1
|
Wojnárovits L, Homlok R, Kovács K, Tegze A, Takács E. Oxidation and mineralization rates of harmful organic chemicals in hydroxyl radical induced reactions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116669. [PMID: 38954908 DOI: 10.1016/j.ecoenv.2024.116669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
In most of advanced oxidation processes (AOPs) used to destroy harmful organic chemicals in water/wastewater hydroxyl radical (•OH) reactions oxidize (increasing the oxygen/carbon ratio in the molecules) and mineralize (transforming them to inorganic molecules, H2O, CO2, etc.) these contaminants. In this paper, we used the radiolysis of water to produce •OH and characterised the rate of oxidation and mineralization by the dose dependences of the Chemical Oxygen Demand (COD) and Total Organic Carbon (TOC) content values. Analysis of the dose dependences for 34 harmful organic compounds showed large differences in the oxidation and mineralization rates and these parameters are characteristic to the given group of chemicals. E.g., the rate of oxidation is relatively low for fluoroquinolone antibiotics; it is high for β-blocker medicines. Mineralization rates are low for both fluoroquinolones and β-blockers. The one-electron-oxidant •OH in most cases induces two - four-electron-oxidations. Most of the degradation takes place gradually, through several stable molecule intermediates. However, based on the results it is likely, that some part of the oxidation and mineralization takes place parallel. The organic radicals formed in •OH reactions react with several O2 molecules and release several inorganic fragments during the radical life cycle.
Collapse
Affiliation(s)
- László Wojnárovits
- Radiation Chemistry Group, Surface Chemistry and Catalysis Department, Institute for Energy Security and Environmental Safety, HUN-REN Centre for Energy Research, H-1121, Konkoly-Thege Miklós út 29-33, Budapest, Hungary
| | - Renáta Homlok
- Radiation Chemistry Group, Surface Chemistry and Catalysis Department, Institute for Energy Security and Environmental Safety, HUN-REN Centre for Energy Research, H-1121, Konkoly-Thege Miklós út 29-33, Budapest, Hungary
| | - Krisztina Kovács
- Radiation Chemistry Group, Surface Chemistry and Catalysis Department, Institute for Energy Security and Environmental Safety, HUN-REN Centre for Energy Research, H-1121, Konkoly-Thege Miklós út 29-33, Budapest, Hungary
| | - Anna Tegze
- Radiation Chemistry Group, Surface Chemistry and Catalysis Department, Institute for Energy Security and Environmental Safety, HUN-REN Centre for Energy Research, H-1121, Konkoly-Thege Miklós út 29-33, Budapest, Hungary
| | - Erzsébet Takács
- Radiation Chemistry Group, Surface Chemistry and Catalysis Department, Institute for Energy Security and Environmental Safety, HUN-REN Centre for Energy Research, H-1121, Konkoly-Thege Miklós út 29-33, Budapest, Hungary.
| |
Collapse
|
2
|
Jackulin F, Senthil Kumar P, Chitra B, Karthick S, Rangasamy G. A review on recent advancements in the treatment of polyaromatic hydrocarbons (PAHs) using sulfate radicals based advanced oxidation process. ENVIRONMENTAL RESEARCH 2024; 253:119124. [PMID: 38734294 DOI: 10.1016/j.envres.2024.119124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2024]
Abstract
Polyaromatic hydrocarbons (PAHs) are the most persistent compounds that get contaminated in the soil and water. Nearly 16 PAHs was considered to be a very toxic according US protection Agency. Though its concentration level is low in the environments but the effects due to it, is enormous. Advanced Oxidation Process (AOP) is an emergent methodology towards treating such pollutants with low and high molecular weight of complex substances. In this study, sulfate radical (SO4‾•) based AOP is emphasized for purging PAH from different sources. This review essentially concentrated on the mechanism of SO4‾• for the remediation of pollutants from different sources and the effects caused due to these pollutants in the environment was reduced by this mechanism is revealed in this review. It also talks about the SO4‾• precursors like Peroxymonosulfate (PMS) and Persulfate (PS) and their active participation in treating the different sources of toxic pollutants. Though PS and PMS is used for removing different contaminants, the degradation of PAH due to SO4‾• was presented particularly. The hydroxyl radical (•OH) mechanism-based methods are also emphasized in this review along with their limitations. In addition to that, different activation methods of PS and PMS were discussed which highlighted the performance of transition metals in activation. Also this review opened up about the degradation efficiency of contaminants, which was mostly higher than 90% where transition metals were used for activation. Especially, on usage of nanoparticles even 100% of degradation could be able to achieve was clearly showed in this literature study. This study mainly proposed the treatment of PAH present in the soil and water using SO4‾• with different activation methodologies. Particularly, it emphasized about the importance of treating the PAH to overcome the risk associated with the environment and humans due to its contamination.
Collapse
Affiliation(s)
- Fetcia Jackulin
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India
| | - P Senthil Kumar
- Centre for Pollution Control and Environmental Engineering, School of Engineering and Technology, Pondicherry University, Kalapet, Puducherry, 605014, India.
| | - B Chitra
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India
| | - S Karthick
- Department of Chemical Engineering, Motilal Nehru National Institute of Technology, Allahabad, Uttar Pradesh, 211004, India
| | - Gayathri Rangasamy
- Department of Civil Engineering, Faculty of Engineering, Karpagam Academy of Higher Education, Pollachi Main Road, Eachanari Post, Coimbatore, 641021, Tamil Nadu, India; Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602 105, Tamil Nadu, India
| |
Collapse
|
3
|
Shen Z, Zheng X, Yang Y, Sun Y, Yi C, Shang J, Liu Y, Guo R, Chen J, Liao Q. Migration and transformation behaviors of antibiotics in water-sediment system under simulated light and wind waves. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134287. [PMID: 38653132 DOI: 10.1016/j.jhazmat.2024.134287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024]
Abstract
Antibiotics can generally be detected in the water-sediment systems of lakes. However, research on the migration and transformation of antibiotics in water-sediment systems based on the influences of light and wind waves is minimal. To address this research gap, we investigated the specific impacts of light and wind waves on the migration and transformation of three antibiotics, norfloxacin (NOR), trimethoprim (TMP), and sulfamethoxazole (SMX), under simulated light and wind waves disturbance conditions in a water-sediment system from Taihu Lake, China. In the overlying water, NOR was removed the fastest, followed by TMP and SMX. Compared to the no wind waves groups, the disturbance of big wind waves reduced the proportion of antibiotics in the overlying water. The contributions of light and wind waves to TMP and SMX degradation were greater than those of microbial degradation. However, the non-biological and biological contributions of NOR to degradation were almost equal. Wind waves had a significant impact on the microbial community changes in the sediment, especially in Methylophylaceae. These results verified the influence of light and wind waves on the migration and transformation of antibiotics, and provide assistance for the risk of antibiotic occurrence in water and sediments.
Collapse
Affiliation(s)
- Zihao Shen
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaolan Zheng
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Ye Yang
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yali Sun
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Ciming Yi
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Jingge Shang
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yanhua Liu
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Ruixin Guo
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Jianqiu Chen
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China.
| | - Qianjiahua Liao
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
4
|
Náfrádi M, Alapi T, Veres B, Farkas L, Bencsik G, Janáky C. Comparison of TiO 2 and ZnO for Heterogeneous Photocatalytic Activation of the Peroxydisulfate Ion in Trimethoprim Degradation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5920. [PMID: 37687613 PMCID: PMC10489049 DOI: 10.3390/ma16175920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023]
Abstract
The persulfate-based advanced oxidation process is a promising method for degrading organic pollutants. Herein, TiO2 and ZnO photocatalysts were combined with the peroxydisulfate ion (PDS) to enhance the efficiency. ZnO was significantly more efficient in PDS conversion and SO4•- generation than TiO2. For ZnO, the PDS increased the transformation rate of the trimethoprim antibiotic from 1.58 × 10-7 M s-1 to 6.83 × 10-7 M s-1. However, in the case of TiO2, the moderated positive effect was manifested mainly in O2-free suspensions. The impact of dissolved O2 and trimethoprim on PDS transformation was also studied. The results reflected that the interaction of O2, PDS, and TRIM with the surface of the photocatalyst and their competition for photogenerated charges must be considered. The effect of radical scavengers confirmed that in addition to SO4•-, •OH plays an essential role even in O2-free suspensions, and the contribution of SO4•- to the transformation is much more significant for ZnO than for TiO2. The negative impact of biologically treated domestic wastewater as a matrix was manifested, most probably because of the radical scavenging capacity of Cl- and HCO3-. Nevertheless, in the case of ZnO, the positive effect of PDS successfully overcompensates that, due to the efficient SO4•- generation. Reusability tests were performed in Milli-Q water and biologically treated domestic wastewater, and only a slight decrease in the reactivity of ZnO photocatalysts was observed.
Collapse
Affiliation(s)
- Máté Náfrádi
- Department of Inorganic, Organic and Analytical Chemistry, University of Szeged, Dóm Square 7-8, H-6720 Szeged, Hungary; (M.N.); (B.V.); (L.F.)
| | - Tünde Alapi
- Department of Inorganic, Organic and Analytical Chemistry, University of Szeged, Dóm Square 7-8, H-6720 Szeged, Hungary; (M.N.); (B.V.); (L.F.)
| | - Bence Veres
- Department of Inorganic, Organic and Analytical Chemistry, University of Szeged, Dóm Square 7-8, H-6720 Szeged, Hungary; (M.N.); (B.V.); (L.F.)
| | - Luca Farkas
- Department of Inorganic, Organic and Analytical Chemistry, University of Szeged, Dóm Square 7-8, H-6720 Szeged, Hungary; (M.N.); (B.V.); (L.F.)
| | - Gábor Bencsik
- Department of Physical Chemistry and Materials Science, University of Szeged, Aradi Square 1, H-6720 Szeged, Hungary; (G.B.); (C.J.)
| | - Csaba Janáky
- Department of Physical Chemistry and Materials Science, University of Szeged, Aradi Square 1, H-6720 Szeged, Hungary; (G.B.); (C.J.)
| |
Collapse
|
5
|
He J, Ye Q, Zhu Y, Yang M, Zhao L. Enhanced degradation performance and mineralization of ciprofloxacin by ionizing radiation combined with g-C3N4/CDs. Radiat Phys Chem Oxf Engl 1993 2023. [DOI: 10.1016/j.radphyschem.2023.110958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
6
|
Hassani A, Scaria J, Ghanbari F, Nidheesh PV. Sulfate radicals-based advanced oxidation processes for the degradation of pharmaceuticals and personal care products: A review on relevant activation mechanisms, performance, and perspectives. ENVIRONMENTAL RESEARCH 2023; 217:114789. [PMID: 36375505 DOI: 10.1016/j.envres.2022.114789] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/31/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Owing to the rapid development of modern industry, a greater number of organic pollutants are discharged into the water matrices. In recent decades, research efforts have focused on developing more effective technologies for the remediation of water containing pharmaceuticals and personal care products (PPCPs). Recently, sulfate radicals-based advanced oxidation processes (SR-AOPs) have been extensively used due to their high oxidizing potential, and effectiveness compared with other AOPs in PPCPs remediation. The present review provides a comprehensive assessment of the different methods such as heat, ultraviolet (UV) light, photo-generated electrons, ultrasound (US), electrochemical, carbon nanomaterials, homogeneous, and heterogeneous catalysts for activating peroxymonosulfate (PMS) and peroxydisulfate (PDS). In addition, possible activation mechanisms from the point of radical and non-radical pathways are discussed. Then, biodegradability enhancement and toxicity reduction are highlighted. Comparison with other AOPs and treatment of PPCPs by the integrated process are evaluated as well. Lastly, conclusions and future perspectives on this research topic are elaborated.
Collapse
Affiliation(s)
- Aydin Hassani
- Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Near East University, 99138 Nicosia, TRNC, Mersin 10, Turkey.
| | - Jaimy Scaria
- CSIR National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| | - Farshid Ghanbari
- Research Center for Environmental Contaminants (RCEC), Abadan University of Medical Sciences, Abadan, Iran
| | - P V Nidheesh
- CSIR National Environmental Engineering Research Institute, Nagpur, Maharashtra, India.
| |
Collapse
|
7
|
Xu J, Zhang Z, Hong J, Wang D, Fan G, Zhou J, Wang Y. Co-doped Fe 3O 4/α-FeOOH for highly efficient peroxymonosulfate activation to degrade trimethoprim: Occurrence of hybrid non-radical and radical pathways. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116459. [PMID: 36244291 DOI: 10.1016/j.jenvman.2022.116459] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Trimethoprim (TMP), as a widely used chemotherapeutic antibiotic agent, has caused potential risks to the aquatic environment. In this study, magnetic Co-doped Fe3O4/α-FeOOH was fabricated by a facile one-step ageing method and used for activation of peroxymonosulfate (PMS) in TMP degradation. It was found that low catalyst (0.5 g/L) and PMS addition (0.2 mM) led to the high degradation efficiency of TMP (97.2%, kobs = 0.11211 min-1) over a wide range of pH. The oxidation of active radical (SO4·-) and non-radical singlet oxygen (1O2) co-acted on TMP degradation. Besides, PMS was activated through the cycles between Co(II)/Co(III) and Fe(II)/Fe(III). Fifteen degradation intermediates of TMP were identified by LC-MS, and three possible degradation pathways including hydroxylation, demethylation, and cleavage were proposed. The recovered catalysts exhibited high stability and reusability, maintaining 80% TMP removal efficiency with inappreciable metal leaching (0.012 mg/L of Co, 0.113 mg/L of Fe) after six cycles. Besides, the Co-Fe3O4/α-FeOOH/PMS system was highly tolerant to inorganic anions and actual water bodies (river water, lake water, tap water, and sewage plant effluent). Overall, this work provided a promising way to the potential application of Fe-based binary metal oxide for PMS activation.
Collapse
Affiliation(s)
- Junge Xu
- College of Civil Engineering, Fuzhou University, Fujian, 350116, China
| | - Ziwei Zhang
- College of Civil Engineering, Fuzhou University, Fujian, 350116, China
| | - Junxian Hong
- College of Civil Engineering, Fuzhou University, Fujian, 350116, China
| | - Dong Wang
- College of Civil Engineering, Fuzhou University, Fujian, 350116, China
| | - Gongduan Fan
- College of Civil Engineering, Fuzhou University, Fujian, 350116, China; State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fujian, 350002, China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Yingmu Wang
- College of Civil Engineering, Fuzhou University, Fujian, 350116, China.
| |
Collapse
|
8
|
Senthilkumar A, Ganeshbabu M, Karuppiah Lazarus J, Sevugarathinam S, John J, Ponnusamy SK, Velayudhaperumal Chellam P, Sillanpää M. Thermal and Radiation Based Catalytic Activation of Persulfate Systems in the Removal of Micropollutants: A Review. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Abiramasundari Senthilkumar
- Centre for Research, Department of Biotechnology, Kamaraj College of Engineering & Technology, Vellakulam 625701, India
| | - Madhubala Ganeshbabu
- Centre for Research, Department of Biotechnology, Kamaraj College of Engineering & Technology, Vellakulam 625701, India
| | - Jesintha Karuppiah Lazarus
- Centre for Research, Department of Biotechnology, Kamaraj College of Engineering & Technology, Vellakulam 625701, India
| | - Shalini Sevugarathinam
- Centre for Research, Department of Biotechnology, Kamaraj College of Engineering & Technology, Vellakulam 625701, India
| | - Juliana John
- Department of Civil Engineering, National Institute of Technology Tiruchirappalli, Tiruchirappalli 620015, India
| | - Senthil Kumar Ponnusamy
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India
- Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India
| | | | - Mika Sillanpää
- Department of Biological and Chemical Engineering, Aarhus University, Nørrebrogade 44, 8000 Aarhus, Denmark
| |
Collapse
|
9
|
Felis E, Buta-Hubeny M, Zieliński W, Hubeny J, Harnisz M, Bajkacz S, Korzeniewska E. Solar-light driven photodegradation of antimicrobials, their transformation by-products and antibiotic resistance determinants in treated wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155447. [PMID: 35469868 DOI: 10.1016/j.scitotenv.2022.155447] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/29/2022] [Accepted: 04/18/2022] [Indexed: 05/23/2023]
Abstract
This study aimed to assess the possibility of using solar light-driven photolysis and TiO2-based photocatalysis to remove (1) antibiotic residues, (2) their transformation products (TPs), (3) antibiotic resistance determinants, and (4) genes identifying the indicator bacteria in a treated wastewater (secondary effluent). 16 antimicrobials belonging to the different classes and 45 their transformation by-products were selected for the study. The most susceptible to photochemical decomposition was tetracycline, which was completely removed in the photocatalysis process and in more than 80% in the solar light-driven photolysis. 83.8% removal (on average) was observed using photolysis and 89.9% using photocatalysis in the case of the tested genes, among which the genes sul1, uidA, and intI1 showed the highest degree of removal by both methods. The study revealed that applied methods promisingly remove the tested antibiotics, their TPs and genes even in such a complex matrix including treated wastewater and photocatalysis process had a higher removal efficiency of antibiotics, TPs and genes tested. Moreover, the high percentage removal of the intI1 gene (>93%) indicates the possibilities of use of the solar light-driven photolysis and TiO2-based photocatalysis in minimizing the antibiotic resistance genes transfer by mobile genetic elements.
Collapse
Affiliation(s)
- Ewa Felis
- Silesian University of Technology, Faculty of Power and Environmental Engineering, Environmental Biotechnology Department, Akademicka 2, 44-100 Gliwice, Poland; Silesian University of Technology, Centre for Biotechnology, ul. B. Krzywoustego 8, 44-100 Gliwice, Poland.
| | - Martyna Buta-Hubeny
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-719 Olsztyn, Poland
| | - Wiktor Zieliński
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-719 Olsztyn, Poland
| | - Jakub Hubeny
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-719 Olsztyn, Poland
| | - Monika Harnisz
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-719 Olsztyn, Poland
| | - Sylwia Bajkacz
- Silesian University of Technology, Faculty of Chemistry, Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, B. Krzywoustego 6 Str., 44-100 Gliwice, Poland; Silesian University of Technology, Centre for Biotechnology, ul. B. Krzywoustego 8, 44-100 Gliwice, Poland
| | - Ewa Korzeniewska
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-719 Olsztyn, Poland
| |
Collapse
|
10
|
Wang B, Wang Y. A comprehensive review on persulfate activation treatment of wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154906. [PMID: 35364155 DOI: 10.1016/j.scitotenv.2022.154906] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
With increasingly serious environmental pollution and the production of various wastewater, water pollutants have posed a serious threat to human health and the ecological environment. The advanced oxidation process (AOP), represented by the persulfate (PS) oxidation process, has attracted increasing attention because of its economic, practical, safety and stability characteristics, opening up new ideas in the fields of wastewater treatment and environmental protection. However, PS does not easily react with organic pollutants and usually needs to be activated to produce oxidizing active substances such as sulfate radicals (SO4-) and hydroxyl radicals (OH) to degrade them. This paper summarizes the research progress of PS activation methods in the field of wastewater treatment, such as physical activation (e.g., thermal, ultrasonic, hydrodynamic cavitation, electromagnetic radiation activation and discharge plasma), chemical activation (e.g., alkaline, electrochemistry and catalyst) and the combination of the different methods, putting forward the advantages, disadvantages and influencing factors of various activation methods, discussing the possible activation mechanisms, and pointing out future development directions.
Collapse
Affiliation(s)
- Baowei Wang
- School of Chemical Engineering and Technology, Tianjin University, China.
| | - Yu Wang
- School of Chemical Engineering and Technology, Tianjin University, China
| |
Collapse
|
11
|
Zeolite-assisted radiolysis of aromatic chlorides mitigating influence of coexisting ions in water matrix. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2021.109831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Wang S, Wang J. Degradation of chloroaniline in chemical wastewater by ionizing radiation technology: Degradation mechanism and toxicity evaluation. CHEMOSPHERE 2022; 287:132365. [PMID: 34597643 DOI: 10.1016/j.chemosphere.2021.132365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Chloroaniline is a typical organic pollutant in chemical wastewater, which cannot be effectively removed in conventional wastewater treatment processes. In this study, ionizing radiation was used as advanced treatment process to degrade 2-chloroaniline (2-CA). The results showed that 10 mg/l of 2-CA could be completely degraded at 1 kGy. The required dose for completely degrading 2-CA by radiation increased when its initial concentration increased. Solution pH affected 2-CA degradation by changing the radiation-chemical yield of reactive species. Chloride ions (10 and 100 mM) had not obvious influence on 2-CA degradation. Hydrogen radicals, hydrated electrons and hydroxyl radicals, all contributed to the degradation of 2-CA, but with different degradation mechanisms. Hydrogen radicals and hydrated electrons could initiate reductive dechlorination of 2-CA, while hydroxyl radicals can degrade 2-CA by hydroxylation. 6-amino-1,4-cyclohexadiene and chlorobenzene were the main intermediate products of 2-CA degradation in the hydrogen radicals or hydrated electrons dominant process; while o-hydroxyaniline and nitroso-chlorobenzene were the main intermediate products in the hydroxyl radicals dominant process. The solution toxicity after radiation treatment varied with the initial concentration of 2-CA and the absorbed dose. In the actual chemical wastewater, 2-CA can be effectively removed by radiation, even in the presence of high concentration of chloride ions (about 2800 mg/l). The solution toxicity of actual wastewater decreased with the increase of adsorbed dose. This study provided an insight into the 2-CA degradation by radiation, and demonstrated that radiation could be an alternative option for the treatment of chloroaniline-containing chemical wastewater.
Collapse
Affiliation(s)
- Shizong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
13
|
Radiolytic degradation of 2-methylisoborneol and geosmin in water: Reactive radical species and transformation pathways. CHEMICAL ENGINEERING JOURNAL ADVANCES 2021. [DOI: 10.1016/j.ceja.2021.100196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
14
|
Zhang Z, Hu D, Chen H, Chen C, Zhang Y, He S, Wang J. Enhanced degradation of triclosan by gamma radiation with addition of persulfate. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2020.109273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Adil S, Maryam B, Kim EJ, Dulova N. Individual and simultaneous degradation of sulfamethoxazole and trimethoprim by ozone, ozone/hydrogen peroxide and ozone/persulfate processes: A comparative study. ENVIRONMENTAL RESEARCH 2020; 189:109889. [PMID: 32979996 DOI: 10.1016/j.envres.2020.109889] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/16/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
This study investigates the individual and simultaneous degradation and mineralization of the antibiotics, sulfamethoxazole (SMX) and trimethoprim (TMP) in aqueous solution by ozonation, ozone-activated persulfate (PS) and hydrogen peroxide (H2O2) processes. The trials were carried out in a semi-continuous column bubble reactor with an ozone diffuser located at the bottom of the column for a period of 2 h. Furthermore, the efficiency of studied processes were evaluated at two different initial pH and various doses of oxidants. The target compounds degradation observed pseudo-first-order rate constants (kobs) and removal of total organic carbon (TOC) using ozone-based oxidation processes were compared. Irrespective of the applied processes, the mineralization of target compounds was less effective than their degradation in both individual and simultaneous systems. The highest antibiotics degradation rate constants were observed for individual oxidation of TMP (kobs = 0.379 min-1) and SMX (kobs = 0.367 min-1) at alkaline initial pH (pH0) in the O3/H2O2 system at an [antibiotic]/H2O2 molar ratio of 1/1. Irrespective of the antibiotic studied, the most effective TOC removal (~44%) was observed after a 2-h treatment with the O3/H2O2 system at an [antibiotic]/H2O2 molar ratio of 1/5 (pH0 10.9). The O3/PS system at an [antibiotic]/PS molar ratio of 1/5 (pH0 10.9) proved the most effective system for both mineralization and degradation (kobs values of 0.294 min-1 and 0.266 min-1) of TMP and SMX, respectively, during the simultaneous oxidation of SMX-TMP. The decomposition by-products of SMX and TMP in studied ozone-based processes were identified using LC-MS analysis. The results of this study strongly suggest that using the O3/PS process is a promising solution to reduce SMX-TMP contamination in water matrices.
Collapse
Affiliation(s)
- Sawaira Adil
- Water Cycle Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Energy & Environment Technology, KIST-School, Korea University of Science and Technology, 34113, Republic of Korea
| | - Bareera Maryam
- Department of Environmental Engineering, Ondokuz Mayis University, 55200, Samsun, Turkey
| | - Eun-Ju Kim
- Water Cycle Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Energy & Environment Technology, KIST-School, Korea University of Science and Technology, 34113, Republic of Korea
| | - Niina Dulova
- Department of Materials and Environmental Technology, Tallinn University of Technology, Tallinn, 19086, Estonia.
| |
Collapse
|
16
|
Samy M, Ibrahim MG, Gar Alalm M, Fujii M. MIL-53(Al)/ZnO coated plates with high photocatalytic activity for extended degradation of trimethoprim via novel photocatalytic reactor. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117173] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Huo Z, Wang S, Shao H, Wang H, Xu G. Radiolytic degradation of anticancer drug capecitabine in aqueous solution: kinetics, reaction mechanism, and toxicity evaluation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:20807-20816. [PMID: 32248418 DOI: 10.1007/s11356-020-08500-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
The occurrence of anticancer drugs in the environment has attracted wide attention due to its potential environmental risks. The aim of this study was to investigate degradation characteristics and mechanism of anticancer drug capecitabine (CPC) by electron beam (EB) irradiation. The results showed that EB was an efficient water treatment process for CPC. The degradation followed pseudo-first-order kinetics with dose constants ranged from 1.27 to 3.94 kGy-1. Removal efficiencies in natural water filtered or unfiltered were lower than pure water due to the effect of water matrix components. The degradation was restrained by the presence of NO2-, NO3- and CO32-, and fulvic acid due to competition of reactive radical •OH. It demonstrated that oxidizing radical played important role in irradiation process. The appropriate addition of H2O2 and K2S2O8 providing with oxidizing agents •OH and •SO4- was favorable to improve degradation efficiency of CPC. The possible transformation pathways of CPC including cleavage of the ribofuranose sugar and defluorination were proposed based on intermediate products and were consistent with the theoretical calculation of charge and electron density distribution. Toxicity of CPC and intermediate products were estimated by ECOSAR program. It was found that CPC was transformed to low toxicity products with EB.
Collapse
Affiliation(s)
- Zhuhao Huo
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Siqi Wang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Haiyang Shao
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Hongyong Wang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Gang Xu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| |
Collapse
|
18
|
Zhang Z, Chen H, Wang J, Zhang Y. Degradation of carbamazepine by combined radiation and persulfate oxidation process. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2019.108639] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
19
|
Wang Z, Guo L, Liu L, Kuang H, Xiao J, Xu C. Development and comparison of two nanomaterial label-based lateral flow immunoassays for the detection of five antibacterial synergists. NEW J CHEM 2020. [DOI: 10.1039/d0nj03734f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Label is a significant factor when analyzing the performance of lateral flow immunoassays (LFIAs). Thus, this study developed two nanomaterial label-based LFIA and compared their analytical performance in practical applications.
Collapse
Affiliation(s)
- Zhongxing Wang
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology
| | - Lingling Guo
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology
| | - Liqiang Liu
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology
| | - Jing Xiao
- NHC Key Laboratory of Food Safety Risk Assessment
- China National Center for Food Safety Risk Assessment
- Beijing
- People's Republic of China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology
| |
Collapse
|
20
|
Boudriche L, Safaei Z, Ramasamy D, Sillanpää M, Boudjemaa A. Sulfaquinoxaline oxidation by UV-C activated sodium persulfate: Degradation kinetics and toxicological evaluation. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1412-1419. [PMID: 31054152 DOI: 10.1002/wer.1136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
This study evaluates the efficiency of sulfate radicals used in advanced oxidation process in water treatment. The targeted pollutant is an antibiotic, sulfaquinoxaline (SQ-Na) sodium, widely used in the veterinary field. The results show a degradation of SQ-Na until 90% after 300 min of irradiation at optimal sodium persulfate (SPS) concentration (200 mg/L). Degradation of the antibiotic obeys a pseudo-first-order kinetics when the concentration of sulfate radicals ranging from 0 to 240 mg/L. The decomposition of SQ-Na via the UV/SPS method is favored significantly under acidic conditions but becomes slow at neutral pH and almost inhibited under alkaline conditions. The contribution of the sulfate radicals alone and of both radicals hydroxyl and sulfate on the SQ-Na degradation is evaluated at 69% and 80%, respectively. Toxicity tests with Sinapis alba and Daphnia magna on treated samples, before and after irradiation, indicate the formation of new by-products more toxic during the treatment process. PRACTITIONER POINTS: SQ-Na was significantly degraded (90%) under UV/SPS system. SQ-Na decay exhibited a pseudo-first-order kinetics. SQ-Na was completely degraded via UV/SPS process under acidic conditions. The shoot growth appears to be more sensitive to oxidation by-products toxicity than root growth. Ineffectiveness in eliminating the ecotoxicity.
Collapse
Affiliation(s)
- Lilya Boudriche
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques, Tipaza, Algeria
| | - Zahra Safaei
- Laboratory of Green Chemistry, Lappeenranta University of Technology, Mikkeli, Finland
| | - Deepika Ramasamy
- Laboratory of Green Chemistry, Lappeenranta University of Technology, Mikkeli, Finland
| | - Mika Sillanpää
- Laboratory of Green Chemistry, Lappeenranta University of Technology, Mikkeli, Finland
| | - Amel Boudjemaa
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques, Tipaza, Algeria
| |
Collapse
|
21
|
Wang S, Hu Y, Wang J. Strategy of combining radiation with ferrate oxidation for enhancing the degradation and mineralization of carbamazepine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:1028-1033. [PMID: 31412440 DOI: 10.1016/j.scitotenv.2019.06.189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/21/2019] [Accepted: 06/12/2019] [Indexed: 06/10/2023]
Abstract
In this study, the strategy of combining radiation with ferrate oxidation was proposed to decrease the adsorbed dosse and enhance the mineralization of carbamazepine in aqueous solution. Compared to single radiation (800 Gy), the combined process of ferrate pretreatment and radiation required lower dose (600 Gy) for totally removing carbamazepine. During the combined process, the removal efficiency of total organic carbon (TOC) reached 22.2%. However, the removal efficiencies of carbamazepine and TOC decreased when ferrate and radiation were used simultaneously, indicating that the addition of ferrate during the radiation process had negative effect on the removal of carbamazepine. In contrast, the radiation followed by ferrate oxidation presented the best performance in decreasing the absorbed dose and enhancing the mineralization of carbamazepine. Carbamazepine could be completely removed under all conditions. TOC removal efficiency reached 18.3%, 31.3%, 52.9% and 60.6%, respectively, at the adsorbed dose of 100, 300, 600 and 800 Gy when 0.4 mM ferrate was adopted. The enhanced TOC removal could be due to the enhanced oxidation capacity of ferrate caused by the pH decrease at the end of radiation and the further oxidation of intermediate products formed during the radiation process by ferrate. Seven degradation products were identified in total, and thus the degradation pathway of carbamazepine was proposed. This study provides a possible way to decrease the adsorbed dose and enhance the mineralization of carbamazepine by radiation.
Collapse
Affiliation(s)
- Shizong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China; State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, PR China
| | - Yuming Hu
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China; State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
22
|
Chu L, Chen D, Wang J, Yang Z, Shen Y. Degradation of antibiotics and antibiotic resistance genes in erythromycin fermentation residues using radiation coupled with peroxymonosulfate oxidation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 96:190-197. [PMID: 31376964 DOI: 10.1016/j.wasman.2019.07.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/10/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Ionizing radiation coupled with peroxymonosulfate (PMS) oxidation was developed to degrade antibiotics and antibiotic resistance genes (ARGs) from the erythromycin fermentation (EryF) residual wastes. The experimental results showed that the ERY content and ARGs abundance decreased with increase of the absorbed dose and PMS dosage and gamma irradiation was more effective to abate ARGs from the EryF wastes. The removal efficiency of ERY reached 49-55% and more than 96-99% of ARGs (1.32-2.55 log) was eliminated with the absorbed dose of 25-50 kGy and PMS dosage of 50-100 mM. Illumina pyrosequencing revealed that 3 bacterial phyla, Proteobacteria, Firmicutes and Fusobacteria were highly enriched and the ARGs-linked hosts were affiliated to the genera Aeromonas, Enterobacteriaceae and Enterobacter in the phylum Proteobacteria. The abundance of the ARGs-linked bacteria decreased by gamma/PMS treatment. Ionizing radiation/PMS treatment with the doses of 25 kGy and 50 mM PMS is proposed for potential practical application.
Collapse
Affiliation(s)
- Libing Chu
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China
| | - Dan Chen
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China.
| | - Zhiling Yang
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China
| | - Yunpeng Shen
- Yili Chuanning Biotechnology Company, Ltd., Xinjiang 835007, PR China; School of Economics and Management, Center for Innovation Management Research, Xinjiang University, Xinjiang 830047, PR China
| |
Collapse
|
23
|
Grilla E, Matthaiou V, Frontistis Z, Oller I, Polo I, Malato S, Mantzavinos D. Degradation of antibiotic trimethoprim by the combined action of sunlight, TiO2 and persulfate: A pilot plant study. Catal Today 2019. [DOI: 10.1016/j.cattod.2018.11.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Wang J, Zhuan R, Chu L. The occurrence, distribution and degradation of antibiotics by ionizing radiation: An overview. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 646:1385-1397. [PMID: 30235624 DOI: 10.1016/j.scitotenv.2018.07.415] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 07/29/2018] [Accepted: 07/29/2018] [Indexed: 05/18/2023]
Abstract
Antibiotics have been extensively applied, making them ubiquitous in aquatic environment. As emerging contaminants, the occurrence and distribution of antibiotics in the environment has received increasing attention due to their potential adverse effects on human health and ecosystem. However, antibiotics cannot be effectively removed in conventional biological treatment processes, and their natural biodegradation is also ineffective. In this review, the occurrence and distribution of antibiotics in aquatic environments, including surface water, wastewater and effluent of wastewater treatment plants, were analyzed and summarized. Recent progress of antibiotics degradation by ionizing radiation was reviewed. The various influencing factors, such as absorbed dose, initial concentration, inorganic anions and organic matters, on the removal efficiency of antibiotics were introduced and discussed. To improve their removal efficiency, several advanced oxidation processes (AOPs) such as H2O2, Fe2+, Fe2+/H2O2, as well as biological treatment processes, are combined with ionizing radiation. Some suggestions for future studies of antibiotics degradation by ionizing radiation were proposed. Ionizing radiation may be a promising technology for removal of antibiotics from water and wastewater.
Collapse
Affiliation(s)
- Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing 100084, PR China.
| | - Run Zhuan
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Libing Chu
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
25
|
Limam RD, Limam I, Clérandeau C, Khouatmia M, Djebali W, Cachot J, Chouari R. Assessment of the toxicity and the fertilizing power from application of gamma irradiated anaerobic sludge as fertilizer: Effect on Vicia faba growth. Radiat Phys Chem Oxf Engl 1993 2018. [DOI: 10.1016/j.radphyschem.2018.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Sági G, Szabacsi K, Szabó L, Homlok R, Kovács K, Mohácsi-Farkas C, Pillai SD, Takács E, Wojnárovits L. Influence of ionizing radiation on the antimicrobial activity of the antibiotics sulfamethoxazole and trimethoprim. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2018; 53:687-693. [PMID: 29485359 DOI: 10.1080/10934529.2018.1439821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The response of the antimicrobial compounds sulfamethoxazole (SMX) and trimethoprim (TMP) - individually and in mixtures - to ionizing radiation was investigated using laboratory prepared mixtures and a commercial pharmaceutical formulation. The residual antibacterial activity of the solutions was monitored using Staphylococcus aureus and Escherichia coli test strains. Based on antibacterial activity, SMX was more susceptible to ionizing radiation as compared to TMP. The antibacterial activity of SMX and TMP was completely eliminated at 0.2 kGy and 0.8 kGy, respectively. However, when SMX and TMP were in a mixture, the dose required to eliminate the antibacterial activity was 10 kGy, implying a synergistic antibacterial activity when these are present in mixtures. Only when the antibiotic concentration was below the Minimum Inhibitory Concentration of TMP (i.e., 2 µmol dm-3) did the antibacterial activity of the SMX and TMP mixture disappear. These results imply that the synergistic antimicrobial activity of antimicrobial compounds in pharmaceutical waste streams is a strong possibility. Therefore, antimicrobial activity assays should be included when evaluating the use of ionizing radiation technology for the remediation of pharmaceutical or municipal waste streams.
Collapse
Affiliation(s)
- G Sági
- a Radiation Chemistry Department , Institute for Energy Security and Environmental Safety, Centre for Energy Research, Hungarian Academy of Sciences , Budapest , Hungary
| | - K Szabacsi
- b Department of Microbiology and Biotechnology , Szent István University , Budapest , Hungary
| | - L Szabó
- a Radiation Chemistry Department , Institute for Energy Security and Environmental Safety, Centre for Energy Research, Hungarian Academy of Sciences , Budapest , Hungary
| | - R Homlok
- a Radiation Chemistry Department , Institute for Energy Security and Environmental Safety, Centre for Energy Research, Hungarian Academy of Sciences , Budapest , Hungary
| | - K Kovács
- a Radiation Chemistry Department , Institute for Energy Security and Environmental Safety, Centre for Energy Research, Hungarian Academy of Sciences , Budapest , Hungary
| | - C Mohácsi-Farkas
- b Department of Microbiology and Biotechnology , Szent István University , Budapest , Hungary
| | - S D Pillai
- c Departments of Nutrition and Food Science and Poultry Science , National Center for Electron Beam Research, Texas A&M University , College Station , Texas , USA
| | - E Takács
- a Radiation Chemistry Department , Institute for Energy Security and Environmental Safety, Centre for Energy Research, Hungarian Academy of Sciences , Budapest , Hungary
| | - L Wojnárovits
- a Radiation Chemistry Department , Institute for Energy Security and Environmental Safety, Centre for Energy Research, Hungarian Academy of Sciences , Budapest , Hungary
| |
Collapse
|
27
|
Chu L, Zhuang S, Wang J. Degradation kinetics and mechanism of penicillin G in aqueous matrices by ionizing radiation. Radiat Phys Chem Oxf Engl 1993 2018. [DOI: 10.1016/j.radphyschem.2017.12.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Chu L, Yu S, Wang J. Degradation of pyridine and quinoline in aqueous solution by gamma radiation. Radiat Phys Chem Oxf Engl 1993 2018. [DOI: 10.1016/j.radphyschem.2017.09.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Kumagai Y, Kimura A, Taguchi M, Watanabe M. Radiation-induced degradation of aqueous 2–chlorophenol assisted by zeolites. J Radioanal Nucl Chem 2018. [DOI: 10.1007/s10967-018-5762-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Wang J, Wang S. Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 182:620-640. [PMID: 27552641 DOI: 10.1016/j.jenvman.2016.07.049] [Citation(s) in RCA: 552] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 06/29/2016] [Accepted: 07/14/2016] [Indexed: 05/18/2023]
Abstract
The pharmaceutical and personal care products (PPCPs) are emerging pollutants which might pose potential hazards to environment and health. These pollutants are becoming ubiquitous in the environments because they cannot be effectively removed by the conventional wastewater treatment plants due to their toxic and recalcitrant performance. The presence of PPCPs has received increasing attention in recent years, resulting in great concern on their occurrence, transformation, fate and risk in the environments. A variety of technologies, including physical, biological and chemical processes have been extensively investigated for the removal of PPCPs from wastewater. In this paper, the classes, functions and the representatives of the frequently detected PPCPs in aquatic environments were summarized. The analytic methods for PPCPs were briefly introduced. The removal efficiency of PPCPs by wastewater treatment plants was analyzed and discussed. The removal of PPCPs from wastewater by physical, chemical and biological processes was analyzed, compared and summarized. Finally, suggestions are made for future study of PPCPs. This review can provide an overview for the removal of PPCPs from wastewater.
Collapse
Affiliation(s)
- Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China; State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing 100084, PR China.
| | - Shizong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|