1
|
Gardner M, Finnegan RN, Dillon O, Chin V, Reynolds T, Keall PJ. Investigation of cardiac substructure automatic segmentation methods on synthetically generated 4D cone-beam CT images. Med Phys 2025; 52:2224-2237. [PMID: 39714073 DOI: 10.1002/mp.17596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND STereotactic Arrhythmia Radioablation (STAR) is a novel noninvasive method for treating arrythmias in which external beam radiation is directed towards subregions of the heart. Challenges for accurate STAR targeting include small target volumes and relatively large patient motion, which can lead to radiation related patient toxicities. 4D Cone-beam CT (CBCT) images are used for stereotactic lung treatments to account for respiration-related patient motion. 4D-CBCT imaging could similarly be used to account for respiration-related patient motion in STAR; however, the poor contrast of heart tissue in CBCT makes identifying cardiac substructures in 4D-CBCT images challenging. If cardiac structures can be identified in pre-treatment 4D-CBCT images, then the location of the target volume can be more accurately identified for different phases of the respiration cycle, leading to more accurate targeting and a reduction in patient toxicities. PURPOSE The aim of this simulation study is to investigate the accuracy of different cardiac substructure segmentation methods for 4D-CBCT images. METHODS Repeat 4D-CT scans from 13 lung cancer patients were obtained from The Cancer Imaging Archive. Synthetic 4D-CBCT images for each patient were simulated by forward projecting and reconstructing each respiration phase of a chosen "testing" 4D-CT scan. Eighteen cardiac structures were segmented from each respiration phase image in the testing 4D-CT using the previously validated platipy toolkit. The platipy segmentations from the testing 4D-CT were defined as the ground truth segmentations for the synthetic 4D-CBCT images. Five different 4D-CBCT cardiac segmentation methods were investigated: 3D Rigid Alignment, 4D Rigid Alignment, Direct CBCT Segmentation, Contour Transformation, and Synthetic CT Segmentation methods. For all methods except the Direct CBCT segmentation method, a separate 4D-CT (Planning CT) was used to assist in generating 4D-CBCT segmentations. Segmentation performance was measured using the Dice similarity coefficient (DSC), Hausdorff distance (HD), mean surface distance (MSD), and volume ratio (VR) metrics. RESULTS The mean ± standard deviation DSC for all cardiac substructures for the 3D Rigid Alignment, 4D Rigid Alignment, Direct CBCT Segmentation, Contour Transformation, and Synthetic CT Segmentation methods were 0.48 ± 0.29, 0.52 ± 0.29, 0.37 ± 0.32, 0.53 ± 0.29, 0.57 ± 0.28, respectively. Similarly, the HD values were 10.9 ± 3.6 , 9.9 ± 2.6 , 17.3 ± 5.3 , 9.9 ± 2.8 , 9.3 ± 3.0 mm, the MSD values were 2.9 ± 0.6 , 2.9 ± 0.6 , 6.3 ± 2.5 , 2.5 ± 0.6 , 2.4 ± 0.8 mm, and the VR Values were 0.81 ± 0.12, 0.78 ± 0.14, 1.10 ± 0.47, 0.72 ± 0.15, 0.98 ± 0.44, respectively. Of the five methods investigated the Synthetic CT segmentation method generated the most accurate segmentations for all calculated segmentation metrics. CONCLUSION This simulation study investigates the accuracy of different cardiac substructure segmentation methods for 4D-CBCT images. Accurate 4D-CBCT cardiac segmentation will provide more accurate information on the location of cardiac anatomy during STAR treatments which can lead to safer and more effective STAR. As the data and segmentation methods used in this study are all open source, this study provides a useful benchmarking tool to evaluate other CBCT cardiac segmentation methods.
Collapse
Affiliation(s)
- Mark Gardner
- Image X Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Robert N Finnegan
- Institute of Medical Physics, School of Physics, University of Sydney, Sydney, New South Wales, Australia
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales, Australia
- Ingham Institute for Applied Medical Research, Sydney, New South Wales, Australia
| | - Owen Dillon
- Image X Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Vicky Chin
- Image X Institute, University of Sydney, Sydney, New South Wales, Australia
- Ingham Institute for Applied Medical Research, Sydney, New South Wales, Australia
- Department of Radiation Oncology, Liverpool and Macarthur Cancer Therapy Centres, Sydney, New South Wales, Australia
| | - Tess Reynolds
- Image X Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Paul J Keall
- Image X Institute, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Marshall J, Bergman A, Karan T, Deyell MW, Schellenberg D, Thomas S. Toward the Use of Implanted Cardiac Leads or the Diaphragm for Active Respiratory Motion Management in Stereotactic Arrhythmia Radioablation. Int J Radiat Oncol Biol Phys 2025:S0360-3016(25)00177-4. [PMID: 40043856 DOI: 10.1016/j.ijrobp.2025.02.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/08/2025] [Accepted: 02/19/2025] [Indexed: 03/27/2025]
Abstract
PURPOSE To investigate the utility of implanted cardiac leads or the diaphragm for active respiratory motion management in stereotactic arrhythmia radioablation by quantifying the relationship between their motions. METHODS AND MATERIALS Seven patients treated with stereotactic arrhythmia radioablation were imaged using 5-Hz biplanar, kV x-ray fluoroscopy for 15-20 seconds under both abdominal compression (AC) and free breathing (FB) conditions. Three-dimensional motion traces for different regions of the heart were acquired by tracking and triangulating the position of all implanted cardiac leads. The heart's respiratory motion was extracted from the total motion (respiratory + cardiac) using a low-pass filter and described in optimized coordinates using principal component analysis. The existence of a relationship between the respiratory motion of different cardiac leads or the diaphragm was quantified using the Spearman rank correlation coefficient. Polynomial correlation models relating PC1 cardiac lead motion to the diaphragm were created and evaluated on the resultant errors. RESULTS Eighty-one respiratory motion correlations between different positions of the heart or diaphragm were calculated under both AC and FB. Consistently strong correlations between the respiratory motion of different positions in the heart and the diaphragm required accounting for phase shifts between motions. When accounting for phase shifts, the proportion of strong (>0.7) PC1 respiratory motion correlations was 100% under FB and 92.6% under AC. Linear fitting of cardiac lead motion with the diaphragm resulted in mean absolute PC1 tracking errors of (1.0 ± 0.6) mm under FB and (0.7 ± 0.4) mm under AC. CONCLUSIONS The respiratory motion of all combinations of implanted cardiac leads and the diaphragm are moderately to strongly correlated after accounting for phase shifts between motion traces. These phase shifts should be carefully considered to ensure patient safety during respiratory tracking or gating during stereotactic arrhythmia radioablation using cardiac leads or the diaphragm as internal surrogates.
Collapse
Affiliation(s)
- Jakob Marshall
- Department of Physics, University of British Columbia, Vancouver, British Columbia, Canada; Medical Physics, BC Cancer, Vancouver, British Columbia, Canada.
| | - Alanah Bergman
- Medical Physics, BC Cancer, Vancouver, British Columbia, Canada; Department of Surgery, Division of Radiation Oncology and Experimental Radiotherapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tania Karan
- Medical Physics, BC Cancer, Vancouver, British Columbia, Canada
| | - Marc W Deyell
- Centre for Cardiovascular Innovation and Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Steven Thomas
- Medical Physics, BC Cancer, Vancouver, British Columbia, Canada; Department of Surgery, Division of Radiation Oncology and Experimental Radiotherapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Cengel KA, Belal Z, Kim MM, Hagan S, Camps S, Kalinin A, Hsue W, Diffenderfer E, Garonna A, Tschabrunn C. Cardiorespiratory-gated cardiac proton radiotherapy using a novel ultrasound guidance system. Clin Transl Radiat Oncol 2025; 51:100904. [PMID: 39867728 PMCID: PMC11764844 DOI: 10.1016/j.ctro.2024.100904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 12/18/2024] [Indexed: 01/28/2025] Open
Abstract
Cardiac stereotactic body radiotherapy is a promising noninvasive treatment for patients with refractory ventricular tachycardia. With the aim to prove feasibility of a novel image guided radiotherapy and heart motion gating device, cardiac proton radiotherapy was performed using a porcine model. Using a novel adaptation of γ - H2AX tissue staining techniques, we have been able to localize a radiation beam in large animal tissue to assess targeting accuracy within a defined field. Cardiorespiratory-gated irradiations of the animals were successfully completed and analysis of the γ-H2AX staining intensity of the excised heart after radiation demonstrated radiotherapy was delivered close to or within the expected region. We simulated the irradiated volumes under different gating scenarios, showing significant reduction when using combined cardiorespiratory gating. The results of this study show the feasibility of proton irradiation of the heart left ventricle with a novel ultrasound based cardiorespiratory gating technology with the benefit of reduced irradiation volumes and increased healthy tissue sparing.
Collapse
Affiliation(s)
- Keith A Cengel
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
| | - Zayne Belal
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
| | - Michele M Kim
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
| | - Sarah Hagan
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
| | | | | | - Weihow Hsue
- Smilow Center for Translational Research, Room 8-136, Univ of Pennsylvania, Perelman School of Medicine, 3400 Civic Center Blvd, Bldg 421, Philadelphia, PA 19104, USA
| | - Eric Diffenderfer
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
| | | | - Cory Tschabrunn
- Smilow Center for Translational Research, Room 8-136, Univ of Pennsylvania, Perelman School of Medicine, 3400 Civic Center Blvd, Bldg 421, Philadelphia, PA 19104, USA
- Electrophysiology Section, Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
4
|
Reis CQM, Cross A, Borsavage JM, Berryhill G, Karnas S, Robar JL, Gaede S. Feasibility of volumetric-modulated arc therapy gating for cardiac radioablation using real-time ECG signal acquisition and a dynamic phantom. Med Phys 2025; 52:1758-1768. [PMID: 39699040 PMCID: PMC11880648 DOI: 10.1002/mp.17582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/08/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Stereotactic arrythmia radioablation (STAR) is a noninvasive technique to treat ventricular tachycardia (VT). Management of cardiorespiratory motion plays an essential role in VT-STAR treatments to improve treatment outcomes by reducing positional uncertainties and increasing dose conformality. Use of an electrocardiogram (ECG) signal, acquired in real-time, as a surrogate to gate the beam has the potential to fulfil that intent. PURPOSE To investigate the gated delivery of volumetric-modulated arc therapy (VMAT) for STAR on a TrueBeam linear accelerator (linac) using a real-time acquired ECG signal and a dynamic cardiac phantom. METHODS AND MATERIALS Dosimetric characteristics of a 6 MV flattening filter free (FFF) beam from a Varian TrueBeam linac were initially evaluated under high-frequency gating scenarios relevant to cardiac rhythms with respect to dose linearity, beam output, and energy quality. A microcontroller board was used to interface and gate the linac, sending a beam on/off signal. For real-time cardiac gated measurements, an AD8232 Heart Monitor board was used to acquire the ECG signal and synchronize the VMAT delivery to an ArcCHECK detector to a specific phase of the cardiac cycle. Gated dose distributions were compared against those acquired for a non-gated delivery mode. An in-house dynamic cardiac phantom was developed to simulate cardiorespiratory motion that correlates target position with the signal to gate the beam. Measured dose distributions using gafchromic film were also compared against the static (reference) mode in different scenarios with and without gating. RESULTS Maximum difference in dose per monitor unit (MU) was found to be no greater than 1% as compared to static mode with variation in the chamber response within 0.2% in the range of 50 MUs to 200 MUs. Maximum percentage differences for the beam output and beam qualiy index (TPR20,10) between gated and non-gated modes were 0.91% and -0.44%, respectively. Comparison of delivered dose distributions for the VMAT plan without gating versus ECG synchronized gating modes provided a passing rate 98% for the gamma analysis with 1% relative dose difference, 1 mm distance-to-agreement criteria. For the synchronization of dose delivery with target position, passing rates were 98%, 97%, and 99% for the axial, coronal, and sagittal planes, respectively, when gating the beam based on target position for cardiac motion only, for 3%, 3 mm tolerance as compared to static mode. Without gating the beam, passing rates of the respective plans are 97%, 94%, and 99% for the cardiac motion only, and 67%, 57%, and 55% when including respiratory component of motion. CONCLUSION A 6 MV-FFF TrueBeam is stable for performing gating in STAR under high-frequency gate windows within typical cardiac cycles. Agreement between measured dose distributions for a VMAT plan in static and ECG-synchronized deliveries and between static and target-position gated modes shows that the proposed methodology is feasible and can be implemented on a TrueBeam platform.
Collapse
Affiliation(s)
- Cristiano Q. M. Reis
- Department of PhysicsThe Verspeeten Family Cancer CentreLondonOntarioCanada
- Department of Medical PhysicsNova Scotia HealthHalifaxNova ScotiaCanada
- Departments of Radiation Oncology and Physics and Atmospheric ScienceDalhousie UniversityHalifaxNova ScotiaCanada
| | - Alex Cross
- Department of Medical PhysicsNova Scotia HealthHalifaxNova ScotiaCanada
- Departments of Radiation Oncology and Physics and Atmospheric ScienceDalhousie UniversityHalifaxNova ScotiaCanada
| | - Jennifer M. Borsavage
- Department of Medical PhysicsNova Scotia HealthHalifaxNova ScotiaCanada
- Departments of Radiation Oncology and Physics and Atmospheric ScienceDalhousie UniversityHalifaxNova ScotiaCanada
| | - Greg Berryhill
- Department of PhysicsThe Verspeeten Family Cancer CentreLondonOntarioCanada
| | - Scott Karnas
- Department of PhysicsThe Verspeeten Family Cancer CentreLondonOntarioCanada
- Departments of Oncology and Medical BiophysicsWestern UniversityLondonOntarioCanada
| | - James L. Robar
- Department of Medical PhysicsNova Scotia HealthHalifaxNova ScotiaCanada
- Departments of Radiation Oncology and Physics and Atmospheric ScienceDalhousie UniversityHalifaxNova ScotiaCanada
| | - Stewart Gaede
- Department of PhysicsThe Verspeeten Family Cancer CentreLondonOntarioCanada
- Departments of Oncology and Medical BiophysicsWestern UniversityLondonOntarioCanada
| |
Collapse
|
5
|
Borzov E, Efraim R, Suleiman M, Bar-Deroma R, Billan S, Xie J, Hohmann S, Blanck O, Charas T. Implementing stereotactic arrhythmia radioablation with STOPSTORM.eu consortium support: intermediate results of a prospective Israeli single-institutional trial. Strahlenther Onkol 2025; 201:126-134. [PMID: 39283343 PMCID: PMC11754307 DOI: 10.1007/s00066-024-02300-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/21/2024] [Indexed: 01/23/2025]
Abstract
BACKGROUND Ventricular tachycardia (VT) is a life-threatening arrhythmia originating from the heart's ventricles. Traditional treatments include antiarrhythmic medications, implantable cardioverter-defibrillators (ICDs), and catheter ablation. Stereotactic body radiation therapy (SBRT) targeting the arrhythmogenic focus in the left ventricle-stereotactic arrhythmia radioablation (STAR)-is an emerging treatment and may offer a potential solution for patients with refractory VT. OBJECTIVE We designed an interventional prospective clinical trial in Israel aligned with the STOPSTORM.eu consortium's benchmarks, recommendations, and directives to assess the safety and efficacy of STAR in patients with refractory VT. METHODS Our phase I/II single-institutional trial was approved by the Ministry of Health of Israel for 10 patients, initially assessing safety in the first 3 patients. We included patients with ICDs experiencing symptomatic monomorphic VT after an inadequate response to previous therapies. The primary endpoints were treatment-related serious adverse events and a reduction in VT burden as assessed by ICD interrogation. Secondary outcomes included a reduction in antiarrhythmic medications and changes in quality of life. RESULTS From August 2023 to August 2024, 3 patients underwent STAR treatment. The prescription dose was a single fraction of 25 Gy. Planning target volumes were 47.8, 49.7, and 91.8 cc, and treatment was successfully delivered with no grade 3 or higher adverse events reported. Over a follow-up period of 12 months for the first patient and 8 months for the second one, no VT events were recorded after treatment. The third patient died from progressive heart failure 3 months after treatment. Left ventricular ejection fraction remained stable, and no significant radiation-induced inflammatory changes were noted. CONCLUSION The initial results of this trial suggest that STAR can reduce VT episodes in patients with refractory VT without severe adverse effects. The study highlights the importance of international collaboration and standardization in pioneering new treatments. Further follow-up and additional patient data will be necessary to confirm these findings and evaluate long-term outcomes, including potential adjustments to antiarrhythmic medication regimens.
Collapse
Affiliation(s)
- Egor Borzov
- Department of Radiotherapy, Rambam Health Care Campus, Haifa, Israel.
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany.
| | - Roi Efraim
- Department of Radiotherapy, Rambam Health Care Campus, Haifa, Israel
| | - Mahmoud Suleiman
- Department of Radiotherapy, Rambam Health Care Campus, Haifa, Israel
| | - Raquel Bar-Deroma
- Department of Radiotherapy, Rambam Health Care Campus, Haifa, Israel
| | - Salem Billan
- Department of Radiotherapy, Rambam Health Care Campus, Haifa, Israel
| | - Jingyang Xie
- University of Lübeck, Institute for Robotics and Cognitive Systems, Lübeck, Germany
| | - Stephan Hohmann
- Department of Cardiology and Angiology, Hannover Heart Rhythm Center, Hannover Medical School, Hannover, Germany
| | - Oliver Blanck
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Tomer Charas
- Department of Radiotherapy, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
6
|
Xie J, Bicu AS, Grehn M, Kuru M, Zaman A, Lu X, Janorschke C, van der Pol LH, Fast MF, Fleckenstein J, Both M, Hohmann S, Borzov E, Winkler P, Tilz RR, Rades D, Giordano FA, Buergy D, Rudic B, Duncker D, Merten R, Charas T, Suleiman M, Brunner T, Scherr D, Lian E, Schweikard A, Blanck O, Boda-Heggemann J, Kaestner L. Electrocardiogram-gated cardiac computed tomography-based patient- and segment-specific cardiac motion estimation method in stereotactic arrhythmia radioablation for ventricular tachycardia. Phys Imaging Radiat Oncol 2025; 33:100700. [PMID: 39911878 PMCID: PMC11795074 DOI: 10.1016/j.phro.2025.100700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 02/07/2025] Open
Abstract
Background and purpose Motion management strategies such as gating under breath-hold can reduce breathing-induced motion during stereotactic arrhythmia radioablation (STAR) for refractory ventricular tachycardia. However, heartbeat-induced motion is essential to define an appropriate cardiac internal target volume (ITV) margin. In this study, we introduce a patient- and segment-specific cardiac motion estimation method and cardiac motion data of the clinical target volume (CTV), ICD lead tips and left ventricle (LV) segments. Materials and methods Data from 10 STAR-treated patients were retrospectively analyzed. The LV was semi-automatically segmented according to the 17-segment model. Electrocardiogram-gated contrast-enhanced breath-hold cardiac CTs were automatically non-rigidly registered for motion estimation. The correlation and significant differences between ICD tip motion and CTV motion were assessed using the Pearson correlation coefficient (PCC) and Wilcoxon signed-rank test, while spatial discrepancies with both CTV and segment motion were quantified using the Euclidean distance. Results The CTVs (center of mass) moved 3.4 ± 1.4 mm and the ICD lead tips moved 4.9 ± 2.2 mm. The maximum motion per patient was observed in basal and mid-cavity LV segments in 3D. The PCC showed a strong positive motion correlation between the ICD tip and CTV in 3D (0.84), while the p-values indicated statistically significant differences in the right-left, anterior-posterior and 3D directions. Conclusion The proposed methods enable patient- and segment-specific cardiac ITV margin estimation. The motion in most LV segments was limited, however, cardiac ITV margins may need adjustment in individual cases. The impact of cardiac motion on the dosimetry needs further investigation.
Collapse
Affiliation(s)
- Jingyang Xie
- Institute of Robotics and Cognitive Systems, University of Luebeck, Luebeck, Germany
| | - Alicia S. Bicu
- Department of Radiation Oncology, University Medicine Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- DKFZ Hector Cancer Institute, University Medical Center Mannheim, Germany
| | - Melanie Grehn
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Mustafa Kuru
- Department of Radiology, University Medicine Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Adrian Zaman
- Department of Internal Medicine III (Cardiology, Angiology, and Internal Intensive Care Medicine), University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Xinyu Lu
- Institute of Robotics and Cognitive Systems, University of Luebeck, Luebeck, Germany
| | - Christian Janorschke
- Institute of Robotics and Cognitive Systems, University of Luebeck, Luebeck, Germany
| | - Luuk H.G. van der Pol
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Martin F. Fast
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jens Fleckenstein
- Department of Radiation Oncology, University Medicine Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- DKFZ Hector Cancer Institute, University Medical Center Mannheim, Germany
| | - Marcus Both
- Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Stephan Hohmann
- Hannover Heart Rhythm Center, Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
- Cardiology & Internal Intensive Care Medicine, St. Bernward Hospital, Hildesheim, Germany
| | - Egor Borzov
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
- Department of Radiotherapy, Division of Oncology, Rambam Health Care Campus, Haifa, Israel
| | - Peter Winkler
- Department of Therapeutic Radiology and Oncology, Medical University of Graz, Graz, Austria
| | - Roland R. Tilz
- Department of Rhythmology, University Heart Center Luebeck, University Hospital Schleswig-Holstein, Luebeck, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Luebeck, Germany
| | - Dirk Rades
- Department of Radiation Oncology, University of Luebeck, Luebeck, Germany
| | - Frank A. Giordano
- Department of Radiation Oncology, University Medicine Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- DKFZ Hector Cancer Institute, University Medical Center Mannheim, Germany
| | - Daniel Buergy
- Department of Radiation Oncology, University Medicine Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- DKFZ Hector Cancer Institute, University Medical Center Mannheim, Germany
| | - Boris Rudic
- Department of Internal Medicine I, Section for Electrophysiology and Rhythmology, University Medicine Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg, Mannheim, Germany
| | - David Duncker
- Hannover Heart Rhythm Center, Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Roland Merten
- Department of Radiotherapy, Hannover Medical School, Hannover, Germany
| | - Tomer Charas
- Department of Radiotherapy, Division of Oncology, Rambam Health Care Campus, Haifa, Israel
| | - Mahmoud Suleiman
- Division of Pacing and Electrophysiology, Rambam Health Care Campus, Haifa, Israel
| | - Thomas Brunner
- Department of Therapeutic Radiology and Oncology, Medical University of Graz, Graz, Austria
| | - Daniel Scherr
- Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Evgeny Lian
- Department of Internal Medicine III (Cardiology, Angiology, and Internal Intensive Care Medicine), University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Achim Schweikard
- Institute of Robotics and Cognitive Systems, University of Luebeck, Luebeck, Germany
| | - Oliver Blanck
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Judit Boda-Heggemann
- Department of Radiation Oncology, University Medicine Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- DKFZ Hector Cancer Institute, University Medical Center Mannheim, Germany
| | - Lena Kaestner
- Department of Radiation Oncology, University Medicine Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- DKFZ Hector Cancer Institute, University Medical Center Mannheim, Germany
| |
Collapse
|
7
|
Trojani V, Grehn M, Botti A, Balgobind B, Savini A, Boda-Heggemann J, Miszczyk M, Elicin O, Krug D, Andratschke N, Schmidhalter D, van Elmpt W, Bogowicz M, de Areba Iglesias J, Dolla L, Ehrbar S, Fernandez-Velilla E, Fleckenstein J, Granero D, Henzen D, Hurkmans C, Kluge A, Knybel L, Loopeker S, Mirandola A, Richetto V, Sicignano G, Vallet V, van Asselen B, Worm E, Pruvot E, Verhoeff J, Fast M, Iori M, Blanck O. Refining Treatment Planning in STereotactic Arrhythmia Radioablation: Benchmark Results and Consensus Statement From the STOPSTORM.eu Consortium. Int J Radiat Oncol Biol Phys 2025; 121:218-229. [PMID: 39122095 DOI: 10.1016/j.ijrobp.2024.07.2331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 07/09/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
PURPOSE STereotactic Arrhythmia Radioablation (STAR) showed promising results in patients with refractory ventricular tachycardia. However, clinical data are scarce and heterogeneous. The STOPSTORM.eu consortium was established to investigate and harmonize STAR in Europe. The primary goal of this benchmark study was to investigate current treatment planning practice within the STOPSTORM project as a baseline for future harmonization. METHODS AND MATERIALS Planning target volumes (PTVs) overlapping extracardiac organs-at-risk and/or cardiac substructures were generated for 3 STAR cases. Participating centers were asked to create single-fraction treatment plans with 25 Gy dose prescriptions based on in-house clinical practice. All treatment plans were reviewed by an expert panel and quantitative crowd knowledge-based analysis was performed with independent software using descriptive statistics for International Commission on Radiation Units and Measurements report 91 relevant parameters and crowd dose-volume histograms. Thereafter, treatment planning consensus statements were established using a dual-stage voting process. RESULTS Twenty centers submitted 67 treatment plans for this study. In most plans (75%) intensity modulated arc therapy with 6 MV flattening filter free beams was used. Dose prescription was mainly based on PTV D95% (49%) or D96%-100% (19%). Many participants preferred to spare close extracardiac organs-at-risk (75%) and cardiac substructures (50%) by PTV coverage reduction. PTV D0.035cm3 ranged from 25.5 to 34.6 Gy, demonstrating a large variety of dose inhomogeneity. Estimated treatment times without motion compensation or setup ranged from 2 to 80 minutes. For the consensus statements, a strong agreement was reached for beam technique planning, dose calculation, prescription methods, and trade-offs between target and extracardiac critical structures. No agreement was reached on cardiac substructure dose limitations and on desired dose inhomogeneity in the target. CONCLUSIONS This STOPSTORM multicenter treatment planning benchmark study not only showed strong agreement on several aspects of STAR treatment planning, but also revealed disagreement on others. To standardize and harmonize STAR in the future, consensus statements were established; however, clinical data are urgently needed for actionable guidelines for treatment planning.
Collapse
Affiliation(s)
- Valeria Trojani
- Department of Medical Physics, AUSL-IRCCS Reggio Emilia, Reggio Emilia, Italy
| | - Melanie Grehn
- Department of Radiation Oncology, University Medical Center of Schleswig-Holstein, Kiel, Germany
| | - Andrea Botti
- Department of Medical Physics, AUSL-IRCCS Reggio Emilia, Reggio Emilia, Italy
| | - Brian Balgobind
- Department of Radiation Oncology, Amsterdam UMC, Radiation Oncology, Amsterdam, The Netherlands
| | | | - Judit Boda-Heggemann
- Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Marcin Miszczyk
- IIIrd Radiotherapy and Chemotherapy Department, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice, Poland; Collegium Medicum - Faculty of Medicine, WSB University, Dąbrowa Górnicza, Poland
| | - Olgun Elicin
- Department of Radiation Oncology and Division of Medical Radiation Physics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - David Krug
- Department of Radiation Oncology, University Medical Center of Schleswig-Holstein, Kiel, Germany
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital of Zurich, Zurich, Switzerland
| | - Daniel Schmidhalter
- Department of Radiation Oncology and Division of Medical Radiation Physics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Wouter van Elmpt
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Marta Bogowicz
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | | | - Lukasz Dolla
- Radiotherapy Planning Department, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | - Stefanie Ehrbar
- Department of Radiation Oncology, University Hospital of Zurich, Zurich, Switzerland
| | | | - Jens Fleckenstein
- Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Domingo Granero
- Department of Radiation Oncology, Hospital General Valencia, Valencia, Spain
| | - Dominik Henzen
- Department of Radiation Oncology and Division of Medical Radiation Physics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Coen Hurkmans
- Department of Radiation Oncology, Catharina Hospital, Eindhoven, The Netherlands; Department of Electrical Engineering and Department of Applied Physics, Technical University Eindhoven, The Netherlands
| | - Anne Kluge
- Department for Radiation Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lukas Knybel
- Department of Oncology, University Hospital and Faculty of Medicine, Ostrava, Czech Republic
| | - Sandy Loopeker
- Department of Radiation Oncology, Amsterdam UMC, Radiation Oncology, Amsterdam, The Netherlands
| | - Alfredo Mirandola
- Radiation Oncology Clinical Department, National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy
| | - Veronica Richetto
- Medical Physics Unit, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy
| | - Gianluisa Sicignano
- Department of Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Verona, Italy
| | - Veronique Vallet
- Department of Radiophysics, Lausanne University Hospital, Lausanne, Switzerland
| | - Bram van Asselen
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Esben Worm
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Etienne Pruvot
- Heart and Vessel Department, Service of Cardiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Joost Verhoeff
- Department of Radiation Oncology, Amsterdam UMC, Radiation Oncology, Amsterdam, The Netherlands; Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Martin Fast
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mauro Iori
- Department of Medical Physics, AUSL-IRCCS Reggio Emilia, Reggio Emilia, Italy
| | - Oliver Blanck
- Department of Radiation Oncology, University Medical Center of Schleswig-Holstein, Kiel, Germany.
| |
Collapse
|
8
|
Miszczyk M, Hoeksema WF, Kuna K, Blamek S, Cuculich PS, Grehn M, Molon G, Nowicka Z, van der Ree MH, Robinson CG, Sajdok M, Verhoeff JJC, Postema PG, Blanck O. Stereotactic arrhythmia radioablation (STAR)-A systematic review and meta-analysis of prospective trials on behalf of the STOPSTORM.eu consortium. Heart Rhythm 2025; 22:80-89. [PMID: 39032525 DOI: 10.1016/j.hrthm.2024.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Stereotactic arrhythmia radioablation (STAR) is a noninvasive treatment of refractory ventricular tachycardia (VT). In this study, we aimed to systematically review prospective trials on STAR and pool harmonized outcome measures in a meta-analysis. After registration in the International Prospective Register of Systematic Reviews (PROSPERO: CRD42023439666), we searched OVID Medline, OVID Embase, Web of Science Core Collection, the Cochrane Central Register of Controlled Trials, and Google Scholar on November 9, 2023, to identify reports describing results of prospective trials evaluating STAR for VT. Risk of bias was assessed using the Risk Of Bias In Non-randomized Studies of Interventions tool. Meta-analysis was performed using generalized linear mixed models. We identified 10 prospective trials in which 82 patients were treated with STAR between 2016 and 2022. The 90-day rate of treatment-related grade ≥3 adverse events was 0.10 (95% confidence interval [CI] 0.04-0.2). The proportions of patients achieving given VT burden reductions were 0.61 (95% CI 0.45-0.74) for ≥95%, 0.80 (95% CI 0.62-0.91) for ≥75%, and 0.9 (95% CI 0.77-0.96) for ≥50% in 63 evaluable patients. The 1-year overall survival rate was 0.73 (95% CI 0.61-0.83) in 81 patients, 1-year freedom from recurrence was 0.30 (95% CI 0.16-0.49) in 61 patients, and 1-year recurrence-free survival was 0.21 in 60 patients (95% CI 0.08-0.46). Limitations include methodological heterogeneity across studies and moderate to significant risk of bias. In conclusion, STAR is a promising treatment method, characterized by moderate toxicity. We observed 1-year mortality of ≈27% in this population of critically ill patients suffering from refractory VT. Most patients experience a significant reduction in VT burden; however, 1-year recurrence rates are high. STAR should still be considered an investigational approach and recommended to patients primarily within the context of prospective trials.
Collapse
Affiliation(s)
- Marcin Miszczyk
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Collegium Medicum - Faculty of Medicine, WSB University, Dąbrowa Górnicza, Poland.
| | - Wiert F Hoeksema
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam UMC Location University of Amsterdam, Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, The Netherlands
| | - Kasper Kuna
- Department of Biostatistics and Translational Medicine, Medical University of Łódź, Łódź, Poland
| | - Sławomir Blamek
- Department of Radiotherapy, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Phillip S Cuculich
- Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Melanie Grehn
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Giulio Molon
- Department of Cardiology, IRCCS S.Cuore Don Calabria, Negrar VR, Italy
| | - Zuzanna Nowicka
- Department of Biostatistics and Translational Medicine, Medical University of Łódź, Łódź, Poland
| | - Martijn H van der Ree
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam UMC Location University of Amsterdam, Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, The Netherlands
| | - Clifford G Robinson
- Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Mateusz Sajdok
- Department of Electrocardiology and Heart Failure, Medical University of Silesia, Katowice, Poland; Department of Electrocardiology, Upper Silesian Medical Center of the Medical University of Silesia, Katowice, Poland; Doctoral School of the Medical University of Silesia, Katowice, Poland
| | - Joost J C Verhoeff
- Department of Radiation Oncology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Pieter G Postema
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam UMC Location University of Amsterdam, Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, The Netherlands
| | - Oliver Blanck
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
9
|
van der Pol LHG, Blanck O, Grehn M, Blazek T, Knybel L, Balgobind BV, Verhoeff JJC, Miszczyk M, Blamek S, Reichl S, Andratschke N, Mehrhof F, Boda-Heggemann J, Tomasik B, Mandija S, Fast MF. Auto-contouring of cardiac substructures for Stereotactic arrhythmia radioablation (STAR): A STOPSTORM.eu consortium study. Radiother Oncol 2025; 202:110610. [PMID: 39489426 DOI: 10.1016/j.radonc.2024.110610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/15/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND/PURPOSE High doses to healthy cardiac substructures (CS) in stereotactic arrhythmia radioablation (STAR) raise concerns regarding potential treatment-induced cardio-toxicity. However, CS contours are not routinely created, hindering the understanding of the CS dose-effect relationships. To address this issue, the alignment of CS contouring was initiated within the STOPSTORM consortium. In this study, we developed and evaluated auto-contouring models trained to delineate CS and major vessels in ventricular tachycardia (VT) patients. METHODS Eight centres provided standard treatment planning computed tomography (CT) and/or contrast-enhanced CT datasets of 55 VT patients, each including 16 CS. Auto-contouring models were trained to contour either large structures or small structures. Dice Similarity Coefficient (DSC), 95 % Hausdorff distance (HD95) and volume ratio (VR) were used to evaluate model performance versus inter-observer variation (IOV) on seven VT patient test cases. Significant differences were tested using the Mann-Whitney U test. RESULTS The performance on the four chambers and the major vessels (median DSC: 0.88; HD95: 5.8-19.4 mm; VR: 1.09) was similar to the IOV (median DSC: 0.89; HD95: 4.8-14.0 mm; VR: 1.20). For the valves, model performance (median DSC: 0.37; HD95: 11.6 mm; VR: 1.63) was similar to the IOV (median DSC: 0.41; HD95: 12.4 mm; VR: 3.42), but slightly worse for the coronary arteries (median DSC: 0.33 vs 0.42; HD95: 24.4 mm vs 16.9 mm; VR: 1.93 vs 3.30). The IOV for these small structures remains large despite using contouring guidelines. CONCLUSION CS auto-contouring models trained on VT patient data perform similarly to IOV. This allows for time-efficient evaluation of CS as possible organs-at-risk.
Collapse
Affiliation(s)
- Luuk H G van der Pol
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Oliver Blanck
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Melanie Grehn
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Tomáš Blazek
- Department of Oncology, University Hospital and Faculty of Medicine, Ostrava, Czech Republic
| | - Lukáš Knybel
- Department of Oncology, University Hospital and Faculty of Medicine, Ostrava, Czech Republic
| | - Brian V Balgobind
- Department of Radiation Oncology, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
| | - Joost J C Verhoeff
- Department of Radiation Oncology, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
| | - Marcin Miszczyk
- Collegium Medicum - Faculty of Medicine, WSB University, Dąbrowa Górnicza, Poland; IIIrd Radiotherapy and Chemotherapy Department, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice, Poland; Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Slawomir Blamek
- Department of Radiotherapy, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | - Sabrina Reichl
- Department of Radiation Oncology, University Hospital of Zurich, Zurich, Switzerland
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital of Zurich, Zurich, Switzerland
| | - Felix Mehrhof
- Department for Radiation Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Judit Boda-Heggemann
- Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Bartłomiej Tomasik
- Department of Radiotherapy, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice, Poland; Department of Oncology and Radiotherapy, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Stefano Mandija
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Martin F Fast
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
10
|
Akdag O, Mandija S, Borman PTS, Tzitzimpasis P, van Lier ALHMW, Keesman R, Raaymakers BW, Fast MF. Evaluation of the impact of cardiac implantable electronic devices on cine MRI for real-time adaptive cardiac radioablation on a 1.5 T MR-linac. Med Phys 2025; 52:99-112. [PMID: 39365684 PMCID: PMC11700006 DOI: 10.1002/mp.17438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/22/2024] [Accepted: 08/23/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Stereotactic arrhythmia radioablation (STAR) is a novel treatment approach for refractory ventricular tachycardia (VT). The risk of treatment-induced toxicity and geographic miss can be reduced with online MRI-guidance on an MR-linac. However, most VT patients carry cardiac implantable electronic devices (CIED), which compromise MR images. PURPOSE Robust MR-linac imaging sequences are required for cardiac visualization and accurate motion monitoring in presence of a CIED during MRI-guided STAR. We optimized two clinically available cine sequences for cardiorespiratory motion estimation in presence of a CIED on a 1.5 T MR-linac. The image quality, motion estimation accuracy, and geometric fidelity using these cine sequences were evaluated. METHODS Clinically available 2D balanced steady-state free precession (bSSFP, voxel size = 3.0 × $\times$ 3.0 × $\times$ 10 mm3, Tscan = 96 ms, bandwidth (BW) = 1884 Hz/px) andT 1 ${\rm T}_{1}$ -spoiled gradient echo (T 1 ${\rm T}_{1}$ -GRE, voxel size = 4.0 × $ \times$ 4.0 × $ \times$ 10 mm3, Tscan = 97 ms, BW = 500 Hz/px) sequences were adjusted for real-time cardiac visualization and cardiorespiratory motion estimation on a 1.5 T Unity MR-linac (Elekta AB, Stockholm, Sweden), while complying with safety guidelines for MRI in presence of CIEDs (specific absorption rate < $ <$ 2 W/kg andd B d t < $\frac{dB}{dt}<$ 80 mT/s). Cine acquisitions were performed in five healthy volunteers, with and without an implantable cardioverter- defibrillator (ICD) placed on the clavicle, and a VT patient. Generalized divergence-curl (GDC) deformable image registration (DIR) was used for automated landmark motion estimation in the left ventricle (LV). Gaussian processes (GP), a machine-learning technique, was trained using GDC landmarks and deployed for real-time cardiorespiratory motion prediction.B 0 $B_{0}$ -mapping was performed to assess geometric image fidelity in the presence of CIEDs. RESULTS CIEDs introduced banding artifacts partially obscuring cardiac structures in bSSFP acquisitions. In contrast, theT 1 ${\rm T}_{1}$ -GRE was more robust to CIED-induced artifacts at the expense of a lower signal-to-noise ratio. In presence of an ICD, image-based cardiorespiratory motion estimation was possible for 85% (100%) of the volunteers using the bSSFP (T 1 ${\rm T}_{1}$ -GRE) sequence. The in-plane 2D root-mean-squared deviation (RMSD) range between GDC-derived landmarks and manual annotations using the bSSFP (T1-GRE) sequence was 3.1-3.3 (3.3-4.1) mm without ICD and 4.6-4.6 (3.2-3.3) mm with ICD. Without ICD, the RMSD between the GP-predictions and GDC-derived landmarks ranged between 0.9 and 2.2 mm (1.3-3.0 mm) for the bSSFP (T1-GRE) sequence. With ICD, the RMSD between the GP-predictions and GDC-derived landmarks ranged between 1.3 and 2.2 mm (1.2-3.2 mm) using the bSSFP (T1-GRE) sequence resulting in an RMSD-increase of 42%-143% (bSSFP) and -61%-142% (T1-GRE). Lead-induced spatial distortions ranged between -0.2 and 0.2 mm (-0.7-1.2 mm) using the bSSFP (T 1 ${\rm T}_{1}$ -GRE) sequence. The 98th percentile range of the spatial distortions in the gross target volume of the patient was between 0.0 and 0.4 mm (0.0-1.8 mm) when using bSSFP (T 1 ${\rm T}_{1}$ -GRE). CONCLUSIONS Tailored bSSFP andT 1 ${\rm T}_{1}$ -GRE sequences can facilitate real-time cardiorespiratory estimation using GP trained with GDC-derived landmarks in the majority of landmark locations in the LV despite the presence of CIEDs. The need for high temporal resolution noticeably reduced achievable spatial resolution of the cine MRIs. However, the effect of the CIED-induced artifacts is device, patient and sequence dependent and requires specific assessment per case.
Collapse
Affiliation(s)
- Osman Akdag
- Department of RadiotherapyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Stefano Mandija
- Department of RadiotherapyUniversity Medical Center UtrechtUtrechtThe Netherlands
- Computational Imaging Group for MR Diagnostics and TherapyCenter for Image SciencesUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Pim T. S. Borman
- Department of RadiotherapyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Paris Tzitzimpasis
- Department of RadiotherapyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | | | - Rick Keesman
- Department of RadiotherapyRadboud University Medical CenterNijmegenThe Netherlands
| | - Bas W. Raaymakers
- Department of RadiotherapyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Martin F. Fast
- Department of RadiotherapyUniversity Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|
11
|
Finnegan RN, Quinn A, Booth J, Belous G, Hardcastle N, Stewart M, Griffiths B, Carroll S, Thwaites DI. Cardiac substructure delineation in radiation therapy - A state-of-the-art review. J Med Imaging Radiat Oncol 2024; 68:914-949. [PMID: 38757728 PMCID: PMC11686467 DOI: 10.1111/1754-9485.13668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024]
Abstract
Delineation of cardiac substructures is crucial for a better understanding of radiation-related cardiotoxicities and to facilitate accurate and precise cardiac dose calculation for developing and applying risk models. This review examines recent advancements in cardiac substructure delineation in the radiation therapy (RT) context, aiming to provide a comprehensive overview of the current level of knowledge, challenges and future directions in this evolving field. Imaging used for RT planning presents challenges in reliably visualising cardiac anatomy. Although cardiac atlases and contouring guidelines aid in standardisation and reduction of variability, significant uncertainties remain in defining cardiac anatomy. Coupled with the inherent complexity of the heart, this necessitates auto-contouring for consistent large-scale data analysis and improved efficiency in prospective applications. Auto-contouring models, developed primarily for breast and lung cancer RT, have demonstrated performance comparable to manual contouring, marking a significant milestone in the evolution of cardiac delineation practices. Nevertheless, several key concerns require further investigation. There is an unmet need for expanding cardiac auto-contouring models to encompass a broader range of cancer sites. A shift in focus is needed from ensuring accuracy to enhancing the robustness and accessibility of auto-contouring models. Addressing these challenges is paramount for the integration of cardiac substructure delineation and associated risk models into routine clinical practice, thereby improving the safety of RT for future cancer patients.
Collapse
Affiliation(s)
- Robert N Finnegan
- Northern Sydney Cancer CentreRoyal North Shore HospitalSydneyNew South WalesAustralia
- Institute of Medical Physics, School of Physics, University of SydneySydneyNew South WalesAustralia
| | - Alexandra Quinn
- Northern Sydney Cancer CentreRoyal North Shore HospitalSydneyNew South WalesAustralia
| | - Jeremy Booth
- Northern Sydney Cancer CentreRoyal North Shore HospitalSydneyNew South WalesAustralia
- Institute of Medical Physics, School of Physics, University of SydneySydneyNew South WalesAustralia
| | - Gregg Belous
- Australian e‐Health Research CentreCommonwealth Scientific and Industrial Research OrganisationBrisbaneQueenslandAustralia
| | - Nicholas Hardcastle
- Department of Physical SciencesPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
- Sir Peter MacCallum Department of OncologyUniversity of MelbourneMelbourneVictoriaAustralia
| | - Maegan Stewart
- Northern Sydney Cancer CentreRoyal North Shore HospitalSydneyNew South WalesAustralia
- School of Health Sciences, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
| | - Brooke Griffiths
- Northern Sydney Cancer CentreRoyal North Shore HospitalSydneyNew South WalesAustralia
| | - Susan Carroll
- Northern Sydney Cancer CentreRoyal North Shore HospitalSydneyNew South WalesAustralia
- School of Health Sciences, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
| | - David I Thwaites
- Institute of Medical Physics, School of Physics, University of SydneySydneyNew South WalesAustralia
- Radiotherapy Research GroupLeeds Institute of Medical Research, St James's Hospital and University of LeedsLeedsUK
| |
Collapse
|
12
|
Li G, Wang G, Wei W, Li Z, Xiao Q, He H, Luo D, Chen L, Li J, Zhang X, Song Y, Bai S. Cardiorespiratory motion characteristics and their dosimetric impact on cardiac stereotactic body radiotherapy. Med Phys 2024; 51:8551-8567. [PMID: 38994881 DOI: 10.1002/mp.17284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Cardiac stereotactic body radiotherapy (CSBRT) is an emerging and promising noninvasive technique for treating refractory arrhythmias utilizing highly precise, single or limited-fraction high-dose irradiations. This method promises to revolutionize the treatment of cardiac conditions by delivering targeted therapy with minimal exposure to surrounding healthy tissues. However, the dynamic nature of cardiorespiratory motion poses significant challenges to the precise delivery of dose in CSBRT, introducing potential variabilities that can impact treatment efficacy. The complexities of the influence of cardiorespiratory motion on dose distribution are compounded by interplay and blurring effects, introducing additional layers of dose uncertainty. These effects, critical to the understanding and improvement of the accuracy of CSBRT, remain unexplored, presenting a gap in current clinical literature. PURPOSE To investigate the cardiorespiratory motion characteristics in arrhythmia patients and the dosimetric impact of interplay and blurring effects induced by cardiorespiratory motion on CSBRT plan quality. METHODS The position and volume variations in the substrate target and cardiac substructures were evaluated in 12 arrhythmia patients using displacement maximum (DMX) and volume metrics. Moreover, a four-dimensional (4D) dose reconstruction approach was employed to examine the dose uncertainty of the cardiorespiratory motion. RESULTS Cardiac pulsation induced lower DMX than respiratory motion but increased the coefficient of variation and relative range in cardiac substructure volumes. The mean DMX of the substrate target was 0.52 cm (range: 0.26-0.80 cm) for cardiac pulsation and 0.82 cm (range: 0.32-2.05 cm) for respiratory motion. The mean DMX of the cardiac structure ranged from 0.15 to 1.56 cm during cardiac pulsation and from 0.35 to 1.89 cm during respiratory motion. Cardiac pulsation resulted in an average deviation of -0.73% (range: -4.01%-4.47%) in V25 between the 3D and 4D doses. The mean deviations in the homogeneity index (HI) and gradient index (GI) were 1.70% (range: -3.10%-4.36%) and 0.03 (range: -0.14-0.11), respectively. For cardiac substructures, the deviations in D50 due to cardiac pulsation ranged from -1.88% to 1.44%, whereas the deviations in Dmax ranged from -2.96% to 0.88% of the prescription dose. By contrast, the respiratory motion led to a mean deviation of -1.50% (range: -10.73%-4.23%) in V25. The mean deviations in HI and GI due to respiratory motion were 4.43% (range: -3.89%-13.98%) and 0.18 (range: -0.01-0.47) (p < 0.05), respectively. Furthermore, the deviations in D50 and Dmax in cardiac substructures for the respiratory motion ranged from -0.28% to 4.24% and -4.12% to 1.16%, respectively. CONCLUSIONS Cardiorespiratory motion characteristics vary among patients, with the respiratory motion being more significant. The intricate cardiorespiratory motion characteristics and CSBRT plan complexity can induce substantial dose uncertainty. Therefore, assessing individual motion characteristics and 4D dose reconstruction techniques is critical for implementing CSBRT without compromising efficacy and safety.
Collapse
Affiliation(s)
- Guangjun Li
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guangyu Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Weige Wei
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhibin Li
- Department of Radiotherapy & Oncology, The First Affiliated Hospital of Soochow University, Institute of Radiotherapy & Oncology, Soochow University, Suzhou, China
| | - Qing Xiao
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haiping He
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dashuang Luo
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Chen
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jing Li
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiangyu Zhang
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ying Song
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Sen Bai
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
13
|
Kaya YS, Stoks J, Hazelaar C, van Elmpt W, Gommers S, Volders PGA, Verhoeven K, ter Bekke RMA. 3D-targeted, electrocardiographic imaging-aided stereotactic radioablation for ventricular tachycardia storm: a case report. Eur Heart J Case Rep 2024; 8:ytae541. [PMID: 39678105 PMCID: PMC11638725 DOI: 10.1093/ehjcr/ytae541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/13/2024] [Accepted: 09/17/2024] [Indexed: 12/17/2024]
Abstract
Background Stereotactic arrhythmia radioablation (STAR) is a promising non-invasive therapy for patients with ventricular tachycardia (VT). Accurate identification of the arrhythmogenic volume, or clinical target volume (CTV), on the radiotherapy (RT) 4D planning computed tomography (CT) scan is key for STAR efficacy and safety. This case report illustrates our workflow of electro-structural image integration for CTV delineation. Case summary A 72-year-old man with ischaemic cardiomyopathy and VT storm, despite two (endocardial and epicardial) catheter-based ablations, was consented for STAR. A 3D electro-structural arrhythmia model was generated from co-registered electroanatomical voltage and activation maps, electrocardiographic (ECG) imaging, and the cardiac CT angiography scan (in ADAS 3D), pinpointing the VT isthmus and inferoapical VT exit. At this location, an area with short recovery times was found with ECG imaging. A multidisciplinary team delineated the CTV on the transmural ventricular myocardium, which was fused with the 4D planning CT scan using a digital images and communication in medicine (DICOM) radiotherapy file. The CTV was 63% smaller compared with using the conventional American Heart Association 17-segment approach (11 vs. 24 cm3). A single fraction of 25 Gy was delivered to the internal target volume. After an 8-week blanking period, no VT recurrences or radiation-related side-effects were noted. Eight months later, the patient died from end-stage heart failure. Discussion We report a novel workflow for 3D-targeted and ECG imaging-aided CTV delineation for STAR, resulting in a smaller irradiated volume compared with segmental approaches. Acute and intermediate outcome and safety were favourable. Non-invasive ECG imaging at baseline and during induced VT holds promise for STAR guidance.
Collapse
Affiliation(s)
- Yeşim S Kaya
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center+, Postbus 5800, 6202 AZ Maastricht, The Netherlands
| | - Job Stoks
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center+, Postbus 5800, 6202 AZ Maastricht, The Netherlands
| | - Colien Hazelaar
- Department of Radiation Oncology (Maastro), GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Doctor Tanslaan 12, 6229 ET Maastricht, The Netherlands
| | - Wouter van Elmpt
- Department of Radiation Oncology (Maastro), GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Doctor Tanslaan 12, 6229 ET Maastricht, The Netherlands
| | - Suzanne Gommers
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Postbus 5800, 6202 AZ Maastricht, The Netherlands
| | - Paul G A Volders
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center+, Postbus 5800, 6202 AZ Maastricht, The Netherlands
| | - Karolien Verhoeven
- Department of Radiation Oncology (Maastro), GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Doctor Tanslaan 12, 6229 ET Maastricht, The Netherlands
| | - Rachel M A ter Bekke
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center+, Postbus 5800, 6202 AZ Maastricht, The Netherlands
| |
Collapse
|
14
|
Cecchi DD, Ploquin NP, Faruqi S, Morrison H. Impact of abdominal compression on heart and stomach motion for stereotactic arrhythmia radioablation. J Appl Clin Med Phys 2024; 25:e14346. [PMID: 38661250 PMCID: PMC11244678 DOI: 10.1002/acm2.14346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/26/2024] [Accepted: 03/12/2024] [Indexed: 04/26/2024] Open
Abstract
PURPOSE To evaluate the effectiveness of abdominal compression (AC) as a respiratory motion management method for the heart and stomach during stereotactic arrhythmia radioablation (STAR). METHODS 4D computed tomography (4DCT) scans of patients imaged with AC or without AC (free-breathing: FB) were obtained from ventricular-tachycardia (VT) (n = 3), lung cancer (n = 18), and liver cancer (n = 18) patients. Patients treated for VT were imaged both FB and with AC. Lung and liver patients were imaged once with FB or with AC, respectively. The heart, left ventricle (LV), LV components (LVCs), and stomach were contoured on each phase of the 4DCTs. Centre of mass (COM) translations in the left/right (LR), ant/post (AP), and sup/inf (SI) directions were measured for each structure. Minimum distances between LVCs and the stomach over the respiratory cycle were also measured on each 4DCT phase. Mann-Whitney U-tests were performed between AC and FB datasets with a significance of α = 0.05. RESULTS No statistical difference (all p values were >0.05) was found in COM translations between FB and AC patient datasets for all contoured cardiac structures. A reduction in COM translation with AC relative to FB was patient, direction, and structure specific for the three VT patients. A significant decrease in the AP range of motion of the stomach was observed under AC compared to FB. No statistical difference was found between minimum distances to the stomach and LVCs between FB and AC. CONCLUSIONS AC was not a consistent motion management method for STAR, nor does not uniformly affect the separation distance between LVCs and the stomach. If AC is employed in future STAR protocols, the motion of the target volume and its relative distance to the stomach should be compared on two 4DCTs: one while the patient is FB and one under AC.
Collapse
Affiliation(s)
- Daniel David Cecchi
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
- Department of Medical Physics, Tom Baker Cancer Centre, Calgary, Alberta, Canada
| | - Nicolas Paul Ploquin
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
- Department of Medical Physics, Tom Baker Cancer Centre, Calgary, Alberta, Canada
- Department of Oncology, Division of Medical Physics, University of Calgary, Calgary, Alberta, Canada
| | - Salman Faruqi
- Department of Radiation Oncology, Tom Baker Cancer Centre, Calgary, Alberta, Canada
- Department of Oncology, Division of Radiation Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Hali Morrison
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
- Department of Medical Physics, Tom Baker Cancer Centre, Calgary, Alberta, Canada
- Department of Oncology, Division of Medical Physics, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
15
|
Poon J, Thompson RB, Deyell MW, Schellenberg D, Clark H, Reinsberg S, Thomas S. Analysis of left ventricle regional myocardial motion for cardiac radioablation: Left ventricular motion analysis. J Appl Clin Med Phys 2024; 25:e14333. [PMID: 38493500 PMCID: PMC11087184 DOI: 10.1002/acm2.14333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/06/2024] [Accepted: 02/20/2024] [Indexed: 03/19/2024] Open
Abstract
PURPOSE Left ventricle (LV) regional myocardial displacement due to cardiac motion was assessed using cardiovascular magnetic resonance (CMR) cine images to establish region-specific margins for cardiac radioablation treatments. METHODS CMR breath-hold cine images and LV myocardial tissue contour points were analyzed for 200 subjects, including controls (n = 50) and heart failure (HF) patients with preserved ejection fraction (HFpEF, n = 50), mid-range ejection fraction (HFmrEF, n = 50), and reduced ejection fraction (HFrEF, n = 50). Contour points were divided into segments according to the 17-segment model. For each patient, contour point displacements were determined for the long-axis (all 17 segments) and short-axis (segments 1-12) directions. Mean overall, tangential (longitudinal or circumferential), and normal (radial) displacements were calculated for the 17 segments and for each segment level. RESULTS The greatest overall motion was observed in the control group-long axis: 4.5 ± 1.2 mm (segment 13 [apical anterior] epicardium) to 13.8 ± 3.0 mm (segment 6 [basal anterolateral] endocardium), short axis: 4.3 ± 0.8 mm (segment 9 [mid inferoseptal] epicardium) to 11.5 ± 2.3 mm (segment 1 [basal anterior] endocardium). HF patients exhibited lesser motion, with the smallest overall displacements observed in the HFrEF group-long axis: 4.3 ± 1.7 mm (segment 13 [apical anterior] epicardium) to 10.6 ± 3.4 mm (segment 6 [basal anterolateral] endocardium), short axis: 3.9 ± 1.3 mm (segment 8 [mid anteroseptal] epicardium) to 7.4 ± 2.8 mm (segment 1 [basal anterior] endocardium). CONCLUSIONS This analysis provides an estimate of epicardial and endocardial displacement for the 17 segments of the LV for patients with normal and impaired LV function. This reference data can be used to establish treatment planning margin guidelines for cardiac radioablation. Smaller margins may be used for patients with higher degree of impaired heart function, depending on the LV segment.
Collapse
Affiliation(s)
- Justin Poon
- Department of Physics and AstronomyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of Medical PhysicsBC CancerVancouverBritish ColumbiaCanada
| | - Richard B. Thompson
- Department of Biomedical EngineeringUniversity of AlbertaEdmontonAlbertaCanada
| | - Marc W. Deyell
- Heart Rhythm ServicesDivision of CardiologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | | | - Haley Clark
- Department of Physics and AstronomyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of Medical PhysicsBC CancerSurreyBritish ColumbiaCanada
| | - Stefan Reinsberg
- Department of Physics and AstronomyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Steven Thomas
- Department of Medical PhysicsBC CancerVancouverBritish ColumbiaCanada
| |
Collapse
|
16
|
Akdag O, Borman PTS, Mandija S, Woodhead PL, Uijtewaal P, Raaymakers BW, Fast MF. Experimental demonstration of real-time cardiac physiology-based radiotherapy gating for improved cardiac radioablation on an MR-linac. Med Phys 2024; 51:2354-2366. [PMID: 38477841 DOI: 10.1002/mp.17024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/09/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Cardiac radioablation is a noninvasive stereotactic body radiation therapy (SBRT) technique to treat patients with refractory ventricular tachycardia (VT) by delivering a single high-dose fraction to the VT isthmus. Cardiorespiratory motion induces position uncertainties resulting in decreased dose conformality. Electocardiograms (ECG) are typically used during cardiac MRI (CMR) to acquire images in a predefined cardiac phase, thus mitigating cardiac motion during image acquisition. PURPOSE We demonstrate real-time cardiac physiology-based radiotherapy beam gating within a preset cardiac phase on an MR-linac. METHODS MR images were acquired in healthy volunteers (n = 5, mean age = 29.6 years, mean heart-rate (HR) = 56.2 bpm) on the 1.5 T Unity MR-linac (Elekta AB, Stockholm, Sweden) after obtaining written informed consent. The images were acquired using a single-slice balance steady-state free precession (bSSFP) sequence in the coronal or sagittal plane (TR/TE = 3/1.48 ms, flip angle = 48∘ $^{\circ }$ , SENSE = 1.5,field-of-view = 400 × 207 $\text{field-of-view} = {400}\times {207}$ mm 2 ${\text{mm}}^{2}$ , voxel size =3 × 3 × 15 $3\times 3\times 15$ mm 3 ${\rm mm}^{3}$ , partial Fourier factor = 0.65, frame rate = 13.3 Hz). In parallel, a 4-lead ECG-signal was acquired using MR-compatible equipment. The feasibility of ECG-based beam gating was demonstrated with a prototype gating workflow using a Quasar MRI4D motion phantom (IBA Quasar, London, ON, Canada), which was deployed in the bore of the MR-linac. Two volunteer-derived combined ECG-motion traces (n = 2, mean age = 26 years, mean HR = 57.4 bpm, peak-to-peak amplitude = 14.7 mm) were programmed into the phantom to mimic dose delivery on a cardiac target in breath-hold. Clinical ECG-equipment was connected to the phantom for ECG-voltage-streaming in real-time using research software. Treatment beam gating was performed in the quiescent phase (end-diastole). System latencies were compensated by delay time correction. A previously developed MRI-based gating workflow was used as a benchmark in this study. A 15-beam intensity-modulated radiotherapy (IMRT) plan (1 × 6.25 ${1}\times {6.25}$ Gy) was delivered for different motion scenarios onto radiochromic films. Next, cardiac motion was then estimated at the basal anterolateral myocardial wall via normalized cross-correlation-based template matching. The estimated motion signal was temporally aligned with the ECG-signal, which were then used for position- and ECG-based gating simulations in the cranial-caudal (CC), anterior-posterior (AP), and right-left (RL) directions. The effect of gating was investigated by analyzing the differences in residual motion at 30, 50, and 70% treatment beam duty cycles. RESULTS ECG-based (MRI-based) beam gating was performed with effective duty cycles of 60.5% (68.8%) and 47.7% (50.4%) with residual motion reductions of 62.5% (44.7%) and 43.9% (59.3%). Local gamma analyses (1%/1 mm) returned pass rates of 97.6% (94.1%) and 90.5% (98.3%) for gated scenarios, which exceed the pass rates of 70.3% and 82.0% for nongated scenarios, respectively. In average, the gating simulations returned maximum residual motion reductions of 88%, 74%, and 81% at 30%, 50%, and 70% duty cycles, respectively, in favor of MRI-based gating. CONCLUSIONS Real-time ECG-based beam gating is a feasible alternative to MRI-based gating, resulting in improved dose delivery in terms of highγ -pass $\gamma {\text{-pass}}$ rates, decreased dose deposition outside the PTV and residual motion reduction, while by-passing cardiac MRI challenges.
Collapse
Affiliation(s)
- Osman Akdag
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pim T S Borman
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Stefano Mandija
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
- Computational Imaging Group for MR Diagnostics and Therapy, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter L Woodhead
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
- Elekta AB, Stockholm, Sweden
| | - Prescilla Uijtewaal
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bas W Raaymakers
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Martin F Fast
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
17
|
Poon J, Thompson RB, Deyell MW, Schellenberg D, Kohli K, Thomas S. Left ventricle segment-specific motion assessment for cardiac-gated radiosurgery. Biomed Phys Eng Express 2024; 10:025040. [PMID: 38359447 DOI: 10.1088/2057-1976/ad29a4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/15/2024] [Indexed: 02/17/2024]
Abstract
Purpose.Cardiac radiosurgery is a non-invasive treatment modality for ventricular tachycardia, where a linear accelerator is used to irradiate the arrhythmogenic region within the heart. In this work, cardiac magnetic resonance (CMR) cine images were used to quantify left ventricle (LV) segment-specific motion during the cardiac cycle and to assess potential advantages of cardiac-gated radiosurgery.Methods.CMR breath-hold cine images and LV contour points were analyzed for 50 controls and 50 heart failure patients with reduced ejection fraction (HFrEF, EF < 40%). Contour points were divided into anatomic segments according to the 17-segment model, and each segment was treated as a hypothetical treatment target. The optimum treatment window (one fifth of the cardiac cycle) was determined where segment centroid motion was minimal, then the maximum centroid displacement and treatment area were determined for the full cardiac cycle and for the treatment window. Mean centroid displacement and treatment area reductions with cardiac gating were determined for each of the 17 segments.Results.Full motion segment centroid displacements ranged between 6-14 mm (controls) and 4-11 mm (HFrEF). Full motion treatment areas ranged between 129-715 mm2(controls) and 149-766 mm2(HFrEF). With gating, centroid displacements were reduced to 1 mm (controls and HFrEF), while treatment areas were reduced to 62-349 mm2(controls) and 83-393 mm2(HFrEF). Relative treatment area reduction ranged between 38%-53% (controls) and 26%-48% (HFrEF).Conclusion.This data demonstrates that cardiac cycle motion is an important component of overall target motion and varies depending on the anatomic cardiac segment. Accounting for cardiac cycle motion, through cardiac gating, has the potential to significantly reduce treatment volumes for cardiac radiosurgery.
Collapse
Affiliation(s)
- Justin Poon
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
- Department of Medical Physics, BC Cancer, Vancouver, British Columbia V5Z 4E6, Canada
| | - Richard B Thompson
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, T6G 2V2, Canada
| | - Marc W Deyell
- Heart Rhythm Services, Division of Cardiology, University of British Columbia, Vancouver, BC V6E 1M7, Canada
| | - Devin Schellenberg
- Department of Radiation Oncology, BC Cancer, Surrey, British Columbia V3V 1Z2, Canada
| | - Kirpal Kohli
- Department of Medical Physics, BC Cancer, Surrey, British Columbia V3V 1Z2, Canada
| | - Steven Thomas
- Department of Medical Physics, BC Cancer, Vancouver, British Columbia V5Z 4E6, Canada
| |
Collapse
|
18
|
Stevens RRF, Hazelaar C, Bogowicz M, Ter Bekke RMA, Volders PGA, Verhoeven K, de Ruysscher D, Verhoeff JJC, Fast MF, Mandija S, Cvek J, Knybel L, Dvorak P, Blanck O, van Elmpt W. A Framework for Assessing the Effect of Cardiac and Respiratory Motion for Stereotactic Arrhythmia Radioablation Using a Digital Phantom With a 17-Segment Model: A STOPSTORM.eu Consortium Study. Int J Radiat Oncol Biol Phys 2024; 118:533-542. [PMID: 37652302 DOI: 10.1016/j.ijrobp.2023.08.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023]
Abstract
PURPOSE The optimal motion management strategy for patients receiving stereotactic arrhythmia radioablation (STAR) for the treatment of ventricular tachycardia (VT) is not fully known. We developed a framework using a digital phantom to simulate cardiorespiratory motion in combination with different motion management strategies to gain insight into the effect of cardiorespiratory motion on STAR. METHODS AND MATERIALS The 4-dimensional (4D) extended cardiac-torso (XCAT) phantom was expanded with the 17-segment left ventricular (LV) model, which allowed placement of STAR targets in standardized ventricular regions. Cardiac- and respiratory-binned 4D computed tomography (CT) scans were simulated for free-breathing, reduced free-breathing, respiratory-gating, and breath-hold scenarios. Respiratory motion of the heart was set to population-averaged values of patients with VT: 6, 2, and 1 mm in the superior-inferior, posterior-anterior, and left-right direction, respectively. Cardiac contraction was adjusted by reducing LV ejection fraction to 35%. Target displacement was evaluated for all segments using envelopes encompassing the cardiorespiratory motion. Envelopes incorporating only the diastole plus respiratory motion were created to simulate the scenario where cardiac motion is not fully captured on 4D respiratory CT scans used for radiation therapy planning. RESULTS The average volume of the 17 segments was 6 cm3 (1-9 cm3). Cardiac contraction-relaxation resulted in maximum segment (centroid) motion of 4, 6, and 3.5 mm in the superior-inferior, posterior-anterior, and left-right direction, respectively. Cardiac contraction-relaxation resulted in a motion envelope increase of 49% (24%-79%) compared with individual segment volumes, whereas envelopes increased by 126% (79%-167%) if respiratory motion also was considered. Envelopes incorporating only the diastole and respiration motion covered on average 68% to 75% of the motion envelope. CONCLUSIONS The developed LV-segmental XCAT framework showed that free-wall regions display the most cardiorespiratory displacement. Our framework supports the optimization of STAR by evaluating the effect of (cardio)respiratory motion and motion management strategies for patients with VT.
Collapse
Affiliation(s)
- Raoul R F Stevens
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands.
| | - Colien Hazelaar
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Marta Bogowicz
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Rachel M A Ter Bekke
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Paul G A Volders
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Karolien Verhoeven
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Dirk de Ruysscher
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Joost J C Verhoeff
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Martin F Fast
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Stefano Mandija
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jakub Cvek
- Department of Oncology, University Hospital and Faculty of Medicine, Ostrava, Czech Republic
| | - Lukas Knybel
- Department of Oncology, University Hospital and Faculty of Medicine, Ostrava, Czech Republic
| | - Pavel Dvorak
- Department of Oncology, University Hospital and Faculty of Medicine, Ostrava, Czech Republic
| | - Oliver Blanck
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Wouter van Elmpt
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
19
|
Fast MF, Lydiard S, Boda-Heggemann J, Tanadini-Lang S, Muren LP, Clark CH, Blanck O. Precision requirements in stereotactic arrhythmia radioablation for ventricular tachycardia. Phys Imaging Radiat Oncol 2023; 28:100508. [PMID: 38026083 PMCID: PMC10679852 DOI: 10.1016/j.phro.2023.100508] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Affiliation(s)
- Martin F Fast
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Judit Boda-Heggemann
- Department of Radiation Oncology, University Medicine Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Germany
| | - Stephanie Tanadini-Lang
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Switzerland
| | - Ludvig P Muren
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Catharine H Clark
- Radiotherapy Physics, University College London Hospital, 250 Euston Rd, London NW1 2PG, UK
- Department of Medical Physics and Bioengineering, University College London, Malet Place, London WC1E 6BT, UK
- Medical Physics Dept, National Physical Laboratory, Hampton Rd, London TW11 0PX, UK
| | - Oliver Blanck
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Arnold-Heller-Strasse 3, Kiel 24105, Germany
| |
Collapse
|