1
|
Brimmer S, Ji P, Birla RK, Heinle JS, Grande-Allen JK, Keswani SG. Development of Novel 3D Spheroids for Discrete Subaortic Stenosis. Cardiovasc Eng Technol 2024; 15:704-715. [PMID: 39495395 DOI: 10.1007/s13239-024-00746-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 08/07/2024] [Indexed: 11/05/2024]
Abstract
In this study, we propose a new method for bioprinting 3D Spheroids to study complex congenital heart disease known as discrete subaortic stenosis (DSS). The bioprinter allows us to manipulate the extrusion pressure to change the size of the spheroids, and the alginate porosity increases in size over time. The spheroids are composed of human umbilical vein endothelial cells (HUVECs), and we demonstrated that pressure and time during the bioprinting process can modulate the diameter of the spheroids. In addition, we used Pluronic acid to maintain the shape and position of the spheroids. Characterization of HUVECs in the spheroids confirmed their uniform distribution and we demonstrated cell viability as a function of time. Compared to traditional 2D cell cultures, the 3D spheroids model provides more relevant physiological environments, making it valuable for drug testing and therapeutic applications.
Collapse
Affiliation(s)
- Sunita Brimmer
- Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, TX, USA
- Center for Congenital Cardiac Research, Texas Children's Hospital, Houston, TX, USA
- Division of Congenital Heart Surgery, Texas Children's Hospital, Houston, TX, USA
| | - Pengfei Ji
- Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, TX, USA
- Center for Congenital Cardiac Research, Texas Children's Hospital, Houston, TX, USA
- Division of Congenital Heart Surgery, Texas Children's Hospital, Houston, TX, USA
| | - Ravi K Birla
- Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, TX, USA
- Center for Congenital Cardiac Research, Texas Children's Hospital, Houston, TX, USA
- Division of Congenital Heart Surgery, Texas Children's Hospital, Houston, TX, USA
- Department of Surgery, Baylor College of Medicine, Houston, TX, USA
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, USA
| | - Jeffrey S Heinle
- Center for Congenital Cardiac Research, Texas Children's Hospital, Houston, TX, USA
- Division of Congenital Heart Surgery, Texas Children's Hospital, Houston, TX, USA
- Department of Surgery, Baylor College of Medicine, Houston, TX, USA
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, USA
| | | | - Sundeep G Keswani
- Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, TX, USA.
- Center for Congenital Cardiac Research, Texas Children's Hospital, Houston, TX, USA.
- Department of Surgery, Baylor College of Medicine, Houston, TX, USA.
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, USA.
- Feigin Center C.450.06, Texas Children's Hospital, 1102 Bates Ave, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Amiryaghoubi N, Fathi M. Bioscaffolds of graphene based-polymeric hybrid materials for myocardial tissue engineering. BIOIMPACTS : BI 2023; 14:27684. [PMID: 38327630 PMCID: PMC10844587 DOI: 10.34172/bi.2023.27684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/20/2023] [Accepted: 07/03/2023] [Indexed: 02/09/2024]
Abstract
Introduction Biomaterials currently utilized for the regeneration of myocardial tissue seem to associate with certain restrictions, including deficiency of electrical conductivity and sufficient mechanical strength. These two factors play an important role in cardiac tissue engineering and regeneration. The contractile property of cardiomyocytes depends on directed signal transmission over the electroconductive systems that happen inside the innate myocardium. Because of their distinctive electrical behavior, electroactive materials such as graphene might be used for the regeneration of cardiac tissue. Methods In this review, we aim to provide deep insight into the applications of graphene and graphene derivative-based hybrid polymeric scaffolds in cardiomyogenic differentiation and cardiac tissue regeneration. Results Synthetic biodegradable polymers are considered as a platform because their degradation can be controlled over time and easily functionalized. Therefore, graphene-polymeric hybrid scaffolds with anisotropic electrical behavior can be utilized to produce organizational and efficient constructs for macroscopic cardiac tissue engineering. In cardiac tissue regeneration, natural polymer based-scaffolds such as chitosan, gelatin, and cellulose can provide a permissive setting significantly supporting the differentiation and growth of the human induced pluripotent stem cells -derived cardiomyocytes, in large part due to their negligible immunogenicity and suitable biodegradability. Conclusion Cardiac tissue regeneration characteristically utilizes an extracellular matrix (scaffold), cells, and growth factors that enhance cell adhesion, growth, and cardiogenic differentiation. From the various evaluated electroactive polymeric scaffolds for cardiac tissue regeneration in the past decade, graphene and its derivatives-based materials can be utilized efficiently for cardiac tissue engineering.
Collapse
Affiliation(s)
- Nazanin Amiryaghoubi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Zheng S, Tian Y, Ouyang J, Shen Y, Wang X, Luan J. Carbon nanomaterials for drug delivery and tissue engineering. Front Chem 2022; 10:990362. [PMID: 36171994 PMCID: PMC9510755 DOI: 10.3389/fchem.2022.990362] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/19/2022] [Indexed: 11/14/2022] Open
Abstract
Carbon nanomaterials are some of the state-of-the-art materials used in drug-delivery and tissue-engineering research. Compared with traditional materials, carbon nanomaterials have the advantages of large specific surface areas and unique properties and are more suitable for use in drug delivery and tissue engineering after modification. Their characteristics, such as high drug loading and tissue loading, good biocompatibility, good targeting and long duration of action, indicate their great development potential for biomedical applications. In this paper, the synthesis and application of carbon dots (CDs), carbon nanotubes (CNTs) and graphene in drug delivery and tissue engineering are reviewed in detail. In this review, we discuss the current research focus and existing problems of carbon nanomaterials in order to provide a reference for the safe and effective application of carbon nanomaterials in drug delivery and tissue engineering.
Collapse
Affiliation(s)
- Shaolie Zheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yuan Tian
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Jiang Ouyang
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Yuan Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaoyu Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- *Correspondence: Xiaoyu Wang, ; Jian Luan,
| | - Jian Luan
- College of Sciences, Northeastern University, Shenyang, China
- *Correspondence: Xiaoyu Wang, ; Jian Luan,
| |
Collapse
|
4
|
Sharma R, Kumar S, Bhawna, Gupta A, Dheer N, Jain P, Singh P, Kumar V. An Insight of Nanomaterials in Tissue Engineering from Fabrication to Applications. Tissue Eng Regen Med 2022; 19:927-960. [PMID: 35661124 DOI: 10.1007/s13770-022-00459-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/17/2022] [Accepted: 04/08/2022] [Indexed: 01/09/2023] Open
Abstract
Tissue engineering is a research domain that deals with the growth of various kinds of tissues with the help of synthetic composites. With the culmination of nanotechnology and bioengineering, tissue engineering has emerged as an exciting domain. Recent literature describes its various applications in biomedical and biological sciences, such as facilitating the growth of tissue and organs, gene delivery, biosensor-based detection, etc. It deals with the development of biomimetics to repair, restore, maintain and amplify or strengthen several biological functions at the level of tissue and organs. Herein, the synthesis of nanocomposites based on polymers, along with their classification as conductive hydrogels and bioscaffolds, is comprehensively discussed. Furthermore, their implementation in numerous tissue engineering and regenerative medicine applications is also described. The limitations of tissue engineering are also discussed here. The present review highlights and summarizes the latest progress in the tissue engineering domain directed at functionalized nanomaterials.
Collapse
Affiliation(s)
- Ritika Sharma
- Department of Biochemistry, University of Delhi, Delhi, India
| | - Sanjeev Kumar
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi, India.,Department of Chemistry, University of Delhi, Delhi, India
| | - Bhawna
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi, India.,Department of Chemistry, University of Delhi, Delhi, India
| | - Akanksha Gupta
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi, India.
| | - Neelu Dheer
- Department of Chemistry, Acharya Narendra Dev College, University of Delhi, Delhi, India
| | - Pallavi Jain
- Department of Chemistry, SRM Institute of Science and Technology, Delhi NCR Campus, Ghaziabad, Uttar Pradesh, India
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India.
| | - Vinod Kumar
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi, India. .,Special Centre for Nano Science, Jawaharlal Nehru University, Delhi, India.
| |
Collapse
|
5
|
Wharton's Jelly Mesenchymal Stromal Cells and Derived Extracellular Vesicles as Post-Myocardial Infarction Therapeutic Toolkit: An Experienced View. Pharmaceutics 2021; 13:pharmaceutics13091336. [PMID: 34575412 PMCID: PMC8471243 DOI: 10.3390/pharmaceutics13091336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 12/18/2022] Open
Abstract
Outstanding progress has been achieved in developing therapeutic options for reasonably alleviating symptoms and prolonging the lifespan of patients suffering from myocardial infarction (MI). Current treatments, however, only partially address the functional recovery of post-infarcted myocardium, which is in fact the major goal for effective primary care. In this context, we largely investigated novel cell and TE tissue engineering therapeutic approaches for cardiac repair, particularly using multipotent mesenchymal stromal cells (MSC) and natural extracellular matrices, from pre-clinical studies to clinical application. A further step in this field is offered by MSC-derived extracellular vesicles (EV), which are naturally released nanosized lipid bilayer-delimited particles with a key role in cell-to-cell communication. Herein, in this review, we further describe and discuss the rationale, outcomes and challenges of our evidence-based therapy approaches using Wharton's jelly MSC and derived EV in post-MI management.
Collapse
|
6
|
Monguió-Tortajada M, Prat-Vidal C, Moron-Font M, Clos-Sansalvador M, Calle A, Gastelurrutia P, Cserkoova A, Morancho A, Ramírez MÁ, Rosell A, Bayes-Genis A, Gálvez-Montón C, Borràs FE, Roura S. Local administration of porcine immunomodulatory, chemotactic and angiogenic extracellular vesicles using engineered cardiac scaffolds for myocardial infarction. Bioact Mater 2021; 6:3314-3327. [PMID: 33778207 PMCID: PMC7973387 DOI: 10.1016/j.bioactmat.2021.02.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
The administration of extracellular vesicles (EV) from mesenchymal stromal cells (MSC) is a promising cell-free nanotherapy for tissue repair after myocardial infarction (MI). However, the optimal EV delivery strategy remains undetermined. Here, we designed a novel MSC-EV delivery, using 3D scaffolds engineered from decellularised cardiac tissue as a cell-free product for cardiac repair. EV from porcine cardiac adipose tissue-derived MSC (cATMSC) were purified by size exclusion chromatography (SEC), functionally analysed and loaded to scaffolds. cATMSC-EV markedly reduced polyclonal proliferation and pro-inflammatory cytokines production (IFNγ, TNFα, IL12p40) of allogeneic PBMC. Moreover, cATMSC-EV recruited outgrowth endothelial cells (OEC) and allogeneic MSC, and promoted angiogenesis. Fluorescently labelled cATMSC-EV were mixed with peptide hydrogel, and were successfully retained in decellularised scaffolds. Then, cATMSC-EV-embedded pericardial scaffolds were administered in vivo over the ischemic myocardium in a pig model of MI. Six days from implantation, the engineered scaffold efficiently integrated into the post-infarcted myocardium. cATMSC-EV were detected within the construct and MI core, and promoted an increase in vascular density and reduction in macrophage and T cell infiltration within the damaged myocardium. The confined administration of multifunctional MSC-EV within an engineered pericardial scaffold ensures local EV dosage and release, and generates a vascularised bioactive niche for cell recruitment, engraftment and modulation of short-term post-ischemic inflammation.
Collapse
Affiliation(s)
- Marta Monguió-Tortajada
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain.,REMAR-IVECAT Group, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain.,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Prat-Vidal
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain.,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain.,Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Miriam Moron-Font
- REMAR-IVECAT Group, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain
| | - Marta Clos-Sansalvador
- REMAR-IVECAT Group, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Alexandra Calle
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Paloma Gastelurrutia
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain.,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain.,Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Adriana Cserkoova
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain
| | - Anna Morancho
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute (VHIR), UAB, Barcelona, Spain
| | - Miguel Ángel Ramírez
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Anna Rosell
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute (VHIR), UAB, Barcelona, Spain
| | - Antoni Bayes-Genis
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain.,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain.,Cardiology Service, Germans Trias i Pujol University Hospital, Badalona, Spain.,Department of Medicine, UAB, Barcelona, Spain
| | - Carolina Gálvez-Montón
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain.,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Francesc E Borràs
- REMAR-IVECAT Group, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain.,Nephrology Service, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Santiago Roura
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain.,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain.,Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Barcelona, 08500, Spain
| |
Collapse
|
7
|
Gastelurrutia P, Prat-Vidal C, Vives J, Coll R, Bayes-Genis A, Gálvez-Montón C. Transitioning From Preclinical Evidence to Advanced Therapy Medicinal Product: A Spanish Experience. Front Cardiovasc Med 2021; 8:604434. [PMID: 33614746 PMCID: PMC7890001 DOI: 10.3389/fcvm.2021.604434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/04/2021] [Indexed: 12/28/2022] Open
Abstract
A systematic and ordered product development program, in compliance with current quality and regulatory standards, increases the likelihood of yielding a successful advanced therapy medicinal product (ATMP) for clinical use as safe and effective therapy. As this is a novel field, little accurate information is available regarding the steps to be followed, and the information to be produced to support the development and use of an ATMP. Notably, successful clinical translation can be somewhat cumbersome for academic researchers. In this article, we have provided a summary of the available information, supported by our experience in Spain throughout the development of an ATMP for myocardial infarction, from the pre-clinical stage to phase I clinical trial approval.
Collapse
Affiliation(s)
- Paloma Gastelurrutia
- Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Spain.,Insuficiencia Cardíaca y Regeneración Cardíaca Research Program, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain.,Centro de Investigación Biomédica en Red Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Prat-Vidal
- Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Spain.,Insuficiencia Cardíaca y Regeneración Cardíaca Research Program, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain.,Centro de Investigación Biomédica en Red Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
| | - Joaquim Vives
- Servei de Teràpia Cel·lular, Banc de Sang i Teixits, Barcelona, Spain.,Musculoskeletal Tissue Engineering Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ruth Coll
- Servei de Teràpia Cel·lular, Banc de Sang i Teixits, Barcelona, Spain
| | - Antoni Bayes-Genis
- Insuficiencia Cardíaca y Regeneración Cardíaca Research Program, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain.,Centro de Investigación Biomédica en Red Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain.,Hospital Universitari Germans Trias i Pujol, Badalona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carolina Gálvez-Montón
- Insuficiencia Cardíaca y Regeneración Cardíaca Research Program, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain.,Centro de Investigación Biomédica en Red Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
8
|
Singhal A, Sinha N, Kumari P, Purkayastha M. Synthesis and Applications of Hydrogels in Cancer Therapy. Anticancer Agents Med Chem 2020; 20:1431-1446. [PMID: 31958041 DOI: 10.2174/1871521409666200120094048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 11/10/2019] [Accepted: 12/04/2019] [Indexed: 11/22/2022]
Abstract
Hydrogels are water-insoluble, hydrophilic, cross-linked, three-dimensional networks of polymer chains having the ability to swell and absorb water but do not dissolve in it, that comprise the major difference between gels and hydrogels. The mechanical strength, physical integrity and solubility are offered by the crosslinks. The different applications of hydrogels can be derived based on the methods of their synthesis, response to different stimuli, and their different kinds. Hydrogels are highly biocompatible and have properties similar to human tissues that make it suitable to be used in various biomedical applications, including drug delivery and tissue engineering. The role of hydrogels in cancer therapy is highly emerging in recent years. In the present review, we highlighted different methods of synthesis of hydrogels and their classification based on different parameters. Distinctive applications of hydrogels in the treatment of cancer are also discussed.
Collapse
Affiliation(s)
- Anchal Singhal
- Department of Chemistry, St. Joseph's College (Autonomous), Bangalore-560027, India
| | - Niharika Sinha
- Department of Chemistry, Gautam Buddha University, Noida, India
| | - Pratibha Kumari
- Department of Chemistry, Deshbandhu College, University of Delhi, New Delhi, India
| | | |
Collapse
|
9
|
McLaughlin S, McNeill B, Podrebarac J, Hosoyama K, Sedlakova V, Cron G, Smyth D, Seymour R, Goel K, Liang W, Rayner KJ, Ruel M, Suuronen EJ, Alarcon EI. Injectable human recombinant collagen matrices limit adverse remodeling and improve cardiac function after myocardial infarction. Nat Commun 2019; 10:4866. [PMID: 31653830 PMCID: PMC6814728 DOI: 10.1038/s41467-019-12748-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 09/26/2019] [Indexed: 12/21/2022] Open
Abstract
Despite the success of current therapies for acute myocardial infarction (MI), many patients still develop adverse cardiac remodeling and heart failure. With the growing prevalence of heart failure, a new therapy is needed that can prevent remodeling and support tissue repair. Herein, we report on injectable recombinant human collagen type I (rHCI) and type III (rHCIII) matrices for treating MI. Injecting rHCI or rHCIII matrices in mice during the late proliferative phase post-MI restores the myocardium's mechanical properties and reduces scar size, but only the rHCI matrix maintains remote wall thickness and prevents heart enlargement. rHCI treatment increases cardiomyocyte and capillary numbers in the border zone and the presence of pro-wound healing macrophages in the ischemic area, while reducing the overall recruitment of bone marrow monocytes. Our findings show functional recovery post-MI using rHCI by promoting a healing environment, cardiomyocyte survival, and less pathological remodeling of the myocardium.
Collapse
Affiliation(s)
- Sarah McLaughlin
- BioEngineering and Therapeutic Solutions (BEaTS), Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin street, Ottawa, ON, K1Y4W7, Canada
- Department of Cellular & Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H8M5, Canada
| | - Brian McNeill
- BioEngineering and Therapeutic Solutions (BEaTS), Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin street, Ottawa, ON, K1Y4W7, Canada
| | - James Podrebarac
- BioEngineering and Therapeutic Solutions (BEaTS), Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin street, Ottawa, ON, K1Y4W7, Canada
- Department of Cellular & Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H8M5, Canada
| | - Katsuhiro Hosoyama
- BioEngineering and Therapeutic Solutions (BEaTS), Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin street, Ottawa, ON, K1Y4W7, Canada
| | - Veronika Sedlakova
- BioEngineering and Therapeutic Solutions (BEaTS), Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin street, Ottawa, ON, K1Y4W7, Canada
| | - Gregory Cron
- Department of Radiology, Faculty of Medicine, University of Ottawa, 501 Smyth Road, Ottawa, ON, K1H8L6, Canada
| | - David Smyth
- Cardiac Function Laboratory, University of Ottawa Heart Institute, 40 Ruskin street, Ottawa, ON, K1Y4W7, Canada
| | - Richard Seymour
- BioEngineering and Therapeutic Solutions (BEaTS), Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin street, Ottawa, ON, K1Y4W7, Canada
| | - Keshav Goel
- BioEngineering and Therapeutic Solutions (BEaTS), Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin street, Ottawa, ON, K1Y4W7, Canada
| | - Wenbin Liang
- Department of Cellular & Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H8M5, Canada
- Cardiac Electrophysiology Lab, University of Ottawa Heart Institute, 40 Ruskin street, Ottawa, ON, K1Y4W7, Canada
| | - Katey J Rayner
- Cardiometabolic microRNA Laboratory, University of Ottawa Heart Institute, 40 Ruskin street, Ottawa, ON, K1Y4W7, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H8M5, Canada
| | - Marc Ruel
- BioEngineering and Therapeutic Solutions (BEaTS), Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin street, Ottawa, ON, K1Y4W7, Canada
- Department of Cellular & Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H8M5, Canada
| | - Erik J Suuronen
- BioEngineering and Therapeutic Solutions (BEaTS), Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin street, Ottawa, ON, K1Y4W7, Canada.
- Department of Cellular & Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H8M5, Canada.
| | - Emilio I Alarcon
- BioEngineering and Therapeutic Solutions (BEaTS), Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin street, Ottawa, ON, K1Y4W7, Canada.
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H8M5, Canada.
| |
Collapse
|
10
|
Saberi A, Jabbari F, Zarrintaj P, Saeb MR, Mozafari M. Electrically Conductive Materials: Opportunities and Challenges in Tissue Engineering. Biomolecules 2019; 9:E448. [PMID: 31487913 PMCID: PMC6770812 DOI: 10.3390/biom9090448] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 01/09/2023] Open
Abstract
Tissue engineering endeavors to regenerate tissues and organs through appropriate cellular and molecular interactions at biological interfaces. To this aim, bio-mimicking scaffolds have been designed and practiced to regenerate and repair dysfunctional tissues by modifying cellular activity. Cellular activity and intracellular signaling are performances given to a tissue as a result of the function of elaborated electrically conductive materials. In some cases, conductive materials have exhibited antibacterial properties; moreover, such materials can be utilized for on-demand drug release. Various types of materials ranging from polymers to ceramics and metals have been utilized as parts of conductive tissue engineering scaffolds, having conductivity assortments from a range of semi-conductive to conductive. The cellular and molecular activity can also be affected by the microstructure; therefore, the fabrication methods should be evaluated along with an appropriate selection of conductive materials. This review aims to address the research progress toward the use of electrically conductive materials for the modulation of cellular response at the material-tissue interface for tissue engineering applications.
Collapse
Affiliation(s)
- Azadeh Saberi
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), P.O. Box: 31787-316 Tehran, Iran.
| | - Farzaneh Jabbari
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), P.O. Box: 31787-316 Tehran, Iran.
| | - Payam Zarrintaj
- Polymer Engineering Department, Faculty of Engineering, Urmia University, P.O. Box: 5756151818-165 Urmia, Iran.
| | - Mohammad Reza Saeb
- Department of Resin and Additives, Institute for Color Science and Technology, P.O. Box: 16765-654 Tehran, Iran.
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), P.O Box: 14665-354 Tehran, Iran.
| |
Collapse
|
11
|
Tomov ML, Gil CJ, Cetnar A, Theus AS, Lima BJ, Nish JE, Bauser-Heaton HD, Serpooshan V. Engineering Functional Cardiac Tissues for Regenerative Medicine Applications. Curr Cardiol Rep 2019; 21:105. [PMID: 31367922 PMCID: PMC7153535 DOI: 10.1007/s11886-019-1178-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW Tissue engineering has expanded into a highly versatile manufacturing landscape that holds great promise for advancing cardiovascular regenerative medicine. In this review, we provide a summary of the current state-of-the-art bioengineering technologies used to create functional cardiac tissues for a variety of applications in vitro and in vivo. RECENT FINDINGS Studies over the past few years have made a strong case that tissue engineering is one of the major driving forces behind the accelerating fields of patient-specific regenerative medicine, precision medicine, compound screening, and disease modeling. To date, a variety of approaches have been used to bioengineer functional cardiac constructs, including biomaterial-based, cell-based, and hybrid (using cells and biomaterials) approaches. While some major progress has been made using cellular approaches, with multiple ongoing clinical trials, cell-free cardiac tissue engineering approaches have also accomplished multiple breakthroughs, although drawbacks remain. This review summarizes the most promising methods that have been employed to generate cardiovascular tissue constructs for basic science or clinical applications. Further, we outline the strengths and challenges that are inherent to this field as a whole and for each highlighted technology.
Collapse
Affiliation(s)
- Martin L Tomov
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, 1760 Haygood Dr. NE, HSRB Bldg., Suite E480, Atlanta, GA, 30322, USA
| | - Carmen J Gil
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, 1760 Haygood Dr. NE, HSRB Bldg., Suite E480, Atlanta, GA, 30322, USA
| | - Alexander Cetnar
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, 1760 Haygood Dr. NE, HSRB Bldg., Suite E480, Atlanta, GA, 30322, USA
| | - Andrea S Theus
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, 1760 Haygood Dr. NE, HSRB Bldg., Suite E480, Atlanta, GA, 30322, USA
| | - Bryanna J Lima
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, 1760 Haygood Dr. NE, HSRB Bldg., Suite E480, Atlanta, GA, 30322, USA
| | - Joy E Nish
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, 1760 Haygood Dr. NE, HSRB Bldg., Suite E480, Atlanta, GA, 30322, USA
| | - Holly D Bauser-Heaton
- Division of Pediatric Cardiology, Children's Healthcare of Atlanta Sibley Heart Center, Atlanta, GA, 30322, USA
| | - Vahid Serpooshan
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, 1760 Haygood Dr. NE, HSRB Bldg., Suite E480, Atlanta, GA, 30322, USA.
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30309, USA.
- Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA.
| |
Collapse
|
12
|
Tong C, Li C, Xie B, Li M, Li X, Qi Z, Xia J. Generation of bioartificial hearts using decellularized scaffolds and mixed cells. Biomed Eng Online 2019; 18:71. [PMID: 31164131 PMCID: PMC6549274 DOI: 10.1186/s12938-019-0691-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/27/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Patients with end-stage heart failure must receive treatment to recover cardiac function, and the current primary therapy, heart transplantation, is plagued by the limited supply of donor hearts. Bioengineered artificial hearts generated by seeding of cells on decellularized scaffolds have been suggested as an alternative source for transplantation. This study aimed to develop a tissue-engineered heart with lower immunogenicity and functional similarity to a physiological heart that can be used for heart transplantation. MATERIALS AND METHODS We used sodium dodecyl sulfate (SDS) to decellularize cardiac tissue to obtain a decellularized scaffold. Mesenchymal stem cells (MSCs) were isolated from rat bone marrow and identified by flow cytometric labeling of their surface markers. At the same time, the multi-directional differentiation of MSCs was analyzed. The MSCs, endothelial cells, and cardiomyocytes were allowed to adhere to the decellularized scaffold during perfusion, and the function of tissue-engineered heart was analyzed by immunohistochemistry and electrocardiogram. RESULTS MSCs, isolated from rats differentiated into cardiomyocytes, were seeded along with primary rat cardiomyocytes and endothelial cells onto decellularized rat heart scaffolds. We first confirmed the pluripotency of the MSCs, performed immunostaining against cardiac markers expressed by MSC-derived cardiomyocytes, and completed surface antigen profiling of MSC-derived endothelial cells. After cell seeding and culture, we analyzed the performance of the bioartificial heart by electrocardiography but found that the bioartificial heart exhibited abnormal electrical activity. The results indicated that the tissue-engineered heart lacked some cells necessary for the conduction of electrical current, causing deficient conduction function compared to the normal heart. CONCLUSION Our study suggests that MSCs derived from rats may be useful in the generation of a bioartificial heart, although technical challenges remain with regard to generating a fully functional bioartificial heart.
Collapse
Affiliation(s)
- Cailing Tong
- School of Life Science, Xiamen University, Xiamen, 361102 Fujian China
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361102 Fujian China
| | - Cheng Li
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361102 Fujian China
| | - Baiyi Xie
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361102 Fujian China
| | - Minghui Li
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361102 Fujian China
| | - Xianguo Li
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361102 Fujian China
| | - Zhongquan Qi
- School of Medicine, Guangxi University, Nanning, 530004 Guangxi China
| | - Junjie Xia
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361102 Fujian China
- School of Medicine, Guangxi University, Nanning, 530004 Guangxi China
| |
Collapse
|
13
|
Chaudhuri R, Ramachandran M, Moharil P, Harumalani M, Jaiswal AK. Biomaterials and cells for cardiac tissue engineering: Current choices. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [DOI: 10.1016/j.msec.2017.05.121] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Ketabat F, Karkhaneh A, Mehdinavaz Aghdam R, Hossein Ahmadi Tafti S. Injectable conductive collagen/alginate/polypyrrole hydrogels as a biocompatible system for biomedical applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 28:794-805. [DOI: 10.1080/09205063.2017.1302314] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Farinaz Ketabat
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Akbar Karkhaneh
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Rouhollah Mehdinavaz Aghdam
- Biomedical Engineering Faculty, Islamic Azad University, Science and Research Branch, Tehran, Iran
- Tehran Heart Hospital Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
15
|
Gálvez‐Montón C, Bragós R, Soler‐Botija C, Díaz‐Güemes I, Prat‐Vidal C, Crisóstomo V, Sánchez‐Margallo FM, Llucià‐Valldeperas A, Bogónez‐Franco P, Perea‐Gil I, Roura S, Bayes‐Genis A. Noninvasive Assessment of an Engineered Bioactive Graft in Myocardial Infarction: Impact on Cardiac Function and Scar Healing. Stem Cells Transl Med 2016; 6:647-655. [PMID: 28191775 PMCID: PMC5442807 DOI: 10.5966/sctm.2016-0063] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 07/28/2016] [Indexed: 01/09/2023] Open
Abstract
Cardiac tissue engineering, which combines cells and biomaterials, is promising for limiting the sequelae of myocardial infarction (MI). We assessed myocardial function and scar evolution after implanting an engineered bioactive impedance graft (EBIG) in a swine MI model. The EBIG comprises a scaffold of decellularized human pericardium, green fluorescent protein‐labeled porcine adipose tissue‐derived progenitor cells (pATPCs), and a customized‐design electrical impedance spectroscopy (EIS) monitoring system. Cardiac function was evaluated noninvasively by using magnetic resonance imaging (MRI). Scar healing was evaluated by using the EIS system within the implanted graft. Additionally, infarct size, fibrosis, and inflammation were explored by histopathology. Upon sacrifice 1 month after the intervention, MRI detected a significant improvement in left ventricular ejection fraction (7.5% ± 4.9% vs. 1.4% ± 3.7%; p = .038) and stroke volume (11.5 ± 5.9 ml vs. 3 ± 4.5 ml; p = .019) in EBIG‐treated animals. Noninvasive EIS data analysis showed differences in both impedance magnitude ratio (−0.02 ± 0.04 per day vs. −0.48 ± 0.07 per day; p = .002) and phase angle slope (−0.18° ± 0.24° per day vs. −3.52° ± 0.84° per day; p = .004) in EBIG compared with control animals. Moreover, in EBIG‐treated animals, the infarct size was 48% smaller (3.4% ± 0.6% vs. 6.5% ± 1%; p = .015), less inflammation was found by means of CD25+ lymphocytes (0.65 ± 0.12 vs. 1.26 ± 0.2; p = .006), and a lower collagen I/III ratio was detected (0.49 ± 0.06 vs. 1.66 ± 0.5; p = .019). An EBIG composed of acellular pericardium refilled with pATPCs significantly reduced infarct size and improved cardiac function in a preclinical model of MI. Noninvasive EIS monitoring was useful for tracking differential scar healing in EBIG‐treated animals, which was confirmed by less inflammation and altered collagen deposit. Stem Cells Translational Medicine2017;6:647–655
Collapse
Affiliation(s)
- Carolina Gálvez‐Montón
- ICREC (Heart Failure and Cardiac Regeneration) Research Programme, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain;
| | - Ramon Bragós
- Electronic and Biomedical Instrumentation Group, Electronic Engineering Department, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Carolina Soler‐Botija
- ICREC (Heart Failure and Cardiac Regeneration) Research Programme, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain;
| | | | - Cristina Prat‐Vidal
- ICREC (Heart Failure and Cardiac Regeneration) Research Programme, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain;
| | | | | | - Aida Llucià‐Valldeperas
- ICREC (Heart Failure and Cardiac Regeneration) Research Programme, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain;
| | - Paco Bogónez‐Franco
- Electronic and Biomedical Instrumentation Group, Electronic Engineering Department, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Isaac Perea‐Gil
- ICREC (Heart Failure and Cardiac Regeneration) Research Programme, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain;
| | - Santiago Roura
- ICREC (Heart Failure and Cardiac Regeneration) Research Programme, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain;
- Center of Regenerative Medicine in Barcelona, Barcelona, Spain
| | - Antoni Bayes‐Genis
- ICREC (Heart Failure and Cardiac Regeneration) Research Programme, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain;
- Cardiology Service, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain;
- Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| |
Collapse
|
16
|
Bayes-Genis A, Gastelurrutia P, Cámara ML, Teis A, Lupón J, Llibre C, Zamora E, Alomar X, Ruyra X, Roura S, Revilla A, San Román JA, Gálvez-Montón C. First-in-man Safety and Efficacy of the Adipose Graft Transposition Procedure (AGTP) in Patients With a Myocardial Scar. EBioMedicine 2016; 7:248-54. [PMID: 27322478 PMCID: PMC4909363 DOI: 10.1016/j.ebiom.2016.03.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The present study evaluates the safety and efficacy of the Adipose Graft Transposition Procedure (AGTP) as a biological regenerative innovation for patients with a chronic myocardial scar. METHODS This prospective, randomized single-center controlled study included 10 patients with established chronic transmural myocardial scars. Candidates for myocardial revascularization were randomly allocated into two treatment groups. In the control arm (n=5), the revascularizable area was treated with CABG and the non-revascularizable area was left untouched. Patients in the AGTP-treated arm (n=5) were treated with CABG and the non-revascularizable area was covered by a biological adipose graft. The primary endpoint was the appearance of adverse effects derived from the procedure including hospital admissions and death, and 24-hour Holter monitoring arrhythmias at baseline, 1week, and 3 and 12months. Secondary endpoints of efficacy were assessed by cardiac MRI. FINDINGS No differences in safety were observed between groups in terms of clinical or arrhythmic events. On follow-up MRI testing, participants in the AGTP-treated arm showed a borderline smaller left ventricular end systolic volume (LVESV; p=0.09) and necrosis ratio (p=0.06) at 3months but not at 12months. The AGTP-treated patient with the largest necrotic area and most dilated chambers experienced a noted improvement in necrotic mass size (-10.8%), and ventricular volumes (LVEDV: -55.2mL and LVESV: -37.8mL at one year follow-up) after inferior AGTP. INTERPRETATION Our results indicate that AGTP is safe and may be efficacious in selected patients. Further studies are needed to assess its clinical value. (ClinicalTrials.org NCT01473433, AdiFlap Trial).
Collapse
Affiliation(s)
- Antoni Bayes-Genis
- Cardiology Service, Germans Trias i Pujol University Hospital, Badalona, Spain; Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; ICREC Research Program, Health Science Research Institute Germans Trias i Pujol, Badalona, Spain.
| | - Paloma Gastelurrutia
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol, Badalona, Spain
| | - Maria-Luisa Cámara
- Cardiac Surgery Service, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Albert Teis
- Cardiology Service, Germans Trias i Pujol University Hospital, Badalona, Spain; Clínica Creu Blanca, Barcelona, Spain
| | - Josep Lupón
- Cardiology Service, Germans Trias i Pujol University Hospital, Badalona, Spain; Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cinta Llibre
- Cardiology Service, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Elisabet Zamora
- Cardiology Service, Germans Trias i Pujol University Hospital, Badalona, Spain
| | | | - Xavier Ruyra
- Cardiac Surgery Service, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Santiago Roura
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol, Badalona, Spain; Center of Regenerative Medicine in Barcelona, Barcelona, Spain
| | - Ana Revilla
- ICICORELAB, Clinic University Hospital, Valladolid, Spain
| | | | - Carolina Gálvez-Montón
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol, Badalona, Spain
| |
Collapse
|
17
|
Perea-Gil I, Prat-Vidal C, Bayes-Genis A. In vivo experience with natural scaffolds for myocardial infarction: the times they are a-changin'. Stem Cell Res Ther 2015; 6:248. [PMID: 26670389 PMCID: PMC4681026 DOI: 10.1186/s13287-015-0237-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Treating a myocardial infarction (MI), the most frequent cause of death worldwide, remains one of the most exciting medical challenges in the 21st century. Cardiac tissue engineering, a novel emerging treatment, involves the use of therapeutic cells supported by a scaffold for regenerating the infarcted area. It is essential to select the appropriate scaffold material; the ideal one should provide a suitable cellular microenvironment, mimic the native myocardium, and allow mechanical and electrical coupling with host tissues. Among available scaffold materials, natural scaffolds are preferable for achieving these purposes because they possess myocardial extracellular matrix properties and structures. Here, we review several natural scaffolds for applications in MI management, with a focus on pre-clinical studies and clinical trials performed to date. We also evaluate scaffolds combined with different cell types and proteins for their ability to promote improved heart function, contractility and neovascularization, and attenuate adverse ventricular remodeling. Although further refinement is necessary in the coming years, promising results indicate that natural scaffolds may be a valuable translational therapeutic option with clinical impact in MI repair.
Collapse
Affiliation(s)
- Isaac Perea-Gil
- ICREC (Heart Failure and Cardiac Regeneration) Research Lab, Health Sciences Research Institute Germans Trias i Pujol (IGTP). Cardiology Service, Hospital Universitari Germans Trias i Pujol, 08916, Badalona, Barcelona, Spain
| | - Cristina Prat-Vidal
- ICREC (Heart Failure and Cardiac Regeneration) Research Lab, Health Sciences Research Institute Germans Trias i Pujol (IGTP). Cardiology Service, Hospital Universitari Germans Trias i Pujol, 08916, Badalona, Barcelona, Spain.
| | - Antoni Bayes-Genis
- ICREC (Heart Failure and Cardiac Regeneration) Research Lab, Health Sciences Research Institute Germans Trias i Pujol (IGTP). Cardiology Service, Hospital Universitari Germans Trias i Pujol, 08916, Badalona, Barcelona, Spain.,Department of Medicine, Autonomous University of Barcelona (UAB), Barcelona, Spain
| |
Collapse
|
18
|
Tallawi M, Rosellini E, Barbani N, Cascone MG, Rai R, Saint-Pierre G, Boccaccini AR. Strategies for the chemical and biological functionalization of scaffolds for cardiac tissue engineering: a review. J R Soc Interface 2015; 12:20150254. [PMID: 26109634 PMCID: PMC4528590 DOI: 10.1098/rsif.2015.0254] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/19/2015] [Indexed: 12/11/2022] Open
Abstract
The development of biomaterials for cardiac tissue engineering (CTE) is challenging, primarily owing to the requirement of achieving a surface with favourable characteristics that enhances cell attachment and maturation. The biomaterial surface plays a crucial role as it forms the interface between the scaffold (or cardiac patch) and the cells. In the field of CTE, synthetic polymers (polyglycerol sebacate, polyethylene glycol, polyglycolic acid, poly-l-lactide, polyvinyl alcohol, polycaprolactone, polyurethanes and poly(N-isopropylacrylamide)) have been proven to exhibit suitable biodegradable and mechanical properties. Despite the fact that they show the required biocompatible behaviour, most synthetic polymers exhibit poor cell attachment capability. These synthetic polymers are mostly hydrophobic and lack cell recognition sites, limiting their application. Therefore, biofunctionalization of these biomaterials to enhance cell attachment and cell material interaction is being widely investigated. There are numerous approaches for functionalizing a material, which can be classified as mechanical, physical, chemical and biological. In this review, recent studies reported in the literature to functionalize scaffolds in the context of CTE, are discussed. Surface, morphological, chemical and biological modifications are introduced and the results of novel promising strategies and techniques are discussed.
Collapse
Affiliation(s)
- Marwa Tallawi
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Elisabetta Rosellini
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino, 56126 Pisa, Italy
| | - Niccoletta Barbani
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino, 56126 Pisa, Italy
| | - Maria Grazia Cascone
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino, 56126 Pisa, Italy
| | - Ranjana Rai
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Guillaume Saint-Pierre
- Inspiralia, Materials Laboratory, C/Faraday 7, Lab 3.02, Campus de Cantoblanco, Madrid 28049, Spain
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| |
Collapse
|
19
|
Postinfarction Functional Recovery Driven by a Three-Dimensional Engineered Fibrin Patch Composed of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells. Stem Cells Transl Med 2015; 4:956-66. [PMID: 26106218 DOI: 10.5966/sctm.2014-0259] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 04/17/2015] [Indexed: 01/16/2023] Open
Abstract
Considerable research has been dedicated to restoring myocardial cell slippage and limiting ventricular remodeling after myocardial infarction (MI). We examined the ability of a three-dimensional (3D) engineered fibrin patch filled with human umbilical cord blood-derived mesenchymal stem cells (UCBMSCs) to induce recovery of cardiac function after MI. The UCBMSCs were modified to coexpress luciferase and fluorescent protein reporters, mixed with fibrin, and applied as an adhesive, viable construct (fibrin-cell patch) over the infarcted myocardium in mice (MI-UCBMSC group). The patch adhered well to the heart. Noninvasive bioluminescence imaging demonstrated early proliferation and differentiation of UCBMSCs within the construct in the postinfarct mice in the MI-UCBMSC group. The implanted cells also participated in the formation of new, functional microvasculature that connected the fibrin-cell patch to both the subjacent myocardial tissue and the host circulatory system. As revealed by echocardiography, the left ventricular ejection fraction and fractional shortening at sacrifice were improved in MI-UCBMSC mice and were markedly reduced in mice treated with fibrin alone and untreated postinfarction controls. In conclusion, a 3D engineered fibrin patch composed of UCBMSCs attenuated infarct-derived cardiac dysfunction when transplanted locally over a myocardial wound.
Collapse
|
20
|
Gálvez-Montón C, Fernandez-Figueras MT, Martí M, Soler-Botija C, Roura S, Perea-Gil I, Prat-Vidal C, Llucià-Valldeperas A, Raya Á, Bayes-Genis A. Neoinnervation and neovascularization of acellular pericardial-derived scaffolds in myocardial infarcts. Stem Cell Res Ther 2015; 6:108. [PMID: 26205795 PMCID: PMC4529715 DOI: 10.1186/s13287-015-0101-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 02/12/2015] [Accepted: 05/20/2015] [Indexed: 01/01/2023] Open
Abstract
Engineered bioimplants for cardiac repair require functional vascularization and innervation for proper integration with the surrounding myocardium. The aim of this work was to study nerve sprouting and neovascularization in an acellular pericardial-derived scaffold used as a myocardial bioimplant. To this end, 17 swine were submitted to a myocardial infarction followed by implantation of a decellularized human pericardial-derived scaffold. After 30 days, animals were sacrificed and hearts were analyzed with hematoxylin/eosin and Masson's and Gallego's modified trichrome staining. Immunohistochemistry was carried out to detect nerve fibers within the cardiac bioimplant by using βIII tubulin and S100 labeling. Isolectin B4, smooth muscle actin, CD31, von Willebrand factor, cardiac troponin I, and elastin antibodies were used to study scaffold vascularization. Transmission electron microscopy was performed to confirm the presence of vascular and nervous ultrastructures. Left ventricular ejection fraction (LVEF), cardiac output (CO), stroke volume, end-diastolic volume, end-systolic volume, end-diastolic wall mass, and infarct size were assessed by using magnetic resonance imaging (MRI). Newly formed nerve fibers composed of several amyelinated axons as the afferent nerve endings of the heart were identified by immunohistochemistry. Additionally, neovessel formation occurred spontaneously as small and large isolectin B4-positive blood vessels within the scaffold. In summary, this study demonstrates for the first time the neoformation of vessels and nerves in cell-free cardiac scaffolds applied over infarcted tissue. Moreover, MRI analysis showed a significant improvement in LVEF (P = 0.03) and CO (P = 0.01) and a 43 % decrease in infarct size (P = 0.007).
Collapse
Affiliation(s)
- Carolina Gálvez-Montón
- ICREC Research Program, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Camí de les Escoles s/n, Badalona, Barcelona, 08916, Spain.
| | - M Teresa Fernandez-Figueras
- Pathology Department, Hospital Universitari Germans Trias i Pujol Ctra. Canyet, s/n,, Badalona, Barcelona, 08916, Spain.
- Center of Regenerative Medicine in Barcelona, Dr. Aiguader, 88, Barcelona, 08003, Spain.
| | - Mercè Martí
- Center of Regenerative Medicine in Barcelona, Dr. Aiguader, 88, Barcelona, 08003, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Baldiri Reixac, 10, Barcelona, 08028, Spain.
| | - Carolina Soler-Botija
- ICREC Research Program, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Camí de les Escoles s/n, Badalona, Barcelona, 08916, Spain.
| | - Santiago Roura
- ICREC Research Program, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Camí de les Escoles s/n, Badalona, Barcelona, 08916, Spain.
| | - Isaac Perea-Gil
- ICREC Research Program, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Camí de les Escoles s/n, Badalona, Barcelona, 08916, Spain.
| | - Cristina Prat-Vidal
- ICREC Research Program, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Camí de les Escoles s/n, Badalona, Barcelona, 08916, Spain.
| | - Aida Llucià-Valldeperas
- ICREC Research Program, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Camí de les Escoles s/n, Badalona, Barcelona, 08916, Spain.
| | - Ángel Raya
- Center of Regenerative Medicine in Barcelona, Dr. Aiguader, 88, Barcelona, 08003, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Baldiri Reixac, 10, Barcelona, 08028, Spain.
- Institute for Bioengineering of Catalonia (IBEC) and Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| | - Antoni Bayes-Genis
- ICREC Research Program, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Camí de les Escoles s/n, Badalona, Barcelona, 08916, Spain.
- Department of Medicine, Universitat Autònoma de Barcelona (UAB), Ctra. de Canyet, s/n, Barcelona, Spain, 08916.
- Cardiology Service, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain.
| |
Collapse
|
21
|
Alkhushail A, Kohli S, Mitchel A, Smith R, Ilsely C. Prognosis of primary percutaneous coronary intervention in elderly patients with ST-elevation myocardial infarction. J Saudi Heart Assoc 2014; 27:85-90. [PMID: 25870501 PMCID: PMC4392347 DOI: 10.1016/j.jsha.2014.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 10/14/2014] [Accepted: 12/05/2014] [Indexed: 11/27/2022] Open
Abstract
Objective To evaluate the prognosis of primary percutaneous coronary intervention (PPCI) and medical therapy (MT) in elderly patients presenting with ST-elevation myocardial infarction (STEMI). Methods A total of 238 STEMI patients aged above 80 and treated with PPCI (n = 186) and MT (n = 52) at Harefield Hospital, London were included in this study. Patients who did not have true STEMI based on non-diagnostic electrocardiogram (ECG) for STEMI and negative troponin, who presented with left bundle branch block (LBBB) and had normal coronaries were excluded from this study. Primary PCI was defined as any use of a guidewire for more than diagnostic purposes in patients with STEMI, whereas conventional MT was defined as treatment of patients with anti-platelets and anti-thrombotic medications without thrombolysis. Results The survival rate of PPCI patients was 86% (n = 160) at month 1 followed by 83.9% (n = 156) at month 6, and 81.2% (n = 151) at month 12. The survival rate of MT patients was 44.2% (n = 23) at month 1 followed by 36.5% (n = 19) at month 6, and 34.6% (n = 18) at month 12. Compared to MT, significantly fewer comorbidities were found in the PPCI group. Ventricular fibrillation (VF) (4.8%) and consequent admission to intensive care unit (7%) were the major complications of the PPCI group. Conclusion PPCI has a higher survival rate and, compared to MT, fewer comorbidities were observed in the PPCI group of elderly patients presenting with STEMI.
Collapse
Affiliation(s)
- Abdullah Alkhushail
- Department of Cardiology, Prince Sultan Cardiac Center, Riyadh, Saudi Arabia ; Department of Cardiology, Harefield Hospital, London, United Kingdom
| | - Sanjay Kohli
- Department of Cardiology, Harefield Hospital, London, United Kingdom
| | - Andrew Mitchel
- Department of Cardiology, Harefield Hospital, London, United Kingdom
| | - Robert Smith
- Department of Cardiology, Harefield Hospital, London, United Kingdom
| | - Charles Ilsely
- Department of Cardiology, Harefield Hospital, London, United Kingdom
| |
Collapse
|
22
|
Gálvez-Montón C, Prat-Vidal C, Díaz-Güemes I, Crisóstomo V, Soler-Botija C, Roura S, Llucià-Valldeperas A, Perea-Gil I, Sánchez-Margallo FM, Bayes-Genis A. Comparison of two preclinical myocardial infarct models: coronary coil deployment versus surgical ligation. J Transl Med 2014; 12:137. [PMID: 24885652 PMCID: PMC4047266 DOI: 10.1186/1479-5876-12-137] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 05/13/2014] [Indexed: 11/16/2022] Open
Abstract
Background Despite recent advances, myocardial infarction (MI) remains the leading cause of death worldwide. Pre-clinical animal models that closely mimic human MI are pivotal for a quick translation of research and swine have similarities in anatomy and physiology. Here, we compared coronary surgical ligation versus coil embolization MI models in swine. Methods Fifteen animals were randomly distributed to undergo surgical ligation (n = 7) or coil embolization (n = 8). We evaluated infarct size, scar fibrosis, inflammation, myocardial vascularization, and cardiac function by magnetic resonance imaging (MRI). Results Thirty-five days after MI, there were no differences between the models in infarct size (P = 0.53), left ventricular (LV) ejection fraction (P = 0.19), LV end systolic volume (P = 0.22), LV end diastolic volume (P = 0.84), and cardiac output (P = 0.89). Histologically, cardiac scars did not differ and the collagen content, collagen type I (I), collagen type III (III), and the I/III ratio were similar in both groups. Inflammation was assessed using specific anti-CD3 and anti-CD25 antibodies. There was similar activation of inflammation throughout the heart after coil embolization (P = 0.78); while, there were more activated lymphocytes in the infarcted myocardium in the surgical occlusion model (P = 0.02). Less myocardial vascularization in the infarction areas compared with the border and remote zones only in coil embolization animals was observed (P = 0.004 and P = 0.014, respectively). Conclusions Our results support that surgical occlusion and coil embolization MI models generate similar infarct size, cardiac function impairment, and myocardial fibrosis; although, inflammation and myocardial vascularization levels were closer to those found in humans when coil embolization was performed.
Collapse
Affiliation(s)
- Carolina Gálvez-Montón
- ICREC (Heart Failure and Cardiac Regeneration) Research Program, IGTP, Cardiology Service, Hospital Universitari Germans Trias i Pujol, Crta, Can Ruti, Camí de les Escoles, s/n, 08916 Badalona, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|