1
|
Ruggiero RN, Marques DB, Rossignoli MT, De Ross JB, Prizon T, Beraldo IJS, Bueno-Junior LS, Kandratavicius L, Peixoto-Santos JE, Lopes-Aguiar C, Leite JP. Dysfunctional hippocampal-prefrontal network underlies a multidimensional neuropsychiatric phenotype following early-life seizure. eLife 2024; 12:RP90997. [PMID: 38593008 PMCID: PMC11003745 DOI: 10.7554/elife.90997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
Brain disturbances during development can have a lasting impact on neural function and behavior. Seizures during this critical period are linked to significant long-term consequences such as neurodevelopmental disorders, cognitive impairments, and psychiatric symptoms, resulting in a complex spectrum of multimorbidity. The hippocampus-prefrontal cortex (HPC-PFC) circuit emerges as a potential common link between such disorders. However, the mechanisms underlying these outcomes and how they relate to specific behavioral alterations are unclear. We hypothesized that specific dysfunctions of hippocampal-cortical communication due to early-life seizure would be associated with distinct behavioral alterations observed in adulthood. Here, we performed a multilevel study to investigate behavioral, electrophysiological, histopathological, and neurochemical long-term consequences of early-life Status epilepticus in male rats. We show that adult animals submitted to early-life seizure (ELS) present working memory impairments and sensorimotor disturbances, such as hyperlocomotion, poor sensorimotor gating, and sensitivity to psychostimulants despite not exhibiting neuronal loss. Surprisingly, cognitive deficits were linked to an aberrant increase in the HPC-PFC long-term potentiation (LTP) in a U-shaped manner, while sensorimotor alterations were associated with heightened neuroinflammation, as verified by glial fibrillary acidic protein (GFAP) expression, and altered dopamine neurotransmission. Furthermore, ELS rats displayed impaired HPC-PFC theta-gamma coordination and an abnormal brain state during active behavior resembling rapid eye movement (REM) sleep oscillatory dynamics. Our results point to impaired HPC-PFC functional connectivity as a possible pathophysiological mechanism by which ELS can cause cognitive deficits and psychiatric-like manifestations even without neuronal loss, bearing translational implications for understanding the spectrum of multidimensional developmental disorders linked to early-life seizures.
Collapse
Affiliation(s)
- Rafael Naime Ruggiero
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão PretoBrazil
| | - Danilo Benette Marques
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão PretoBrazil
| | - Matheus Teixeira Rossignoli
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão PretoBrazil
| | - Jana Batista De Ross
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão PretoBrazil
| | - Tamiris Prizon
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão PretoBrazil
| | - Ikaro Jesus Silva Beraldo
- Department of Physiology and Biophysics Federal University of Minas GeraisBelo HorizonteBrazil
- Laboratory of Molecular and Behavioral Neuroscience (LANEC), Federal University of Minas GeraisBelo HorizonteBrazil
| | | | | | - Jose Eduardo Peixoto-Santos
- Neuroscience Discipline, Department of Neurology and Neurosurgery,Universidade Federal de São PauloSão PauloBrazil
| | - Cleiton Lopes-Aguiar
- Department of Physiology and Biophysics Federal University of Minas GeraisBelo HorizonteBrazil
- Laboratory of Molecular and Behavioral Neuroscience (LANEC), Federal University of Minas GeraisBelo HorizonteBrazil
| | - Joao Pereira Leite
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão PretoBrazil
| |
Collapse
|
2
|
Casillas-Espinosa PM, Lin R, Li R, Nandakumar NM, Dawson G, Braine EL, Martin B, Powell KL, O'Brien TJ. Effects of the T-type calcium channel Ca V3.2 R1584P mutation on absence seizure susceptibility in GAERS and NEC congenic rats models. Neurobiol Dis 2023:106217. [PMID: 37391087 DOI: 10.1016/j.nbd.2023.106217] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 06/13/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023] Open
Abstract
RATIONALE Low-voltage-activated or T-type Ca2+ channels play a key role in the generation of seizures in absence epilepsy. We have described a homozygous, gain of function substitution mutation (R1584P) in the CaV3.2 T-type Ca2+ channel gene (Cacna1h) in the Genetic Absence Epilepsy Rats from Strasbourg (GAERS). The non-epileptic control (NEC) rats, derived from the same original Wistar strains as GAERS but selectively in-breed not to express seizures, are null for the R1584P mutation. To study the effects of this mutation in rats who otherwise have a GAERS or NEC genetic background, we bred congenic GAERS-Cacna1hNEC (GAERS null for R1584P mutation) and congenic NEC-Cacna1hGAERS (NEC homozygous for R1584P mutation) and evaluated the seizure and behavioral phenotype of these strains in comparison to the original GAERS and NEC strains. METHODS To evaluate seizure expression in the congenic strains, EEG electrodes were implanted in NEC, GAERS, GAERS-Cacna1hNEC without the R1584P mutation, and NEC-Cacna1hGAERS with the R1584P mutation rats. In the first study, continuous EEG recordings were acquired from week 4 (when seizures begin to develop in GAERS) to week 14 of age (when GAERS display hundreds of seizures per day). In the second study, the seizure and behavioral phenotype of GAERS and NEC-Cacna1hGAERS strains were evaluated during young age (6 weeks of age) and adulthood (16 weeks of age) of GAERS, NEC, GAERS-Cacna1hNEC and NEC-Cacna1hGAERS. The Open field test (OFT) and sucrose preference test (SPT) were performed to evaluate anxiety-like and depressive-like behavior, respectively. This was followed by EEG recordings at 18 weeks of age to quantify the seizures, and spike-wave discharge (SWD) cycle frequency. At the end of the study, the whole thalamus was collected for T-type calcium channel mRNA expression analysis. RESULTS GAERS had a significantly shorter latency to first seizures and an increased number of seizures per day compared to GAERS-Cacna1hNEC. On the other hand, the presence of the R1584P mutation in the NEC-Cacna1hGAERS was not enough to generate spontaneous seizures in their seizure-resistant background. 6 and 16-week-old GAERS and GAERS-Cacna1hNEC rats showed anxiety-like behavior in the OFT, in contrast to NEC and NEC-Cacna1hGAERS. Results from the SPT showed that the GAERS developed depressive-like in the SPT compared to GAERS-Cacna1hNEC, NEC, and NEC-Cacna1hGAERS. Analysis of the EEG at 18 weeks of age showed that the GAERS had an increased number of seizures per day, increased total seizure duration and a higher cycle frequency of SWD relative to GAERS-Cacna1hNEC. However, the average seizure duration was not significantly different between strains. Quantitative real-time PCR showed that the T-type Ca2+ channel isoform CaV3.2 channel expression was significantly increased in GAERS compared to NEC, GAERS-Cacna1hNEC and NEC-Cacna1hGAERS. The presence of the R1584P mutation increased the total ratio of CaV3.2 + 25/-25 splice variants in GAERS and NEC-Cacna1hGAERS compared to NEC and GAERS-Cacna1hNEC. DISCUSSION The data from this study demonstrate that the R1584P mutation in isolation on a seizure-resistant NEC genetic background was insufficient to generate absence seizures, and that a GAERS genetic background can cause seizures even without the mutation. However, the study provides evidence that the R1584P mutation acts as a modulator of seizures development and expression, and depressive-like behavior in the SPT, but not the anxiety phenotype of the GAERS model of absence epilepsy.
Collapse
Affiliation(s)
- Pablo M Casillas-Espinosa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Victoria, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Royal Parade, Parkville, Victoria 3050, Australia; Department of Neurology, The Alfred Hospital, Commercial Road, Melbourne, Victoria, 3004, Victoria, Australia.
| | - Runxuan Lin
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Victoria, Australia
| | - Rui Li
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Victoria, Australia
| | - Nanditha M Nandakumar
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Victoria, Australia
| | - Georgia Dawson
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Victoria, Australia
| | - Emma L Braine
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Victoria, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Royal Parade, Parkville, Victoria 3050, Australia
| | - Benoît Martin
- Univ Rennes, INSERM, LTSI - UMR 1099, F-35000 Rennes, France
| | - Kim L Powell
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Victoria, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Victoria, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Royal Parade, Parkville, Victoria 3050, Australia; Department of Neurology, The Alfred Hospital, Commercial Road, Melbourne, Victoria, 3004, Victoria, Australia.
| |
Collapse
|
3
|
Casillas-Espinosa PM, Anderson A, Harutyunyan A, Li C, Lee J, Braine EL, Brady RD, Sun M, Huang C, Barlow CK, Shah AD, Schittenhelm RB, Mychasiuk R, Jones NC, Shultz SR, O'Brien TJ. Disease-modifying effects of sodium selenate in a model of drug-resistant, temporal lobe epilepsy. eLife 2023; 12:e78877. [PMID: 36892461 PMCID: PMC10208637 DOI: 10.7554/elife.78877] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 03/08/2023] [Indexed: 03/10/2023] Open
Abstract
There are no pharmacological disease-modifying treatments with an enduring effect to mitigate the seizures and comorbidities of established chronic temporal lobe epilepsy (TLE). This study aimed to evaluate for disease modifying effects of sodium selenate treatment in the chronically epileptic rat post-status epilepticus (SE) model of drug-resistant TLE. Wistar rats underwent kainic acid-induced SE or sham. Ten-weeks post-SE, animals received sodium selenate, levetiracetam, or vehicle subcutaneousinfusion continuously for 4 weeks. To evaluate the effects of the treatments, one week of continuous video-EEG was acquired before, during, and 4, 8 weeks post-treatment, followed by behavioral tests. Targeted and untargeted proteomics and metabolomics were performed on post-mortem brain tissue to identify potential pathways associated with modified disease outcomes. Telomere length was investigated as a novel surrogate marker of epilepsy disease severity in our current study. The results showed that sodium selenate treatment was associated with mitigation of measures of disease severity at 8 weeks post-treatment cessation; reducing the number of spontaneous seizures (p< 0.05), cognitive dysfunction (p< 0.05), and sensorimotor deficits (p< 0.01). Moreover, selenate treatment was associated with increased protein phosphatase 2A (PP2A) expression, reduced hyperphosphorylated tau, and reversed telomere length shortening (p< 0.05). Network medicine integration of multi-omics/pre-clinical outcomes identified protein-metabolite modules positively correlated with TLE. Our results provide evidence that treatment with sodium selenate results in a sustained disease-modifying effect in chronically epileptic rats in the post-KA SE model of TLE, including improved comorbid learning and memory deficits.
Collapse
Affiliation(s)
- Pablo M Casillas-Espinosa
- Department of Medicine, The Royal Melbourne Hospital, The University of MelbourneMelbourneAustralia
- Department of Neuroscience, Central Clinical School, Monash UniversityMelbourneAustralia
- Monash Proteomics & Metabolomics Facility and Monash Biomedicine Discovery Institute, Monash UniversityClayton, VictoriaAustralia
| | - Alison Anderson
- Department of Medicine, The Royal Melbourne Hospital, The University of MelbourneMelbourneAustralia
- Department of Neuroscience, Central Clinical School, Monash UniversityMelbourneAustralia
| | - Anna Harutyunyan
- Department of Medicine, The Royal Melbourne Hospital, The University of MelbourneMelbourneAustralia
- Department of Neuroscience, Central Clinical School, Monash UniversityMelbourneAustralia
| | - Crystal Li
- Department of Neuroscience, Central Clinical School, Monash UniversityMelbourneAustralia
| | - Jiyoon Lee
- Department of Medicine, The Royal Melbourne Hospital, The University of MelbourneMelbourneAustralia
| | - Emma L Braine
- Department of Medicine, The Royal Melbourne Hospital, The University of MelbourneMelbourneAustralia
- Department of Neuroscience, Central Clinical School, Monash UniversityMelbourneAustralia
| | - Rhys D Brady
- Department of Medicine, The Royal Melbourne Hospital, The University of MelbourneMelbourneAustralia
- Department of Neuroscience, Central Clinical School, Monash UniversityMelbourneAustralia
| | - Mujun Sun
- Department of Neuroscience, Central Clinical School, Monash UniversityMelbourneAustralia
| | - Cheng Huang
- Department of Neurology, The Alfred Hospital, Commercial Road,Melbourne, VictoriaAustralia
| | - Christopher K Barlow
- Department of Neurology, The Alfred Hospital, Commercial Road,Melbourne, VictoriaAustralia
| | - Anup D Shah
- Department of Neurology, The Alfred Hospital, Commercial Road,Melbourne, VictoriaAustralia
| | - Ralf B Schittenhelm
- Department of Neurology, The Alfred Hospital, Commercial Road,Melbourne, VictoriaAustralia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash UniversityMelbourneAustralia
| | - Nigel C Jones
- Department of Medicine, The Royal Melbourne Hospital, The University of MelbourneMelbourneAustralia
- Department of Neuroscience, Central Clinical School, Monash UniversityMelbourneAustralia
| | - Sandy R Shultz
- Department of Medicine, The Royal Melbourne Hospital, The University of MelbourneMelbourneAustralia
- Department of Neuroscience, Central Clinical School, Monash UniversityMelbourneAustralia
| | - Terence J O'Brien
- Department of Medicine, The Royal Melbourne Hospital, The University of MelbourneMelbourneAustralia
- Department of Neuroscience, Central Clinical School, Monash UniversityMelbourneAustralia
- Monash Proteomics & Metabolomics Facility and Monash Biomedicine Discovery Institute, Monash UniversityClayton, VictoriaAustralia
| |
Collapse
|
4
|
Chauvière L. Early cognitive comorbidities before disease onset: A common symptom towards prevention of related brain diseases? Heliyon 2022; 8:e12259. [PMID: 36590531 PMCID: PMC9800323 DOI: 10.1016/j.heliyon.2022.e12259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
Brain diseases are very heterogeneous; however they also display multiple common risk factors and comorbidities. With a paucity of disease-modifying therapies, prevention became a health priority. Towards prevention, one strategy is to focus on similar symptoms of brain diseases occurring before disease onset. Cognitive deficits are a promising candidate as they occur across brain diseases before disease onset. Based on recent research, this review highlights the similarity of brain diseases and discusses how early cognitive deficits can be exploited to tackle disease prevention. After briefly introducing common risk factors, I review common comorbidities across brain diseases, with a focus on cognitive deficits before disease onset, reporting both experimental and clinical findings. Next, I describe network abnormalities associated with early cognitive deficits and discuss how these abnormalities can be targeted to prevent disease onset. A scenario on brain disease etiology with the idea that early cognitive deficits may constitute a common symptom of brain diseases is proposed.
Collapse
|
5
|
Cutia CA, Leverton LK, Ge X, Youssef R, Raetzman LT, Christian-Hinman CA. Phenotypic differences based on lateralization of intrahippocampal kainic acid injection in female mice. Exp Neurol 2022; 355:114118. [PMID: 35597270 PMCID: PMC10462257 DOI: 10.1016/j.expneurol.2022.114118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/17/2022] [Accepted: 05/13/2022] [Indexed: 11/23/2022]
Abstract
Clinical evidence indicates that patients with temporal lobe epilepsy (TLE) often show differential outcomes of comorbid conditions in relation to the lateralization of the seizure focus. A particularly strong relationship exists between the side of seizure focus and the propensity for distinct reproductive endocrine comorbidities in women with TLE. Therefore, here we evaluated whether targeting of left or right dorsal hippocampus for intrahippocampal kainic acid (IHKA) injection, a model of TLE, produces different outcomes in hippocampal granule cell dispersion, body weight gain, and multiple measures of reproductive endocrine dysfunction in female mice. One, two, and four months after IHKA or saline injection, in vivo measurements of estrous cycles and weight were followed by ex vivo examination of hippocampal dentate granule cell dispersion, circulating ovarian hormone and corticosterone levels, ovarian morphology, and pituitary gene expression. IHKA mice with right-targeted injection (IHKA-R) showed greater granule cell dispersion and pituitary Fshb expression compared to mice with left-targeted injection (IHKA-L). By contrast, pituitary expression of Lhb and Gnrhr were higher in IHKA-L mice compared to IHKA-R, but these values were not different from respective saline-injected controls. IHKA-L mice also showed an increased rate of weight gain compared to IHKA-R mice. Increases in estrous cycle length, however, were similar in both IHKA-L and IHKA-R mice. These findings indicate that although major reproductive endocrine dysfunction phenotypes present similarly after targeting left or right dorsal hippocampus for IHKA injection, distinct underlying mechanisms based on lateralization of epileptogenic insult may contribute to produce similar emergent reproductive endocrine outcomes.
Collapse
Affiliation(s)
- Cathryn A Cutia
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Leanna K Leverton
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Xiyu Ge
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Rana Youssef
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Lori T Raetzman
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Catherine A Christian-Hinman
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
6
|
Ruggiero RN, Peixoto-Santos JE, Bueno-Junior LS, Valente KD, Leite JP. Editorial: Psychiatric Comorbidities in the Epilepsies: Extensive Mechanisms and Broad Questions. Front Integr Neurosci 2022; 16:951170. [PMID: 35784497 PMCID: PMC9249385 DOI: 10.3389/fnint.2022.951170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 05/31/2022] [Indexed: 11/20/2022] Open
Affiliation(s)
- Rafael Naime Ruggiero
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of São Paulo (USP), Ribeirao Preto, Brazil
- *Correspondence: Rafael Naime Ruggiero
| | - Jose Eduardo Peixoto-Santos
- Neuroscience Sector, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Kette D. Valente
- Institute and Department of Psychiatry, Faculty of Medicine of the University of São Paulo (HCFMUSP), São Paulo, Brazil
| | - Joao Pereira Leite
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of São Paulo (USP), Ribeirao Preto, Brazil
| |
Collapse
|
7
|
Huang C, Zhou Y, Zhong Y, Wang X, Zhang Y. The Bilateral Precuneus as a Potential Neuroimaging Biomarker for Right Temporal Lobe Epilepsy: A Support Vector Machine Analysis. Front Psychiatry 2022; 13:923583. [PMID: 35782449 PMCID: PMC9240203 DOI: 10.3389/fpsyt.2022.923583] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background and Objective While evidence has demonstrated that the default-mode network (DMN) plays a key role in the broad-scale cognitive problems that occur in right temporal lobe epilepsy (rTLE), little is known about alterations in the network homogeneity (NH) of the DMN in TLE. In this study, we used the NH method to investigate the NH of the DMN in TLE at rest, and an support vector machine (SVM) method for the diagnosis of rTLE. Methods A total of 43 rTLE cases and 42 healthy controls (HCs) underwent resting-state functional magnetic resonance imaging (rs-fMRI). Imaging data were analyzed with the NH and SVM methods. Results rTLE patients have a decreased NH in the right inferior temporal gyrus (ITG) and left middle temporal gyrus (MTG), but increased NH in the bilateral precuneus (PCu) and right inferior parietal lobe (IPL), compared with HCs. We found that rTLE had a longer performance reaction time (RT). No significant correlation was found between abnormal NH values and clinical variables of the patients. The SVM results showed that increased NH in the bilateral PCu as a diagnostic biomarker distinguished rTLE from HCs with an accuracy of 74.12% (63/85), a sensitivity 72.01% (31/43), and a specificity 72.81% (31/42). Conclusion These findings suggest that abnormal NH of the DMN exists in rTLE, and highlights the significance of the DMN in the pathophysiology of cognitive problems occurring in rTLE, and the bilateral PCu as a neuroimaging diagnostic biomarker for rTLE.
Collapse
Affiliation(s)
- Chunyan Huang
- Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Yang Zhou
- Wuhan Mental Health Center, Wuhan, China
- Wuhan Hospital for Psychotherapy, Wuhan, China
| | - Yi Zhong
- NHC Key Laboratory of Mental Health (Peking University), Peking University Institute of Mental Health, Peking University Sixth Hospital, Beijing, China
| | - Xi Wang
- Department of Sleep and Psychosomatic Medicine Center, Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, Shiyan, China
| | - Yunhua Zhang
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Clinical Medical College of Hubei University of Chinese Medicine, Wuhan, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| |
Collapse
|
8
|
Godoy LD, Prizon T, Rossignoli MT, Leite JP, Liberato JL. Parvalbumin Role in Epilepsy and Psychiatric Comorbidities: From Mechanism to Intervention. Front Integr Neurosci 2022; 16:765324. [PMID: 35250498 PMCID: PMC8891758 DOI: 10.3389/fnint.2022.765324] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/24/2022] [Indexed: 12/22/2022] Open
Abstract
Parvalbumin is a calcium-binding protein present in inhibitory interneurons that play an essential role in regulating many physiological processes, such as intracellular signaling and synaptic transmission. Changes in parvalbumin expression are deeply related to epilepsy, which is considered one of the most disabling neuropathologies. Epilepsy is a complex multi-factor group of disorders characterized by periods of hypersynchronous activity and hyperexcitability within brain networks. In this scenario, inhibitory neurotransmission dysfunction in modulating excitatory transmission related to the loss of subsets of parvalbumin-expressing inhibitory interneuron may have a prominent role in disrupted excitability. Some studies also reported that parvalbumin-positive interneurons altered function might contribute to psychiatric comorbidities associated with epilepsy, such as depression, anxiety, and psychosis. Understanding the epileptogenic process and comorbidities associated with epilepsy have significantly advanced through preclinical and clinical investigation. In this review, evidence from parvalbumin altered function in epilepsy and associated psychiatric comorbidities were explored with a translational perspective. Some advances in potential therapeutic interventions are highlighted, from current antiepileptic and neuroprotective drugs to cutting edge modulation of parvalbumin subpopulations using optogenetics, designer receptors exclusively activated by designer drugs (DREADD) techniques, transcranial magnetic stimulation, genome engineering, and cell grafting. Creating new perspectives on mechanisms and therapeutic strategies is valuable for understanding the pathophysiology of epilepsy and its psychiatric comorbidities and improving efficiency in clinical intervention.
Collapse
Affiliation(s)
- Lívea Dornela Godoy
- Department of Psychology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Tamiris Prizon
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Matheus Teixeira Rossignoli
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - João Pereira Leite
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- João Pereira Leite,
| | - José Luiz Liberato
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- *Correspondence: José Luiz Liberato,
| |
Collapse
|
9
|
An inventory of basic research in temporal lobe epilepsy. Rev Neurol (Paris) 2021; 177:1069-1081. [PMID: 34176659 DOI: 10.1016/j.neurol.2021.02.390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/26/2021] [Accepted: 02/05/2021] [Indexed: 12/25/2022]
Abstract
Temporal lobe epilepsy is a severe neurological disease, characterized by seizure occurrence and invalidating cognitive co-morbidities, which affects up to 1% of the adults. Roughly one third of the patients are resistant to any conventional pharmacological treatments. The last option in that case is the surgical removal of the epileptic focus, with no guarantee for clinical symptom alleviation. This state of affairs requests the identification of cellular or molecular targets for novel therapeutic approaches with limited side effects. Here we review some generalities about the disease as well as some of the most recent discoveries about the cellular and molecular mechanisms of TLE, and the latest perspectives for novel treatments.
Collapse
|
10
|
Kohek SRB, Foresti ML, Blanco MM, Cavarsan CF, da Silva CS, Mello LE. Anxious Profile Influences Behavioral and Immunohistological Findings in the Pilocarpine Model of Epilepsy. Front Pharmacol 2021; 12:640715. [PMID: 34025410 PMCID: PMC8132119 DOI: 10.3389/fphar.2021.640715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/22/2021] [Indexed: 12/01/2022] Open
Abstract
Anxiety and epilepsy have a complex bidirectional relationship, where a depressive/anxious condition is a factor that can trigger seizures which in turn can aggravate the depressive/anxious condition. In addition, brain structures such as the hippocampus and amygdala might have a critical relevance in both epilepsy and anxiety. The aim of the present work was to investigate the influence of different anxious profiles to epileptogenesis. Initially, animals were screened through the elevated plus-maze anxiety test, and then seizure development was evaluated using the pilocarpine model of epilepsy. There were no differences in the susceptibility to status epilepticus, mortality rate or frequency of spontaneous recurrent seizures between animals characterized as anxious as compared to the non-anxious animals. Next, we evaluated immunohistological patterns related to seizures and anxiety in various related brain areas. Despite a decrease in the density of neuropeptide Y and parvalbumin expression in epileptic animals, those presenting greater neuropeptide Y immunoreactivity in various brain regions, also showed higher spontaneous recurrent seizures frequency. Differences on the anxious profile showed to interfere with some of these findings in some regions. In addition, animals that were injected with pilocarpine, but did not develop status epilepticus, had behavioral and neuroanatomical alterations as compared to control animals, indicating its importance as an additional tool for investigating the heterogeneity of the epileptogenic response after an initial insult. This study allowed to better understand the association between anxiety and temporal lobe epilepsy and might allow for therapeutic targets to be developed to minimize the negative impacts associated with it.
Collapse
Affiliation(s)
| | | | | | - Clarissa Fantin Cavarsan
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, United States.,George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, United States
| | | | - Luiz E Mello
- Physiology Department, Universidade Federal de São Paulo, São Paulo, Brazil.,Instituto D' Or de Pesquisa e Ensino, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Dolleman-van der Weel MJ, Witter MP. The thalamic midline nucleus reuniens: potential relevance for schizophrenia and epilepsy. Neurosci Biobehav Rev 2020; 119:422-439. [PMID: 33031816 DOI: 10.1016/j.neubiorev.2020.09.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 09/03/2020] [Accepted: 09/28/2020] [Indexed: 01/08/2023]
Abstract
Anatomical, electrophysiological and behavioral studies in rodents have shown that the thalamic midline nucleus reuniens (RE) is a crucial link in the communication between hippocampal formation (HIP, i.e., CA1, subiculum) and medial prefrontal cortex (mPFC), important structures for cognitive and executive functions. A common feature in neurodevelopmental and neurodegenerative brain diseases is a dysfunctional connectivity/communication between HIP and mPFC, and disturbances in the cognitive domain. Therefore, it is assumed that aberrant functioning of RE may contribute to behavioral/cognitive impairments in brain diseases characterized by cortico-thalamo-hippocampal circuit dysfunctions. In the human brain the connections of RE are largely unknown. Yet, recent studies have found important similarities in the functional connectivity of HIP-mPFC-RE in humans and rodents, making cautious extrapolating experimental findings from animal models to humans justifiable. The focus of this review is on a potential involvement of RE in schizophrenia and epilepsy.
Collapse
Affiliation(s)
- M J Dolleman-van der Weel
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, NTNU Norwegian University of Science and Technology, Trondheim NO-7491, Norway.
| | - M P Witter
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, NTNU Norwegian University of Science and Technology, Trondheim NO-7491, Norway.
| |
Collapse
|
12
|
Casillas‐Espinosa PM, Ali I, O'Brien TJ. Neurodegenerative pathways as targets for acquired epilepsy therapy development. Epilepsia Open 2020; 5:138-154. [PMID: 32524040 PMCID: PMC7278567 DOI: 10.1002/epi4.12386] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/13/2020] [Accepted: 02/24/2020] [Indexed: 12/16/2022] Open
Abstract
There is a growing body of clinical and experimental evidence that neurodegenerative diseases and epileptogenesis after an acquired brain insult may share common etiological mechanisms. Acquired epilepsy commonly develops as a comorbid condition in patients with neurodegenerative diseases such as Alzheimer's disease, although it is likely much under diagnosed in practice. Progressive neurodegeneration has also been described after traumatic brain injury, stroke, and other forms of brain insults. Moreover, recent evidence has shown that acquired epilepsy is often a progressive disorder that is associated with the development of drug resistance, cognitive decline, and worsening of other neuropsychiatric comorbidities. Therefore, new pharmacological therapies that target neurobiological pathways that underpin neurodegenerative diseases have potential to have both an anti-epileptogenic and disease-modifying effect on the seizures in patients with acquired epilepsy, and also mitigate the progressive neurocognitive and neuropsychiatric comorbidities. Here, we review the neurodegenerative pathways that are plausible targets for the development of novel therapies that could prevent the development or modify the progression of acquired epilepsy, and the supporting published experimental and clinical evidence.
Collapse
Affiliation(s)
- Pablo M. Casillas‐Espinosa
- Departments of Neuroscience and MedicineCentral Clinical SchoolMonash UniversityMelbourneVic.Australia
- Department of MedicineThe Royal Melbourne HospitalThe University of MelbourneMelbourneVic.Australia
| | - Idrish Ali
- Departments of Neuroscience and MedicineCentral Clinical SchoolMonash UniversityMelbourneVic.Australia
- Department of MedicineThe Royal Melbourne HospitalThe University of MelbourneMelbourneVic.Australia
| | - Terence J. O'Brien
- Departments of Neuroscience and MedicineCentral Clinical SchoolMonash UniversityMelbourneVic.Australia
- Department of MedicineThe Royal Melbourne HospitalThe University of MelbourneMelbourneVic.Australia
- Department of NeurologyThe Alfred HospitalMelbourneVic.Australia
- Department of NeurologyThe Royal Melbourne HospitalParkvilleVic.Australia
| |
Collapse
|
13
|
Kapolowicz MR, Thompson LT. Plasticity in Limbic Regions at Early Time Points in Experimental Models of Tinnitus. Front Syst Neurosci 2020; 13:88. [PMID: 32038184 PMCID: PMC6992603 DOI: 10.3389/fnsys.2019.00088] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/23/2019] [Indexed: 01/09/2023] Open
Abstract
Tinnitus is one of the most prevalent auditory disorders worldwide, manifesting in both chronic and acute forms. The pathology of tinnitus has been mechanistically linked to induction of harmful neural plasticity stemming from traumatic noise exposure, exposure to ototoxic medications, input deprivation from age-related hearing loss, and in response to injuries or disorders damaging the conductive apparatus of the ears, the cochlear hair cells, the ganglionic cells of the VIIIth cranial nerve, or neurons of the classical auditory pathway which link the cochlear nuclei through the inferior colliculi and medial geniculate nuclei to auditory cortices. Research attempting to more specifically characterize the neural plasticity occurring in tinnitus have used a wide range of techniques, experimental paradigms, and sampled at different windows of time to reach different conclusions about why and which specific brain regions are crucial in the induction or ongoing maintenance of tinnitus-related plasticity. Despite differences in experimental methodologies, evidence reveals similar findings that strongly suggest that immediate and prolonged activation of non-classical auditory structures (i.e., amygdala, hippocampus, and cingulate cortex) may contribute to the initiation and development of tinnitus in addition to the ongoing maintenance of this devastating condition. The overarching focus of this review, therefore, is to highlight findings from the field supporting the hypothesis that abnormal early activation of non-classical sensory limbic regions are involved in tinnitus induction, with activation of these regions continuing to occur at different temporal stages. Since initial/early stages of tinnitus are difficult to control and to quantify in human clinical populations, a number of different animal paradigms have been developed and assessed in experimental investigations. Reviews of traumatic noise exposure and ototoxic doses of sodium salicylate, the most prevalently used animal models to induce experimental tinnitus, indicate early limbic system plasticity (within hours, minutes, or days after initial insult), supports subsequent plasticity in other auditory regions, and contributes to the pathophysiology of tinnitus. Understanding this early plasticity presents additional opportunities for intervention to reduce or eliminate tinnitus from the human condition.
Collapse
Affiliation(s)
- Michelle R. Kapolowicz
- Center for Hearing Research, University of California, Irvine, Irvine, CA, United States
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Lucien T. Thompson
- Department of Neurobiology, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
| |
Collapse
|
14
|
Gil F, Padilla N, Soria-Pastor S, Setoain X, Boget T, Rumiá J, Roldán P, Reyes D, Bargalló N, Conde E, Pintor L, Vernet O, Manzanares I, Ådén U, Carreño M, Donaire A. Beyond the Epileptic Focus: Functional Epileptic Networks in Focal Epilepsy. Cereb Cortex 2019; 30:2338-2357. [DOI: 10.1093/cercor/bhz243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Abstract
Focal epilepsy can be conceptualized as a network disorder, and the functional epileptic network can be described as a complex system of multiple brain areas that interact dynamically to generate epileptic activity. However, we still do not fully understand the functional architecture of epileptic networks. We studied a cohort of 21 patients with extratemporal focal epilepsy. We used independent component analysis of functional magnetic resonance imaging (fMRI) data. In order to identify the epilepsy-related components, we examined the general linear model-derived electroencephalography-fMRI (EEG–fMRI) time courses associated with interictal epileptic activity as intrinsic hemodynamic epileptic biomarkers. Independent component analysis revealed components related to the epileptic time courses in all 21 patients. Each epilepsy-related component described a network of spatially distributed brain areas that corresponded to the specific epileptic network in each patient. We also provided evidence for the interaction between the epileptic activity generated at the epileptic network and the physiological resting state networks. Our findings suggest that independent component analysis, guided by EEG–fMRI epileptic time courses, have the potential to define the functional architecture of the epileptic network in a noninvasive way. These data could be useful in planning invasive EEG electrode placement, guiding surgical resections, and more effective therapeutic interventions.
Collapse
Affiliation(s)
- Francisco Gil
- Epilepsy Program, Department of Neurology, Hospital Clínic, Neuroscience Institute, CP 08036, Barcelona, Spain
| | - Nelly Padilla
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Sara Soria-Pastor
- Department of Psychiatry, Consorci Sanitari del Maresme, Hospital of Mataro, CP 08304, Mataro, Spain
| | - Xavier Setoain
- Epilepsy Program, Department of Nuclear Medicine, Hospital Clínic, CDIC, CP 08036, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Clinical and Experimental Neuroscience, Clinical Neurophysiology, CP 08036, Barcelona, Spain
- Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), University of Barcelona, CP 08036, Barcelona, Spain
| | - Teresa Boget
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Clinical and Experimental Neuroscience, Clinical Neurophysiology, CP 08036, Barcelona, Spain
- Epilepsy Program, Department of Neuropsychology, Hospital Clínic, Neuroscience Institute, CP 08036, Barcelona, Spain
| | - Jordi Rumiá
- Epilepsy Program, Department of Neurosurgery, Hospital Clínic, Neuroscience Institute, CP 08036, Barcelona, Spain
| | - Pedro Roldán
- Epilepsy Program, Department of Neurosurgery, Hospital Clínic, Neuroscience Institute, CP 08036, Barcelona, Spain
| | - David Reyes
- Epilepsy Program, Department of Neurology, Hospital Clínic, Neuroscience Institute, CP 08036, Barcelona, Spain
| | - Núria Bargalló
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Clinical and Experimental Neuroscience, Clinical Neurophysiology, CP 08036, Barcelona, Spain
- Epilepsy Program, Department of Radiology, Hospital Clínic, CDIC, CP 08036, Barcelona, Spain
| | - Estefanía Conde
- Epilepsy Program, Department of Neurology, Hospital Clínic, Neuroscience Institute, CP 08036, Barcelona, Spain
| | - Luis Pintor
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Clinical and Experimental Neuroscience, Clinical Neurophysiology, CP 08036, Barcelona, Spain
- Epilepsy Program, Department of Psychiatry, Hospital Clínic, CDIC, CP 08036, Barcelona, Spain
| | - Oriol Vernet
- Epilepsy Program, Department of Neurology, Hospital Clínic, Neuroscience Institute, CP 08036, Barcelona, Spain
| | - Isabel Manzanares
- Epilepsy Program, Department of Neurology, Hospital Clínic, Neuroscience Institute, CP 08036, Barcelona, Spain
| | - Ulrika Ådén
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Mar Carreño
- Epilepsy Program, Department of Neurology, Hospital Clínic, Neuroscience Institute, CP 08036, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Clinical and Experimental Neuroscience, Clinical Neurophysiology, CP 08036, Barcelona, Spain
| | - Antonio Donaire
- Epilepsy Program, Department of Neurology, Hospital Clínic, Neuroscience Institute, CP 08036, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Clinical and Experimental Neuroscience, Clinical Neurophysiology, CP 08036, Barcelona, Spain
- Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), University of Barcelona, CP 08036, Barcelona, Spain
| |
Collapse
|
15
|
Casillas-Espinosa PM, Shultz SR, Braine EL, Jones NC, Snutch TP, Powell KL, O’Brien TJ. Disease-modifying effects of a novel T-type calcium channel antagonist, Z944, in a model of temporal lobe epilepsy. Prog Neurobiol 2019; 182:101677. [DOI: 10.1016/j.pneurobio.2019.101677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 07/17/2019] [Accepted: 07/31/2019] [Indexed: 02/08/2023]
|
16
|
Calle‐López Y, Ladino LD, Benjumea‐Cuartas V, Castrillón‐Velilla DM, Téllez‐Zenteno JF, Wolf P. Forced normalization: A systematic review. Epilepsia 2019; 60:1610-1618. [DOI: 10.1111/epi.16276] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 06/07/2019] [Accepted: 06/09/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Yamile Calle‐López
- Epilepsy Program Pablo Tobón Uribe Hospital NeuroclinicaUniversity of Antioquia Medellín Colombia
| | - Lady Diana Ladino
- Epilepsy Program Pablo Tobón Uribe Hospital NeuroclinicaUniversity of Antioquia Medellín Colombia
| | | | | | | | - Peter Wolf
- Danish Epilepsy Centre Dianalund Denmark
- Postgraduate Program in Medical Sciences Santa Catarina Federal University Florianópolis Brazil
| |
Collapse
|
17
|
Ferreri F, Bourla A, Capron J, Quillerou B, Rossignol J, Borden A, Guechot J, Lamaziere A, Nuss P, Mekinian A, Mouchabac S. [Organic and psychiatric intricacy: The complex psychiatric disorder concept, paraclinical investigations]. Presse Med 2019; 48:609-624. [PMID: 31151849 DOI: 10.1016/j.lpm.2019.04.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/12/2018] [Accepted: 04/04/2019] [Indexed: 11/16/2022] Open
Abstract
The purpose of this article is to describe complex psychiatric disorders, to recall "minimal classical" explorations in psychiatry, to describe the concept of "complex psychiatric disorders" and to propose a systematized method of exploration. Some organic diseases are well known for their links with psychiatric disorders (manic syndrome and hyperthyroidism, depressive syndrome and corticotropic insufficiency, anxiety disorder and heart disease, etc.). Many other neurological, autoimmune, metabolic, paraneoplastic or endocrine pathologies can have essentially psycho-behavioral manifestations before being neurological or systemic. A large number of factors (nutritional, toxic, immunological, etc.), often ignored, influence the links between organicity and psychiatric pathologies. It is necessary to optimize the medical management of these patients in whom the psychiatric diagnosis masks a curable organo-psychiatric cause.
Collapse
Affiliation(s)
- Florian Ferreri
- Sorbonne université, Paris Univ-06, Paris, service de psychiatrie et de psychologie médicale, hôpital Saint-Antoine, 75012, Paris, France
| | - Alexis Bourla
- Sorbonne université, Paris Univ-06, Paris, service de psychiatrie et de psychologie médicale, hôpital Saint-Antoine, 75012, Paris, France.
| | - Jean Capron
- Sorbonne université, Paris Univ-06, Paris, hôpital Saint-Antoine, service de neurologie, 75012, Paris, France
| | - Bluenn Quillerou
- Sorbonne université, Paris Univ-06, Paris, service de psychiatrie et de psychologie médicale, hôpital Saint-Antoine, 75012, Paris, France
| | - Julien Rossignol
- Université Paris 5, hôpital Necker Enfant Malades, service hématologie, 75015 Paris, France
| | - Alaina Borden
- Sorbonne université, Paris Univ-06, Paris, hôpital Saint-Antoine, service de neurologie, 75012, Paris, France
| | - Jérome Guechot
- Sorbonne université, Paris Univ-06, Paris, laboratoire d'hormonologie et immunoanalyse, HUEP, site Saint-Antoine, 75012, Paris, France
| | - Antonin Lamaziere
- Sorbonne université, Paris Univ-06, Paris, laboratoire d'hormonologie et immunoanalyse, HUEP, site Saint-Antoine, 75012, Paris, France; CHU Saint-Antoine, Inserm ERL 1157, 75012 Paris, France; Sorbonne universités-UPMC université Paris 06, UMR 7203, laboratoire des biomolécules, 75005 Paris, France
| | - Philippe Nuss
- Sorbonne université, Paris Univ-06, Paris, service de psychiatrie et de psychologie médicale, hôpital Saint-Antoine, 75012, Paris, France; CHU Saint-Antoine, Inserm ERL 1157, 75012 Paris, France; Sorbonne universités-UPMC université Paris 06, UMR 7203, laboratoire des biomolécules, 75005 Paris, France
| | - Arsène Mekinian
- Sorbonne université, Paris Univ-06, Paris, hôpital Saint-Antoine, service de médecine interne, 75012, Paris, France
| | - Stéphane Mouchabac
- Sorbonne université, Paris Univ-06, Paris, service de psychiatrie et de psychologie médicale, hôpital Saint-Antoine, 75012, Paris, France
| |
Collapse
|
18
|
Zubareva OE, Kovalenko AA, Karyakin VB, Kalemenev SV, Lavrent’eva VV, Magazanik LG, Zaitsev AV. Changes in the Expression of Genes of the Glutamate Transporter and Subunits of the NMDA and AMPA Receptors in the Rat Amygdala in the Lithium–Pilocarpine Model of Epilepsy. NEUROCHEM J+ 2018. [DOI: 10.1134/s1819712418030170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Bueno-Junior LS, Leite JP. Input Convergence, Synaptic Plasticity and Functional Coupling Across Hippocampal-Prefrontal-Thalamic Circuits. Front Neural Circuits 2018; 12:40. [PMID: 29875637 PMCID: PMC5975431 DOI: 10.3389/fncir.2018.00040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/26/2018] [Indexed: 01/19/2023] Open
Abstract
Executive functions and working memory are long known to involve the prefrontal cortex (PFC), and two PFC-projecting areas: midline/paramidline thalamus (MLT) and cornus ammonis 1 (CA1)/subiculum of the hippocampal formation (HF). An increasing number of rodent electrophysiology studies are examining these substrates together, thus providing circuit-level perspectives on input convergence, synaptic plasticity and functional coupling, as well as insights into cognition mechanisms and brain disorders. Our review article puts this literature into a method-oriented narrative. As revisited throughout the text, limbic thalamic and hippocampal afferents to the PFC gate one another’s inputs, which in turn are modulated by PFC interneurons and ascending monoaminergic projections. In addition, long-term synaptic plasticity, paired-pulse facilitation (PPF), and event-related potentials (ERP) dynamically vary across PFC-related circuits during learning paradigms and drug effects. Finally, thalamic-prefrontal loops, which have been shown to amplify both cognitive processes and limbic seizures, are also being implicated as relays in the prefrontal-hippocampal feedback, contributing to spatial navigation and decision making. Based on these issues, we conclude the review with a critical synthesis and some research directions.
Collapse
Affiliation(s)
- Lezio S Bueno-Junior
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Joao P Leite
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
20
|
Interaction between hippocampal-prefrontal plasticity and thalamic-prefrontal activity. Sci Rep 2018; 8:1382. [PMID: 29358657 PMCID: PMC5778003 DOI: 10.1038/s41598-018-19540-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 01/04/2018] [Indexed: 11/08/2022] Open
Abstract
The prefrontal cortex integrates a variety of cognition-related inputs, either unidirectional, e.g., from the hippocampal formation, or bidirectional, e.g., with the limbic thalamus. While the former is usually implicated in synaptic plasticity, the latter is better known for regulating ongoing activity. Interactions between these processes via prefrontal neurons are possibly important for linking mnemonic and executive functions. Our work further elucidates such dynamics using in vivo electrophysiology in rats. First, we report that electrical pulses into CA1/subiculum trigger late-onset (>400 ms) firing responses in the medial prefrontal cortex, which are increased after induction of long-term potentiation. Then, we show these responses to be attenuated by optogenetic control of the paraventricular/mediodorsal thalamic area. This suggests that recruitment and plasticity of the hippocampal-prefrontal pathway is partially related to the thalamic-prefrontal loop. When dysfunctional, this interaction may contribute to cognitive deficits, psychotic symptoms, and seizure generalization, which should motivate future studies combining behavioural paradigms and long-range circuit assessment.
Collapse
|
21
|
Hippocampal Pathophysiology: Commonality Shared by Temporal Lobe Epilepsy and Psychiatric Disorders. NEUROSCIENCE JOURNAL 2018; 2018:4852359. [PMID: 29610762 PMCID: PMC5828345 DOI: 10.1155/2018/4852359] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/02/2017] [Accepted: 12/20/2017] [Indexed: 11/18/2022]
Abstract
Accumulating evidence points to the association of epilepsy, particularly, temporal lobe epilepsy (TLE), with psychiatric disorders, such as schizophrenia. Among these illnesses, the hippocampus is considered the regional focal point of the brain, playing an important role in cognition, psychosis, and seizure activity and potentially suggesting common etiologies and pathophysiology of TLE and schizophrenia. In the present review, we overview abnormal network connectivity between the dentate gyrus (DG) and the Cornus Ammonis area 3 (CA3) subregions of the hippocampus relative to the induction of epilepsy and schizophrenia. In light of our recent finding on the misguidance of hippocampal mossy fiber projection in the rodent model of schizophrenia, we discuss whether ectopic mossy fiber projection is a commonality in order to evoke TLE as well as symptoms related to schizophrenia.
Collapse
|
22
|
Zhao X, Yang R, Wang K, Zhang Z, Wang J, Tan X, Zhang J, Mei Y, Chan Q, Xu J, Feng Q, Xu Y. Connectivity-based parcellation of the nucleus accumbens into core and shell portions for stereotactic target localization and alterations in each NAc subdivision in mTLE patients. Hum Brain Mapp 2017; 39:1232-1245. [PMID: 29266652 DOI: 10.1002/hbm.23912] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/18/2017] [Accepted: 11/30/2017] [Indexed: 01/01/2023] Open
Abstract
The nucleus accumbens (NAc), an important target of deep brain stimulation for some neuropsychiatric disorders, is thought to be involved in epileptogenesis, especially the shell portion. However, little is known about the exact parcellation within the NAc, and its structural abnormalities or connections alterations of each NAc subdivision in temporal lobe epilepsy (TLE) patients. Here, we used diffusion probabilistic tractography to subdivide the NAc into core and shell portions in individual TLE patients to guide stereotactic localization of NAc shell. The structural and connection abnormalities in each NAc subdivision in the groups were then estimated. We successfully segmented the NAc in 24 of 25 controls, 14 of 16 left TLE patients, and 14 of 18 right TLE patients. Both left and right TLE patients exhibited significantly decreased fractional anisotropy (FA) and increased radial diffusivity (RD) in the shell, while there was no significant alteration in the core. Moreover, relatively distinct structural connectivity of each NAc subdivision was demonstrated. More extensive connection abnormalities were detected in the NAc shell in TLE patients. Our results indicate that neuronal degeneration and damage caused by seizure mainly exists in NAc shell and provide anatomical evidence to support the role of NAc shell in epileptogenesis. Remarkably, those NAc shell tracts with increased connectivities in TLE patients were found decreased in FA, which indicates disruption of fiber integrity. This finding suggests the regeneration of aberrant connections, a compensatory and repair process ascribed to recurrent seizures that constitutes part of the characteristic changes in the epileptic network.
Collapse
Affiliation(s)
- Xixi Zhao
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ru Yang
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, 510515, China
| | - Kewan Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | | | - Junling Wang
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiangliang Tan
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jiajun Zhang
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yingjie Mei
- Philips Healthcare, Guangzhou, Guangdong, 510055, China
| | | | - Jun Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qianjin Feng
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, 510515, China
| | - Yikai Xu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
23
|
Sampaio LRL, Borges LT, Silva JM, de Andrade FRO, Barbosa TM, Oliveira TQ, Macedo D, Lima RF, Dantas LP, Patrocinio MCA, do Vale OC, Vasconcelos SM. Average spectral power changes at the hippocampal electroencephalogram in schizophrenia model induced by ketamine. Fundam Clin Pharmacol 2017; 32:60-68. [DOI: 10.1111/fcp.12319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/13/2017] [Accepted: 08/23/2017] [Indexed: 01/17/2023]
Affiliation(s)
- Luis Rafael L. Sampaio
- Department of Physiology and Pharmacology; School of Medicine; Federal University of Ceará; Fortaleza Brazil
- Health Science Center; School of Nursing; University of Fortaleza; Fortaleza Brazil
| | - Lucas T.N. Borges
- Department of Physiology and Pharmacology; School of Medicine; Federal University of Ceará; Fortaleza Brazil
| | - Joyse M.F. Silva
- Health Science Center; School of Nursing; University of Fortaleza; Fortaleza Brazil
| | | | - Talita M. Barbosa
- Department of Physiology and Pharmacology; School of Medicine; Federal University of Ceará; Fortaleza Brazil
| | - Tatiana Q. Oliveira
- Department of Physiology and Pharmacology; School of Medicine; Federal University of Ceará; Fortaleza Brazil
| | - Danielle Macedo
- Department of Physiology and Pharmacology; School of Medicine; Federal University of Ceará; Fortaleza Brazil
| | - Ricardo F. Lima
- Department of Physiology and Pharmacology; School of Medicine; Federal University of Ceará; Fortaleza Brazil
| | - Leonardo P. Dantas
- Department of Physiology and Pharmacology; School of Medicine; Federal University of Ceará; Fortaleza Brazil
| | - Manoel Cláudio A. Patrocinio
- Health Science Center; School of Medicine; University Centre Christus; Fortaleza Brazil
- Department of Anesthesiology; Dr. Jose Frota Institute Hospital; Fortaleza Brazil
| | - Otoni C. do Vale
- Department of Physiology and Pharmacology; School of Medicine; Federal University of Ceará; Fortaleza Brazil
| | - Silvânia M.M. Vasconcelos
- Department of Physiology and Pharmacology; School of Medicine; Federal University of Ceará; Fortaleza Brazil
| |
Collapse
|
24
|
Pitkänen A, Löscher W, Vezzani A, Becker AJ, Simonato M, Lukasiuk K, Gröhn O, Bankstahl JP, Friedman A, Aronica E, Gorter JA, Ravizza T, Sisodiya SM, Kokaia M, Beck H. Advances in the development of biomarkers for epilepsy. Lancet Neurol 2017; 15:843-856. [PMID: 27302363 DOI: 10.1016/s1474-4422(16)00112-5] [Citation(s) in RCA: 229] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 02/16/2016] [Accepted: 03/02/2016] [Indexed: 12/13/2022]
Abstract
Over 50 million people worldwide have epilepsy. In nearly 30% of these cases, epilepsy remains unsatisfactorily controlled despite the availability of over 20 antiepileptic drugs. Moreover, no treatments exist to prevent the development of epilepsy in those at risk, despite an increasing understanding of the underlying molecular and cellular pathways. One of the major factors that have impeded rapid progress in these areas is the complex and multifactorial nature of epilepsy, and its heterogeneity. Therefore, the vision of developing targeted treatments for epilepsy relies upon the development of biomarkers that allow individually tailored treatment. Biomarkers for epilepsy typically fall into two broad categories: diagnostic biomarkers, which provide information on the clinical status of, and potentially the sensitivity to, specific treatments, and prognostic biomarkers, which allow prediction of future clinical features, such as the speed of progression, severity of epilepsy, development of comorbidities, or prediction of remission or cure. Prognostic biomarkers are of particular importance because they could be used to identify which patients will develop epilepsy and which might benefit from preventive treatments. Biomarker research faces several challenges; however, biomarkers could substantially improve the management of people with epilepsy and could lead to prevention in the right person at the right time, rather than just symptomatic treatment.
Collapse
Affiliation(s)
- Asla Pitkänen
- Department of Neurobiology, A I Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Annamaria Vezzani
- Department of Neuroscience, Experimental Neurology, IRCCS-Istituto di Recerche Farmacologiche "Mario Negri", Milan, Italy
| | - Albert J Becker
- Section for Translational Epilepsy Research, Department of Neuropathology, University of Bonn Medical Center, University of Bonn, Bonn, Germany
| | - Michele Simonato
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy; Unit of Gene Therapy of Neurodegenerative Diseases, Division of Neuroscience, University Vita-Salute San Raffaele, Milan, Italy
| | - Katarzyna Lukasiuk
- The Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Olli Gröhn
- Department of Neurobiology, A I Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jens P Bankstahl
- Preclinical Molecular Imaging, Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Alon Friedman
- Department of Brain and Cognitive Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Israel; Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Eleonora Aronica
- Department of Neuropathology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands; Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, Netherlands; Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Netherlands
| | - Jan A Gorter
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, Netherlands
| | - Teresa Ravizza
- Department of Neuroscience, Experimental Neurology, IRCCS-Istituto di Recerche Farmacologiche "Mario Negri", Milan, Italy
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK; Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK
| | - Merab Kokaia
- Epilepsy Center, Experimental Epilepsy Group, Division of Neurology, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden
| | - Heinz Beck
- Laboratory for Experimental Epileptology and Cognition Research, Department of Epileptology, University of Bonn, Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| |
Collapse
|
25
|
Sampaio LRL, Borges LTN, Barbosa TM, Matos NCB, Lima RDF, Oliveira MND, Gularte VN, Patrocínio MCA, Macêdo D, Vale OCD, Vasconcelos SMMD. Electroencephalographic study of chlorpromazine alone or combined with alpha-lipoic acid in a model of schizophrenia induced by ketamine in rats. J Psychiatr Res 2017; 86:73-82. [PMID: 27951451 DOI: 10.1016/j.jpsychires.2016.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 11/20/2016] [Accepted: 12/01/2016] [Indexed: 11/18/2022]
Abstract
Schizophrenia is characterized by behavioral symptoms, brain function impairments and electroencephalographic (EEG) changes. Dysregulation of immune responses and oxidative imbalance underpins this mental disorder. The present study aimed to investigate the effects of the typical antipsychotic chlorpromazine (CP) alone or combined with the natural antioxidant alpha-lipoic acid (ALA) on changes in the hippocampal average spectral power induced by ketamine (KET). Three days after stereotactic implantation of electrodes, male Wistar rats were divided into groups treated for 10 days with saline (control) or KET (10 mg/kg, IP). CP (1 or 5 mg/kg, IP) alone or combined with ALA (100 mg/kg, P.O.) was administered 30 min before KET or saline. Hippocampal EEG recordings were taken on the 1st, 5th and 10th days of treatment immediately after the last drug administration. KET significantly increased average spectral power of delta and gamma-high bands on the 5th and 10th days of treatment when compared to control. Gamma low-band significantly increased on the 1st, 5th and 10th days when compared to control group. This effect of KET was prevented by CP alone or combined with ALA. Indeed, the combination of ALA 100 + CP1 potentiated the inhibitory effects of CP1 on gamma low-band oscillations. In conclusion, our results showed that KET presents excitatory and time-dependent effects on hippocampal EEG bands activity. KET excitatory effects on EEG were prevented by CP alone and in some situations potentiated by its combination with ALA.
Collapse
Affiliation(s)
- Luis Rafael Leite Sampaio
- Drug Research and Development Center, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil; Health Science Center, School of Nursing, University of Fortaleza, Fortaleza, Ceará, Brazil
| | - Lucas Teixeira Nunes Borges
- Drug Research and Development Center, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil; Health Science Center, School of Nursing, University of Fortaleza, Fortaleza, Ceará, Brazil
| | - Talita Matias Barbosa
- Drug Research and Development Center, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Natalia Castelo Branco Matos
- Drug Research and Development Center, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Ricardo de Freitas Lima
- Drug Research and Development Center, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Viviane Nóbrega Gularte
- Drug Research and Development Center, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Danielle Macêdo
- Drug Research and Development Center, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Otoni Cardoso do Vale
- Drug Research and Development Center, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Silvânia Maria Mendes de Vasconcelos
- Drug Research and Development Center, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
26
|
Abstract
Psychosis of epilepsy (POE) is a term applied to a group of psychotic disorders with a distinct phenomenology in which potential etiopathogenic mechanisms are believed to be closely related to a seizure disorder. POE can present as interictal psychotic episodes, which may often differ semiologically from primary schizophrenic disorder. They may present as ictal or postictal psychotic episodes and may be the expression of an iatrogenic process to pharmacologic and/or surgical interventions.Epilepsy and POE have a complex and bidirectional relation, as not only are patients with epilepsy at greater risk of developing a psychotic disorder, but patients with a primary psychotic disorder are also at greater risk of developing epilepsy. The prevalence of POE is more than 7 times higher than the frequency of primary schizophreniform disorders in the general population. While POE has been associated with focal epilepsy of temporal and frontal lobe origin, its etiology and pathophysiology of POE have yet to be established.The treatment of all forms of POE, with the exception of ictal psychotic episodes, requires the use of antipsychotic drugs, preferably the atypical antipsychotic agents with a very low or negligible potential to lower the seizure threshold (eg, risperidone, apiprazole), starting at a low dose with stepwise increments.
Collapse
|
27
|
Prager EM, Bergstrom HC, Wynn GH, Braga MFM. The basolateral amygdala γ-aminobutyric acidergic system in health and disease. J Neurosci Res 2015; 94:548-67. [PMID: 26586374 DOI: 10.1002/jnr.23690] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/01/2015] [Accepted: 10/18/2015] [Indexed: 01/13/2023]
Abstract
The brain comprises an excitatory/inhibitory neuronal network that maintains a finely tuned balance of activity critical for normal functioning. Excitatory activity in the basolateral amygdala (BLA), a brain region that plays a central role in emotion and motivational processing, is tightly regulated by a relatively small population of γ-aminobutyric acid (GABA) inhibitory neurons. Disruption in GABAergic inhibition in the BLA can occur when there is a loss of local GABAergic interneurons, an alteration in GABAA receptor activation, or a dysregulation of mechanisms that modulate BLA GABAergic inhibition. Disruptions in GABAergic control of the BLA emerge during development, in aging populations, or after trauma, ultimately resulting in hyperexcitability. BLA hyperexcitability manifests behaviorally as an increase in anxiety, emotional dysregulation, or development of seizure activity. This Review discusses the anatomy, development, and physiology of the GABAergic system in the BLA and circuits that modulate GABAergic inhibition, including the dopaminergic, serotonergic, noradrenergic, and cholinergic systems. We highlight how alterations in various neurotransmitter receptors, including the acid-sensing ion channel 1a, cannabinoid receptor 1, and glutamate receptor subtypes, expressed on BLA interneurons, modulate GABAergic transmission and how defects of these systems affect inhibitory tonus within the BLA. Finally, we discuss alterations in the BLA GABAergic system in neurodevelopmental (autism/fragile X syndrome) and neurodegenerative (Alzheimer's disease) diseases and after the development of epilepsy, anxiety, and traumatic brain injury. A more complete understanding of the intrinsic excitatory/inhibitory circuit balance of the amygdala and how imbalances in inhibitory control contribute to excessive BLA excitability will guide the development of novel therapeutic approaches in neuropsychiatric diseases.
Collapse
Affiliation(s)
- Eric M Prager
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services, University of the Health Sciences, Bethesda, Maryland
| | | | - Gary H Wynn
- Center for the Study of Traumatic Stress, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Program in Neuroscience, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Maria F M Braga
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services, University of the Health Sciences, Bethesda, Maryland.,Center for the Study of Traumatic Stress, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Program in Neuroscience, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
28
|
The frequency of spontaneous seizures in rats correlates with alterations in sensorimotor gating, spatial working memory, and parvalbumin expression throughout limbic regions. Neuroscience 2015; 312:86-98. [PMID: 26582750 DOI: 10.1016/j.neuroscience.2015.11.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 11/02/2015] [Accepted: 11/04/2015] [Indexed: 01/03/2023]
Abstract
Cognitive deficits and psychotic symptoms are highly prevalent in patients with temporal lobe epilepsy (TLE). Imaging studies in humans have suggested that these comorbidities are associated with atrophy in temporal lobe structures and other limbic regions. It remains to be clarified whether TLE comorbidities are due to the frequency of spontaneous seizures or to limbic structural damage per se. Here, we used the pilocarpine model of chronic spontaneous seizures to evaluate the possible association of seizure frequency with sensorimotor gating, spatial working memory, and neuropathology throughout limbic regions. For TLE modeling, we induced a 2-h status epilepticus by the systemic administration of lithium-pilocarpine. Once spontaneous seizures were established, we tested the locomotor activity (open field), spatial working memory (eight-arm radial maze), and sensorimotor gating (prepulse inhibition of acoustic startle). After behavioral testing, the brains were sectioned for hematoxylin-eosin staining (cell density) and parvalbumin immunohistochemistry (GABAergic neuropil) in the prefrontal cortex, nucleus accumbens, thalamus, amygdala, hippocampus, and entorhinal cortex. The animal groups analyzed included chronic epileptic rats, their controls, and rats that received lithium-pilocarpine but eventually failed to express status epilepticus or spontaneous seizures. Epileptic rats showed deficits in sensorimotor gating that negatively correlated with the radial maze performance, and impairments in both behavioral tests correlated with seizure frequency. In addition to neuronal loss at several sites, we found increased parvalbumin immunostaining in the prefrontal cortex (infralimbic area), thalamus (midline and reticular nuclei), amygdala, Ammon's horn, dentate gyrus, and entorhinal cortex. These tissue changes correlated with seizure frequency and impairments in sensorimotor gating. Our work indicates that chronic seizures might impact the inhibitory-excitatory balance in the temporal lobe and its interconnected limbic regions, which could increase the likelihood of cognitive deficits and interictal psychiatric disorders.
Collapse
|
29
|
Boison D, Aronica E. Comorbidities in Neurology: Is adenosine the common link? Neuropharmacology 2015; 97:18-34. [PMID: 25979489 PMCID: PMC4537378 DOI: 10.1016/j.neuropharm.2015.04.031] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 04/24/2015] [Accepted: 04/27/2015] [Indexed: 12/13/2022]
Abstract
Comorbidities in Neurology represent a major conceptual and therapeutic challenge. For example, temporal lobe epilepsy (TLE) is a syndrome comprised of epileptic seizures and comorbid symptoms including memory and psychiatric impairment, depression, and sleep dysfunction. Similarly, Alzheimer's disease (AD), Parkinson's disease (PD), and Amyotrophic Lateral Sclerosis (ALS) are accompanied by various degrees of memory dysfunction. Patients with AD have an increased likelihood for seizures, whereas all four conditions share certain aspects of psychosis, depression, and sleep dysfunction. This remarkable overlap suggests common pathophysiological mechanisms, which include synaptic dysfunction and synaptotoxicity, as well as glial activation and astrogliosis. Astrogliosis is linked to synapse function via the tripartite synapse, but astrocytes also control the availability of gliotransmitters and adenosine. Here we will specifically focus on the 'adenosine hypothesis of comorbidities' implying that astrocyte activation, via overexpression of adenosine kinase (ADK), induces a deficiency in the homeostatic tone of adenosine. We present evidence from patient-derived samples showing astrogliosis and overexpression of ADK as common pathological hallmark of epilepsy, AD, PD, and ALS. We discuss a transgenic 'comorbidity model', in which brain-wide overexpression of ADK and resulting adenosine deficiency produces a comorbid spectrum of seizures, altered dopaminergic function, attentional impairment, and deficits in cognitive domains and sleep regulation. We conclude that dysfunction of adenosine signaling is common in neurological conditions, that adenosine dysfunction can explain co-morbid phenotypes, and that therapeutic adenosine augmentation might be effective for the treatment of comorbid symptoms in multiple neurological conditions.
Collapse
Affiliation(s)
- Detlev Boison
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR 97232, USA.
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Academic Medical Center and Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, The Netherlands; Stichting Epilepsie Instellingen (SEIN) Nederland, Heemstede, The Netherlands
| |
Collapse
|
30
|
In the grey zone between epilepsy and schizophrenia: alterations in group II metabotropic glutamate receptors. Acta Neurol Belg 2015; 115:221-32. [PMID: 25539775 DOI: 10.1007/s13760-014-0407-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/05/2014] [Indexed: 01/09/2023]
Abstract
Glutamate is the major excitatory neurotransmitter in the brain. The glutamate system plays an important role in the formation of synapses during brain development and synaptic plasticity. Dysfunctions in glutamate regulation may lead to hyperexcitatory neuronal networks and neurotoxicity. Glutamate excess is possibly of great importance in the pathophysiology of several neurological and psychiatric disorders such as epilepsy and schizophrenia. Interestingly, cross talk between these disorders has been well documented: psychiatric comorbidities are frequent in epilepsy and temporal lobe epilepsy is one of the highest risk factors for developing psychosis. Therefore, dysfunctions in glutamatergic neurotransmission might constitute a common pathological mechanism. A major negative feedback system is regulated by the presynaptic group II metabotropic glutamate (mGlu) receptors including mGlu2/3 receptors. These receptors are predominantly localised extrasynaptically in basal ganglia and limbic structures. Hence, mGlu2/3 receptors are an interesting target for the treatment of disorders like epilepsy and schizophrenia. A dysfunction in the glutamate system may be associated with alterations in mGlu2/3 receptor expression. In this review, we describe the localization of mGlu2/3 receptors in the healthy brain of mice, rats and humans. Secondly, changes in mGlu2/3 receptor density of the brain regions affected in epilepsy and schizophrenia are summarised. Increased mGlu2/3 receptor density might represent a compensatory mechanism of the brain to regulate elevated glutamate levels, while reduced mGlu2/3 receptor density in some brain regions may further contribute to the aberrant hyperexcitability. Further research considering the mGlu2/3 receptor can contribute significantly to the understanding of the etiological and therapeutic role of group II mGlu receptor in epilepsy, epilepsy with psychosis and schizophrenia.
Collapse
|
31
|
Kandratavicius L, Peixoto-Santos JE, Monteiro MR, Scandiuzzi RC, Carlotti CG, Assirati JA, Hallak JE, Leite JP. Mesial temporal lobe epilepsy with psychiatric comorbidities: a place for differential neuroinflammatory interplay. J Neuroinflammation 2015; 12:38. [PMID: 25889039 PMCID: PMC4347571 DOI: 10.1186/s12974-015-0266-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 02/10/2015] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Despite the strong association between epilepsy and psychiatric comorbidities, few biological substrates are currently described. We have previously reported neuropathological alterations in mesial temporal lobe epilepsy (MTLE) patients with major depression and psychosis that suggest a morphological and neurochemical basis for psychopathological symptoms. Neuroinflammatory-related structures and molecules might be part of the altered neurochemical milieu underlying the association between epilepsy and psychiatric comorbidities, and such features have not been previously investigated in humans. METHODS MTLE hippocampi of subjects without psychiatric history (MTLEW), MTLE + major depression (MTLE + D), and MTLE + interictal psychosis (MTLE + P) derived from epilepsy surgery and control necropsies were investigated for reactive astrocytes (glial fibrillary acidic protein (GFAP)), activated microglia (human leukocyte antigen, MHC class II (HLA-DR)), glial metallothionein-I/II (MT-I/II), and aquaporin 4 (AQP4) immunohistochemistry. RESULTS We found an increased GFAP immunoreactive area in the molecular layers, granule cell layer, and cornus ammonis region 2 (CA2) and cornus ammonis region 1 (CA1) of MTLEW and MTLE + P, respectively, compared to MTLE + D. HLA-DR immunoreactive area was higher in cornus ammonis region 3 (CA3) of MTLE + P, compared to MTLE + D and MTLEW, and in the hilus, when compared to MTLEW. MTLEW cases showed increased MT-I/II area in the granule cell layer and CA1, compared to MTLE + P, and in the parasubiculum, when compared to MTLE + D and MTLE + P. Differences between MTLE and control, such as astrogliosis, microgliosis, increased MT-I/II, and decreased perivascular AQP4 in the epileptogenic hippocampus, were in agreement to what is currently described in the literature. CONCLUSIONS Neuroinflammatory-related molecules in MTLE hippocampus show a distinct pattern of expression when patients present with a comorbid psychiatric diagnosis, similar to what is found in the pure forms of schizophrenia and major depression. Future studies focusing on inflammatory characteristics of MTLE with psychiatric comorbidities might help in the design of better therapeutic strategies.
Collapse
Affiliation(s)
- Ludmyla Kandratavicius
- Department of Neurosciences and Behavior, Ribeirao Preto Medical School, University of Sao Paulo (USP), Av Bandeirantes 3900, CEP 14049-900, Ribeirao Preto, SP, Brazil. .,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), USP, Ribeirao Preto, Brazil.
| | - Jose Eduardo Peixoto-Santos
- Department of Neurosciences and Behavior, Ribeirao Preto Medical School, University of Sao Paulo (USP), Av Bandeirantes 3900, CEP 14049-900, Ribeirao Preto, SP, Brazil.
| | - Mariana Raquel Monteiro
- Department of Neurosciences and Behavior, Ribeirao Preto Medical School, University of Sao Paulo (USP), Av Bandeirantes 3900, CEP 14049-900, Ribeirao Preto, SP, Brazil.
| | - Renata Caldo Scandiuzzi
- Department of Neurosciences and Behavior, Ribeirao Preto Medical School, University of Sao Paulo (USP), Av Bandeirantes 3900, CEP 14049-900, Ribeirao Preto, SP, Brazil.
| | | | | | - Jaime Eduardo Hallak
- Department of Neurosciences and Behavior, Ribeirao Preto Medical School, University of Sao Paulo (USP), Av Bandeirantes 3900, CEP 14049-900, Ribeirao Preto, SP, Brazil. .,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), USP, Ribeirao Preto, Brazil. .,National Institute of Science and Technology in Translational Medicine (INCT-TM - CNPq), Ribeirao Preto, Brazil.
| | - Joao Pereira Leite
- Department of Neurosciences and Behavior, Ribeirao Preto Medical School, University of Sao Paulo (USP), Av Bandeirantes 3900, CEP 14049-900, Ribeirao Preto, SP, Brazil. .,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), USP, Ribeirao Preto, Brazil.
| |
Collapse
|
32
|
Kandratavicius L, Hallak JE, Carlotti CG, Assirati JA, Leite JP. Hippocampal expression of heat shock proteins in mesial temporal lobe epilepsy with psychiatric comorbidities and their relation to seizure outcome. Epilepsia 2014; 55:1834-43. [DOI: 10.1111/epi.12787] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2014] [Indexed: 01/03/2023]
Affiliation(s)
- Ludmyla Kandratavicius
- Department of Neurosciences and Behavior; Ribeirao Preto School of Medicine; University of Sao Paulo (USP); Ribeirao Preto Brazil
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA); University of Sao Paulo (USP); Ribeirao Preto Brazil
| | - Jaime E. Hallak
- Department of Neurosciences and Behavior; Ribeirao Preto School of Medicine; University of Sao Paulo (USP); Ribeirao Preto Brazil
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA); University of Sao Paulo (USP); Ribeirao Preto Brazil
- National Institute of Science and Technology in Translational Medicine (INCT-TM - CNPq); Ribeirao Preto Brazil
| | - Carlos G. Carlotti
- Department of Surgery; Ribeirao Preto School of Medicine; University of Sao Paulo (USP); Ribeirao Preto Brazil
| | - Joao A. Assirati
- Department of Surgery; Ribeirao Preto School of Medicine; University of Sao Paulo (USP); Ribeirao Preto Brazil
| | - Joao P. Leite
- Department of Neurosciences and Behavior; Ribeirao Preto School of Medicine; University of Sao Paulo (USP); Ribeirao Preto Brazil
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA); University of Sao Paulo (USP); Ribeirao Preto Brazil
| |
Collapse
|
33
|
Hester MS, Danzer SC. Hippocampal granule cell pathology in epilepsy - a possible structural basis for comorbidities of epilepsy? Epilepsy Behav 2014; 38:105-16. [PMID: 24468242 PMCID: PMC4110172 DOI: 10.1016/j.yebeh.2013.12.022] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/17/2013] [Accepted: 12/21/2013] [Indexed: 01/31/2023]
Abstract
Temporal lobe epilepsy in both animals and humans is characterized by abnormally integrated hippocampal dentate granule cells. Among other abnormalities, these cells make axonal connections with inappropriate targets, grow dendrites in the wrong direction, and migrate to ectopic locations. These changes promote the formation of recurrent excitatory circuits, leading to the appealing hypothesis that these abnormal cells may by epileptogenic. While this hypothesis has been the subject of intense study, less attention has been paid to the possibility that abnormal granule cells in the epileptic brain may also contribute to comorbidities associated with the disease. Epilepsy is associated with a variety of general findings, such as memory disturbances and cognitive dysfunction, and is often comorbid with a number of other conditions, including schizophrenia and autism. Interestingly, recent studies implicate disruption of common genes and gene pathways in all three diseases. Moreover, while neuropsychiatric conditions are associated with changes in a variety of brain regions, granule cell abnormalities in temporal lobe epilepsy appear to be phenocopies of granule cell deficits produced by genetic mouse models of autism and schizophrenia, suggesting that granule cell dysmorphogenesis may be a common factor uniting these seemingly diverse diseases. Disruption of common signaling pathways regulating granule cell neurogenesis may begin to provide mechanistic insight into the cooccurrence of temporal lobe epilepsy and cognitive and behavioral disorders.
Collapse
Affiliation(s)
- Michael S Hester
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Molecular and Developmental Biology Graduate Program, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Steve C Danzer
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Anesthesia, University of Cincinnati, Cincinnati, OH 45267, USA; Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45267, USA; Molecular and Developmental Biology Graduate Program, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
34
|
Kandratavicius L, Hallak JE, Leite JP. What are the similarities and differences between schizophrenia and schizophrenia-like psychosis of epilepsy? A neuropathological approach to the understanding of schizophrenia spectrum and epilepsy. Epilepsy Behav 2014; 38:143-7. [PMID: 24508393 DOI: 10.1016/j.yebeh.2014.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 01/10/2014] [Accepted: 01/12/2014] [Indexed: 10/25/2022]
Abstract
Temporal lobe epilepsy (TLE) and psychosis coexist more frequently than chance would predict. In this short review, clinical and neuropathological findings of schizophrenia, TLE, and psychosis of epilepsy are described to enhance our understanding of the noncoincidental association between these conditions. In addition, psychosis of epilepsy was included for the first time in the Diagnostic and Statistical Manual of Mental Disorders (DSM), in the recently launched 5th edition, and improvement in diagnostic criteria was highlighted. Since the hippocampus has long been considered an anatomical area involved in the pathophysiology of TLE and schizophrenia, neuropathological studies of psychoses of epilepsy may contribute to our understanding of the pathophysiology of psychosis in general. The discovery of shared mechanisms and/or affected neurochemicals in TLE and schizophrenia might disclose important clues on the vulnerability of patients with TLE to psychotic symptoms and be an opportunity for new treatment development.
Collapse
Affiliation(s)
- Ludmyla Kandratavicius
- Ribeirao Preto School of Medicine, Department of Neurosciences and Behavior, University of Sao Paulo (USP), Brazil; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), USP, Brazil
| | - Jaime Eduardo Hallak
- Ribeirao Preto School of Medicine, Department of Neurosciences and Behavior, University of Sao Paulo (USP), Brazil; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), USP, Brazil; National Institute of Science and Technology in Translational Medicine (INCT-TM-CNPq), Brazil
| | - Joao Pereira Leite
- Ribeirao Preto School of Medicine, Department of Neurosciences and Behavior, University of Sao Paulo (USP), Brazil; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), USP, Brazil.
| |
Collapse
|
35
|
Kandratavicius L, Hallak JE, Carlotti CG, Assirati JA, Leite JP. Neurotrophin receptors expression in mesial temporal lobe epilepsy with and without psychiatric comorbidities and their relation with seizure type and surgical outcome. Acta Neuropathol Commun 2014; 2:81. [PMID: 25027171 PMCID: PMC4149196 DOI: 10.1186/s40478-014-0081-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 06/29/2014] [Indexed: 12/30/2022] Open
Abstract
Epilepsy and psychiatric comorbidities are frequently associated, but their common biological substrate is unknown. We have previously reported altered structural elements and neurotrophins (NTs) expression in mesial temporal lobe epilepsy (MTLE) patients with psychiatric comorbidities. NTs receptors can regulate neurotransmission and promote neuroplasticity, being important candidates in the regulation and manifestation of psychopatological states and seizure-related events. MTLE hippocampi of subjects without psychiatric history, MTLE + major depression, MTLE + interictal psychosis derived from epilepsy surgery, and control necropsies were investigated for p75NTR, TrkB, TrkA, and TrkC immunohistochemistry. Increased expression of p75NTR, decreased TrkA, unaltered TrkC, and complex alterations involving TrkB expression were seen in MTLE groups. Increased TrkB expression in patients without complete seizure remission and in those with secondarily generalized seizures was seen. Decreased p75NTR expression associated with interictal psychosis, and increased TrkB in those with psychosis or major depression was also reported, although their p75NTR/TrkB ratios were lower than in MTLE without psychiatric comorbidities. Our results provide evidence of alterations in expression of NTs receptors in the epileptogenic hippocampus that are differentially modulated in presence of psychiatric comorbidities. As already explored in animal models, even in chronic human MTLE increased TrkB expression, among other NT receptors alterations, may play a major role in seizure type, frequency and surgery outcome.
Collapse
|
36
|
Neurotrophins in mesial temporal lobe epilepsy with and without psychiatric comorbidities. J Neuropathol Exp Neurol 2013; 72:1029-42. [PMID: 24128677 DOI: 10.1097/nen.0000000000000002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Despite the strong association between epilepsy and psychiatric comorbidities, data on clinicopathologic correlations are scant. We previously reported differential mossy fiber sprouting (MFS) in mesial temporal lobe epilepsy (MTLE) patients with psychosis (MTLE + P) and major depression (MTLE + D). Because neurotrophins (NTs) can promote MFS, here, we investigated MFS, neuronal density and immunoreactivity for the NT nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin 3 (NT3) in hippocampi of 14 MTLE patients without a psychiatric history, 13 MTLE + D, 13 MTLE + P, and 10 control necropsies. Mossy fiber sprouting correlated with granular layer NGF immunoreactivity and seizure frequency. Patients with secondarily generalized seizures exhibited less NGF immunoreactivity versus patients with complex partial seizures. There was greater NT immunoreactivity in MTLE versus control groups but lesser NT immunoreactivity in MTLE + P versus MTLE patients; these findings correlated with neuropsychologic scores. Patients with MTLE + D taking fluoxetine showed greater BDNF immunoreactivity than those not taking fluoxetine; MTLE + P patients taking haloperidol had decreased neuronal density and immunoreactivity for NGF and BDNF in specific subfields versus those not taking haloperidol. There were no differences in NT3 immunoreactivity among the groups. These findings support a close association between MFS and NT expression in the hippocampi of MTLE patients and suggest that distinct structural and neurochemical milieu may contribute to the genesis or maintenance of psychiatric comorbidities in MTLE.
Collapse
|
37
|
Microtubule-associated proteins in mesial temporal lobe epilepsy with and without psychiatric comorbidities and their relation with granular cell layer dispersion. BIOMED RESEARCH INTERNATIONAL 2013; 2013:960126. [PMID: 24069608 PMCID: PMC3771259 DOI: 10.1155/2013/960126] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/19/2013] [Accepted: 07/24/2013] [Indexed: 11/20/2022]
Abstract
Background. Despite strong association between epilepsy and psychiatric comorbidities, biological substrates are unknown. We have previously reported decreased mossy fiber sprouting in mesial temporal lobe epilepsy (MTLE) patients with psychosis and increased in those with major depression. Microtubule associated proteins (MAPs) are essentially involved in dendritic and synaptic sprouting. Methods. MTLE hippocampi of subjects without psychiatric history, MTLE + major depression, and MTLE + interictal psychosis derived from epilepsy surgery and control necropsies were investigated for neuronal density, granular layer dispersion, and MAP2 and tau immunohistochemistry. Results. Altered MAP2 and tau expression in MTLE and decreased tau expression in MTLE with psychosis were found. Granular layer dispersion correlated inversely with verbal memory scores, and with MAP2 and tau expression in the entorhinal cortex. Patients taking fluoxetine showed increased neuronal density in the granular layer and those taking haloperidol decreased neuronal density in CA3 and subiculum. Conclusions. Our results indicate relations between MAPs, granular layer dispersion, and memory that have not been previously investigated. Differential MAPs expression in human MTLE hippocampi with and without psychiatric comorbidities suggests that psychopathological states in MTLE rely on differential morphological and possibly neurochemical backgrounds. This clinical study was approved by our institution's Research Ethics Board (HC-FMRP no. 1270/2008) and is registered under the Brazilian National System of Information on Ethics in Human Research (SISNEP) no. 0423.0.004.000-07.
Collapse
|