1
|
Vasić K, Knez Ž, Leitgeb M. Multifunctional Iron Oxide Nanoparticles as Promising Magnetic Biomaterials in Drug Delivery: A Review. J Funct Biomater 2024; 15:227. [PMID: 39194665 DOI: 10.3390/jfb15080227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
A wide range of applications using functionalized magnetic nanoparticles (MNPs) in biomedical applications, such as in biomedicine as well as in biotechnology, have been extensively expanding over the last years. Their potential is tremendous in delivery and targeting systems due to their advantages in biosubstance binding. By applying magnetic materials-based biomaterials to different organic polymers, highly advanced multifunctional bio-composites with high specificity, efficiency, and optimal bioavailability are designed and implemented in various bio-applications. In modern drug delivery, the importance of a successful therapy depends on the proper targeting of loaded bioactive components to specific sites in the body. MNPs are nanocarrier-based systems that are magnetically guided to specific regions using an external magnetic field. Therefore, MNPs are an excellent tool for different biomedical applications, in the form of imaging agents, sensors, drug delivery targets/vehicles, and diagnostic tools in managing disease therapy. A great contribution was made to improve engineering skills in surgical diagnosis, therapy, and treatment, while the advantages and applicability of MNPs have opened up a large scope of studies. This review highlights MNPs and their synthesis strategies, followed by surface functionalization techniques, which makes them promising magnetic biomaterials in biomedicine, with special emphasis on drug delivery. Mechanism of the delivery system with key factors affecting the drug delivery efficiency using MNPs are discussed, considering their toxicity and limitations as well.
Collapse
Affiliation(s)
- Katja Vasić
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
| | - Željko Knez
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Maja Leitgeb
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| |
Collapse
|
2
|
Xu Q, Zhao Z, Chen X, Fan W, Jiang Y. The Impact of Surface Modifier on Magnetic Nanoparticle Properties and Their Application in CD3+T Cell Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39024471 DOI: 10.1021/acs.langmuir.4c01332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Fe3O4 nanoparticles occupy a pivotal position in the realm of nanobiology due to their nontoxic, biocompatible, and superparamagnetic properties. This study examines the influence of surface modifiers on the properties of magnetic nanoparticles. Poly(methacrylic acid) (PMAA), poly(4-styrenesulfonic acid-co-maleic acid) sodium salt (PSSM), trisodium citrate (TSC), carboxymethylcellulose (CMC), and carboxymethylated-dextran 40 (CMD40) were introduced into a one-pot solvothermal method to synthesize magnetic nanoparticles. TEM, the 4-(bromomethyl)-6,7-dimethoxy coumarin (BMMC) absorption assay, and the Bradford method were employed to characterize the diameter, carboxyl content, and protein immobilization ability of the nanoparticles, respectively. The findings revealed that CMD40-modified magnetic nanoparticles (CMD40-MNPs) exhibited the highest carboxyl content and streptavidin (SA) immobilization content, reaching 6.5 × 10-7 mol/mg and 375 μg/mg, respectively. In contrast, CMC-modified magnetic nanoparticles displayed opposite trends. This is primarily attributed to dextran's unique molecular structure, which enhances its water solubility and biocompatibility, thereby facilitating contact with Fe3O4 nanoparticles in aqueous solutions. CMD40-MNPs possess a saturation magnetization value of 60.90 emu/g and can be collected within (60 ± 5) s using a standard magnetic separator. Cytotoxicity assays demonstrated that CMD40-MNPs are nontoxic to cells. A cell sorting strategy utilizing the binding of SA-CMD40-MNPs and biotin antihuman CD3 antibody-modified cell suspensions was employed to isolate CD3+T cells. The results indicate that the purity and efficiency of targeted CD3+T cells are 85.2% and 61.5%, respectively.
Collapse
Affiliation(s)
- Qianrui Xu
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Zhimin Zhao
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Xinyu Chen
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Wenqian Fan
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yong Jiang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
3
|
Nangare S, Ramraje G, Patil P. Formulation of lactoferrin decorated dextran based chitosan-coated europium metal-organic framework for targeted delivery of curcumin. Int J Biol Macromol 2024; 259:129325. [PMID: 38219935 DOI: 10.1016/j.ijbiomac.2024.129325] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/20/2023] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
Hepatocellular carcinoma (HPTC) currently ranks as the third leading cause of cancer-related mortality, necessitating an advanced formulation strategy. Recently, lactoferrin (Lf) has been utilized as a specific targeting ligand in HPTC due to its high specificity towards the asialoglycoprotein receptor expressed in cancer cells. Therefore, we present the fabrication of an Lf-decorated carboxymethyl dextran-encased chitosan-coated europium metal-organic framework-based nanobioconjugate (Lf-CMD-CS-CUR@Eu-MOF) for targeted curcumin (CUR) delivery. Briefly, CUR was loaded into Eu-MOF, followed by coating cationic 'CS' on the CUR@Eu-MOF surface. Simultaneously, Lf-decorated CMD was prepared via an esterification reaction. Subsequently, Lf-CMD-CS-CUR@Eu-MOF was synthesized using the Maillard reaction. Various spectral characterizations, drug entrapment, drug content, in vitro drug release, biocompatibility and cell cytotoxicity studies were performed. It exhibited an entrapment efficiency of 88.87 ± 2.1 %, a drug content of 3.45 ± 0.98 %, and a drug loading rate of 34.85 ± 0.6 mg/g. Furthermore, the Lf-CMD-CS-CUR@Eu-MOF exhibits excellent biocompatibility with normal cells. The in vitro dissolution study confirmed a release of 78.12 % of 'CUR' in pH 5.8 phosphate buffer (over 120 h), attributed to the controlled release rate by the 'CS' coating on the surface of CUR@Eu-MOF. The BEL-7402 cell line showed concentration-dependent toxicity of nanobioconjugate to cancerous cells. Therefore, when 'Lf' is surface-decorated onto an appropriate polymeric material, it gains the capability to function as a carrier for transporting 'CUR' to the precise target site within HPTC. In conclusion, Lf-CMD incorporated CS-coated Eu-MOF can provide a promising approach for targeted drug delivery in HPTC management.
Collapse
Affiliation(s)
- Sopan Nangare
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Dist: Dhule, Shirpur 425405, MS, India
| | - Gautam Ramraje
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Dist: Dhule, Shirpur 425405, MS, India; Department of Pharmaceutical Quality Assurance, H. R. Patel Institute of Pharmaceutical Education and Research, Dist: Dhule, Shirpur 425405, MS, India
| | - Pravin Patil
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Dist: Dhule, Shirpur 425405, MS, India.
| |
Collapse
|
4
|
Hu X, Liu W, Yan Y, Deng H, Cai Y. Development of a novel magnetic metal-organic framework for the immobilization of short-chain dehydrogenase for the asymmetric reduction of pro-chiral ketone. Int J Biol Macromol 2023; 253:127414. [PMID: 37838135 DOI: 10.1016/j.ijbiomac.2023.127414] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/16/2023]
Abstract
Short-chain dehydrogenase/reductase (SDR) acts as a biocatalyst in the synthesis of chiral alcohols with high optical purity. Herein, we achieved immobilization via crosslinking on novel magnetic metal-organic framework nanoparticles with a three-layer shell structure (Fe3O4@PDA@Cu (PABA)). The results of scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and energy dispersive X-ray spectroscopy confirmed the morphology and cross-linking property of immobilized SDR, which was more durable, stable, and reusable and exhibited better kinetic performance than free enzyme. The SDR and glucose dehydrogenase (GDH) were co-immobilized and then used for the asymmetric reduction of COBE and ethyl 2-oxo-4-phenylbutanoate (OPBE). These finding suggest that enzymes immobilized on novel MOF nanoparticles can serve as promising biocatalysts for asymmetric reduction prochiral ketones into chiral alcohols.
Collapse
Affiliation(s)
- Xiaoxiang Hu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Wenjing Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yi Yan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Huaxiang Deng
- Center for Synthetic Biochemistry, Institute of Synthetic Biology, Institutes of Advanced Technologies, Shenzhen, China
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
5
|
Ünak P, Yasakçı V, Tutun E, Karatay KB, Walczak R, Wawrowicz K, Żelechowska-Matysiak K, Majkowska-Pilip A, Bilewicz A. Multimodal Radiobioconjugates of Magnetic Nanoparticles Labeled with 44Sc and 47Sc for Theranostic Application. Pharmaceutics 2023; 15:pharmaceutics15030850. [PMID: 36986710 PMCID: PMC10053001 DOI: 10.3390/pharmaceutics15030850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
This study was performed to synthesize multimodal radiopharmaceutical designed for the diagnosis and treatment of prostate cancer. To achieve this goal, superparamagnetic iron oxide (SPIO) nanoparticles were used as a platform for targeting molecule (PSMA-617) and for complexation of two scandium radionuclides, 44Sc for PET imaging and 47Sc for radionuclide therapy. TEM and XPS images showed that the Fe3O4 NPs have a uniform cubic shape and a size from 38 to 50 nm. The Fe3O4 core are surrounded by SiO2 and an organic layer. The saturation magnetization of the SPION core was 60 emu/g. However, coating the SPIONs with silica and polyglycerol reduces the magnetization significantly. The obtained bioconjugates were labeled with 44Sc and 47Sc, with a yield higher than 97%. The radiobioconjugate exhibited high affinity and cytotoxicity toward the human prostate cancer LNCaP (PSMA+) cell line, much higher than for PC-3 (PSMA-) cells. High cytotoxicity of the radiobioconjugate was confirmed by radiotoxicity studies on LNCaP 3D spheroids. In addition, the magnetic properties of the radiobioconjugate should allow for its use in guide drug delivery driven by magnetic field gradient.
Collapse
Affiliation(s)
- Perihan Ünak
- Department of Nuclear Applications, Institute of Nuclear Sciences, Ege University, Izmir 35100, Turkey
- Correspondence: (P.Ü.); (A.B.)
| | - Volkan Yasakçı
- Department of Nuclear Applications, Institute of Nuclear Sciences, Ege University, Izmir 35100, Turkey
| | - Elif Tutun
- Department of Nuclear Applications, Institute of Nuclear Sciences, Ege University, Izmir 35100, Turkey
| | - K. Buşra Karatay
- Department of Nuclear Applications, Institute of Nuclear Sciences, Ege University, Izmir 35100, Turkey
| | - Rafał Walczak
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16 St., 03-195 Warsaw, Poland
| | - Kamil Wawrowicz
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16 St., 03-195 Warsaw, Poland
| | - Kinga Żelechowska-Matysiak
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16 St., 03-195 Warsaw, Poland
| | - Agnieszka Majkowska-Pilip
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16 St., 03-195 Warsaw, Poland
| | - Aleksander Bilewicz
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16 St., 03-195 Warsaw, Poland
- Correspondence: (P.Ü.); (A.B.)
| |
Collapse
|
6
|
Patra S, Purohit SS, Swain SK. In vivo fluorescence non-enzymatic glucose sensing technique for diabetes management by CQDs incorporated dextran nanocomposites in human blood serums. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
7
|
Seong H, Kim SY, Choi JI, Lee JH, Kim SIL, Park YC. Synthesis of ultrasmall superparamagnetic iron oxide nanoparticles for magnetic labeling of antibody of pathogenic microbe. Macromol Res 2023. [DOI: 10.1007/s13233-023-00124-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
8
|
Dextran Formulations as Effective Delivery Systems of Therapeutic Agents. Molecules 2023; 28:molecules28031086. [PMID: 36770753 PMCID: PMC9920038 DOI: 10.3390/molecules28031086] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/12/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Dextran is by far one of the most interesting non-toxic, bio-compatible macromolecules, an exopolysaccharide biosynthesized by lactic acid bacteria. It has been extensively used as a major component in many types of drug-delivery systems (DDS), which can be submitted to the next in-vivo testing stages, and may be proposed for clinical trials or pharmaceutical use approval. An important aspect to consider in order to maintain high DDS' biocompatibility is the use of dextran obtained by fermentation processes and with a minimum chemical modification degree. By performing chemical modifications, artefacts can appear in the dextran spatial structure that can lead to decreased biocompatibility or even cytotoxicity. The present review aims to systematize DDS depending on the dextran type used and the biologically active compounds transported, in order to obtain desired therapeutic effects. So far, pure dextran and modified dextran such as acetalated, oxidised, carboxymethyl, diethylaminoethyl-dextran and dextran sulphate sodium, were used to develop several DDSs: microspheres, microparticles, nanoparticles, nanodroplets, liposomes, micelles and nanomicelles, hydrogels, films, nanowires, bio-conjugates, medical adhesives and others. The DDS are critically presented by structures, biocompatibility, drugs loaded and therapeutic points of view in order to highlight future therapeutic perspectives.
Collapse
|
9
|
Carboxymethyl-Dextran-Coated Superparamagnetic Iron Oxide Nanoparticles for Drug Delivery: Influence of the Coating Thickness on the Particle Properties. Int J Mol Sci 2022; 23:ijms232314743. [PMID: 36499070 PMCID: PMC9740466 DOI: 10.3390/ijms232314743] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Carboxymethyl-dextran (CMD)-coated iron oxide nanoparticles (IONs) are of great interest in nanomedicine, especially for applications in drug delivery. To develop a magnetically controlled drug delivery system, many factors must be considered, including the composition, surface properties, size and agglomeration, magnetization, cytocompatibility, and drug activity. This study reveals how the CMD coating thickness can influence these particle properties. ION@CMD are synthesized by co-precipitation. A higher quantity of CMD leads to a thicker coating and a reduced superparamagnetic core size with decreasing magnetization. Above 12.5−25.0 g L−1 of CMD, the particles are colloidally stable. All the particles show hydrodynamic diameters < 100 nm and a good cell viability in contact with smooth muscle cells, fulfilling two of the most critical characteristics of drug delivery systems. New insights into the significant impact of agglomeration on the magnetophoretic behavior are shown. Remarkable drug loadings (62%) with the antimicrobial peptide lasioglossin and an excellent efficiency (82.3%) were obtained by covalent coupling with the EDC/NHS (N-ethyl-N′-(3-(dimethylamino)propyl)carbodiimide/N-hydroxysuccinimide) method in comparison with the adsorption method (24% drug loading, 28% efficiency). The systems showed high antimicrobial activity with a minimal inhibitory concentration of 1.13 µM (adsorption) and 1.70 µM (covalent). This system successfully combines an antimicrobial peptide with a magnetically controllable drug carrier.
Collapse
|
10
|
Kurihara Y, Yokota H, Takahashi M. Water-Dispersible Carboxymethyl Dextran-Coated Melamine Nanoparticles for Biosensing Applications. ACS OMEGA 2022; 7:41641-41650. [PMID: 36406549 PMCID: PMC9670359 DOI: 10.1021/acsomega.2c05653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
In this study, we developed a simple method for preparing highly dispersed, stable, and streptavidin (SA)-functionalized carboxymethyl dextran (CMD)-coated melamine nanoparticles (MNPs) in an aqueous buffer at neutral pH. Dynamic light scattering (DLS) revealed the agglomeration of MNPs in an aqueous buffer at neutral pH. When CMD, N-hydroxysuccinimide (NHS), and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) were simultaneously mixed with the MNPs, CMD was bound to the MNPs, promoting their dispersibility. Preparation of SA-CMD-MNPs was accomplished simply by adding SA solution to the CMD-MNPs. The amount of SA bound to the CMD-MNPs was quantified by the bicinchoninic assay, and the amount of SA molecules bound to each CMD-MNP was 417 ± 4. SA-CMD-MNPs exhibited high dispersity (polydispersity index = 0.058) in a neutral phosphate buffer and maintained it for 182 days with dispersion using a probe sonicator (5 s) before DLS characterization. The performance of the SA-CMD-MNPs in biosensing was evaluated by immunohistochemistry, which revealed that the nanoparticles could specifically stain MCF-7 cells derived from breast cancer cells with low HER2 expression. This study provides an effective method for synthesizing highly dispersible nanoparticles for biosensing.
Collapse
|
11
|
Schemberg J, Abbassi AE, Lindenbauer A, Chen LY, Grodrian A, Nakos X, Apte G, Khan N, Kraupner A, Nguyen TH, Gastrock G. Synthesis of Biocompatible Superparamagnetic Iron Oxide Nanoparticles (SPION) under Different Microfluidic Regimes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48011-48028. [PMID: 36223272 PMCID: PMC9615998 DOI: 10.1021/acsami.2c13156] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPION) have a great potential in both diagnostic and therapeutic applications as they provide contrast in magnetic resonance imaging techniques and allow magnetic hyperthermia and drug delivery. Though various types of SPION are commercially available, efforts to improve the quality of SPION are highly in demand. Here, we describe a strategy for optimization of SPION synthesis under microfluidics using the coprecipitation approach. Synthesis parameters such as temperature, pH, iron salt concentration, and coating materials were investigated in continuous and segmented flows. Continuous flow allowed synthesizing particles of a smaller size and higher stability than segmented flow, while both conditions improved the quality of particles compared to batch synthesis. The most stable particles were obtained at a synthesis condition of 6.5 M NH4OH base, iron salt (Fe2+/Fe3+) concentration ratio of 4.3/8.6, carboxymethyl dextran coating of 20 mg/mL, and temperature of 70 °C. The synthesized SPION exhibited a good efficiency in labeling of human platelets and did not impair cells. Our study under flow conditions provides an optimal protocol for the synthesis of better and biocompatible SPION that contributes to the development of nanoparticles for medical applications.
Collapse
Affiliation(s)
- Jörg Schemberg
- Institute
for Bioprocessing and Analytical Measurement Techniques (iba), 37308Heiligenstadt, Germany
| | - Abdelouahad El Abbassi
- Institute
for Bioprocessing and Analytical Measurement Techniques (iba), 37308Heiligenstadt, Germany
| | - Annerose Lindenbauer
- Institute
for Bioprocessing and Analytical Measurement Techniques (iba), 37308Heiligenstadt, Germany
| | - Li-Yu Chen
- Institute
for Bioprocessing and Analytical Measurement Techniques (iba), 37308Heiligenstadt, Germany
- Department
of Infection Biology, Leibniz Institute
for Natural Product Research and Infection Biology, 07745Jena, Germany
| | - Andreas Grodrian
- Institute
for Bioprocessing and Analytical Measurement Techniques (iba), 37308Heiligenstadt, Germany
| | - Xenia Nakos
- Institute
for Bioprocessing and Analytical Measurement Techniques (iba), 37308Heiligenstadt, Germany
| | - Gurunath Apte
- Institute
for Bioprocessing and Analytical Measurement Techniques (iba), 37308Heiligenstadt, Germany
- Institute
of Nanotechnology (INT) and Karlsruhe Nano Micro Facility, Karlsruhe Institute of Technology, 76131Karlsruhe, Germany
| | - Nida Khan
- Institute
for Bioprocessing and Analytical Measurement Techniques (iba), 37308Heiligenstadt, Germany
- Institute
for Chemistry and Biotechnology, Faculty of Mathematics and Natural
Sciences, Technische Universität
Ilmenau, 98694Ilmenau, Germany
| | | | - Thi-Huong Nguyen
- Institute
for Bioprocessing and Analytical Measurement Techniques (iba), 37308Heiligenstadt, Germany
- Institute
for Chemistry and Biotechnology, Faculty of Mathematics and Natural
Sciences, Technische Universität
Ilmenau, 98694Ilmenau, Germany
| | - Gunter Gastrock
- Institute
for Bioprocessing and Analytical Measurement Techniques (iba), 37308Heiligenstadt, Germany
| |
Collapse
|
12
|
Duong HTK, Abdibastami A, Gloag L, Barrera L, Gooding JJ, Tilley RD. A guide to the design of magnetic particle imaging tracers for biomedical applications. NANOSCALE 2022; 14:13890-13914. [PMID: 36004758 DOI: 10.1039/d2nr01897g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Magnetic Particle Imaging (MPI) is a novel and emerging non-invasive technique that promises to deliver high quality images, no radiation, high depth penetration and nearly no background from tissues. Signal intensity and spatial resolution in MPI are heavily dependent on the properties of tracers. Hence the selection of these nanoparticles for various applications in MPI must be carefully considered to achieve optimum results. In this review, we will provide an overview of the principle of MPI and the key criteria that are required for tracers in order to generate the best signals. Nanoparticle materials such as magnetite, metal ferrites, maghemite, zero valent iron@iron oxide core@shell, iron carbide and iron-cobalt alloy nanoparticles will be discussed as well as their synthetic pathways. Since surface modifications play an important role in enabling the use of these tracers for biomedical applications, coating options including the transfer from organic to inorganic media will also be discussed. Finally, we will discuss different biomedical applications and provide our insights into the most suitable tracer for each of these applications.
Collapse
Affiliation(s)
- H T Kim Duong
- School of Chemistry, UNSW Sydney, NSW 2052, Australia.
| | | | - Lucy Gloag
- School of Chemistry, UNSW Sydney, NSW 2052, Australia.
| | - Liam Barrera
- School of Chemistry, UNSW Sydney, NSW 2052, Australia.
| | - J Justin Gooding
- School of Chemistry, UNSW Sydney, NSW 2052, Australia.
- Australian Centre for NanoMedicine, University of New South Wales, NSW 2052, Australia
| | - Richard D Tilley
- School of Chemistry, UNSW Sydney, NSW 2052, Australia.
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales, NSW 2052, Australia
| |
Collapse
|
13
|
Soto-Cruz J, Mukwaya V, Naz M, Zhang P, López-Brenes MJ, Sáenz-Arce G, Rojas-Carrillo O, Dou H. Polysaccharide/Lipid Nanoconjugates as Alternative Building Blocks for Highly Biocompatible Microcapsules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9556-9566. [PMID: 35880575 DOI: 10.1021/acs.langmuir.2c00937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Saccharide/lipid nanoconjugates are attractive building blocks for the construction of micro- and nanosized structures because of the roles of glycolipids in human body, courtesy of their intrinsic and functional properties. Herein, nanoconjugates based on dextran and oleic acid (Dex-OA) were synthesized via facile amide-linkage chemistry. The resultant Dex-OA micelles could self-assemble into spherical water-filled microcapsules via a water-in-oil emulsification process. By cross-linking, the microcapsules could be transferred to aqueous media, forming a stable microcapsule dispersion. According to optical and fluorescence microscopy, the microcapsules displayed a spherical morphology, and their synthesis is dependent on the concentration of Dex-OA nanoconjugates. Furthermore, the microcapsules could easily encapsulate and retain fluorescently labeled dextran. This strategy offers a robust and efficient method for the construction of microcapsules from fully natural amphiphilic building blocks with the potential for application in diverse fields such as biomedicine, protocell research, and microreactors.
Collapse
Affiliation(s)
- Jackeline Soto-Cruz
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, P. R. China
- Laboratorio de Polímeros (POLIUNA), School of Chemistry, Universidad Nacional, Avenue 1, Street 9, Heredia 40101, Costa Rica
- National Center for Biotechnological Innovations (CENIBiot), CeNAT-CONARE, Avenue 35, Street 100, Pavas, San José 10109, Costa Rica
| | - Vincent Mukwaya
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, P. R. China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 799 Dangui Road, Pudong New District, Shanghai 201203, China
| | - Mehwish Naz
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, P. R. China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 799 Dangui Road, Pudong New District, Shanghai 201203, China
| | - Peipei Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, P. R. China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 799 Dangui Road, Pudong New District, Shanghai 201203, China
| | | | - Giovanni Sáenz-Arce
- Departamento de Física, Universidad Nacional, Avenue 1, Street 9, Heredia 40101, Costa Rica
| | - Oscar Rojas-Carrillo
- Laboratorio de Polímeros (POLIUNA), School of Chemistry, Universidad Nacional, Avenue 1, Street 9, Heredia 40101, Costa Rica
| | - Hongjing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, P. R. China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 799 Dangui Road, Pudong New District, Shanghai 201203, China
| |
Collapse
|
14
|
Mirkasymov AB, Zelepukin IV, Ivanov IN, Belyaev IB, Sh. Dzhalilova D, Trushina DB, Yaremenko AV, Yu. Ivanov V, Nikitin MP, Nikitin PI, Zvyagin AV, Deyev SM. Macrophage Blockade using Nature-Inspired Ferrihydrite for Enhanced Nanoparticle Delivery to Tumor. Int J Pharm 2022; 621:121795. [DOI: 10.1016/j.ijpharm.2022.121795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/28/2022] [Accepted: 04/29/2022] [Indexed: 11/28/2022]
|
15
|
Bilal M, Iqbal HM, Adil SF, Shaik MR, Abdelgawad A, Hatshan MR, Khan M. Surface-coated magnetic nanostructured materials for robust bio-catalysis and biomedical applications-A review. J Adv Res 2022; 38:157-177. [PMID: 35572403 PMCID: PMC9091734 DOI: 10.1016/j.jare.2021.09.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Enzymes based bio-catalysis has wide range of applications in various chemical and biological processes. Thus, the process of enzymes immobilization on suitable support to obtain highly active and stable bio-catalysts has great potential in industrial applications. Particularly, surface-modified magnetic nanomaterials have garnered a special interest as versatile platforms for biomolecules/enzyme immobilization. AIM OF REVIEW This review spotlights recent progress in the immobilization of various enzymes onto surface-coated multifunctional magnetic nanostructured materials and their derived nano-constructs for multiple applications. Conclusive remarks, technical challenges, and insightful opinions on this field of research which are helpful to expand the application prospects of these materials are also given with suitable examples. KEY SCIENTIFIC CONCEPTS OF REVIEW Nanostructured materials, including surface-coated magnetic nanoparticles have recently gained immense significance as suitable support materials for enzyme immobilization, due to their large surface area, unique functionalities, and high chemical and mechanical stability. Besides, magnetic nanoparticles are less expensive and offers great potential in industrial applications due to their easy recovery and separation form their enzyme conjugates with an external magnetic field. Magnetic nanoparticles based biocatalytic systems offer a wide-working temperature, pH range, increased storage and thermal stabilities. So far, several studies have documented the application of a variety of surface modification and functionalization techniques to circumvent the aggregation and oxidation of magnetic nanoparticles. Surface engineering of magnetic nanoparticles (MNPs) helps to improve the dispersion stability, enhance mechanical and physicochemical properties, upgrade the surface activity and also increases enzyme immobilization capabilities and biocompatibility of the materials. However, several challenges still need to be addressed, such as controlled synthesis of MNPs and clinical aspects of these materials require consistent research from multidisciplinary scientists to realize its practical applications.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
- Corresponding authors.
| | - Hafiz M.N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Syed Farooq Adil
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
- Corresponding authors.
| | - Abdelatty Abdelgawad
- Department of Industrial Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Kingdom of Saudi Arabia
| | - Mohammad Rafe Hatshan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
| | - Mujeeb Khan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
- Corresponding authors.
| |
Collapse
|
16
|
Anadozie SO, Adewale OB, Fadaka AO, Afolabi OB, Roux S. Synthesis of gold nanoparticles using extract of Carica papaya fruit: Evaluation of its antioxidant properties and effect on colorectal and breast cancer cells. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
17
|
Pournoori N, Oghabian MA, Irajirad R, Muhammadnejad S, Delavari H H. Magnetic resonance imaging of tumor-infiltrating lymphocytes by anti-CD3-conjugated iron oxide nanoparticles. ChemMedChem 2022; 17:e202100708. [PMID: 35305289 DOI: 10.1002/cmdc.202100708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/17/2022] [Indexed: 11/06/2022]
Abstract
Immune checkpoint blockade, considered a revolutionary approach in cancer treatment, is only effective in patients with high tumor-infiltrating lymphocytes (TILs). This work aimed to investigate the feasibility of targeted contrast agent (CA) based on dextran-coated superparamagnetic iron oxide nanoparticles (SPIONs-DEX) for TILs detection by magnetic resonance imaging (MRI) studies. To do so, we synthesized an MRI CA by conjugating SPIONs-DEX to an anti-CD3 monoclonal antibody via cyanogen bromide as a cross-linker. In vitro assessments demonstrated the higher labeling efficiency of the developed CA to CD3+ lymphocytes compared to SPIONs-DEX. In vivo MRI of a xenograft model of CD3+ lymphocytes revealed the significant signal loss after the intravenous injection of the bioconjugate by ~ 34% and 21% in T 2 * -weighted and T 2 -weighted images, respectively. The histopathological evaluation of xenograft tumors confirmed the labeling of lymphocytes by the targeted CA. This approach could open up a new horizon in the non-invasive assessment of TILs to identify patients eligible for immunotherapy.
Collapse
Affiliation(s)
- Negin Pournoori
- Tehran University of Medical Sciences School of Medicine, Medical Physics and Biomedical Engineering, IRAN (ISLAMIC REPUBLIC OF)
| | - Mohammad Ali Oghabian
- Tehran University of Medical Sciences School of Medicine, Medical Physics and Biomedical Engineering, IRAN (ISLAMIC REPUBLIC OF)
| | - Rasoul Irajirad
- Iran University of Medical Sciences, Finetech in Medicine Research Center, IRAN (ISLAMIC REPUBLIC OF)
| | - Samad Muhammadnejad
- Tehran University of Medical Sciences, Digestive Diseases Research Institute, IRAN (ISLAMIC REPUBLIC OF)
| | - Hamid Delavari H
- Tarbiat Modares University, Materials Engineering, Gisha, Tehran, IRAN (ISLAMIC REPUBLIC OF)
| |
Collapse
|
18
|
Jacob AG, Wahab RA, Misson M. Operational Stability, Regenerability, and Thermodynamics Studies on Biogenic Silica/Magnetite/Graphene Oxide Nanocomposite-Activated Candida rugosa Lipase. Polymers (Basel) 2021; 13:polym13213854. [PMID: 34771409 PMCID: PMC8587300 DOI: 10.3390/polym13213854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 11/24/2022] Open
Abstract
Inorganic biopolymer-based nanocomposites are useful for stabilizing lipases for enhanced catalytic performance and easy separation. Herein, we report the operational stability, regenerability, and thermodynamics studies of the ternary biogenic silica/magnetite/graphene oxide nanocomposite (SiO2/Fe3O4/GO) as a support for Candida rugosa lipase (CRL). The X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), field-electron scanning electron microscopy (FESEM), vibrating sample magnetometry (VSM), and nitrogen adsorption/desorption data on the support and biocatalyst corroborated their successful fabrication. XPS revealed the Fe3O4 adopted Fe2+ and Fe3+ oxidation states, while XRD data of GO yielded a peak at 2θ = 11.67°, with the SiO2/Fe3O4/GO revealing a high surface area (≈261 m2/g). The fourier transform infrared (FTIR) spectra affirmed the successful fabricated supports and catalyst. The half-life and thermodynamic parameters of the superparamagnetic immobilized CRL (CRL/SiO2/Fe3O4/GO) improved over the free CRL. The microwave-regenerated CRL/SiO2/Fe3O4/GO (≈82%) exhibited higher catalytic activity than ultrasonic-regenerated (≈71%) ones. Lower activation (Ea) and higher deactivation energies (Ed) were also noted for the CRL/SiO2/Fe3O4/GO (13.87 kJ/mol, 32.32 kJ/mol) than free CRL (15.26 kJ/mol, 27.60 kJ/mol). A peak at 4.28 min in the gas chromatograph-flame ionization detection (GC-FID) chromatogram of the purified ethyl valerate supported the unique six types of 14 hydrogen atoms of the ester (CAS: 539-82-2) in the proton nuclear magnetic resonance (1H-NMR) data. The results collectively demonstrated the suitability of SiO2/Fe3O4/GO in stabilizing CRL for improved operational stability and thermodynamics and permitted biocatalyst regenerability.
Collapse
Affiliation(s)
- Adikwu Gowon Jacob
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia;
- Department of Applied Chemistry, Federal University Dutsin-Ma (FUDMA), Dutsin-Ma P.M.B. 5001, Katsina State, Nigeria
- Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia;
- Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia
- Correspondence: or (R.A.W.); (M.M.)
| | - Mailin Misson
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
- Correspondence: or (R.A.W.); (M.M.)
| |
Collapse
|
19
|
Sood A, Arora V, Kumari S, Sarkar A, Kumaran SS, Chaturvedi S, Jain TK, Agrawal G. Imaging application and radiosensitivity enhancement of pectin decorated multifunctional magnetic nanoparticles in cancer therapy. Int J Biol Macromol 2021; 189:443-454. [PMID: 34425122 DOI: 10.1016/j.ijbiomac.2021.08.124] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 11/30/2022]
Abstract
In this contribution, we report the fabrication of multifunctional nanoparticles with gold shell over an iron oxide nanoparticles (INPs) core. The fabricated system combines the magnetic property of INPs and the surface plasmon resonance of gold. The developed nanoparticles are coated with thiolated pectin (TPGINs), which provides stability to the nanoparticles dispersion and allows the loading of hydrophobic anticancer drugs. Curcumin (Cur) is used as the model drug and an encapsulation efficiency of approximately 80% in TPGINs is observed. Cytotoxicity study with HeLa cells shows that Cur-loaded TPGINs have better viability percent (~30%) than Cur alone (~40%) at a dose of 30 μg of TPGINs. Further, annexin V-PI assay demonstrated the enhanced anticancer activity of Cur-loaded TPGINs via induction of apoptosis. The use of TPGINs leads to a significant enhancement in generating reactive oxygen species (ROS) in HeLa cells through improved radiosensitization by gamma irradiation (0.5 Gy). TPGINs are further evaluated for imparting contrast in magnetic resonance imaging (MRI) with the r2 relaxivity in the range of 11.06-13.94 s-1 μg-1 mL when measured at 7 Tesla. These experimental results indicate the potential of TPGINs for drug delivery and MR imaging.
Collapse
Affiliation(s)
- Ankur Sood
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175075, India
| | - Varun Arora
- University School of Basic and Applied Sciences (USBAS), Guru Gobind Singh Indraprastha University (GGSIPU), Sector 16-C, Dwarka, New Delhi 110078, India
| | - Sadhana Kumari
- Department of Nuclear Magnetic Resonance (NMR), All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi 110029, India
| | - Ankita Sarkar
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175075, India
| | - S Senthil Kumaran
- Department of Nuclear Magnetic Resonance (NMR), All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi 110029, India
| | - Shubhra Chaturvedi
- Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organization (DRDO), Lucknow Road, Timarpur, New Delhi, India
| | - Tapan K Jain
- University School of Basic and Applied Sciences (USBAS), Guru Gobind Singh Indraprastha University (GGSIPU), Sector 16-C, Dwarka, New Delhi 110078, India.
| | - Garima Agrawal
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175075, India; Advanced Materials Research Center (AMRC), Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175075, India.
| |
Collapse
|
20
|
Effect of dispersants on cytotoxic properties of magnetic nanoparticles: a review. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03940-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Elahi N, Rizwan M. Progress and prospects of magnetic iron oxide nanoparticles in biomedical applications: A review. Artif Organs 2021; 45:1272-1299. [PMID: 34245037 DOI: 10.1111/aor.14027] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 12/26/2022]
Abstract
Nanoscience has been considered as one of the most substantial research in modern science. The utilization of nanoparticle (NP) materials provides numerous advantages in biomedical applications due to their unique properties. Among various types of nanoparticles, the magnetic nanoparticles (MNPs) of iron oxide possess intrinsic features, which have been efficiently exploited for biomedical purposes including drug delivery, magnetic resonance imaging, Magnetic-activated cell sorting, nanobiosensors, hyperthermia, and tissue engineering and regenerative medicine. The size and shape of nanostructures are the main factors affecting the physicochemical features of superparamagnetic iron oxide nanoparticles, which play an important role in the improvement of MNP properties, and can be controlled by appropriate synthesis strategies. On the other hand, the proper modification and functionalization of the surface of iron oxide nanoparticles have significant effects on the improvement of physicochemical and mechanical features, biocompatibility, stability, and surface activity of MNPs. This review focuses on popular methods of fabrication, beneficial surface coatings with regard to the main required features for their biomedical use, as well as new applications.
Collapse
Affiliation(s)
- Narges Elahi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advance Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.,Department of Medical Nanotechnology, School of Advance Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Muhammad Rizwan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
22
|
Ternary biogenic silica/magnetite/graphene oxide composite for the hyperactivation of Candida rugosa lipase in the esterification production of ethyl valerate. Enzyme Microb Technol 2021; 148:109807. [PMID: 34116744 DOI: 10.1016/j.enzmictec.2021.109807] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023]
Abstract
Oil palm leaves (OPL) silica (SiO2) can replace the energy-intensive, commercially produced SiO2. Moreover, the agronomically sourced biogenic SiO2 is more biocompatible and cost-effective enzyme support, which properties could be improved by the addition of magnetite (Fe3O4) and graphene oxide (GO) to yield better ternary support to immobilize enzymes, i.e., Candida rugosa lipase (CRL). This study aimed to optimize the Candida rugosa lipase (CRL immobilization onto the ternary OPL-silica-magnetite (Fe3O4)-GO (SiO2/Fe3O4/GO) support, for use as biocatalyst for ethyl valerate (EV) production. Notably, this is the first study detailing the CRL/SiO2/Fe3O4/GO biocatalyst preparation for rapid and high yield production of ethyl valerate (EV). AFM and FESEM micrographs revealed globules of CRL covalently bound to GL-A-SiO2/Fe3O4/GO; similar to Raman and UV-spectroscopy results. FTIR spectra revealed amide bonds at 3478 cm-1 and 1640 cm-1 from covalent interactions between CRL and GL-A-SiO2/Fe3O4/GO. Optimum immobilization conditions were 4% (v/v) glutaraldehyde, 8 mg/mL CRL, at 16 h stirring in 150 mM NaCl at 30 °C, offering 24.78 ± 0.26 mg/g protein (specific activity = 65.24 ± 0.88 U/g). The CRL/SiO2/Fe3O4/GO yielded 77.43 ± 1.04 % of EV compared to free CRL (48.75 ± 0.70 %), verifying the suitability of SiO2/Fe3O4/GO to hyperactivate and stabilize CRL for satisfactory EV production.
Collapse
|
23
|
Sánchez J, Rodríguez-Reyes M, Cortés-Hernández DA, Ávila-Orta CA, Reyes-Rodríguez PY. Heating capacity and biocompatibility of Pluronic-coated manganese gallium ferrites for magnetic hyperthermia treatment. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
24
|
Blokpoel Ferreras LA, Chan SY, Vazquez Reina S, Dixon JE. Rapidly Transducing and Spatially Localized Magnetofection Using Peptide-Mediated Non-Viral Gene Delivery Based on Iron Oxide Nanoparticles. ACS APPLIED NANO MATERIALS 2021; 4:167-181. [PMID: 33763629 PMCID: PMC7978400 DOI: 10.1021/acsanm.0c02465] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/06/2020] [Indexed: 05/03/2023]
Abstract
Non-viral delivery systems are generally of low efficiency, which limits their use in gene therapy and editing applications. We previously developed a technology termed glycosaminoglycan (GAG)-binding enhanced transduction (GET) to efficiently deliver a variety of cargos intracellularly; our system employs GAG-binding peptides, which promote cell targeting, and cell penetrating peptides (CPPs), which enhance endocytotic cell internalization. Herein, we describe a further modification by combining gene delivery and magnetic targeting with the GET technology. We associated GET peptides, plasmid (p)DNA, and iron oxide superparamagnetic nanoparticles (MNPs), allowing rapid and targeted GET-mediated uptake by application of static magnetic fields in NIH3T3 cells. This produced effective transfection levels (significantly higher than the control) with seconds to minutes of exposure and localized gene delivery two orders of magnitude higher in targeted over non-targeted cell monolayers using magnetic fields (in 15 min exposure delivering GFP reporter pDNA). More importantly, high cell membrane targeting by GET-DNA and MNP co-complexes and magnetic fields allowed further enhancement to endocytotic uptake, meaning that the nucleic acid cargo was rapidly internalized beyond that of GET complexes alone (GET-DNA). Magnetofection by MNPs combined with GET-mediated delivery allows magnetic field-guided local transfection in vitro and could facilitate focused gene delivery for future regenerative and disease-targeted therapies in vivo.
Collapse
Affiliation(s)
- Lia A. Blokpoel Ferreras
- Regenerative
Medicine & Cellular Therapies Division, The University of Nottingham
Biodiscovery Institute (BDI), School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Sze Yan Chan
- Regenerative
Medicine & Cellular Therapies Division, The University of Nottingham
Biodiscovery Institute (BDI), School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Saul Vazquez Reina
- School
of Veterinary Sciences, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - James E. Dixon
- Regenerative
Medicine & Cellular Therapies Division, The University of Nottingham
Biodiscovery Institute (BDI), School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.
| |
Collapse
|
25
|
Mylkie K, Nowak P, Rybczynski P, Ziegler-Borowska M. Polymer-Coated Magnetite Nanoparticles for Protein Immobilization. MATERIALS (BASEL, SWITZERLAND) 2021; 14:E248. [PMID: 33419055 PMCID: PMC7825442 DOI: 10.3390/ma14020248] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 11/20/2022]
Abstract
Since their discovery, magnetic nanoparticles (MNPs) have become materials with great potential, especially considering the applications of biomedical sciences. A series of works on the preparation, characterization, and application of MNPs has shown that the biological activity of such materials depends on their size, shape, core, and shell nature. Some of the most commonly used MNPs are those based on a magnetite core. On the other hand, synthetic biopolymers are used as a protective surface coating for these nanoparticles. This review describes the advances in the field of polymer-coated MNPs for protein immobilization over the past decade. General methods of MNP preparation and protein immobilization are presented. The most extensive section of this article discusses the latest work on the use of polymer-coated MNPs for the physical and chemical immobilization of three types of proteins: enzymes, antibodies, and serum proteins. Where possible, the effectiveness of the immobilization and the activity and use of the immobilized protein are reported. Finally, the information available in the peer-reviewed literature and the application perspectives for the MNP-immobilized protein systems are summarized as well.
Collapse
Affiliation(s)
| | | | | | - Marta Ziegler-Borowska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (K.M.); (P.N.); (P.R.)
| |
Collapse
|
26
|
Immobilization of alcohol dehydrogenase from Saccharomyces cerevisiae onto carboxymethyl dextran-coated magnetic nanoparticles: a novel route for biocatalyst improvement via epoxy activation. Sci Rep 2020; 10:19478. [PMID: 33173138 PMCID: PMC7656461 DOI: 10.1038/s41598-020-76463-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/14/2020] [Indexed: 01/01/2023] Open
Abstract
A novel method is described for the immobilization of alcohol dehydrogenase (ADH) from Saccharomyces cerevisiae onto carboxymethyl dextran (CMD) coated magnetic nanoparticles (CMD-MNPs) activated with epoxy groups, using epichlorohydrin (EClH). EClH was used as an activating agent to bind ADH molecules on the surface of CMD-MNPs. Optimal immobilization conditions (activating agent concentration, temperature, rotation speed, medium pH, immobilization time and enzyme concentration) were set to obtain the highest expressed activity of the immobilized enzyme. ADH that was immobilized onto epoxy-activated CMD-MNPs (ADH-CMD-MNPs) maintained 90% of the expressed activity. Thermal stability of ADH-CMD-MNPS after 24 h at 20 °C and 40 °C yielded 79% and 80% of initial activity, respectively, while soluble enzyme activity was only 19% at 20 °C and the enzyme was non-active at 40 °C. Expressed activity of ADH-CMD-MNPs after 21 days of storage at 4 °C was 75%. Kinetic parameters (KM, vmax) of soluble and immobilized ADH were determined, resulting in 125 mM and 1.2 µmol/min for soluble ADH, and in 73 mM and 4.7 µmol/min for immobilized ADH.
Collapse
|