
| | - Javier Aristu
- Department of Radiation Oncology, Clinica Universidad de Navarra, Madrid, Spain
| | - Yolanda Prezado
- Translational Research Department. Institut Curie, Université PSL, CNRS UMR, Inserm, Signalisation, Radiobiologie et Cancer, Orsay, France.,Université Paris-Saclay, CNRS UMR, Inserm, Signalisation, Radiobiologie et Cancer, Orsay, France
| |
Collapse
|
46
|
Espinosa-Rodriguez A, Sanchez-Parcerisa D, Ibáñez P, Vera-Sánchez JA, Mazal A, Fraile LM, Manuel Udías J. Radical Production with Pulsed Beams: Understanding the Transition to FLASH. Int J Mol Sci 2022; 23:13484. [PMID: 36362271 PMCID: PMC9656621 DOI: 10.3390/ijms232113484] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Ultra-high dose rate (UHDR) irradiation regimes have the potential to spare normal tissue while keeping equivalent tumoricidal capacity than conventional dose rate radiotherapy (CONV-RT). This has been called the FLASH effect. In this work, we present a new simulation framework aiming to study the production of radical species in water and biological media under different irradiation patterns. The chemical stage (heterogeneous phase) is based on a nonlinear reaction-diffusion model, implemented in GPU. After the first 1 μs, no further radical diffusion is assumed, and radical evolution may be simulated over long periods of hundreds of seconds. Our approach was first validated against previous results in the literature and then employed to assess the influence of different temporal microstructures of dose deposition in the expected biological damage. The variation of the Normal Tissue Complication Probability (NTCP), assuming the model of Labarbe et al., where the integral of the peroxyl radical concentration over time (AUC-ROO) is taken as surrogate for biological damage, is presented for different intra-pulse dose rate and pulse frequency configurations, relevant in the clinical scenario. These simulations yield that overall, mean dose rate and the dose per pulse are the best predictors of biological effects at UHDR.
Collapse
Affiliation(s)
- Andrea Espinosa-Rodriguez
- Grupo de Física Nuclear, EMFTEL & IPARCOS, Universidad Complutense de Madrid, CEI Moncloa, 28040 Madrid, Spain
- Instituto de Investigación del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, 28040 Madrid, Spain
| | - Daniel Sanchez-Parcerisa
- Grupo de Física Nuclear, EMFTEL & IPARCOS, Universidad Complutense de Madrid, CEI Moncloa, 28040 Madrid, Spain
- Instituto de Investigación del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, 28040 Madrid, Spain
| | - Paula Ibáñez
- Grupo de Física Nuclear, EMFTEL & IPARCOS, Universidad Complutense de Madrid, CEI Moncloa, 28040 Madrid, Spain
- Instituto de Investigación del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, 28040 Madrid, Spain
| | | | | | - Luis Mario Fraile
- Grupo de Física Nuclear, EMFTEL & IPARCOS, Universidad Complutense de Madrid, CEI Moncloa, 28040 Madrid, Spain
- Instituto de Investigación del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, 28040 Madrid, Spain
| | - José Manuel Udías
- Grupo de Física Nuclear, EMFTEL & IPARCOS, Universidad Complutense de Madrid, CEI Moncloa, 28040 Madrid, Spain
- Instituto de Investigación del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, 28040 Madrid, Spain
| |
Collapse
|
47
|
Konradsson E, Liljedahl E, Gustafsson E, Adrian G, Beyer S, Ilaahi SE, Petersson K, Ceberg C, Nittby Redebrandt H. Comparable Long-Term Tumor Control for Hypofractionated FLASH Versus Conventional Radiation Therapy in an Immunocompetent Rat Glioma Model. Adv Radiat Oncol 2022; 7:101011. [PMID: 36092986 PMCID: PMC9449779 DOI: 10.1016/j.adro.2022.101011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022] Open
Abstract
Purpose To ensure a clinical translation of FLASH radiation therapy (FLASH-RT) for a specific tumor type, studies on tumor control and toxicity within the same biological system are needed. In this study, our objective was to evaluate tumor control and toxicity for hypofractionated FLASH-RT and conventional radiation therapy (CONV-RT) in an immunocompetent rat glioma model. Methods and Materials Fisher 344 rats (N = 68) were inoculated subcutaneously with NS1 glioma cells and randomized into groups (n = 9-10 per group). CONV-RT (∼8 Gy/min) or FLASH-RT (70-90 Gy/s) was administered in 3 fractions of either 8 Gy, 12.5 Gy, or 15 Gy using a 10-MeV electron beam. The maximum tumor diameter was measured weekly, and overall survival was determined until day 100. Long-term tumor control was defined as no evident tumor on day 100. Animals were evaluated for acute dermal side effects at 2 to 5 weeks after completed RT and for late dermal side effects at 3 months after initiation of treatment. Results Survival was significantly increased in all irradiated groups compared with control animals (P < .001). In general, irradiated tumors started to shrink at 1 week post-completed RT. In 40% (23 of 58) of the irradiated animals, long-term tumor control was achieved. Radiation-induced skin toxic effects were mild and consisted of hair loss, erythema, and dry desquamation. No severe toxic effect was observed. There was no significant difference between FLASH-RT and CONV-RT in overall survival, acute side effects, or late side effects for any of the dose levels. Conclusions This study shows that hypofractionated FLASH-RT results in long-term tumor control rates similar to those of CONV-RT for the treatment of large subcutaneous glioblastomas in immunocompetent rats. Neither treatment technique induced severe skin toxic effects. Consequently, no significant difference in toxicity could be resolved, suggesting that higher doses may be required to detect a FLASH sparing of skin.
Collapse
Affiliation(s)
- Elise Konradsson
- Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Emma Liljedahl
- Rausing Laboratory, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Emma Gustafsson
- Rausing Laboratory, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Gabriel Adrian
- Division of Oncology and Pathology, Department of Clinical Sciences, Skåne University Hospital, Lund University, Lund, Sweden
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Sarah Beyer
- Division of Oncology and Pathology, Department of Clinical Sciences, Skåne University Hospital, Lund University, Lund, Sweden
| | - Suhayb Ehsaan Ilaahi
- Rausing Laboratory, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Kristoffer Petersson
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Crister Ceberg
- Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Henrietta Nittby Redebrandt
- Rausing Laboratory, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
- Department of Neurosurgery, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
48
|
Vozenin MC, Bourhis J, Durante M. Towards clinical translation of FLASH radiotherapy. Nat Rev Clin Oncol 2022; 19:791-803. [DOI: 10.1038/s41571-022-00697-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2022] [Indexed: 11/09/2022]
|
49
|
Potential Molecular Mechanisms behind the Ultra-High Dose Rate "FLASH" Effect. Int J Mol Sci 2022; 23:ijms232012109. [PMID: 36292961 PMCID: PMC9602825 DOI: 10.3390/ijms232012109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/26/2022] [Accepted: 10/08/2022] [Indexed: 11/17/2022] Open
Abstract
FLASH radiotherapy, or the delivery of a dose at an ultra-high dose rate (>40 Gy/s), has recently emerged as a promising tool to enhance the therapeutic index in cancer treatment. The remarkable sparing of normal tissues and equivalent tumor control by FLASH irradiation compared to conventional dose rate irradiation—the FLASH effect—has already been demonstrated in several preclinical models and even in a first patient with T-cell cutaneous lymphoma. However, the biological mechanisms responsible for the differential effect produced by FLASH irradiation in normal and cancer cells remain to be elucidated. This is of great importance because a good understanding of the underlying radiobiological mechanisms and characterization of the specific beam parameters is required for a successful clinical translation of FLASH radiotherapy. In this review, we summarize the FLASH investigations performed so far and critically evaluate the current hypotheses explaining the FLASH effect, including oxygen depletion, the production of reactive oxygen species, and an altered immune response. We also propose a new theory that assumes an important role of mitochondria in mediating the normal tissue and tumor response to FLASH dose rates.
Collapse
|
50
|
Hageman E, Che PP, Dahele M, Slotman BJ, Sminia P. Radiobiological Aspects of FLASH Radiotherapy. Biomolecules 2022; 12:biom12101376. [PMID: 36291585 PMCID: PMC9599153 DOI: 10.3390/biom12101376] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Radiotherapy (RT) is one of the primary treatment modalities for cancer patients. The clinical use of RT requires a balance to be struck between tumor effect and the risk of toxicity. Sparing normal tissue is the cornerstone of reducing toxicity. Advances in physical targeting and dose-shaping technology have helped to achieve this. FLASH RT is a promising, novel treatment technique that seeks to exploit a potential normal tissue-sparing effect of ultra-high dose rate irradiation. A significant body of in vitro and in vivo data has highlighted a decrease in acute and late radiation toxicities, while preserving the radiation effect in tumor cells. The underlying biological mechanisms of FLASH RT, however, remain unclear. Three main mechanisms have been hypothesized to account for this differential FLASH RT effect between the tumor and healthy tissue: the oxygen depletion, the DNA damage, and the immune-mediated hypothesis. These hypotheses and molecular mechanisms have been evaluated both in vitro and in vivo. Furthermore, the effect of ultra-high dose rate radiation with extremely short delivery times on the dynamic tumor microenvironment involving circulating blood cells and immune cells in humans is essentially unknown. Therefore, while there is great interest in FLASH RT as a means of targeting tumors with the promise of an increased therapeutic ratio, evidence of a generalized FLASH effect in humans and data to show that FLASH in humans is safe and at least effective against tumors as standard photon RT is currently lacking. FLASH RT needs further preclinical investigation and well-designed in-human studies before it can be introduced into clinical practice.
Collapse
Affiliation(s)
- Eline Hageman
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Radiation Oncology, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
| | - Pei-Pei Che
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Radiation Oncology, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
| | - Max Dahele
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Radiation Oncology, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Ben J. Slotman
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Radiation Oncology, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Peter Sminia
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Radiation Oncology, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
- Correspondence:
| |
Collapse
|