1
|
Yuan S, Zhang Y, Dong PY, Chen Yan YM, Liu J, Zhang BQ, Chen MM, Zhang SE, Zhang XF. A comprehensive review on potential role of selenium, selenoproteins and selenium nanoparticles in male fertility. Heliyon 2024; 10:e34975. [PMID: 39144956 PMCID: PMC11320318 DOI: 10.1016/j.heliyon.2024.e34975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/16/2024] Open
Abstract
Selenium (Se), a component of selenoproteins and selenocompounds in the human body, is crucial for the development of male reproductive organs, DNA synthesis, thyroid hormone, metabolism, and defence against infections and oxidative damage. In the testis, it must exceed a desirable level since either a shortage or an overabundance causes aberrant growth. The antioxidant properties of selenium are essential for preserving human reproductive health. Selenoproteins, which have important structural and enzymatic properties, control the biological activities of Se primarily. These proteins specifically have a role in metabolism and a variety of cellular processes, such as the control of selenium transport, thyroid hormone metabolism, immunity, and redox balance. Selenium nanoparticles (SeNPs) are less hazardous than selenium-based inorganic and organic materials. Upon being functionalized with active targeting ligands, they are both biocompatible and capable of efficiently delivering combinations of payloads to particular cells. In this review, we discuss briefly the chemistry, structure and functions of selenium and milestones of selenium and selenoproteins. Next we discuss the various factors influences male infertility, biological functions of selenium and selenoproteins, and role of selenium and selenoproteins in spermatogenesis and male fertility. Furthermore, we discuss the molecular mechanism of selenium transport and protective effects of selenium on oxidative stress, apoptosis and inflammation. We also highlight critical contribution of selenium nanoparticles on male fertility and spermatogenesis. Finally ends with conclusion and future perspectives.
Collapse
Affiliation(s)
- Shuai Yuan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ye Zhang
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong, 250014, China
| | - Pei-Yu Dong
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yu-Mei Chen Yan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jing Liu
- Analytical & Testing Center of Qingdao Agricultural University, Qingdao, 266100, China
| | - Bing-Qiang Zhang
- Qingdao Restore Biotechnology Co., Ltd., Qingdao, 266111, China
- Key Laboratory of Cancer and Immune Cells of Qingdao, Qingdao, 266111, China
| | - Meng-Meng Chen
- Qingdao Restore Biotechnology Co., Ltd., Qingdao, 266111, China
- Key Laboratory of Cancer and Immune Cells of Qingdao, Qingdao, 266111, China
| | - Shu-Er Zhang
- Animal Husbandry General Station of Shandong Province, Jinan, 250010, China
| | - Xi-Feng Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| |
Collapse
|
2
|
Corda PO, Moreira J, Howl J, Oliveira PF, Fardilha M, Silva JV. Differential Proteomic Analysis of Human Sperm: A Systematic Review to Identify Candidate Targets to Monitor Sperm Quality. World J Mens Health 2024; 42:71-91. [PMID: 37118964 PMCID: PMC10782124 DOI: 10.5534/wjmh.220262] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/24/2023] [Accepted: 02/05/2023] [Indexed: 04/30/2023] Open
Abstract
PURPOSE The advent of proteomics provides new opportunities to investigate the molecular mechanisms underlying male infertility. The selection of relevant targets based on a single analysis is not always feasible, due to the growing number of proteomic studies with conflicting results. Thus, this study aimed to systematically review investigations comparing the sperm proteome of normozoospermic and infertile men to define a panel of proteins with the potential to be used to evaluate sperm quality. MATERIALS AND METHODS A literature search was conducted on PubMed, Web of Science, and Scopus databases following the PRISMA guidelines. To identify proteins systematically reported, first the studies were divided by condition into four groups (asthenozoospermia, low motility, unexplained infertility, and infertility related to risk factors) and then, all studies were analysed simultaneously (poor sperm quality). To gain molecular insights regarding identified proteins, additional searches were performed within the Human Protein Atlas, Mouse Genome Informatics, UniProt, and PubMed databases. RESULTS Thirty-two studies were included and divided into 4 sub-analysis groups. A total of 2752 proteins were collected, of which 38, 1, 3 and 2 were indicated as potential markers for asthenozoospermia, low motility, unexplained infertility and infertility related to risk factors, respectively, and 58 for poor sperm quality. Among the identified proteins, ACR, ACRBP, ACRV1, ACTL9, AKAP4, ATG3, CCT2, CFAP276, CFAP52, FAM209A, GGH, HPRT1, LYZL4, PRDX6, PRSS37, REEP6, ROPN1B, SPACA3, SOD1, SPEM1, SPESP1, SPINK2, TEKT5, and ZPBP were highlighted due to their roles in male reproductive tissues, association with infertility phenotypes or participation in specific biological functions in spermatozoa. CONCLUSIONS Sperm proteomics allows the identification of protein markers with the potential to overcome limitations in male infertility diagnosis and to understand changes in sperm function at the molecular level. This study provides a reliable list of systematically reported proteins that could be potential targets for further basic and clinical studies.
Collapse
Affiliation(s)
- Pedro O Corda
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Jéssica Moreira
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - John Howl
- Research Institute in Healthcare Science, University of Wolverhampton, Wolverhampton, UK
| | - Pedro F Oliveira
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Margarida Fardilha
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.
| | - Joana Vieira Silva
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
3
|
Henkel R. Oxidative Stress and Toxicity in Reproductive Biology and Medicine: A Comprehensive Update on Male Infertility Volume II - Conclusion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1391:333-340. [PMID: 36472831 DOI: 10.1007/978-3-031-12966-7_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Infertility is a globally under-recognized public health problem significantly impacting individual health and socioeconomics affecting millions of couples. The reasons for infertility are manifold and not only include many couples decision to postpone having children but also diseases (e.g., diabetes, infections, or varicocele), lifestyle (e.g., obesity), and environmental factors (e.g., bisphenol A, DTT or dioxin). In the pathology of many causes of infertility, oxidative stress plays a significant role as reactive oxygen species (ROS) exert significant detrimental effects. On the other hand, a small amount of ROS is essential to trigger physiological events such as capacitation. Therefore, a fine balance between oxidation and reduction has to be maintained. Apart from treating the underlying disease or correcting the cause of the infertility, oxidative stress can be treated by antioxidant supplementation. Since plants and their extracts contain numerous phytochemicals which exhibit antioxidant activity, many people tend to use herbal products. Alternatively, isolated antioxidants such as vitamin C or E are also used. However, when using purified antioxidants, it is essential that the redox balance is maintained to avoid a "reductive stress" situation, which is as harmful as oxidative stress.
Collapse
Affiliation(s)
- Ralf Henkel
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK. .,Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa. .,American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA. .,LogixX Pharma, Theale, Reading, UK.
| |
Collapse
|
4
|
Bisconti M, Simon JF, Grassi S, Leroy B, Martinet B, Arcolia V, Isachenko V, Hennebert E. Influence of Risk Factors for Male Infertility on Sperm Protein Composition. Int J Mol Sci 2021; 22:13164. [PMID: 34884971 PMCID: PMC8658491 DOI: 10.3390/ijms222313164] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 12/22/2022] Open
Abstract
Male infertility is a common health problem that can be influenced by a host of lifestyle risk factors such as environment, nutrition, smoking, stress, and endocrine disruptors. These effects have been largely demonstrated on sperm parameters (e.g., motility, numeration, vitality, DNA integrity). In addition, several studies showed the deregulation of sperm proteins in relation to some of these factors. This review inventories the literature related to the identification of sperm proteins showing abundance variations in response to the four risk factors for male infertility that are the most investigated in this context: obesity, diabetes, tobacco smoking, and exposure to bisphenol-A (BPA). First, we provide an overview of the techniques used to identify deregulated proteins. Then, we summarise the main results obtained in the different studies and provide a compiled list of deregulated proteins in relation to each risk factor. Gene ontology analysis of these deregulated proteins shows that oxidative stress and immune and inflammatory responses are common mechanisms involved in sperm alterations encountered in relation to the risk factors.
Collapse
Affiliation(s)
- Marie Bisconti
- Laboratory of Cell Biology, Research Institute for Biosciences, University of Mons, Place du Parc 20, 7000 Mons, Belgium; (M.B.); (S.G.); (E.H.)
| | - Jean-François Simon
- Fertility Clinic, CHU Ambroise Paré Hospital, Boulevard Kennedy 2, 7000 Mons, Belgium; (J.-F.S.); (V.A.)
| | - Sarah Grassi
- Laboratory of Cell Biology, Research Institute for Biosciences, University of Mons, Place du Parc 20, 7000 Mons, Belgium; (M.B.); (S.G.); (E.H.)
| | - Baptiste Leroy
- Laboratory of Proteomics and Microbiology, CISMa, Research Institute for Biosciences, University of Mons, 7000 Mons, Belgium;
| | - Baptiste Martinet
- Evolutionary Biology & Ecology, Université Libre de Bruxelles, Avenue Paul Héger, CP 160/12, 1000 Brussels, Belgium;
| | - Vanessa Arcolia
- Fertility Clinic, CHU Ambroise Paré Hospital, Boulevard Kennedy 2, 7000 Mons, Belgium; (J.-F.S.); (V.A.)
| | - Vladimir Isachenko
- Department of Obstetrics and Gynecology, University of Cologne, Kerpener Strasse 34, 50931 Cologne, Germany
| | - Elise Hennebert
- Laboratory of Cell Biology, Research Institute for Biosciences, University of Mons, Place du Parc 20, 7000 Mons, Belgium; (M.B.); (S.G.); (E.H.)
| |
Collapse
|
5
|
Chemlal H, Bensalem S, Bendiab K, Azzar M, Benberkane A, Lalaoui K, Iguer-Ouada M, Bournine L. High HbA 1c levels affect motility parameters and overexpress oxidative stress of human mature spermatozoa. Andrologia 2020; 53:e13902. [PMID: 33167064 DOI: 10.1111/and.13902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/27/2020] [Accepted: 10/16/2020] [Indexed: 11/26/2022] Open
Abstract
The aim of this study is to investigate, by a validated in vitro model, the effect of diabetic plasma on ejaculated human spermatozoa. Plasma of 51 male diabetic patients (mean age 62.28 ± 9.28 years) was selected according to their HbA1c level: low HBA1c ≤ 5% (31 mmol/mol), moderate HBA1c 6%-8% (42-64 mmol/mol) and high HBA1c ≥ 10% (86 mmol/mol). The plasma was tested on eighteen normal semen samples by analysing gametes motility using a computer Sperm Class Analyzer® and their corresponding oxidative stress (OS) status using thiobarbituric acid-reactive substances assay. The results indicated that diabetic plasma affected all sperm motility parameters with high HbA1c showing the most important deleterious effects. Low gametes' straight-line velocity was observed in high HbA1c level, mainly after 20 min of co-incubation (8.78 ± 0.47 µm/s). Also, the highest lipid peroxidation (nmoles MDA/108 SPZ) was observed in high HbA1c values (0.92 ± 0.09), higher than those in spermatozoa treated with H2 O2 (0.85 ± 0.04). Conclusively, a direct impact of diabetic plasma on spermatozoa is revealed with overexpression of OS as the underlying mechanism. These findings suggested that it is strongly recommended to control clinically the glycaemic level and OS in diabetic patients for the maintenance of male fertility.
Collapse
Affiliation(s)
- Hanane Chemlal
- Laboratoire de Gestion et Valorisation des Ressources Naturelles et Assurances Qualités (LGVRNAQ), Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre, Université de Bouira, 10000 Bouira, Algérie
| | - Sihem Bensalem
- Laboratoire de Biotechnologie Végétales et Ethnobotanique (LBVEB), Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algérie
| | - Keltouma Bendiab
- Laboratoire Associé en Ecosystèmes Marins et Aquacoles (LAEMA), Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algérie
| | - Meriem Azzar
- Laboratoire Associé en Ecosystèmes Marins et Aquacoles (LAEMA), Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algérie
| | - Amine Benberkane
- Laboratoire Associé en Ecosystèmes Marins et Aquacoles (LAEMA), Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algérie
| | - Kamel Lalaoui
- Laboratoire d'Analyses Médicales, Route de l'Université Targa Ouzemour, 06000 Bejaia, Algérie
| | - Mokrane Iguer-Ouada
- Laboratoire Associé en Ecosystèmes Marins et Aquacoles (LAEMA), Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algérie
| | - Lamine Bournine
- Laboratoire de Biotechnologie Végétales et Ethnobotanique (LBVEB), Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algérie.,Département des Sciences Biologiques, Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre, Université de Bouira, 10000 Bouira, Algérie
| |
Collapse
|
6
|
Liu X, Gao M, Sun J, Sun Z, Song J, Xue X, Zhang Z, Shi J, Xing J. Effects of testicular sperm aspiration upon first cycle ICSI-ET for type 2 diabetic male patients. Syst Biol Reprod Med 2020; 66:355-363. [PMID: 32717167 DOI: 10.1080/19396368.2020.1785042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Male diabetes mellitus (DM) can affect erectile function and sperm quality. In severe cases, DM can lead to retrograde or no ejaculation, so testicular sperm aspiration (TESA) is combined with intracytoplasmic sperm injection (ICSI) to treat subfertility and infertility for DM couples. However, the effect of TESA upon ICSI (TESA-ICSI) for DM patients remains unclear. This research investigated the effect of TESA-ICSI on first cycle ICSI-embryo transfer (ICSI-ET) for type 2 diabetic mellitus (T2DM) patients and the potential mechanisms. The subjects consisted of 1219 male patients with azoospermia or retrograde ejaculation who were treated with TESA-ICSI from 2015.01 to 2019.11. They were classified into two groups, the T2DM group (n = 54) and non-diabetic control group (n = 1165). Sperm selection for injection was performed using motile sperm organelle morphology examination criteria. The number of available embryos and the high-quality embryo rates following a single ET as well as cleavage, fertilization, implantation, clinical pregnancy and the abortion rates were noted. Compared with the non-diabetic group, the available embryo rate (75.20 ± 26.40% vs.78.36 ± 23.25%) and high-quality embryo rate (46.49 ± 30.37% vs. 47.55 ± 28.57%) in the T2DM group were lower and the abortion rate (20.83% vs. 8.88%) was higher, but these differences were not statistically significant. There were no significant differences in clinical pregnancy, implantation, normal fertilization, and cleavage rates between the two groups. The results show that TESA for male T2DM patients does not influence the effect of ICSI. For T2DM patients with severe oligozoospermia, asthenospermia, teratozoospermia, or retrograde ejaculation that do not meet ICSI criteria, TESA-ICSI may perhaps be considered for reproductive assistance. ABBREVIATIONS DM: diabetes mellitus; TESA: testicular sperm aspiration; ICSI: intracytoplasmic sperm injection; ICSI-ET; ICSI-embryo transfer; LH: luteinizing hormone; mL: milliliter; TES: testosterone; FSH: follicle-stimulating hormone; P: progesterone; HCG: human chorionic gonadotropin.
Collapse
Affiliation(s)
- Xiang Liu
- The First Affiliated Hospital of Xi'an Jiao Tong University , Xi'an, Shaanxi, China.,Reproductive Center of Northwest Women's and Children's Hospital , Xi'an, Shaanxi, China
| | - Ming Gao
- Reproductive Center of Northwest Women's and Children's Hospital , Xi'an, Shaanxi, China
| | - Jianhua Sun
- Reproductive Center of Northwest Women's and Children's Hospital , Xi'an, Shaanxi, China
| | - Zheng Sun
- Reproductive Center of Northwest Women's and Children's Hospital , Xi'an, Shaanxi, China
| | - Juan Song
- Reproductive Center of Northwest Women's and Children's Hospital , Xi'an, Shaanxi, China
| | - Xia Xue
- Reproductive Center of Northwest Women's and Children's Hospital , Xi'an, Shaanxi, China
| | - Zhou Zhang
- Reproductive Center of Northwest Women's and Children's Hospital , Xi'an, Shaanxi, China
| | - Juanzi Shi
- Reproductive Center of Northwest Women's and Children's Hospital , Xi'an, Shaanxi, China
| | - Junping Xing
- The First Affiliated Hospital of Xi'an Jiao Tong University , Xi'an, Shaanxi, China
| |
Collapse
|
7
|
Pini T, Parks J, Russ J, Dzieciatkowska M, Hansen KC, Schoolcraft WB, Katz-Jaffe M. Obesity significantly alters the human sperm proteome, with potential implications for fertility. J Assist Reprod Genet 2020; 37:777-787. [PMID: 32026202 PMCID: PMC7183029 DOI: 10.1007/s10815-020-01707-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/30/2020] [Indexed: 11/25/2022] Open
Abstract
PURPOSE In men, obesity may lead to poor semen parameters and reduced fertility. However, the causative links between obesity and male infertility are not totally clear, particularly on a molecular level. As such, we investigated how obesity modifies the human sperm proteome, to elucidate any important implications for fertility. METHODS Sperm protein lysates from 5 men per treatment, classified as a healthy weight (body mass index (BMI) ≤ 25 kg/m2) or obese (BMI ≥ 30 kg/m2), were FASP digested, submitted to liquid chromatography tandem mass spectrometry, and compared by label-free quantification. Findings were confirmed for several proteins by qualitative immunofluorescence and a quantitative protein immunoassay. RESULTS A total of 2034 proteins were confidently identified, with 24 proteins being significantly (p < 0.05) less abundant (fold change < 0.05) in the spermatozoa of obese men and 3 being more abundant (fold change > 1.5) compared with healthy weight controls. Proteins with altered abundance were involved in a variety of biological processes, including oxidative stress (GSS, NDUFS2, JAGN1, USP14, ADH5), inflammation (SUGT1, LTA4H), translation (EIF3F, EIF4A2, CSNK1G1), DNA damage repair (UBEA4), and sperm function (NAPA, RNPEP, BANF2). CONCLUSION These results suggest that oxidative stress and inflammation are closely tied to reproductive dysfunction in obese men. These processes likely impact protein translation and folding during spermatogenesis, leading to poor sperm function and subfertility. The observation of these changes in obese men with no overt andrological diagnosis further suggests that traditional clinical semen assessments fail to detect important biochemical changes in spermatozoa which may compromise fertility.
Collapse
Affiliation(s)
- T Pini
- Colorado Center for Reproductive Medicine, Lone Tree, CO, 80124, USA.
| | - J Parks
- Colorado Center for Reproductive Medicine, Lone Tree, CO, 80124, USA
| | - J Russ
- Colorado Center for Reproductive Medicine, Lone Tree, CO, 80124, USA
| | - M Dzieciatkowska
- School of Medicine Biological Mass Spectrometry Facility, University of Colorado, Aurora, CO, 80045, USA
| | - K C Hansen
- School of Medicine Biological Mass Spectrometry Facility, University of Colorado, Aurora, CO, 80045, USA
| | - W B Schoolcraft
- Colorado Center for Reproductive Medicine, Lone Tree, CO, 80124, USA
| | - M Katz-Jaffe
- Colorado Center for Reproductive Medicine, Lone Tree, CO, 80124, USA
| |
Collapse
|
8
|
Sperm Proteomics Analysis of Diabetic Induced Male Rats as Influenced by Ficus carica Leaf Extract. Processes (Basel) 2020. [DOI: 10.3390/pr8040395] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Diabetes mellitus is shown to bring negative effects on male reproductive health due to long-term effects of insulin deficiency or resistance and increased oxidative stress. Ficus carica (FC), an herbal plant, known to have high antioxidant activity and antidiabetic properties, has been used traditionally to treat diabetes. The objective of this study is to determine the potential of the FC leaf extract in improving sperm quality of streptozotocin (STZ) induced diabetic male rats from proteomics perspective. A total of 20 male rats were divided into four groups; normal (nondiabetic rats), negative control (diabetic rats without treatment), positive control (diabetic rats treated with 300 mg/kg metformin), and FC group (diabetic rats treated with 400 mg/kg FC extract). The treatments were given via oral gavage for 21 consecutive days. The fasting blood glucose (FBG) level of FC treated group demonstrated a significant (p < 0.05) decrease compared to negative group after 21 days of treatment, as well as a significant (p < 0.05) increase in the sperm quality parameters compared to negative group. Sperm proteomics analysis on FC treated group also exhibited the increase of total protein expression especially the proteins related to fertility compared to negative group. In conclusion, this study clearly justified that FC extract has good potential as antihyperglycemic and profertility agent that may be beneficial for male diabetic patients who have fertility problems.
Collapse
|
9
|
|
10
|
Wang N, Zhu F, Chen L, Chen K. Proteomics, metabolomics and metagenomics for type 2 diabetes and its complications. Life Sci 2018; 212:194-202. [PMID: 30243649 DOI: 10.1016/j.lfs.2018.09.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/18/2018] [Accepted: 09/18/2018] [Indexed: 02/08/2023]
|
11
|
Masood A, Benabdelkamel H, Alfadda AA. Obesity Proteomics: An Update on the Strategies and Tools Employed in the Study of Human Obesity. High Throughput 2018; 7:ht7030027. [PMID: 30213114 PMCID: PMC6164994 DOI: 10.3390/ht7030027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/30/2018] [Accepted: 09/10/2018] [Indexed: 02/07/2023] Open
Abstract
Proteomics has become one of the most important disciplines for characterizing cellular protein composition, building functional linkages between protein molecules, and providing insight into the mechanisms of biological processes in a high-throughput manner. Mass spectrometry-based proteomic advances have made it possible to study human diseases, including obesity, through the identification and biochemical characterization of alterations in proteins that are associated with it and its comorbidities. A sizeable number of proteomic studies have used the combination of large-scale separation techniques, such as high-resolution two-dimensional gel electrophoresis or liquid chromatography in combination with mass spectrometry, for high-throughput protein identification. These studies have applied proteomics to comprehensive biochemical profiling and comparison studies while using different tissues and biological fluids from patients to demonstrate the physiological or pathological adaptations within their proteomes. Further investigations into these proteome-wide alterations will enable us to not only understand the disease pathophysiology, but also to determine signature proteins that can serve as biomarkers for obesity and related diseases. This review examines the different proteomic techniques used to study human obesity and discusses its successful applications along with its technical limitations.
Collapse
Affiliation(s)
- Afshan Masood
- Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia.
| | - Hicham Benabdelkamel
- Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia.
| | - Assim A Alfadda
- Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia.
- Department of Medicine, College of Medicine, King Saud University, P.O. Box 2925 (38), Riyadh 11461, Saudi Arabia.
| |
Collapse
|
12
|
Palnitkar G, Phillips CL, Hoyos CM, Marren AJ, Bowman MC, Yee BJ. Linking sleep disturbance to idiopathic male infertility. Sleep Med Rev 2018; 42:149-159. [PMID: 30377037 DOI: 10.1016/j.smrv.2018.07.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 06/13/2018] [Accepted: 07/26/2018] [Indexed: 12/22/2022]
Abstract
Recently published data suggests that male fertility has declined over the past four decades. The reasons for the decline are unclear with up to 50% of cases of male infertility remaining unexplained (idiopathic male infertility). Whilst environmental factors and rising rates of obesity have been implicated, there is now growing evidence that sleep disturbance may be an independent causative factor. Indeed, the prevalence of sleep disturbance appears to be increasing in parallel with deterioration in population sperm quality, a commonly used surrogate marker of male fertility. Although there is some understanding of the relationship between sleep, gonadal hormone secretion and sexual function, it remains to be seen whether sleep disturbance is implicated in idiopathic male infertility. This review will detail the current evidence supporting a link between sleep disturbance and male infertility. Potential mechanistic pathways will be proposed and evidence supporting these pathways will be discussed. Further research is needed in clarifying links between sleep disturbance and idiopathic male infertility. At present the only available treatment option for men with idiopathic infertility is assisted reproductive technology. Demonstration of a causative link between sleep disturbance and idiopathic male infertility may in the future lead to additional treatment options in selected cases.
Collapse
Affiliation(s)
- Gaurie Palnitkar
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney, New South Wales, Australia; Discipline of Sleep Medicine, Sydney Medical School, University of Sydney, New South Wales, Australia.
| | - Craig L Phillips
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney, New South Wales, Australia; Discipline of Sleep Medicine, Sydney Medical School, University of Sydney, New South Wales, Australia; Department of Respiratory and Sleep Medicine, Royal North Shore Hospital, St Leonards, Sydney, New South Wales, Australia
| | - Camilla M Hoyos
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney, New South Wales, Australia; School of Psychology, Faculty of Science, University of Sydney, New South Wales, Australia
| | - Anthony J Marren
- Department of Reproductive Endocrinology and Infertility, Royal Prince Alfred Hospital for Women and Babies, Camperdown, New South Wales, Australia; Genea Fertility, Sydney, New South Wales, Australia; Queen Elizabeth II Research Institute for Mothers and Infants, Department of Obstetrics, Gynaecology and Neonatology, The University of Sydney, New South Wales, Australia
| | - Mark C Bowman
- Department of Reproductive Endocrinology and Infertility, Royal Prince Alfred Hospital for Women and Babies, Camperdown, New South Wales, Australia; Genea Fertility, Sydney, New South Wales, Australia; Department of Obstetrics and Gynaecology, University of Sydney, New South Wales, Australia
| | - Brendon J Yee
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney, New South Wales, Australia; Discipline of Sleep Medicine, Sydney Medical School, University of Sydney, New South Wales, Australia; Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, Sydney, New South Wales, Australia
| |
Collapse
|
13
|
Intasqui P, Agarwal A, Sharma R, Samanta L, Bertolla RP. Towards the identification of reliable sperm biomarkers for male infertility: A sperm proteomic approach. Andrologia 2017; 50. [DOI: 10.1111/and.12919] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2017] [Indexed: 01/20/2023] Open
Affiliation(s)
- P. Intasqui
- American Center for Reproductive Medicine; Cleveland Clinic; Cleveland OH USA
- Department of Surgery; Division of Urology; Human Reproduction Section; Sao Paulo Federal University - Sao Paulo Hospital; Sao Paulo Brazil
| | - A. Agarwal
- American Center for Reproductive Medicine; Cleveland Clinic; Cleveland OH USA
| | - R. Sharma
- American Center for Reproductive Medicine; Cleveland Clinic; Cleveland OH USA
| | - L. Samanta
- Department of Zoology; Ravenshaw University; Cuttack India
| | - R. P. Bertolla
- Department of Surgery; Division of Urology; Human Reproduction Section; Sao Paulo Federal University - Sao Paulo Hospital; Sao Paulo Brazil
| |
Collapse
|
14
|
Ibáñez CA, Erthal RP, Ogo FM, Peres MNC, Vieira HR, Conejo C, Tófolo LP, Francisco FA, da Silva Silveira S, Malta A, Pavanello A, Martins IP, da Silva PHO, Jacinto Saavedra LP, Gonçalves GD, Moreira VM, Alves VS, da Silva Franco CC, Previate C, Gomes RM, de Oliveira Venci R, Dias FRS, Armitage JA, Zambrano E, Mathias PCF, Fernandes GSA, Palma-Rigo K. A High Fat Diet during Adolescence in Male Rats Negatively Programs Reproductive and Metabolic Function Which Is Partially Ameliorated by Exercise. Front Physiol 2017; 8:807. [PMID: 29163186 PMCID: PMC5673641 DOI: 10.3389/fphys.2017.00807] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/30/2017] [Indexed: 01/21/2023] Open
Abstract
An interaction between obesity, impaired glucose metabolism and sperm function in adults has been observed but it is not known whether exposure to a diet high in fat during the peri-pubertal period can have longstanding programmed effects on reproductive function and gonadal structure. This study examined metabolic and reproductive function in obese rats programmed by exposure to a high fat (HF) diet during adolescence. The effect of physical training (Ex) in ameliorating this phenotype was also assessed. Thirty-day-old male Wistar rats were fed a HF diet (35% lard w/w) for 30 days then subsequently fed a normal fat diet (NF) for a 40-day recovery period. Control animals were fed a NF diet throughout life. At 70 days of life, animals started a low frequency moderate exercise training that lasted 30 days. Control animals remained sedentary (Se). At 100 days of life, biometric, metabolic and reproductive parameters were evaluated. Animals exposed to HF diet showed greater body weight, glucose intolerance, increased fat tissue deposition, reduced VO2max and reduced energy expenditure. Consumption of the HF diet led to an increase in the number of abnormal seminiferous tubule and a reduction in seminiferous epithelium height and seminiferous tubular diameter, which was reversed by moderate exercise. Compared with the NF-Se group, a high fat diet decreased the number of seminiferous tubules in stages VII-VIII and the NF-Ex group showed an increase in stages XI-XIII. HF-Se and NF-Ex animals showed a decreased number of spermatozoa in the cauda epididymis compared with animals from the NF-Se group. Animals exposed to both treatments (HF and Ex) were similar to all the other groups, thus these alterations induced by HF or Ex alone were partially prevented. Physical training reduced fat pad deposition and restored altered reproductive parameters. HF diet consumption during the peri-pubertal period induces long-term changes on metabolism and the reproductive system, but moderate and low frequency physical training is able to recover adipose tissue deposition and reproductive system alterations induced by high fat diet. This study highlights the importance of a balanced diet and continued physical activity during adolescence, with regard to metabolic and reproductive health.
Collapse
Affiliation(s)
- Carlos A Ibáñez
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, Universidade Estadual de Maringá, Maringá, Brazil
| | - Rafaela P Erthal
- Laboratory of Toxicology and Reproductive Metabolic Disorders, Department of General Biology, Universidade Estadual de Londrina, Londrina, Brazil
| | - Fernanda M Ogo
- Laboratory of Toxicology and Reproductive Metabolic Disorders, Department of General Biology, Universidade Estadual de Londrina, Londrina, Brazil
| | - Maria N C Peres
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, Universidade Estadual de Maringá, Maringá, Brazil
| | - Henrique R Vieira
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, Universidade Estadual de Maringá, Maringá, Brazil
| | - Camila Conejo
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, Universidade Estadual de Maringá, Maringá, Brazil
| | - Laize P Tófolo
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, Universidade Estadual de Maringá, Maringá, Brazil
| | - Flávio A Francisco
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, Universidade Estadual de Maringá, Maringá, Brazil
| | - Sandra da Silva Silveira
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, Universidade Estadual de Maringá, Maringá, Brazil
| | - Ananda Malta
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, Universidade Estadual de Maringá, Maringá, Brazil
| | - Audrei Pavanello
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, Universidade Estadual de Maringá, Maringá, Brazil
| | - Isabela P Martins
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, Universidade Estadual de Maringá, Maringá, Brazil
| | - Paulo H O da Silva
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, Universidade Estadual de Maringá, Maringá, Brazil
| | - Lucas Paulo Jacinto Saavedra
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, Universidade Estadual de Maringá, Maringá, Brazil
| | - Gessica D Gonçalves
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, Universidade Estadual de Maringá, Maringá, Brazil
| | - Veridiana M Moreira
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, Universidade Estadual de Maringá, Maringá, Brazil
| | - Vander S Alves
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, Universidade Estadual de Maringá, Maringá, Brazil
| | - Claudinéia C da Silva Franco
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, Universidade Estadual de Maringá, Maringá, Brazil
| | - Carina Previate
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, Universidade Estadual de Maringá, Maringá, Brazil
| | - Rodrigo M Gomes
- Laboratory of Endocrinology and Metabolism, Department of Physiological Sciences, Universidade Federal de Goiás, Goiânia, Brazil
| | - Renan de Oliveira Venci
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, Universidade Estadual de Maringá, Maringá, Brazil
| | - Francielle R S Dias
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, Universidade Estadual de Maringá, Maringá, Brazil
| | - James A Armitage
- School of Medicine, Deakin University, Waurn Ponds, VIC, Australia
| | - Elena Zambrano
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Paulo C F Mathias
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, Universidade Estadual de Maringá, Maringá, Brazil
| | - Glaura S A Fernandes
- Laboratory of Toxicology and Reproductive Metabolic Disorders, Department of General Biology, Universidade Estadual de Londrina, Londrina, Brazil
| | - Kesia Palma-Rigo
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, Universidade Estadual de Maringá, Maringá, Brazil
| |
Collapse
|
15
|
An T, Fan H, Liu YF, Pan YY, Liu YK, Mo FF, Gu YJ, Sun YL, Zhao DD, Yu N, Ma Y, Liu CY, Wang QL, Li ZY, Teng F, Gao SH, Jiang GJ. The difference in expression of long noncoding RNAs in rat semen induced by high-fat diet was associated with metabolic pathways. PeerJ 2017; 5:e3518. [PMID: 28761781 PMCID: PMC5530988 DOI: 10.7717/peerj.3518] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/08/2017] [Indexed: 11/20/2022] Open
Abstract
Background
Obesity, a common metabolic disease, is a known cause of male infertility due to its associated health risk. Long noncoding RNAs (lncRNAs) have also been reported to be associated with male reproductive diseases; however, their role in the association between high-fat diet-induced obesity (DIO) and male reproduction remains unclear.
Methods
We used microarray analysis to compare the expression levels of lncRNAs and mRNAs in the spermatozoa of rats with DIO and normal rats. We selected a few lncRNAs that were obviously up-regulated or down-regulated, and then used RT-PCR to verify the accuracy of their expression. We then performed a functional enrichment analysis of the differentially expressed mRNAs using gene ontology and pathway analysis. Finally, target gene predictive analysis was used to explore the relationship between lncRNAs and mRNAs.
Results
The results revealed a statistically significant difference in the fasting blood glucose level in rats with DIO and control rats. We found that 973 lncRNAs and 2,994 mRNAs were differentially expressed in the sperm samples of the DIO rats, compared to the controls. GO enrichment analysis revealed 263 biological process terms, 39 cellular component terms, and 40 molecular function terms (p < 0.01) in the differentially expressed mRNAs. The pathway analysis showed that metabolic pathways were most enriched in protein-coding genes.
Discussion
To the best of our knowledge, this is the first report to show differences in the expression levels of lncRNAs and mRNAs in the sperms of rats with DIO and normal rats, and to determine the expression profile of lncRNAs in the sperm of rats with DIO. Our results have revealed a number of lncRNAs and pathways associated with obesity-induced infertility, including metabolic pathways. These pathways could be new candidates that help cope with and investigate the mechanisms behind the progression of obesity-induced male infertility.
Collapse
Affiliation(s)
- Tian An
- Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Fan
- Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, China
| | - Yu F. Liu
- Beijing University of Chinese Medicine Third Affiliated Hosiptal, Beijing, China
| | - Yan Y. Pan
- Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, China
| | | | - Fang F. Mo
- Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, China
| | - Yu J. Gu
- Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, China
| | - Ya L. Sun
- Beijing Changping Chinese Medicine Hospital, Beijing, China
| | - Dan D. Zhao
- Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, China
| | - Na Yu
- Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, China
| | - Yue Ma
- Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, China
| | - Chen Y. Liu
- Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, China
| | | | - Zheng Y. Li
- Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, China
| | - Fei Teng
- Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Si Hua Gao
- Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, China
| | - Guang J. Jiang
- Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
16
|
Hajizadeh Maleki B, Tartibian B, Chehrazi M. The effects of three different exercise modalities on markers of male reproduction in healthy subjects: a randomized controlled trial. Reproduction 2017; 153:157-174. [DOI: 10.1530/rep-16-0318] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 11/02/2016] [Accepted: 11/10/2016] [Indexed: 12/16/2022]
Abstract
The aim of this study was to investigate the effects of moderate-intensity continuous training (MICT), high-intensity continuous training (HICT) and high-intensity interval training (HIIT) on markers of male reproduction including seminal markers of oxidative stress and inflammation as well as semen quality and sperm DNA integrity in healthy human subjects. A total of 397 healthy male volunteers were screened and 280 were randomly assigned to one of the MICT (n = 70), HICT (n = 70), HIIT (n = 70) and non-exercise (NON-EX, n = 70) groups. Subjects had inflammatory markers (IL-1β, IL-6, IL-8 and TNF-α), oxidants (ROS, MDA and 8-isoprostane), antioxidants (SOD, catalase and TAC), semen parameters and sperm DNA damage measured at baseline (T1), the end of week 12 (T2), the end of week 24 (T3), and 7 (T4) and 30 days (T5) after training. Chronic MICT, HICT and HIIT attenuated seminal markers of oxidative stress and inflammation with different kinetics for the three types of exercise (P < 0.05), and these changes were correlated with favorable improvements in semen quality parameters and sperm DNA integrity (P < 0.05). MICT was superior to HICT and HIIT in the improvements of markers of male reproductive function (P < 0.05). In conclusion, different exercise modalities favorably affect markers of male reproduction with different kinetics, suggesting intensity-, duration- and type-dependent adaptations to exercise training in healthy human subjects.
Collapse
|
17
|
Abstract
The prevalence of overweight and obesity in reproductive-aged men is increasing worldwide, with >70% of men >18 years classified as overweight or obese in some western nations. Male obesity is associated with male subfertility, impairing sex hormones, reducing sperm counts, increasing oxidative sperm DNA damage and changing the epigenetic status of sperm. These changes to sperm function as a result of obesity, are further associated with impaired embryo development, reduced live birth rates and increased miscarriage rates in humans. Animal models have suggested that these adverse reproductive effects can be transmitted to the offspring; suggesting that men's health at conception may affect the health of their children. In addition to higher adiposity, male obesity is associated with comorbidities, including metabolic syndrome, hypercholesterolemia, hyperleptinemia and a pro-inflammatory state, all which have independently been linked with male subfertility. Taken together, these findings suggest that the effects of male obesity on fertility are likely multifactorial, with associated comorbidities also influencing sperm, pregnancy and subsequent child health.
Collapse
Affiliation(s)
- Nicole O McPherson
- Discipline of Obstetrics and Gynaecology, School of Paediatrics and Reproductive Health, The Robinson Institute, The University of Adelaide, South Australia 5005, Australia; Freemasons Foundation Center for Mens Health, The University of Adelaide, South Australia 5005, Australia,
| | | |
Collapse
|
18
|
The "omics" of human male infertility: integrating big data in a systems biology approach. Cell Tissue Res 2015; 363:295-312. [PMID: 26661835 DOI: 10.1007/s00441-015-2320-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/26/2015] [Indexed: 12/11/2022]
Abstract
Spermatogenesis is a complex process in which >2300 genes are temporally and spatially regulated to form a terminally differentiated sperm cell that must maintain the ability to contribute to a totipotent embryo which can successfully differentiate into a healthy individual. This process is dependent on fidelity of the genome, epigenome, transcriptome, and proteome of the spermatogonia, supporting cells, and the resulting sperm cell. Infertility and/or disease risk may increase in the offspring if abnormalities are present. This review highlights the recent advances in our understanding of these processes in light of the "omics revolution". We briefly review each of these areas, as well as highlight areas of future study and needs to advance further.
Collapse
|
19
|
McPherson NO, Bell VG, Zander-Fox DL, Fullston T, Wu LL, Robker RL, Lane M. When two obese parents are worse than one! Impacts on embryo and fetal development. Am J Physiol Endocrinol Metab 2015. [PMID: 26199280 DOI: 10.1152/ajpendo.00230.2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The prevalence of overweight and obesity in reproductive-age adults is increasing worldwide. While the effects of either paternal or maternal obesity on gamete health and subsequent fertility and pregnancy have been reported independently, the combination of having both parents overweight/obese on fecundity and offspring health has received minimal attention. Using a 2 × 2 study design in rodents we established the relative contributions of paternal and maternal obesity on fetal and embryo development and whether combined paternal and maternal obesity had an additive effect. Here, we show that parental obesity reduces fetal and placental weights without altering pregnancy establishment and is not dependent on an in utero exposure to a high-fat diet. Interestingly combined parental obesity seemed to accumulate both the negative influences of paternal and maternal obesity had alone on embryo and fetal health rather than an amplification, manifested as reduced embryo developmental competency, reduced blastocyst cell numbers, impaired mitochondrial function, and alterations to active and repressive embryonic chromatin marks, resulting in aberrant placental gene expression and reduced fetal liver mtDNA copy numbers. Further understanding both the maternal cytoplasmic and paternal genetic interactions during this early developmental time frame will be vital for understanding how developmental programming is regulated and for the proposition of interventions to mitigate their effects.
Collapse
Affiliation(s)
- N O McPherson
- School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, South Australia, Australia; Freemasons Centre for Men's Health, University of Adelaide, South Australia, Australia; Repromed, Dulwich, South Australia, Australia; and
| | - V G Bell
- School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, South Australia, Australia; Freemasons Centre for Men's Health, University of Adelaide, South Australia, Australia; Repromed, Dulwich, South Australia, Australia; and
| | - D L Zander-Fox
- School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, South Australia, Australia; Repromed, Dulwich, South Australia, Australia; and
| | - T Fullston
- School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, South Australia, Australia
| | - L L Wu
- School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, South Australia, Australia
| | - R L Robker
- School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, South Australia, Australia
| | - M Lane
- School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, South Australia, Australia; Monash In Vitro Fertilisation Group, Richmond, Australia
| |
Collapse
|
20
|
Zhang E, Xu F, Liang H, Yan J, Xu H, Li Z, Wen X, Weng J. GLP-1 Receptor Agonist Exenatide Attenuates the Detrimental Effects of Obesity on Inflammatory Profile in Testis and Sperm Quality in Mice. Am J Reprod Immunol 2015; 74:457-66. [PMID: 26287267 DOI: 10.1111/aji.12420] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 07/19/2015] [Indexed: 01/20/2023] Open
Abstract
PROBLEM Male obesity has been linked to subfecundity. This study is to investigate the effects of GLP-1 receptor (GLP-1R) agonist exenatide on sperm quality in high-fat diet (HFD)-induced obese mice. METHOD OF STUDY After 12 weeks of chow diet (CD) or HFD challenge, mice on HFD were allocated to either saline or exenatide (24 nmol/kg/day) interventions for 8 weeks. Sperm quality and the inflammatory profile of testis were compared among three groups. RESULTS Obesity reduced the quality of sperm and changed the inflammatory profile characterized by increased mRNA expression levels of TNF-α, MCP-1, and F4/80 in testis. Exenatide intervention reduced the expression of pro-inflammatory cytokines and improved the quality of sperm. CONCLUSION HFD-induced obesity leads to the impairment of sperm quality and increased inflammation of testis in mice, and the abnormal physiology can be attenuated by exenatide treatment. Exenatide treatment may bring additional profits to obese and diabetes men by improving sperm function.
Collapse
Affiliation(s)
- Erhong Zhang
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Fen Xu
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Hua Liang
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jinhua Yan
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Haixia Xu
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zhuo Li
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xingqiao Wen
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jianping Weng
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
21
|
Davidson LM, Millar K, Jones C, Fatum M, Coward K. Deleterious effects of obesity upon the hormonal and molecular mechanisms controlling spermatogenesis and male fertility. HUM FERTIL 2015. [DOI: 10.3109/14647273.2015.1070438] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Codina M, Estanyol JM, Fidalgo MJ, Ballescà JL, Oliva R. Advances in sperm proteomics: best-practise methodology and clinical potential. Expert Rev Proteomics 2015; 12:255-77. [PMID: 25921224 DOI: 10.1586/14789450.2015.1040769] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The recent application of mass spectrometry to the study of the sperm cell has led to an unprecedented capacity for identification of sperm proteins in a variety of species. Knowledge of the proteins that make up the sperm cell represents the first step towards understanding its normal function and the molecular anomalies associated with male infertility. The present review starts with an introduction of the sperm cell biology and is followed by the consideration of the methodological key aspects to be aware of during sample sourcing and preparation, including data interpretation. It then overviews the initiatives developed so far towards the completion of the sperm proteome, with a particular focus in human but with the inclusion of some comments on different model species. Finally, all studies performing differential proteomics in infertile patients are reviewed, pointing to future potential applications.
Collapse
Affiliation(s)
- Montserrat Codina
- Human Genetics Research Group, IDIBAPS, Faculty of Medicine, University of Barcelona, Casanova 143, 08036 Barcelona, Spain
| | | | | | | | | |
Collapse
|
23
|
Giacomini E, Ura B, Giolo E, Luppi S, Martinelli M, Garcia RC, Ricci G. Comparative analysis of the seminal plasma proteomes of oligoasthenozoospermic and normozoospermic men. Reprod Biomed Online 2015; 30:522-31. [PMID: 25779018 DOI: 10.1016/j.rbmo.2015.01.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/03/2014] [Accepted: 01/20/2015] [Indexed: 02/06/2023]
Abstract
A comparative proteomic study of oligoasthenozoospermic and normozoospermic seminal plasmas was conducted to establish differences in protein expression. Oligoasthenozoospermia (when semen presents with a low concentration and reduced motility of spermatozoa) is common in male infertility. Two-dimensional protein maps from seminal plasma samples from 10 men with normozoospermia and 10 men with idiopathic oligoasthenozoospermia were obtained by isoelectric focusing followed by sodium dodecyl-sulphate polyacrylamide electrophoresis. Map images were analysed using dedicated software involving normalization, spot-to-spot volume comparison and statistical treatment of the results to establish the significance of differences between normal and oligoasthenozoospermic samples. Six out of 1028 spots showed over 1.5-fold relative intensity differences (P < 0.05, analysis of variance). Four proteins were identified by nano liquid chromatography-electrospray ionization-mass spectrometry/mass spectrometry of their tryptic peptides and database searches. Two proteins were more than three-fold under-expressed in oligoasthenozoospermia, namely epididymal secretory protein E1 and galectin-3-binding protein; the other (lipocalin-1 and a prolactin-inducible protein form) were over-expressed. The identity and differential expression of epididymal secretory protein E1 was verified by Western-blotting. The statistically significant differential expression of these four proteins in oligoasthenozoospermia compared with normozoospermia provides a molecular basis for further investigations into the pathogenic mechanisms underlying idiopathic oligoasthenozoospermia.
Collapse
Affiliation(s)
- Elisa Giacomini
- Department of Medical, Surgical and Health Sciences, University of Trieste, Ospedale di Cattinara, Strada di Fiume 447, Trieste 34149, Italy
| | - Blendi Ura
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Via dell'Istria 65/1, Trieste 34137, Italy
| | - Elena Giolo
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Via dell'Istria 65/1, Trieste 34137, Italy
| | - Stefania Luppi
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Via dell'Istria 65/1, Trieste 34137, Italy
| | - Monica Martinelli
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Via dell'Istria 65/1, Trieste 34137, Italy
| | - Rodolfo C Garcia
- International Centre for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, Trieste 34149, Italy.
| | - Giuseppe Ricci
- Department of Medical, Surgical and Health Sciences, University of Trieste, Ospedale di Cattinara, Strada di Fiume 447, Trieste 34149, Italy; Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Via dell'Istria 65/1, Trieste 34137, Italy
| |
Collapse
|
24
|
Proteomic analysis in type 2 diabetes patients before and after a very low calorie diet reveals potential disease state and intervention specific biomarkers. PLoS One 2014; 9:e112835. [PMID: 25415563 PMCID: PMC4240577 DOI: 10.1371/journal.pone.0112835] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 09/26/2014] [Indexed: 01/20/2023] Open
Abstract
Very low calorie diets (VLCD) with and without exercise programs lead to major metabolic improvements in obese type 2 diabetes patients. The mechanisms underlying these improvements have so far not been elucidated fully. To further investigate the mechanisms of a VLCD with or without exercise and to uncover possible biomarkers associated with these interventions, blood samples were collected from 27 obese type 2 diabetes patients before and after a 16-week VLCD (Modifast ∼450 kcal/day). Thirteen of these patients followed an exercise program in addition to the VCLD. Plasma was obtained from 27 lean and 27 obese controls as well. Proteomic analysis was performed using mass spectrometry (MS) and targeted multiple reaction monitoring (MRM) and a large scale isobaric tags for relative and absolute quantitation (iTRAQ) approach. After the 16-week VLCD, there was a significant decrease in body weight and HbA1c in all patients, without differences between the two intervention groups. Targeted MRM analysis revealed differences in several proteins, which could be divided in diabetes-associated (fibrinogen, transthyretin), obesity-associated (complement C3), and diet-associated markers (apolipoproteins, especially apolipoprotein A-IV). To further investigate the effects of exercise, large scale iTRAQ analysis was performed. However, no proteins were found showing an exercise effect. Thus, in this study, specific proteins were found to be differentially expressed in type 2 diabetes patients versus controls and before and after a VLCD. These proteins are potential disease state and intervention specific biomarkers. Trial Registration Controlled-Trials.com ISRCTN76920690
Collapse
|
25
|
Frapsauce C, Pionneau C, Bouley J, Delarouziere V, Berthaut I, Ravel C, Antoine JM, Soubrier F, Mandelbaum J. Proteomic identification of target proteins in normal but nonfertilizing sperm. Fertil Steril 2014; 102:372-80. [DOI: 10.1016/j.fertnstert.2014.04.039] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 04/23/2014] [Accepted: 04/24/2014] [Indexed: 12/11/2022]
|
26
|
Acute epididymitis induces alterations in sperm protein composition. Fertil Steril 2014; 101:1609-17.e1-5. [DOI: 10.1016/j.fertnstert.2014.03.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/26/2014] [Accepted: 03/06/2014] [Indexed: 11/20/2022]
|
27
|
McPherson NO, Fullston T, Bakos HW, Setchell BP, Lane M. Obese father's metabolic state, adiposity, and reproductive capacity indicate son's reproductive health. Fertil Steril 2014; 101:865-73. [PMID: 24424359 DOI: 10.1016/j.fertnstert.2013.12.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/01/2013] [Accepted: 12/04/2013] [Indexed: 01/31/2023]
Abstract
OBJECTIVE To determine whether dietary and exercise regimes in obese males can provide a novel intervention window for improving the reproductive health of the next generation. DESIGN Experimental animal study. SETTING University research facilities. ANIMAL(S) C57BL6 male and female mice. INTERVENTION(S) Mice were fed a control diet (6% fat) or high-fat diet (21% fat) for 9 weeks. After the initial feeding, high-fat-diet males were allocated to diet and/or exercise interventions for a further 9 weeks. After intervention males were mated with females fed standard chow (4% fat) before and during pregnancy. MAIN OUTCOME MEASURE(S) F1 sperm motility, count, morphology, capacitation, mitochondrial function, and sperm binding and weight of reproductive organs. RESULT(S) Our primary finding was that diet intervention alone in founders improved offspring sperm motility and mitochondrial markers of sperm health (decreased reactive oxygen species and mitochondrial membrane potential), ultimately improving sperm binding. Sperm binding and capacitation was also improved in F1 males born to a combined diet and exercise intervention in founders. Founder sperm parameters and metabolic measures as a response to diet and/or exercise (i.e., lipid/glucose homeostasis, sperm count and morphology) correlated with offspring's sperm function, independent of founder treatment. This implicates paternal metabolic and reproductive status in predicting male offspring's reproductive function. CONCLUSION(S) This is the first study to show that improvements to both metabolic (lipids, glucose and insulin sensitivity) and reproductive function (sperm motility and morphology) in obese fathers via diet and exercise interventions can improve subsequent reproductive health in offspring.
Collapse
Affiliation(s)
- Nicole O McPherson
- Discipline of Obstetrics and Gynaecology, School of Paediatrics and Reproductive Health, Robinson Institute, The University of Adelaide, Adelaide, South Australia, Australia; Freemasons Foundation Centre for Men's Health, The University of Adelaide, Adelaide, South Australia, Australia.
| | - Tod Fullston
- Discipline of Obstetrics and Gynaecology, School of Paediatrics and Reproductive Health, Robinson Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Hassan W Bakos
- Discipline of Medicine, School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia; Repromed, Dulwich, South Australia, Australia
| | - Brian P Setchell
- Discipline of Anatomy, School of Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Michelle Lane
- Discipline of Obstetrics and Gynaecology, School of Paediatrics and Reproductive Health, Robinson Institute, The University of Adelaide, Adelaide, South Australia, Australia; Repromed, Dulwich, South Australia, Australia
| |
Collapse
|
28
|
|
29
|
MacLeod G, Varmuza S. The application of proteomic approaches to the study of mammalian spermatogenesis and sperm function. FEBS J 2013; 280:5635-51. [DOI: 10.1111/febs.12461] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 07/04/2013] [Accepted: 07/26/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Graham MacLeod
- Department of Cell & Systems Biology; University of Toronto; ON Canada
| | - Susannah Varmuza
- Department of Cell & Systems Biology; University of Toronto; ON Canada
| |
Collapse
|
30
|
McPherson NO, Bakos HW, Owens JA, Setchell BP, Lane M. Improving metabolic health in obese male mice via diet and exercise restores embryo development and fetal growth. PLoS One 2013; 8:e71459. [PMID: 23977045 PMCID: PMC3747240 DOI: 10.1371/journal.pone.0071459] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 07/03/2013] [Indexed: 12/17/2022] Open
Abstract
Paternal obesity is now clearly associated with or causal of impaired embryo and fetal development and reduced pregnancy rates in humans and rodents. This appears to be a result of reduced blastocyst potential. Whether these adverse embryo and fetal outcomes can be ameliorated by interventions to reduce paternal obesity has not been established. Here, male mice fed a high fat diet (HFD) to induce obesity were used, to determine if early embryo and fetal development is improved by interventions of diet (CD) and/or exercise to reduce adiposity and improve metabolism. Exercise and to a lesser extent CD in obese males improved embryo development rates, with increased cell to cell contacts in the compacting embryo measured by E-cadherin in exercise interventions and subsequently, increased blastocyst trophectoderm (TE), inner cell mass (ICM) and epiblast cell numbers. Implantation rates and fetal development from resulting blastocysts were also improved by exercise in obese males. Additionally, all interventions to obese males increased fetal weight, with CD alone and exercise alone, also increasing fetal crown-rump length. Measures of embryo and fetal development correlated with paternal measures of glycaemia, insulin action and serum lipids regardless of paternal adiposity or intervention, suggesting a link between paternal metabolic health and subsequent embryo and fetal development. This is the first study to show that improvements to metabolic health of obese males through diet and exercise can improve embryo and fetal development, suggesting such interventions are likely to improve offspring health.
Collapse
Affiliation(s)
- Nicole O. McPherson
- School of Paediatrics and Reproductive Health, Discipline of Obstetrics and Gynaecology, University of Adelaide, South Australia, Australia
- * E-mail:
| | - Hassan W. Bakos
- School of Medicine, Discipline of Medicine, University of Adelaide, South Australia, Australia
- Repromed, Dulwich, South Australia, Australia
| | - Julie A. Owens
- School of Paediatrics and Reproductive Health, Discipline of Obstetrics and Gynaecology, University of Adelaide, South Australia, Australia
| | - Brian P. Setchell
- School of Medical Sciences, Discipline of Anatomy, University of Adelaide, South Australia, Australia
| | - Michelle Lane
- School of Paediatrics and Reproductive Health, Discipline of Obstetrics and Gynaecology, University of Adelaide, South Australia, Australia
- Repromed, Dulwich, South Australia, Australia
| |
Collapse
|
31
|
Thomas S, Kratzsch D, Schaab M, Scholz M, Grunewald S, Thiery J, Paasch U, Kratzsch J. Seminal plasma adipokine levels are correlated with functional characteristics of spermatozoa. Fertil Steril 2013; 99:1256-1263.e3. [PMID: 23375204 DOI: 10.1016/j.fertnstert.2012.12.022] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 12/17/2012] [Accepted: 12/19/2012] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To study adipokines as a potential link between obesity and male subfertility. DESIGN Cross-sectional study of subjects stratified into subgroups according to body mass index (BMI): normal-weight (18.50-24.99 kg/m(2)), overweight (25-29.99 kg/m(2)), and obese (>30 kg/m(2)). SETTING Leipzig, Germany from 2007 to 2011. PATIENT(S) Ninety-six male volunteers without spermatogenesis-associated diseases. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Semen parameters, reproductive hormones in serum, and leptin, adiponectin, resistin, chemerin, progranulin, vaspin, and visfatin concentrations in serum and seminal plasma. RESULT(S) All measured adipokines were detectable in human seminal plasma. The levels of progranulin, visfatin, and vaspin were statistically significantly higher in seminal plasma than in serum. An increase in body weight was associated with decreased levels of seminal plasma progranulin. Additionally, overweight/obese men had statistically significantly lower progranulin levels in seminal plasma than normal weight men. Adiponectin and progranulin concentrations in seminal plasma statistically significantly positively correlated with sperm concentration, sperm count, and total normomorphic spermatozoa. CONCLUSION(S) Adipokines are differently regulated in human male reproductive tract compared with the peripheral blood, and they could influence sperm functionality.
Collapse
Affiliation(s)
- Stephanie Thomas
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Leipzig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Hamada A, Sharma R, du Plessis SS, Willard B, Yadav SP, Sabanegh E, Agarwal A. Two-dimensional differential in-gel electrophoresis-based proteomics of male gametes in relation to oxidative stress. Fertil Steril 2013; 99:1216-1226.e2. [PMID: 23312230 DOI: 10.1016/j.fertnstert.2012.11.046] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 11/07/2012] [Accepted: 11/26/2012] [Indexed: 01/23/2023]
Abstract
OBJECTIVE To identify the relative abundance of proteins in pooled reactive oxygen species (ROS)-positive (ROS+) and ROS-negative (ROS-) semen samples with the use of two-dimensional differential in-gel electrophoresis (2D-DIGE). DESIGN Spermatozoa suspensions from ROS+ and ROS- groups by 2D-DIGE analysis. SETTING Tertiary hospital. PATIENT(S) 20 donors and 32 infertile men. INTERVENTION(S) Seminal ejaculates evaluated for semen and proteomic analysis. MAIN OUTCOME MEASURE(S) Semen samples from 20 donors and 32 infertile men were pooled, divided into ROS+ and ROS- groups based on the cutoff value of <20 relative light units/s/10(6) sperm and frozen. From each pooled group, spermatozoa were labeled with Cy3/Cy5 fluorescent dye. Duplicate 2D-DIGE gels were run. Image analysis was performed with the use of Decider software. Protein spots exhibiting ≥1.5-fold difference in intensity were excised from the preparatory gel and identified by liquid chromatography-mass spectrometry. Data were analyzed with the use of Sequest and Blast programs. RESULT(S) A total of 1,343 protein spots in gel 1 (ROS-) and 1,265 spots in gel 2 (ROS+) were detected. The majority of protein spots had similar expression, with 31 spots were differentially expressed. Six spots were significantly decreased and 25 increased in the ROS- sample compared with the ROS+ sample. CONCLUSION(S) Significantly different expression of protective proteins against oxidative stress was found in ROS-compared with ROS+ samples. These differences may explain the role of oxidation species in the pathology of male infertility.
Collapse
Affiliation(s)
- Alaa Hamada
- Center for Reproductive Medicine, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Palmer NO, Bakos HW, Fullston T, Lane M. Impact of obesity on male fertility, sperm function and molecular composition. SPERMATOGENESIS 2012; 2:253-263. [PMID: 23248766 PMCID: PMC3521747 DOI: 10.4161/spmg.21362] [Citation(s) in RCA: 248] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Male obesity in reproductive-age men has nearly tripled in the past 30 y and coincides with an increase in male infertility worldwide. There is now emerging evidence that male obesity impacts negatively on male reproductive potential not only reducing sperm quality, but in particular altering the physical and molecular structure of germ cells in the testes and ultimately mature sperm. Recent data has shown that male obesity also impairs offspring metabolic and reproductive health suggesting that paternal health cues are transmitted to the next generation with the mediator mostly likely occurring via the sperm. Interestingly the molecular profile of germ cells in the testes and sperm from obese males is altered with changes to epigenetic modifiers. The increasing prevalence of male obesity calls for better public health awareness at the time of conception, with a better understanding of the molecular mechanism involved during spermatogenesis required along with the potential of interventions in reversing these deleterious effects. This review will focus on how male obesity affects fertility and sperm quality with a focus on proposed mechanisms and the potential reversibility of these adverse effects.
Collapse
Affiliation(s)
- Nicole O. Palmer
- School of Paediatrics and Reproductive Health; The Robinson Institute; Discipline of Obstetrics and Gynaecology; The University of Adelaide; Adelaide, SA Australia
| | - Hassan W. Bakos
- School of Medicine; Discipline of Medicine; The University of Adelaide; Adelaide, SA Australia
- Repromed; Dulwich, SA Australia
| | - Tod Fullston
- School of Paediatrics and Reproductive Health; The Robinson Institute; Discipline of Obstetrics and Gynaecology; The University of Adelaide; Adelaide, SA Australia
| | - Michelle Lane
- School of Paediatrics and Reproductive Health; The Robinson Institute; Discipline of Obstetrics and Gynaecology; The University of Adelaide; Adelaide, SA Australia
- Repromed; Dulwich, SA Australia
| |
Collapse
|
34
|
A hormonal, physical, and proteomic view of obesity-induced effects on male infertility and possible lifestyle modifications. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2012. [DOI: 10.1016/s2305-0500(13)60071-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
35
|
Palmer NO, Bakos HW, Owens JA, Setchell BP, Lane M. Diet and exercise in an obese mouse fed a high-fat diet improve metabolic health and reverse perturbed sperm function. Am J Physiol Endocrinol Metab 2012; 302:E768-80. [PMID: 22252945 DOI: 10.1152/ajpendo.00401.2011] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Male obesity is associated with reduced sperm motility and morphology and increased sperm DNA damage and oxidative stress; however, the reversibility of these phenotypes has never been studied. Therefore, the aim of this study was to assess the reversibility of obesity and its associated sperm physiology and function in mice in response to weight loss through diet and exercise. C57BL6 male mice (n = 40) were fed either a control diet (CD; 6% fat) or a high-fat diet (HFD; 21% fat) for 10 wk before allocation to either diet and/or swimming exercise interventions for 8 wk. Diet alone reduced adiposity (1.6-fold) and serum cholesterol levels (1.7-fold, P < 0.05), while exercise alone did not alter these, but exercise plus diet also improved glucose tolerance (1.3-fold, P < 0.05). Diet and/or exercise improved sperm motility (1.2-fold) and morphology (1.1-fold, P < 0.05), and reduced sperm DNA damage (1.5-fold), reactive oxygen species (1.1-fold), and mitochondrial membrane potential (1.2-fold, P < 0.05) and increased sperm binding (1.4-fold) (P < 0.05). Sperm parameters were highly correlated with measures of glycemia, insulin action, and serum cholesterol (all P < 0.05) regardless of adiposity or intervention, suggesting a link between systemic metabolic status and sperm function. This is the first study to show that the abnormal sperm physiology resulting from obesity can be reversed through diet and exercise, even in the presence of ongoing obesity, suggesting that diet and lifestyle interventions could be a combined approach to target subfertility in overweight and obese men.
Collapse
Affiliation(s)
- Nicole O Palmer
- School of Paediatrics and Reproductive Health, Discipline of Obstetrics and Gynaecology, University of Adelaide, South Australia, Australia
| | | | | | | | | |
Collapse
|
36
|
Palmer NO, Fullston T, Mitchell M, Setchell BP, Lane M. SIRT6 in mouse spermatogenesis is modulated by diet-induced obesity. Reprod Fertil Dev 2012; 23:929-39. [PMID: 21871212 DOI: 10.1071/rd10326] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 04/15/2011] [Indexed: 12/16/2022] Open
Abstract
Male obesity is associated with reduced sperm function and increased incidence of sperm DNA damage; however, the underlying molecular mechanisms have not yet been identified. Mammalian SIRT6 protein is involved in caloric-dependant DNA damage repair in other tissue types, yet a possible role for SIRT6 in male obesity and subfertility has not been investigated previously. To assess SIRT6 levels and activity in the testes, male mice (n=12 per diet) were fed either a control diet (CD; 6% fat) or a high-fat diet (HFD; 21% fat) for 16 weeks before the collection of testes and spermatozoa. SIRT6 protein was localised to the nucleus of transitional spermatids and the acrosome of mature spermatozoa, with levels significantly decreased in HFD-fed male mice (P<0.05). This decrease in SIRT6 protein was associated with transitional spermatids having increased levels of acetylated H3K9 in the nucleus (P<0.01) and increased DNA damage (P<0.001). We propose a role for SIRT6 in spermiogenesis and potentially protamination processes, which are known to be compromised by male obesity.
Collapse
Affiliation(s)
- Nicole O Palmer
- Discipline of Obstetrics and Gynaecology, School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, SA 5005, Australia
| | | | | | | | | |
Collapse
|
37
|
La Vignera S, Condorelli RA, Vicari E, D'Agata R, Salemi M, Calogero AE. High levels of lipid peroxidation in semen of diabetic patients. Andrologia 2011; 44 Suppl 1:565-70. [PMID: 21919944 DOI: 10.1111/j.1439-0272.2011.01228.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The aim of this study was to evaluate the level of malondialdehyde (MDA) (one of the final products of lipid peroxidation and well-known marker of oxidative stress) in semen of infertile men with type 2 diabetes and to investigate its relationship with their glycaemic control. Forty infertile men with type 2 diabetes were evaluated. The mean ages were 36.5 ± 8.0. Men with diabetes were divided into two groups. Group A (n = 20) with glycated haemoglobin >10% and group B (n = 20) with glycated haemoglobin <7%. A single sample was examined according to the criteria of the World Health Organization (WHO Laboratory Manual for the Examination of Human Semen and Sperm-Cervical Mucus Interaction, 1999, Cambridge University Press). MDA was assessed using the thiobarbituric acid method. MDA concentration in semen of group A patients (0.95 ± 0.35 nmol ml(-1)) was significantly higher than in group B patients (0.43 ± 0.13 nmol ml(-1)) (P value < 0.05) and had negative relationship with sperm density (r = -.717; P value < 0.05), total sperm count (r = -.625; P value < 0.05), progressive motility (r = -.489; P value < 0.05) and normal forms (r = -.545; P value < 0.05). Based on these results, it could be concluded that increase in lipid peroxidation in men with diabetes with poor metabolic control was associated with low sperm quality.
Collapse
Affiliation(s)
- S La Vignera
- Section of Endocrinology, Andrology and Internal Medicine and Master in Andrological, Human Reproduction and Biotechnology Sciences, Department of Internal Medicine and Systemic Diseases, University of Catania, Catania, Italy.
| | | | | | | | | | | |
Collapse
|
38
|
Paasch U, Heidenreich F, Pursche T, Kuhlisch E, Kettner K, Grunewald S, Kratzsch J, Dittmar G, Glander HJ, Hoflack B, Kriegel TM. Identification of increased amounts of eppin protein complex components in sperm cells of diabetic and obese individuals by difference gel electrophoresis. Mol Cell Proteomics 2011; 10:M110.007187. [PMID: 21525168 DOI: 10.1074/mcp.m110.007187] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Metabolic disorders like diabetes mellitus and obesity may compromise the fertility of men and women. To unveil disease-associated proteomic changes potentially affecting male fertility, the proteomes of sperm cells from type-1 diabetic, type-2 diabetic, non-diabetic obese and clinically healthy individuals were comparatively analyzed by difference gel electrophoresis. The adaptation of a general protein extraction procedure to the solubilization of proteins from sperm cells allowed for the resolution of 3187 fluorescent spots in the difference gel electrophoresis image of the master gel, which contained the entirety of solubilized sperm proteins. Comparison of the pathological and reference proteomes by applying an average abundance ratio setting of 1.6 and a p ≤ 0.05 criterion resulted in the identification of 79 fluorescent spots containing proteins that were present at significantly changed levels in the sperm cells. Biometric evaluation of the fluorescence data followed by mass spectrometric protein identification revealed altered levels of 12, 71, and 13 protein species in the proteomes of the type-1 diabetic, type-2 diabetic, and non-diabetic obese patients, respectively, with considerably enhanced amounts of the same set of one molecular form of semenogelin-1, one form of clusterin, and two forms of lactotransferrin in each group of pathologic samples. Remarkably, β-galactosidase-1-like protein was the only protein that was detected at decreased levels in all three pathologic situations. The former three proteins are part of the eppin (epididymal proteinase inhibitor) protein complex, which is thought to fulfill fertilization-related functions, such as ejaculate sperm protection, motility regulation and gain of competence for acrosome reaction, whereas the putative role of the latter protein to function as a glycosyl hydrolase during sperm maturation remains to be explored at the protein/enzyme level. The strikingly similar differences detected in the three groups of pathological sperm proteomes reflect a disease-associated enhanced formation of predominantly proteolytically modified forms of three eppin protein complex components, possibly as a response to enduring hyperglycemia and enhanced oxidative stress.
Collapse
Affiliation(s)
- Uwe Paasch
- University of Leipzig, Medical Faculty, Department of Dermatology, Training Center of the European Academy of Andrology, D-04103 Leipzig, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Mulholland J, Mallidis C, Agbaje I, McClure N. Male diabetes mellitus and assisted reproduction treatment outcome. Reprod Biomed Online 2011; 22:215-9. [DOI: 10.1016/j.rbmo.2010.10.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 10/05/2010] [Accepted: 10/06/2010] [Indexed: 12/24/2022]
|
40
|
Abstract
The current clinical guidelines for the management of infertility as presented by the American Urologic Association and European Association of Urology represent consensus opinions for the management of male-factor infertility. The goal of the present study is to define the currently available guidelines for male-factor infertility, provide a rationale for why guidelines should be implemented, and review concerns and shortcomings towards their incorporation into clinical practice. Successfully integrating guidelines into clinical practice offers the potential benefit of creating a standardized, efficient, and cost-effective algorithm for the evaluation of infertility and facilitates future research. Despite their availability and ease of use, many clinicians fail to adopt clinical guidelines for numerous reasons including decreased awareness of available guidelines, insufficient time, lack of interest, and personal financial considerations. The current guidelines are limited by the inability to generalize recommendations to a heterogeneous patient sample, the lack of interdisciplinary adoption of guidelines, and the need for additional emphasis on prevention and lifestyle modifications. Future direction for the current guidelines will likely incorporate a multidisciplinary approach with increasing utilization of genetic analysis and novel treatment strategies. As the field of infertility continues to expand, the utility of guidelines combined with physician clinical judgment will remain prominent in the treatment of male-factor infertility.
Collapse
Affiliation(s)
- Landon W. Trost
- Department of Urologic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Ajay Nehra
- Department of Urologic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
41
|
Oliva R, de Mateo S. Medical Implications of Sperm Nuclear Quality. EPIGENETICS AND HUMAN REPRODUCTION 2011. [DOI: 10.1007/978-3-642-14773-9_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
42
|
Han D, Moon S, Kim H, Choi SE, Lee SJ, Park KS, Jun H, Kang Y, Kim Y. Detection of Differential Proteomes Associated with the Development of Type 2 Diabetes in the Zucker Rat Model Using the iTRAQ Technique. J Proteome Res 2010; 10:564-77. [DOI: 10.1021/pr100759a] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Dohyun Han
- Department of Biomedical Sciences, Internal Medicine, and Genome Research Center for Diabetes and Endocrine Disease, Seoul National University College of Medicine, 28 Yongon-Dong, Seoul 110-799 Korea, Institute for Medical Sciences, Ajou University School of Medicine, Wonchon-dong san 5, Suwon, Kyunggi-do, 442-749 Korea, and Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Songdo-dong, Incheon 406-840, Korea
| | - Sungyoon Moon
- Department of Biomedical Sciences, Internal Medicine, and Genome Research Center for Diabetes and Endocrine Disease, Seoul National University College of Medicine, 28 Yongon-Dong, Seoul 110-799 Korea, Institute for Medical Sciences, Ajou University School of Medicine, Wonchon-dong san 5, Suwon, Kyunggi-do, 442-749 Korea, and Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Songdo-dong, Incheon 406-840, Korea
| | - Hyunsoo Kim
- Department of Biomedical Sciences, Internal Medicine, and Genome Research Center for Diabetes and Endocrine Disease, Seoul National University College of Medicine, 28 Yongon-Dong, Seoul 110-799 Korea, Institute for Medical Sciences, Ajou University School of Medicine, Wonchon-dong san 5, Suwon, Kyunggi-do, 442-749 Korea, and Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Songdo-dong, Incheon 406-840, Korea
| | - Sung-E Choi
- Department of Biomedical Sciences, Internal Medicine, and Genome Research Center for Diabetes and Endocrine Disease, Seoul National University College of Medicine, 28 Yongon-Dong, Seoul 110-799 Korea, Institute for Medical Sciences, Ajou University School of Medicine, Wonchon-dong san 5, Suwon, Kyunggi-do, 442-749 Korea, and Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Songdo-dong, Incheon 406-840, Korea
| | - Soo-Jin Lee
- Department of Biomedical Sciences, Internal Medicine, and Genome Research Center for Diabetes and Endocrine Disease, Seoul National University College of Medicine, 28 Yongon-Dong, Seoul 110-799 Korea, Institute for Medical Sciences, Ajou University School of Medicine, Wonchon-dong san 5, Suwon, Kyunggi-do, 442-749 Korea, and Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Songdo-dong, Incheon 406-840, Korea
| | - Kyong Soo Park
- Department of Biomedical Sciences, Internal Medicine, and Genome Research Center for Diabetes and Endocrine Disease, Seoul National University College of Medicine, 28 Yongon-Dong, Seoul 110-799 Korea, Institute for Medical Sciences, Ajou University School of Medicine, Wonchon-dong san 5, Suwon, Kyunggi-do, 442-749 Korea, and Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Songdo-dong, Incheon 406-840, Korea
| | - Heesook Jun
- Department of Biomedical Sciences, Internal Medicine, and Genome Research Center for Diabetes and Endocrine Disease, Seoul National University College of Medicine, 28 Yongon-Dong, Seoul 110-799 Korea, Institute for Medical Sciences, Ajou University School of Medicine, Wonchon-dong san 5, Suwon, Kyunggi-do, 442-749 Korea, and Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Songdo-dong, Incheon 406-840, Korea
| | - Yup Kang
- Department of Biomedical Sciences, Internal Medicine, and Genome Research Center for Diabetes and Endocrine Disease, Seoul National University College of Medicine, 28 Yongon-Dong, Seoul 110-799 Korea, Institute for Medical Sciences, Ajou University School of Medicine, Wonchon-dong san 5, Suwon, Kyunggi-do, 442-749 Korea, and Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Songdo-dong, Incheon 406-840, Korea
| | - Youngsoo Kim
- Department of Biomedical Sciences, Internal Medicine, and Genome Research Center for Diabetes and Endocrine Disease, Seoul National University College of Medicine, 28 Yongon-Dong, Seoul 110-799 Korea, Institute for Medical Sciences, Ajou University School of Medicine, Wonchon-dong san 5, Suwon, Kyunggi-do, 442-749 Korea, and Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Songdo-dong, Incheon 406-840, Korea
| |
Collapse
|
43
|
Paternal diet-induced obesity impairs embryo development and implantation in the mouse. Fertil Steril 2010; 95:1349-53. [PMID: 21047633 DOI: 10.1016/j.fertnstert.2010.09.038] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 09/16/2010] [Accepted: 09/17/2010] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To use a rodent model of male diet-induced obesity (DIO) to examine resultant preimplantation embryo development and implantation rate, as well as fetal and placental growth. DESIGN Experimental animal study. SETTING University research facilities. ANIMAL(S) C57BL/6 male and CBAxC57BL/6 female mice. INTERVENTION(S) Male mice were fed a standard rodent chow (lean) or a high-fat diet (obese) for up to 13 weeks. After mating, zygotes were collected and cultured to the blastocyst stage, then assessed or transferred into recipient females. MAIN OUTCOME MEASURE(S) Embryo morphology and cell number were assessed and pregnancy outcomes determined at postmortem day 18. RESULT(S) Embryos from obese males had reduced cleavage and decreased development to blastocyst stage during culture relative to control males. Blastocysts from obese males implanted at a reduced rate, and the proportion of fetuses that developed was significantly decreased, although fetal and placental weight did not differ between groups. CONCLUSION(S) This study demonstrates that paternal obesity impairs preimplantation embryo development and implantation but does not influence gross fetal or placental morphology. It highlights the important contribution that paternal health and lifestyle choices have for achieving a viable pregnancy.
Collapse
|
44
|
Cabler S, Agarwal A, Flint M, Du Plessis SS. Obesity: modern man's fertility nemesis. Asian J Androl 2010; 12:480-9. [PMID: 20531281 PMCID: PMC3739371 DOI: 10.1038/aja.2010.38] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 03/31/2010] [Accepted: 04/14/2010] [Indexed: 12/20/2022] Open
Abstract
The obesity pandemic has grown to concerning proportions in recent years, not only in the Western World, but in developing countries as well. The corresponding decrease in male fertility and fecundity may be explained in parallel to obesity, and obesity should be considered as an etiology of male fertility. Studies show that obesity contributes to infertility by reducing semen quality, changing sperm proteomes, contributing to erectile dysfunction, and inducing other physical problems related to obesity. Mechanisms for explaining the effect of obesity on male infertility include abnormal reproductive hormone levels, an increased release of adipose-derived hormones and adipokines associated with obesity, and other physical problems including sleep apnea and increased scrotal temperatures. Recently, genetic factors and markers for an obesity-related infertility have been discovered and may explain the difference between fertile obese and infertile obese men. Treatments are available for not only infertility related to obesity, but also as a treatment for the other comorbidities arising from obesity. Natural weight loss, as well as bariatric surgery are options for obese patients and have shown promising results in restoring fertility and normal hormonal profiles. Therapeutic interventions including aromatase inhibitors, exogenous testosterone replacement therapy and maintenance and regulation of adipose-derived hormones, particularly leptin, may also be able to restore fertility in obese males. Because of the relative unawareness and lack of research in this area, controlled studies should be undertaken and more focus should be given to obesity as an etiolgy of male infertility.
Collapse
Affiliation(s)
- Stephanie Cabler
- Center for Reproductive Medicine, The Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Ashok Agarwal
- Center for Reproductive Medicine, The Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Margot Flint
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, PO Box 19063, Tygerberg 7505, South Africa
| | - Stefan S. Du Plessis
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, PO Box 19063, Tygerberg 7505, South Africa
| |
Collapse
|