1
|
González-Sánchez GD, Granados-López AJ, López-Hernández Y, Robles MJG, López JA. miRNAs as Interconnectors between Obesity and Cancer. Noncoding RNA 2024; 10:24. [PMID: 38668382 PMCID: PMC11055034 DOI: 10.3390/ncrna10020024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/21/2024] [Accepted: 04/04/2024] [Indexed: 04/29/2024] Open
Abstract
Obesity and cancer are a concern of global interest. It is proven that obesity may trigger the development or progression of some types of cancer; however, the connection by non-coding RNAs has not been totally explored. In the present review, we discuss miRNAs and lncRNAs dysregulation involved in obesity and some cancers, shedding light on how these conditions may exacerbate one another through the dysregulation of ncRNAs. lncRNAs have been reported as regulating microRNAs. An in silico investigation of lncRNA and miRNA interplay is presented. Our investigation revealed 44 upregulated and 49 downregulated lncRNAs in obesity and cancer, respectively. miR-375, miR-494-3p, miR-1908, and miR-196 were found interacting with 1, 4, 4 and 4 lncRNAs, respectively, which are involved in PPARγ cell signaling regulation. Additionally, miR-130 was found to be downregulated in obesity and reported as modulating 5 lncRNAs controlling PPARγ cell signaling. Similarly, miR-128-3p and miR-143 were found to be downregulated in obesity and cancer, interacting with 5 and 4 lncRNAs, respectively, associated with MAPK cell signaling modulation. The delicate balance between miRNA and lncRNA expression emerges as a critical determinant in the development of obesity-associated cancers, presenting these molecules as promising biomarkers. However, additional and deeper studies are needed to reach solid conclusions about obesity and cancer connection by ncRNAs.
Collapse
Affiliation(s)
- Grecia Denisse González-Sánchez
- Doctorate in Biosciences, University Center of Los Altos, University of Guadalajara, Tepatitlán de Morelos C.P. 47620, Mexico;
| | - Angelica Judith Granados-López
- Laboratory of microRNAs and Cancer, Academic Unit of Biological Sciences, Autonomous University of Zacatecas “Francisco García Salinas”, Zacatecas C.P. 98066, Mexico;
| | - Yamilé López-Hernández
- Laboratory of Proteomics and Metabolomics, Cátedras-CONACYT, Academic Unit of Biological Sciences, Autonomous University of Zacatecas “Francisco García Salinas”, Zacatecas C.P. 98066, Mexico;
| | - Mayra Judith García Robles
- Biotechnology Department of the Polytechnic, University of Zacatecas, Fresnillo, Zacatecas C.P. 99059, Mexico
| | - Jesús Adrián López
- Laboratory of microRNAs and Cancer, Academic Unit of Biological Sciences, Autonomous University of Zacatecas “Francisco García Salinas”, Zacatecas C.P. 98066, Mexico;
| |
Collapse
|
2
|
Eiras S, González-Juanatey JR. Endocrine activity of dysfunctional adipose tissue: Cardiovascular risk and progression markers. Int J Cardiol 2024; 401:131816. [PMID: 38307420 DOI: 10.1016/j.ijcard.2024.131816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/04/2024]
Affiliation(s)
- Sonia Eiras
- Translational Cardiology, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain; CIBERCV, ISCIII, Madrid, Spain.
| | - José R González-Juanatey
- Coronary Unit and Cardiology department, Complejo Hospitalario Universitario de Santiago, IDIS, Santiago de Compostela, Spain; CIBERCV, ISCIII, Madrid, Spain
| |
Collapse
|
3
|
Tsai IT, Sun CK. Stem Cell Therapy against Ischemic Heart Disease. Int J Mol Sci 2024; 25:3778. [PMID: 38612587 PMCID: PMC11011361 DOI: 10.3390/ijms25073778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Ischemic heart disease, which is one of the top killers worldwide, encompasses a series of heart problems stemming from a compromised coronary blood supply to the myocardium. The severity of the disease ranges from an unstable manifestation of ischemic symptoms, such as unstable angina, to myocardial death, that is, the immediate life-threatening condition of myocardial infarction. Even though patients may survive myocardial infarction, the resulting ischemia-reperfusion injury triggers a cascade of inflammatory reactions and oxidative stress that poses a significant threat to myocardial function following successful revascularization. Moreover, despite evidence suggesting the presence of cardiac stem cells, the fact that cardiomyocytes are terminally differentiated and cannot significantly regenerate after injury accounts for the subsequent progression to ischemic cardiomyopathy and ischemic heart failure, despite the current advancements in cardiac medicine. In the last two decades, researchers have realized the possibility of utilizing stem cell plasticity for therapeutic purposes. Indeed, stem cells of different origin, such as bone-marrow- and adipose-derived mesenchymal stem cells, circulation-derived progenitor cells, and induced pluripotent stem cells, have all been shown to play therapeutic roles in ischemic heart disease. In addition, the discovery of stem-cell-associated paracrine effects has triggered intense investigations into the actions of exosomes. Notwithstanding the seemingly promising outcomes from both experimental and clinical studies regarding the therapeutic use of stem cells against ischemic heart disease, positive results from fraud or false data interpretation need to be taken into consideration. The current review is aimed at overviewing the therapeutic application of stem cells in different categories of ischemic heart disease, including relevant experimental and clinical outcomes, as well as the proposed mechanisms underpinning such observations.
Collapse
Affiliation(s)
- I-Ting Tsai
- Department of Emergency Medicine, E-Da Hospital, I-Shou University, Kaohsiung City 82445, Taiwan;
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City 82445, Taiwan
| | - Cheuk-Kwan Sun
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City 82445, Taiwan
- Department of Emergency Medicine, E-Da Dachang Hospital, I-Shou University, Kaohsiung City 80794, Taiwan
| |
Collapse
|
4
|
Arderiu G, Civit-Urgell A, Badimon L. Adipose-Derived Stem Cells to Treat Ischemic Diseases: The Case of Peripheral Artery Disease. Int J Mol Sci 2023; 24:16752. [PMID: 38069074 PMCID: PMC10706341 DOI: 10.3390/ijms242316752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Critical limb ischemia incidence and prevalence have increased over the years. However, there are no successful treatments to improve quality of life and to reduce the risk of cardiovascular and limb events in these patients. Advanced regenerative therapies have focused their interest on the generation of new blood vessels to repair tissue damage through the use of stem cells. One of the most promising sources of stem cells with high potential in cell-based therapy is adipose-derived stem cells (ASCs). ASCs are adult mesenchymal stem cells that are relatively abundant and ubiquitous and are characterized by a multilineage capacity and low immunogenicity. The proangiogenic benefits of ASCs may be ascribed to: (a) paracrine secretion of proangiogenic molecules that may stimulate angiogenesis; (b) secretion of microvesicles/exosomes that are also considered as a novel therapeutic prospect for treating ischemic diseases; and (c) their differentiation capability toward endothelial cells (ECs). Although we know the proangiogenic effects of ASCs, the therapeutic efficacy of ASCs after transplantation in peripheral artery diseases patients is still relatively low. In this review, we evidence the potential therapeutic use of ASCs in ischemic regenerative medicine. We also highlight the main challenges in the differentiation of these cells into functional ECs. However, significant efforts are still needed to ascertain relevant transcription factors, intracellular signaling and interlinking pathways in endothelial differentiation.
Collapse
Affiliation(s)
- Gemma Arderiu
- Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau Barcelona, 08041 Barcelona, Spain; (A.C.-U.); (L.B.)
- Ciber CV, Instituto Carlos III, 28029 Madrid, Spain
| | - Anna Civit-Urgell
- Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau Barcelona, 08041 Barcelona, Spain; (A.C.-U.); (L.B.)
- Facultat de Medicina i Ciències de la Salut—Campus Clínic, Universitat de Barcelona, 08007 Barcelona, Spain
| | - Lina Badimon
- Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau Barcelona, 08041 Barcelona, Spain; (A.C.-U.); (L.B.)
- Ciber CV, Instituto Carlos III, 28029 Madrid, Spain
| |
Collapse
|
5
|
Tambrchi P, Mahdavi AH, DaliriJoupari M, Soltani L. Polycaprolactone-co-polylactic acid nanofiber scaffold in combination with 5-azacytidine and transforming growth factor-β to induce cardiomyocyte differentiation of adipose-derived mesenchymal stem cells. Cell Biochem Funct 2022; 40:668-682. [PMID: 35924670 DOI: 10.1002/cbf.3728] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/11/2022]
Abstract
Adipose-derived mesenchymal stem cells (Ad-MSCs) are promising candidates for cardiac repair/regeneration. The application of copolymer nanoscaffolds has received great attention in tissue engineering to support differentiation and functional tissue organization toward effective tissue regeneration. The objective of the current study was to develop functional and bioactive scaffolds by combining polycaprolactone (PCL) and polylactic acid (PLA) for cardiomyocyte differentiation of human Ad-MSC (hAd-MSCs) in the absence or presence of 5-azacytidine and transforming growth factor-β (TGF-β). To that end, the human MSCs were extracted from human adipose tissue (AD). The cardiomyocyte differentiation potency of hAd-MSCs was evaluated on the novel synthetic PCL/PLA nanofiber scaffolds prepared in the absence and presence of 5-azacytidine and TGF-β supplements. A PCL/PLA nanofibrous scaffold was fabricated using the electrospinning method and its nanotopography and porous structure were characterized using scanning electron microscopy. In addition, the attachment of hAd-MSCs on the PCL/PLA scaffolds was semiquantitatively investigated. Compared with other treatments, the PCL/PLA nanofibrous scaffold supplemented with both 5-azacytidine and TGF-β was observed to differentiate hAd-MSCs into cardiomyocytes at Day 21 as evidenced by real-time PCR for cardiac-specific genes including cardiac troponin I (cTnI), GATA4, MYH7, and NKX2.5. In addition, flow cytometric analysis of cTnI-positive cells demonstrated that the cardiomyocyte differentiation of hAd-MSCs was more efficient on the PCL/PLA nanofibrous scaffold supplemented with both 5-azacytidine and TGF-β than it was in the other treatment groups. Generally speaking, the results show that PCL/PLA nanofibrous scaffolds may be applied as a platform for efficient differentiation of hAd-MSCs into functional cardiomyocytes.
Collapse
Affiliation(s)
- Parastoo Tambrchi
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Amir Hossein Mahdavi
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Morteza DaliriJoupari
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Leila Soltani
- Department of Animal Sciences, College of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
| |
Collapse
|
6
|
Molecular Imaging of Human Skeletal Myoblasts (huSKM) in Mouse Post-Infarction Myocardium. Int J Mol Sci 2021; 22:ijms221910885. [PMID: 34639225 PMCID: PMC8509689 DOI: 10.3390/ijms221910885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022] Open
Abstract
Current treatment protocols for myocardial infarction improve the outcome of disease to some extent but do not provide the clue for full regeneration of the heart tissues. An increasing body of evidence has shown that transplantation of cells may lead to some organ recovery. However, the optimal stem cell population has not been yet identified. We would like to propose a novel pro-regenerative treatment for post-infarction heart based on the combination of human skeletal myoblasts (huSkM) and mesenchymal stem cells (MSCs). huSkM native or overexpressing gene coding for Cx43 (huSKMCx43) alone or combined with MSCs were delivered in four cellular therapeutic variants into the healthy and post-infarction heart of mice while using molecular reporter probes. Single-Photon Emission Computed Tomography/Computed Tomography (SPECT/CT) performed right after cell delivery and 24 h later revealed a trend towards an increase in the isotopic uptake in the post-infarction group of animals treated by a combination of huSkMCx43 with MSC. Bioluminescent imaging (BLI) showed the highest increase in firefly luciferase (fluc) signal intensity in post-infarction heart treated with combination of huSkM and MSCs vs. huSkM alone (p < 0.0001). In healthy myocardium, however, nanoluciferase signal (nanoluc) intensity varied markedly between animals treated with stem cell populations either alone or in combinations with the tendency to be simply decreased. Therefore, our observations seem to show that MSCs supported viability, engraftment, and even proliferation of huSkM in the post-infarction heart.
Collapse
|
7
|
Mesenchymal Stem Cells Therapies on Fibrotic Heart Diseases. Int J Mol Sci 2021; 22:ijms22147447. [PMID: 34299066 PMCID: PMC8307175 DOI: 10.3390/ijms22147447] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Stem cell therapy is a promising alternative approach to heart diseases. The most prevalent source of multipotent stem cells, usually called somatic or adult stem cells (mesenchymal stromal/stem cells, MSCs) used in clinical trials is bone marrow (BM-MSCs), adipose tissue (AT-MSCs), umbilical cord (UC-MSCs) and placenta. Therapeutic use of MSCs in cardiovascular diseases is based on the benefits in reducing cardiac fibrosis and inflammation that compose the cardiac remodeling responsible for the maintenance of normal function, something which may end up causing progressive and irreversible dysfunction. Many factors lead to cardiac fibrosis and failure, and an effective therapy is lacking to reverse or attenuate this condition. Different approaches have been shown to be promising in surpassing the poor survival of transplanted cells in cardiac tissue to provide cardioprotection and prevent cardiac remodeling. This review includes the description of pre-clinical and clinical investigation of the therapeutic potential of MSCs in improving ventricular dysfunction consequent to diverse cardiac diseases.
Collapse
|
8
|
Vilahur G, Nguyen PH, Badimon L. Impact of Diabetes Mellitus on the Potential of Autologous Stem Cells and Stem Cell-Derived Microvesicles to Repair the Ischemic Heart. Cardiovasc Drugs Ther 2021; 36:933-949. [PMID: 34251593 DOI: 10.1007/s10557-021-07208-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/25/2021] [Indexed: 10/20/2022]
Abstract
Ischemic heart disease remains the leading cause of morbidity and mortality worldwide. Despite the advances in medical management and catheter-based therapy, mortality remains high, as does the risk of developing heart failure. Regenerative therapies have been widely used as an alternative option to repair the damaged heart mainly because of their paracrine-related beneficial effects. Although cell-based therapy has been demonstrated as feasible and safe, randomized controlled trials and meta-analyses show little consistent benefit from treatments with adult-derived stem cells. Mounting evidence from our group and others supports that cardiovascular risk factors and comorbidities impair stem cell potential thus hampering their autologous use. This review aims to better understand the influence of diabetes on stem cell potential. For this purpose, we will first discuss the most recent advances in the mechanistic understanding of the effects of diabetes on stem cell phenotype, function, and molecular fingerprint to further elaborate on diabetes-induced alterations in stem cell extracellular vesicle profile. Although we acknowledge that multiple sources of stem or progenitor cells are used for regenerative purposes, we will focus on bone marrow hematopoietic stem/progenitor cells, mesenchymal stem cells residing in the bone marrow, and adipose tissue and briefly discuss endothelial colony-forming cells.
Collapse
Affiliation(s)
- Gemma Vilahur
- Cardiovascular-Program ICCC, IR-Hospital Santa Creu I Sant Pau, IIB Sant Pau, C/Sant Antoni Mª Claret 167, 08025, Barcelona, Spain.,Ciber CV - ISCIII, Madrid, Spain
| | - Phuong Hue Nguyen
- Cardiovascular-Program ICCC, IR-Hospital Santa Creu I Sant Pau, IIB Sant Pau, C/Sant Antoni Mª Claret 167, 08025, Barcelona, Spain
| | - Lina Badimon
- Cardiovascular-Program ICCC, IR-Hospital Santa Creu I Sant Pau, IIB Sant Pau, C/Sant Antoni Mª Claret 167, 08025, Barcelona, Spain. .,Ciber CV - ISCIII, Madrid, Spain. .,Cardiovascular Research Chair UAB, Barcelona, Spain.
| |
Collapse
|
9
|
Adipose-Derived Stem Cells Secretome and Its Potential Application in "Stem Cell-Free Therapy". Biomolecules 2021; 11:biom11060878. [PMID: 34199330 PMCID: PMC8231996 DOI: 10.3390/biom11060878] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022] Open
Abstract
Adipose-derived stem cells (ASCs) secrete many cytokines, proteins, growth factors, and extracellular vesicles with beneficial outcomes that can be used in regenerative medicine. It has great potential, and the development of new treatment strategies using the ASCs secretome is of global interest. Besides cytokines, proteins, and growth factors, the therapeutic effect of secretome is hidden in non-coding RNAs such as miR-21, miR-24, and miR-26 carried via exosomes secreted by adequate cells. The whole secretome, including ASC-derived exosomes (ASC-exos) has been proven in many studies to have immunomodulatory, proangiogenic, neurotrophic, and epithelization activity and can potentially be used for neurodegenerative, cardiovascular, respiratory, inflammatory, and autoimmune diseases as well as wound healing treatment. Due to limitations in the use of stem cells in cell-based therapy, its secretome with emphasis on exosomes seems to be a reasonable and safer alternative with increased effectiveness and fewer side effects. Moreover, the great advantage of cell-free therapy is the possibility of biobanking the ASCs secretome. In this review, we focus on the current state of knowledge on the use of the ASCs secretome in stem cell-free therapy.
Collapse
|
10
|
de la Portilla F, Guerrero JL, Maestre MV, Leyva L, Mera S, García-Olmo D, Rodríguez A, Mata R, Lora F. Treatment of faecal incontinence with autologous expanded mesenchymal stem cells: results of a pilot study. Colorectal Dis 2021; 23:698-709. [PMID: 32986295 DOI: 10.1111/codi.15382] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/09/2020] [Accepted: 09/15/2020] [Indexed: 02/08/2023]
Abstract
AIM Management of faecal incontinence (FI) remains challenging because no definitive optimal treatment for this condition has yet been determined. Regenerative medicine could be an attractive therapeutic alternative for treating FI. Here, we aimed to determine the safety and feasibility of autologous expanded mesenchymal stem cells derived from adipose tissue (AdMSCs) in the treatment of patients diagnosed with structural FI. METHOD This was a randomized, multicentre, triple-blinded, placebo-controlled pilot study conducted at four sites in Spain with 16 adults with FI and a sphincter defect. Autologous AdMSCs were obtained from patients from surgically excised adipose tissue. These patients were intralesionally infused with a single dose of 4 × 107 AdMSCs or a placebo while under anaesthesia. We assessed the safety and feasibility of the treatment as the cumulative incidence of adverse events and the treatment efficacy using the Cleveland Clinic Faecal Incontinence Score, Faecal Incontinence Quality of Life score and Starck criteria to classify sphincter defects and anorectal physiology outcomes. RESULTS Adipose tissue extraction, cell isolation and intralesional infusion procedures were successful in all the patients. There was only one adverse event connected to adipose tissue extraction (a haematoma), and none was associated with the injection procedure. There were no significant differences in any of the assessed clinical, manometric or ultrasonographic parameters. CONCLUSION This study indicates that this infusion procedure in the anal sphincter is feasible and safe. However, it failed to demonstrate efficacy to treat patients with structural FI.
Collapse
Affiliation(s)
- Fernando de la Portilla
- Coloproctology Clinical Management Unit, General and Gastrointestinal Surgery Division, Biomedical Research Institute (IBIS), Hospital Universitario Virgen del Rocio/CSIC University of Seville, Seville, Spain
| | - José Luis Guerrero
- Coloproctology Clinical Management Unit, General and Gastrointestinal Surgery Division, Biomedical Research Institute (IBIS), Hospital Universitario Virgen del Rocio/CSIC University of Seville, Seville, Spain
| | - Maria Victoria Maestre
- Coloproctology Clinical Management Unit, General and Gastrointestinal Surgery Division, Biomedical Research Institute (IBIS), Hospital Universitario Virgen del Rocio/CSIC University of Seville, Seville, Spain
| | - Laura Leyva
- GMP Cell Manufacturing Unit, Biomedical Research Institute of Malaga (IBIMA), Hospital Regional Universitario de Malaga, Málaga, Spain
| | - Santiago Mera
- Coloproctology Unit Clinical Management, Unit of General Surgery Division, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Damián García-Olmo
- Department of Surgery, University Hospital Fundación Jiménez Díaz, Madrid, Spain
| | - Antonio Rodríguez
- GMP Cell Manufacturing Unit, Biomedical Research Institute of Malaga (IBIMA), Hospital Regional Universitario de Malaga, Málaga, Spain
| | - Rosario Mata
- Andalusian Network for Design and Translation of Advanced Therapies, Seville, Spain
| | - Fabiola Lora
- Andalusian Network for Design and Translation of Advanced Therapies, Seville, Spain
| |
Collapse
|
11
|
Trujillo-Rodríguez M, Viciana P, Rivas-Jeremías I, Álvarez-Ríos AI, Ruiz-García A, Espinosa-Ibáñez O, Arias-Santiago S, Martínez-Atienza J, Mata R, Fernández-López O, Ruiz-Mateos E, Gutiérrez-Valencia A, López-Cortés LF. Mesenchymal stromal cells in human immunodeficiency virus-infected patients with discordant immune response: Early results of a phase I/II clinical trial. Stem Cells Transl Med 2020; 10:534-541. [PMID: 33264515 PMCID: PMC7980217 DOI: 10.1002/sctm.20-0213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/16/2020] [Accepted: 10/10/2020] [Indexed: 01/09/2023] Open
Abstract
Between 15% and 30% of HIV‐infected subjects fail to increase their CD4+ T‐cell counts despite continuous viral suppression (immunological nonresponders [INRs]). These subjects have a higher morbidity and mortality rate, but there are no effective treatments to reverse this situation so far. This study used data from an interrupted phase I/II clinical trial to evaluate safety and immune recovery after INRs were given four infusions, at baseline and at weeks 4, 8, and 20, with human allogeneic mesenchymal stromal cells from adipose tissue (Ad‐MSCs). Based on the study design, the first 5 out of 15 INRs recruited received unblinded Ad‐MSC infusions. They had a median CD4+ nadir count of 16/μL (range, 2‐180) and CD4+ count of 253 cells per microliter (171‐412) at baseline after 109 (54‐237) months on antiretroviral treatment and 69 (52‐91) months of continuous undetectable plasma HIV‐RNA. After a year of follow‐up, an independent committee recommended the suspension of the study because no increase of CD4+ T‐cell counts or CD4+/CD8+ ratios was observed. There were also no significant changes in the phenotype of different immunological lymphocyte subsets, percentages of natural killer cells, regulatory T cells, and dendritic cells, the inflammatory parameters analyzed, and cellular associated HIV‐DNA in peripheral blood mononuclear cells. Furthermore, three subjects suffered venous thrombosis events directly related to the Ad‐MSC infusions in the arms where the infusions were performed. Although the current study is based on a small sample of participants, the findings suggest that allogeneic Ad‐MSC infusions are not effective to improve immune recovery in INR patients or to reduce immune activation or inflammation. ClinicalTrials.gov identifier: NCT0229004. EudraCT number: 2014‐000307‐26.
Collapse
Affiliation(s)
- María Trujillo-Rodríguez
- Unidad Clínica Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen del Rocío/Instituto Biomedicina de Sevilla/CSIC/Universidad de Sevilla, Avd. Manuel Siurto s/n, SEVILLA, España, Spain
| | - Pompeyo Viciana
- Unidad Clínica Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen del Rocío/Instituto Biomedicina de Sevilla/CSIC/Universidad de Sevilla, Avd. Manuel Siurto s/n, SEVILLA, España, Spain
| | - Inmaculada Rivas-Jeremías
- Unidad Clínica Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen del Rocío/Instituto Biomedicina de Sevilla/CSIC/Universidad de Sevilla, Avd. Manuel Siurto s/n, SEVILLA, España, Spain
| | - Ana I Álvarez-Ríos
- Departamento de Bioquímica Clínica, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas (CSIC)/Servicio Andaluz de Salud (SAS)/Universidad de Sevilla, Seville, Spain
| | - Antonio Ruiz-García
- Unidad de Producción Celular e Ingeniería Tisular, Complejo Hospitalario Universitario de Granada, Granada, Spain
| | - Olga Espinosa-Ibáñez
- Unidad de Producción Celular e Ingeniería Tisular, Complejo Hospitalario Universitario de Granada, Granada, Spain
| | - Salvador Arias-Santiago
- Unidad de Producción Celular e Ingeniería Tisular, Complejo Hospitalario Universitario de Granada, Granada, Spain
| | - Juliana Martínez-Atienza
- Red Andaluza en Diseño y Traslación de Terapias Avanzadas, Fundación Pública Andaluza Progreso y Salud, Seville, Spain
| | - Rosario Mata
- Red Andaluza en Diseño y Traslación de Terapias Avanzadas, Fundación Pública Andaluza Progreso y Salud, Seville, Spain
| | - Olga Fernández-López
- Red Andaluza en Diseño y Traslación de Terapias Avanzadas, Fundación Pública Andaluza Progreso y Salud, Seville, Spain
| | - Ezequiel Ruiz-Mateos
- Unidad Clínica Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen del Rocío/Instituto Biomedicina de Sevilla/CSIC/Universidad de Sevilla, Avd. Manuel Siurto s/n, SEVILLA, España, Spain
| | - Alicia Gutiérrez-Valencia
- Unidad Clínica Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen del Rocío/Instituto Biomedicina de Sevilla/CSIC/Universidad de Sevilla, Avd. Manuel Siurto s/n, SEVILLA, España, Spain
| | - Luis F López-Cortés
- Unidad Clínica Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen del Rocío/Instituto Biomedicina de Sevilla/CSIC/Universidad de Sevilla, Avd. Manuel Siurto s/n, SEVILLA, España, Spain
| |
Collapse
|
12
|
Arderiu G, Lambert C, Ballesta C, Moscatiello F, Vilahur G, Badimon L. Cardiovascular Risk Factors and Differential Transcriptomic Profile of the Subcutaneous and Visceral Adipose Tissue and Their Resident Stem Cells. Cells 2020; 9:cells9102235. [PMID: 33022994 PMCID: PMC7600037 DOI: 10.3390/cells9102235] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 01/18/2023] Open
Abstract
Background: The increase in the incidence of obesity and obesity-related cardiovascular risk factors (CVRFs) over the last decades has brought attention on adipose tissue (AT) pathobiology. The expansion of AT is associated with the development of new vasculature needed to perfuse the tissue; however, not all fat depots have the same ability to induce angiogenesis that requires recruitment of their own endothelial cells. In this study we have investigated the effect of different CVRFs, on the angiogenic capacity of the subcutaneous (SAT) and visceral (VAT) adipose tissue and on the function of their mesenchymal cell reservoir. Methods: A transcriptomic approach was used to compare the different angiogenic and inflammatory profiles of the subcutaneous and visceral fat depots from individuals with obesity, as well as their resident stem cells (ASCs). Influence of other risk factors on fat composition was also measured. Finally, the microvesicles (MVs) released by ASCs were isolated and their regenerative potential analyzed by molecular and cellular methodologies. Results: Obesity decreases the angiogenic capacity of AT. There are differences between SAT and VAT; from the 21 angiogenic-related genes analyzed, only three were decreased in SAT compared with those decreased in VAT. ASCs isolated from both fat depots showed significant differences; there was a significant up-regulation of the VEGF-pathway on visceral derived ASCs. ASCs release MVs that stimulate endothelial cell migration and angiogenic capacity. Conclusions: In patients with obesity, SAT expresses a greater number of angiogenic molecules than VAT, independent of the presence of other CVRFs.
Collapse
Affiliation(s)
- Gemma Arderiu
- Cardiovascular-Program ICCC, IR-Hospital Santa Creu I Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain; (C.L.); (G.V.)
- Ciber CV, 28029 Madrid, Spain
- Correspondence: (G.A.); (L.B.); Tel.: +34-935565880 (G.A. & L.B.); Fax: +34-935565559 (G.A. & L.B.)
| | - Carmen Lambert
- Cardiovascular-Program ICCC, IR-Hospital Santa Creu I Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain; (C.L.); (G.V.)
| | - Carlos Ballesta
- Centro Médico Teknon, 08025 Barcelona, Spain; (C.B.); (F.M.)
| | | | - Gemma Vilahur
- Cardiovascular-Program ICCC, IR-Hospital Santa Creu I Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain; (C.L.); (G.V.)
- Ciber CV, 28029 Madrid, Spain
| | - Lina Badimon
- Cardiovascular-Program ICCC, IR-Hospital Santa Creu I Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain; (C.L.); (G.V.)
- Ciber CV, 28029 Madrid, Spain
- Cardiovascular Research Chair UAB, 08025 Barcelona, Spain
- Correspondence: (G.A.); (L.B.); Tel.: +34-935565880 (G.A. & L.B.); Fax: +34-935565559 (G.A. & L.B.)
| |
Collapse
|
13
|
Shima F, Makino T. Fabrication of Spheroids with Dome-Shaped Endothelial Tube Networks by an Adhesive Culture System. ACTA ACUST UNITED AC 2020; 4:e2000120. [PMID: 32902183 DOI: 10.1002/adbi.202000120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/06/2020] [Indexed: 01/14/2023]
Abstract
3D functional tissues, such as spheroids fabricated by mesenchymal stem cells (MSCs), which can mimic parts of tissues and organs, have recently been extensively studied in the fields of regenerative medicine and drug discovery. In this study, spheroids containing endothelial tubular structures are fabricated by use of a novel 3D culture plate, "MicoCell." As MicoCell has a mild cell adhesive surface and multicavity structures, it can provide multiple attached spheroids at the same time (about ≈102 to ≈104 spheroids). Spheroids can be fabricated without using serum, and are easily collected by simple pipetting and no use of enzyme. For the fabrication of spheroids containing endothelial tubular structures, MSCs and endothelial cells are co-cultured with MicoCell. Surprisingly, endothelial tubular structures are found to extend upward from the bottom where the spheroids attach onto, forming a dome-shaped morphology. Notably, some tubular structures in the spheroids have a basement membrane and markedly improved oxygen level of the inner part of spheroids. Moreover, as spheroids attach onto the bottom, they do not require any pre-treatment such as embedding into gel before microscopic observation using an optical clearing reagent. These results indicate that the culture plates will be suitable for clinical and pharmaceutical applications.
Collapse
Affiliation(s)
- Fumiaki Shima
- Nippon Shokubai Co., Ltd, 5-8 Nishi Otabi-cho, Suita, Osaka, 564-0034, Japan
| | - Tomomi Makino
- Nippon Shokubai Co., Ltd, 5-8 Nishi Otabi-cho, Suita, Osaka, 564-0034, Japan
| |
Collapse
|
14
|
Aghajani Nargesi A, Zhu XY, Hickson LJ, Conley SM, van Wijnen AJ, Lerman LO, Eirin A. Metabolic Syndrome Modulates Protein Import into the Mitochondria of Porcine Mesenchymal Stem Cells. Stem Cell Rev Rep 2020; 15:427-438. [PMID: 30338499 DOI: 10.1007/s12015-018-9855-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mesenchymal stem cells (MSCs) are currently being tested in several clinical trials. Mitochondria regulate many aspects of MSC function. Mitochondrial preproteins are rapidly translated and trafficked into the mitochondrion for assembly in their final destination, but whether coexisting cardiovascular risk factors modulate this process is unknown. We hypothesized that metabolic syndrome (MetS) modulates mitochondrial protein import in porcine MSCs. MSCs were isolated from porcine abdominal adipose tissue after 16 weeks of Lean or MetS diet (n = 5 each). RNA-sequencing was performed and differentially expressed mitochondrial mRNAs and microRNAs were identified and validated. Protein expression of transporters of mitochondrial proteins (presequences and precursors) and their respective substrates were measured. Mitochondrial homeostasis was assessed by Western blot and function by cytochrome-c oxidase-IV activity. Forty-five mitochondrial mRNAs were upregulated and 25 downregulated in MetS-MSCs compared to Lean-MSCs. mRNAs upregulated in MetS-MSCs encoded for precursor proteins, whereas those downregulated encoded for presequences. Micro-RNAs upregulated in MetS-MSCs primarily target mRNAs encoding for presequences. Transporters of precursor proteins and their substrates were also upregulated, associated with changes in mitochondrial homeostasis and dysfunction. MetS interferes with mitochondrial protein import, favoring upregulation of precursor proteins, which might be linked to post-transcriptional regulation of presequences. This in turn alters mitochondrial homeostasis and impairs energy production. Our observations highlight the importance of mitochondria in MSC function and provide a molecular framework for optimization of cell-based strategies as we move towards their clinical application.
Collapse
Affiliation(s)
- Arash Aghajani Nargesi
- Divisions of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Xiang-Yang Zhu
- Divisions of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - LaTonya J Hickson
- Divisions of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Sabena M Conley
- Divisions of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | | | - Lilach O Lerman
- Divisions of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Alfonso Eirin
- Divisions of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
15
|
Alt EU, Winnier G, Haenel A, Rothoerl R, Solakoglu O, Alt C, Schmitz C. Towards a Comprehensive Understanding of UA-ADRCs (Uncultured, Autologous, Fresh, Unmodified, Adipose Derived Regenerative Cells, Isolated at Point of Care) in Regenerative Medicine. Cells 2020; 9:E1097. [PMID: 32365488 PMCID: PMC7290808 DOI: 10.3390/cells9051097] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
It has become practically impossible to survey the literature on cells derived from adipose tissue for regenerative medicine. The aim of this paper is to provide a comprehensive and translational understanding of the potential of UA-ADRCs (uncultured, unmodified, fresh, autologous adipose derived regenerative cells isolated at the point of care) and its application in regenerative medicine. We provide profound basic and clinical evidence demonstrating that tissue regeneration with UA-ADRCs is safe and effective. ADRCs are neither 'fat stem cells' nor could they exclusively be isolated from adipose tissue. ADRCs contain the same adult stem cells ubiquitously present in the walls of blood vessels that are able to differentiate into cells of all three germ layers. Of note, the specific isolation procedure used has a significant impact on the number and viability of cells and hence on safety and efficacy of UA-ADRCs. Furthermore, there is no need to specifically isolate and separate stem cells from the initial mixture of progenitor and stem cells found in ADRCs. Most importantly, UA-ADRCs have the physiological capacity to adequately regenerate tissue without need for more than minimally manipulating, stimulating and/or (genetically) reprogramming the cells for a broad range of clinical applications. Tissue regeneration with UA-ADRCs fulfills the criteria of homologous use as defined by the regulatory authorities.
Collapse
Affiliation(s)
- Eckhard U. Alt
- Heart and Vascular Institute, Department of Medicine, Tulane University Health Science Center, New Orleans, LA 70112, USA
- Sanford Health, University of South Dakota, Sioux Falls, SD 57104, USA
- University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Isar Klinikum Munich, 80331 Munich, Germany
- InGeneron, Inc., Houston, TX 77054, USA
| | | | - Alexander Haenel
- Heart and Vascular Institute, Department of Medicine, Tulane University Health Science Center, New Orleans, LA 70112, USA
- Department of Radiology and Nuclear Medicine, University Hospital Schleswig-Holstein, 23562 Lübeck, Germany
| | | | - Oender Solakoglu
- Dental Department of the University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Periodontology and Implant Dentistry, 22453 Hamburg, Germany
| | | | - Christoph Schmitz
- Institute of Anatomy, Faculty of Medicine, LMU Munich, 80331 Munich, Germany
| |
Collapse
|
16
|
Peng Q, Alipour H, Porsborg S, Fink T, Zachar V. Evolution of ASC Immunophenotypical Subsets During Expansion In Vitro. Int J Mol Sci 2020; 21:E1408. [PMID: 32093036 PMCID: PMC7073142 DOI: 10.3390/ijms21041408] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 12/18/2022] Open
Abstract
Adipose-derived stromal/stem cells (ASCs) are currently being considered for clinical use for a number of indications. In order to develop standardized clinical protocols, it is paramount to have a full characterization of the stem cell preparations. The surface marker expression of ASCs has previously been characterized in multiple studies. However, most of these studies have provided a cross-sectional description of ASCs in either earlier or later passages. In this study, we evaluate the dynamic changes of 15 different surface molecules during culture. Using multichromatic flow cytometry, ASCs from three different donors each in passages 1, 2, 4, 6, and 8 were analyzed for their co-expression of markers associated with mesenchymal stem cells, wound healing, immune regulation, ASC markers, and differentiation capacity, respectively. We confirmed that at an early stage, ASC displayed a high heterogeneity with a plethora of subpopulations, which by culturing became more homogeneous. After a few passages, virtually all ASCs expressed CD29, CD166 and CD201, in addition to canonical markers CD73, CD90, and CD105. However, even at passage 8, there were several predominant lineages that differed with respect to the expression of CD34, CD200 and CD271. Although the significance of remaining subpopulations still needs to be elucidated, our results underscore the necessity to fully characterize ASCs prior to clinical use.
Collapse
Affiliation(s)
| | | | | | | | - Vladimir Zachar
- Department of Health Science and Technology, Regenerative Medicine Group, Aalborg University, Fredrik Bajers Vej 3B, 9220 Aalborg, Denmark; (Q.P.); (H.A.); (S.P.); (T.F.)
| |
Collapse
|
17
|
Heo JS, Pyo S, Lim JY, Yoon DW, Kim BY, Kim JH, Kim GJ, Lee SG, Kim J. Biological effects of melatonin on human adipose‑derived mesenchymal stem cells. Int J Mol Med 2019; 44:2234-2244. [PMID: 31573052 PMCID: PMC6844604 DOI: 10.3892/ijmm.2019.4356] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/11/2019] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are capable of differentiating into other cell types and exhibit immunomodulatory effects. MSCs are affected by several intrinsic and extrinsic signaling modulators, including growth factors, cytokines, extracellular matrix and hormones. Melatonin, produced by the pineal gland, is a hormone that regulates sleep cycles. Recent studies have shown that melatonin improves the therapeutic effects of stem cells. The present study aimed to investigate whether melatonin enhances the biological activities of human adipose-derived MSCs. The results demonstrated that treatment with melatonin promoted cell proliferation by inducing SRY-box transcription factor 2 gene expression and preventing replicative senescence. In addition, melatonin exerted anti-adipogenic effects on MSCs. PCR analysis revealed that the expression of the CCAAT enhancer binding protein a gene, a key transcription factor in adipogenesis, was decreased following melatonin treatment, resulting in reduced adipogenic differentiation in an in vitro assay. The present study also examined the effect of melatonin on the immunomodulatory response using a co-culture system of human peripheral blood mononuclear cells and MSCs. Activated T cells were strongly inhibited following melatonin exposure compared with those in the control group. Finally, the favorable effects of melatonin on MSCs were confirmed using luzindole, a selective melatonin receptor antagonist. The proliferation-promoting, anti-inflammatory effects of melatonin suggested that melatonin-treated MSCs may be used for effective cell therapy.
Collapse
Affiliation(s)
- June Seok Heo
- Department of Integrated Biomedical and Life Sciences, College of Health Science, Korea University, Seoul 02841, Republic of Korea
| | - Sangshin Pyo
- Department of Integrated Biomedical and Life Sciences, College of Health Science, Korea University, Seoul 02841, Republic of Korea
| | - Ja-Yun Lim
- Department of Integrated Biomedical and Life Sciences, College of Health Science, Korea University, Seoul 02841, Republic of Korea
| | - Dae Wui Yoon
- Department of Biomedical Laboratory Science, College of Health Science, Jungwon University, Geosan, Chungbuk 28024, Republic of Korea
| | - Bo Yong Kim
- Department of Health and Environmental Science, College of Health Science, Korea University, Seoul 02841, Republic of Korea
| | - Jin-Hee Kim
- Department of Biomedical Laboratory Science, College of Health Science, Cheongju University, Cheongju, North Chungcheong 28497, Republic of Korea
| | - Gi Jin Kim
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi 13488, Republic of Korea
| | - Seung Gwan Lee
- Department of Health and Environmental Science, College of Health Science, Korea University, Seoul 02841, Republic of Korea
| | - Jinkwan Kim
- Department of Biomedical Laboratory Science, College of Health Science, Jungwon University, Geosan, Chungbuk 28024, Republic of Korea
| |
Collapse
|
18
|
O'Halloran N, Khan S, Gilligan K, Dwyer R, Kerin M, Lowery A. Oncological Risk in Autologous Stem Cell Donation for Novel Tissue-Engineering Approaches to Postmastectomy Breast Regeneration. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2019; 13:1178223419864896. [PMID: 31555047 PMCID: PMC6753512 DOI: 10.1177/1178223419864896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 01/30/2023]
Abstract
Adipose tissue engineering using adipose-derived stem cells (ADSCs) has emerged
as an opportunity to develop novel approaches to postmastectomy breast
reconstruction with the potential for an autologous tissue source with a natural
appearance and texture. As of yet, the role of ADSCs in breast cancer
development and metastasis is not completely understood; therefore, we must
consider the oncological safety of employing an autologous source of ADSCs for
use in breast regeneration. This study investigated the regenerative properties
of ADSCs isolated from breast cancer patients, including those who had received
neoadjuvant chemotherapy, and noncancer controls. The ADSCs were characterised
for several parameters central to tissue regeneration, including cell viability,
proliferation, differentiation potential, and cytokine secretion. A stem cell
population was isolated and confirmed by flow cytometry and multilineage
differentiation. There was no difference in cell phenotype or surface antigen
expression between ADSCs from different sources. Adipose-derived stem cells
isolated from the breast of cancer patients exhibited reduced adipogenic
differentiation potential compared with ADSCs from other sources. The greatest
degree of adipogenic differentiation was observed in ADSCs isolated from the
subcutaneous abdominal fat of noncancer controls. The proliferation rate of
ADSCs isolated from the breast of cancer patients was increased compared with
other sources; however, it was decreased in ADSCs isolated from breast cancer
patients who had recently been treated with neoadjuvant chemotherapy. A number
of cytokines were detected in the cell conditioned media of ADSCs from different
sources, including matrix metalloproteinase-2 (MMP-2), which was detected at
higher levels in the secretome of ADSCs from breast cancer patients compared
with noncancer controls. This study provides important information relating to
the suitability of ADSCs as an autologous cell source for adipose tissue
engineering in postcancer reconstruction. Results indicate that while the
surface phenotype does not differ, the differentiation capacity, proliferative
rate, and secreted cytokine profile are affected by the presence or treatment of
breast cancer. These findings support further investigation into the
regenerative potential of these ADSCs, if they are to be considered in clinical
reconstructive strategies.
Collapse
Affiliation(s)
- Niamh O'Halloran
- Discipline of Surgery, The Lambe Institute for Translational Research, National University of Ireland Galway, Galway, Ireland
| | - Sonja Khan
- Discipline of Surgery, The Lambe Institute for Translational Research, National University of Ireland Galway, Galway, Ireland
| | - Katie Gilligan
- Discipline of Surgery, The Lambe Institute for Translational Research, National University of Ireland Galway, Galway, Ireland
| | - Roisin Dwyer
- Discipline of Surgery, The Lambe Institute for Translational Research, National University of Ireland Galway, Galway, Ireland
| | - Michael Kerin
- Discipline of Surgery, The Lambe Institute for Translational Research, National University of Ireland Galway, Galway, Ireland
| | - Aoife Lowery
- Discipline of Surgery, The Lambe Institute for Translational Research, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
19
|
Shree N, Venkategowda S, Venkatranganna MV, Datta I, Bhonde RR. Human adipose tissue mesenchymal stem cells as a novel treatment modality for correcting obesity induced metabolic dysregulation. Int J Obes (Lond) 2019; 43:2107-2118. [PMID: 31462691 DOI: 10.1038/s41366-019-0438-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/06/2019] [Accepted: 07/22/2019] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Obesity induced metabolic dysregulation results in cluster of chronic conditions mainly hyperglycemia, hyperinsulinemia, dyslipidemia, diabetes, cardiovascular complications and insulin resistance. To investigate the effect of i.m. injection of human adipose tissue derived mesenchymal stem cells and its secretome in correcting obesity induced metabolic dysregulation in high fat diet fed obese model of mice and understand its mechanism of action. SUBJECTS We injected human adipose tissue derived mesenchymal stem cells (ADMSCs) suspension (CS), conditioned medium (CM) and the cell lysate (CL) intramuscularly in high fat diet (HFD)-induced C57BL/6 mice. Metformin was used as a positive control. ADMSCs were traced in vivo for its bio distribution after injection at different time points. RESULTS ADMSCs-treated mice exhibited remarkable decrease in insulin resistance as quantified by HOMA-IR and triglyceride glucose index with concomitant decrease in oxidized LDL and IL6 as compared with the untreated control. CS injection showed improvement in glucose tolerance and reduction in fatty infiltration in the liver, macrophage infiltration in adipose and hypertrophy of the islets resulting from HFD. Upregulation of miRNA-206, MyoD and increase in protein content of the skeletal muscle in CS-treated mice indicates plausible mechanism of action of ADMSCs treatment in ameliorating IR in HFD mice. CONCLUSION Of all the three treatments, CS was found to be the best. ADMSCs were found to have migrated to different organs in order to bring about the correction in dysregulated metabolism induced by obesity. Our results open up a novel treatment modality for possible therapeutic usage in human subjects by employing autologous or allogeneic ADMSCs for the better management of obesity induced metabolic dysregulation.
Collapse
Affiliation(s)
- Nitya Shree
- School of Regenerative Medicine, Manipal Academy of Higher Education, Bangalore, India
| | | | | | | | - Ramesh R Bhonde
- School of Regenerative Medicine, Manipal Academy of Higher Education, Bangalore, India. .,Dr. D.Y. Patil Vidyapeeth, Pune, India.
| |
Collapse
|
20
|
Gao F, Wu Y, Wen H, Zhu W, Ren H, Guan W, Tian X. Multilineage potential research on pancreatic mesenchymal stem cells of bovine. Tissue Cell 2018; 56:60-70. [PMID: 30736905 DOI: 10.1016/j.tice.2018.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 12/23/2022]
Abstract
Stem cells are most likely to solve all three of diabetes's problems at once, but the previous studies have mostly focused on bone marrow mesenchymal stem cells (MSCs) and adipose tissue-derived MSCs, and few studies have been done on pancreatic MSCs. In this study, pancreatic was collected to isolate MSCs from bovine, and then their biological characteristics such as growth kinetics, surface antigen, and multilineage potential were examined. Pancreatic MSCs of bovine (B-PMSCs) could be cultured for 65 passages in vitro. Growth kinetics analyses indicated that B-PMSCs had a strong capacity for self-renewal in vitro and their proliferation capacity appeared to decrease by passaging. Surface antigen detection showed that B-PMSCs expressed CD29, CD44, CD73, CD90, CD106, CD166, Vimentin, Nestin and Insulin, but not expressed CD34 and CD45. Furthermore, B-PMSCs could be induced to differentiate into adipocytes, osteoblasts and smooth muscle cells as indicated by reverse transcription-polymerase chain reaction (RT-PCR) and immunofluorescence. Most importantly, insulin-secreting cell differentiation of B-PMSCs exhibited islet-like clusters and dithizone staining displayed scarlet, and the response of the islet-like clusters to glucose suggested that high concentration glucose (20 mM) could quickly and persistently stimulate insulin release, and from the 2.0 h of the stimulation, the insulin of 20 mM glucose group were significantly higher than the 5.5 mM group. The B-PMSCs were isolated successfully, and the cells owned powerful self-renewal ability and multiple differentiative potential. Therefore, the present study plays an important role by providing a PMSCs choice for cell therapy of diabetes and tissue engineering.
Collapse
Affiliation(s)
- Fan Gao
- College of Human Movement Science, Harbin Sport University, Harbin, Heilongjiang, 150040, China
| | - Yangnan Wu
- Institute of Animal Science of CAAS, Beijing 100193, China
| | - Hebao Wen
- Sports education and training learns, Mudanjiang normal university, Mudanjiang, Heilongjiang, 157012, China
| | - Wanwan Zhu
- Institute of Animal Science of CAAS, Beijing 100193, China
| | - Han Ren
- Sports education and training learns, Mudanjiang normal university, Mudanjiang, Heilongjiang, 157012, China
| | - Weijun Guan
- Institute of Animal Science of CAAS, Beijing 100193, China.
| | - Xiuzhi Tian
- Institute of Animal Science of CAAS, Beijing 100193, China.
| |
Collapse
|
21
|
Enhancement of the efficacy of mesenchymal stem cells in the treatment of ischemic diseases. Biomed Pharmacother 2018; 109:2022-2034. [PMID: 30551458 DOI: 10.1016/j.biopha.2018.11.068] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/17/2018] [Accepted: 11/19/2018] [Indexed: 02/05/2023] Open
Abstract
Ischemic diseases refer to a wide range of diseases caused by reduced blood flow and a subsequently deficient oxygen and nutrient supply. The pathogenesis of ischemia is multifaceted and primarily involves inflammation, oxidative stress and an apoptotic response. Over the last decade, mesenchymal stem cells (MSCs) have been widely studied as potential cell therapy agents for ischemic diseases due to their multiple favourable functions. However, the low homing and survival rates of transplanted cells have been concerns limiting for their clinical application. Recently, increasing studies have attempted to enhance the efficacy of MSCs by various strategies including genetic modification, pretreatment, combined application and biomaterial application. The purpose of this review is to summarize these creative strategies and the progress in basic and preclinical studies.
Collapse
|
22
|
Hydrogen Peroxide-Induced DNA Damage and Repair through the Differentiation of Human Adipose-Derived Mesenchymal Stem Cells. Stem Cells Int 2018; 2018:1615497. [PMID: 30405718 PMCID: PMC6199883 DOI: 10.1155/2018/1615497] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 06/19/2018] [Accepted: 07/26/2018] [Indexed: 11/18/2022] Open
Abstract
Human adipose-derived mesenchymal stem cells (hADMSCs) are recognized as a potential tool in cell tissue therapy because of their capacity to proliferate and differentiate in vitro. Several studies have addressed their use in regenerative medicine; however, little is known regarding their response to DNA damage and in particular to the reactive oxygen species (ROS) that are present in the microenvironment of implantation. In this study, we used the ROS-inducing agent hydrogen peroxide to explore the responses of (1) hADMSCs and (2) derived terminally differentiated adipocytes to oxidatively generated DNA damage. Using single cell gel electrophoresis, a dose-related increase was found for both DNA breaks and oxidative lesions (formamidopyrimidine DNA glycosylase-sensitive sites) upon exposure of hADMSCs to hydrogen peroxide. DNA repair capacity of hADMSCs was affected in cells exposed to 150 and 200 μM of hydrogen peroxide. An increase in the basal levels of DNA breaks and oxidative DNA lesions was observed through adipocyte differentiation. In addition, hydrogen peroxide-induced DNA damage increased through adipocyte differentiation; DNA repair capacity also decreased. This study is the first follow-up report on DNA repair capacity during adipogenic differentiation. Remarkably, in terminally differentiated adipocytes, DNA breakage repair is abolished while the repair of DNA oxidative lesions remains efficient.
Collapse
|
23
|
Ferreira-González I, Abu-Assi E, Arias MÁ, Gallego P, Sánchez-Recalde Á, Del Río I. Revista Española de Cardiología: Current Situation and New Projects. REVISTA ESPANOLA DE CARDIOLOGIA (ENGLISH ED.) 2018; 71:208-216. [PMID: 30786985 DOI: 10.1016/j.rec.2018.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 02/01/2018] [Indexed: 06/09/2023]
Affiliation(s)
| | | | | | | | | | - Iria Del Río
- Editorial Director, Revista Española de Cardiología
| |
Collapse
|
24
|
|
25
|
Aghajani Nargesi A, Lerman LO, Eirin A. Mesenchymal stem cell-derived extracellular vesicles for kidney repair: current status and looming challenges. Stem Cell Res Ther 2017; 8:273. [PMID: 29202871 PMCID: PMC5713024 DOI: 10.1186/s13287-017-0727-7] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Novel therapies are urgently needed to address the rising incidence and prevalence of acute kidney injury (AKI) and chronic kidney disease (CKD). Mesenchymal stem/stromal cells (MSCs) have shown promising results in experimental AKI and CKD, and have been used in the clinic for more than a decade with an excellent safety profile. The regenerative effects of MSCs do not rely on their differentiation and ability to replace damaged tissues, but are primarily mediated by the paracrine release of factors, including extracellular vesicles (EVs), composed of microvesicles and exosomes. MSC-derived EVs contain genetic and protein material that upon transferring to recipient cells can activate several repair mechanisms to ameliorate renal injury. Recent studies have shown that MSC-derived EV therapy improved renal outcomes in several animal models of AKI and CKD, including ischemia-reperfusion injury, drug/toxin-induced nephropathy, renovascular disease, ureteral obstruction, and subtotal nephrectomy. However, data about the renoprotective effects of EV therapy in patients with renal failure are scarce. This review summarizes current knowledge of MSC-derived EV therapy in experimental AKI and CKD, and discusses the challenges that need to be addressed in order to consider MSC-derived EVs as a realistic clinical tool to treat patients with these conditions.
Collapse
Affiliation(s)
- Arash Aghajani Nargesi
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
26
|
Bobi J, Solanes N, Fernández-Jiménez R, Galán-Arriola C, Dantas AP, Fernández-Friera L, Gálvez-Montón C, Rigol-Monzó E, Agüero J, Ramírez J, Roqué M, Bayés-Genís A, Sánchez-González J, García-Álvarez A, Sabaté M, Roura S, Ibáñez B, Rigol M. Intracoronary Administration of Allogeneic Adipose Tissue-Derived Mesenchymal Stem Cells Improves Myocardial Perfusion But Not Left Ventricle Function, in a Translational Model of Acute Myocardial Infarction. J Am Heart Assoc 2017; 6:e005771. [PMID: 28468789 PMCID: PMC5524109 DOI: 10.1161/jaha.117.005771] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 03/30/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND Autologous adipose tissue-derived mesenchymal stem cells (ATMSCs) therapy is a promising strategy to improve post-myocardial infarction outcomes. In a porcine model of acute myocardial infarction, we studied the long-term effects and the mechanisms involved in allogeneic ATMSCs administration on myocardial performance. METHODS AND RESULTS Thirty-eight pigs underwent 50 minutes of coronary occlusion; the study was completed in 33 pigs. After reperfusion, allogeneic ATMSCs or culture medium (vehicle) were intracoronarily administered. Follow-ups were performed at short (2 days after acute myocardial infarction vehicle-treated, n=10; ATMSCs-treated, n=9) or long term (60 days after acute myocardial infarction vehicle-treated, n=7; ATMSCs-treated, n=7). At short term, infarcted myocardium analysis showed reduced apoptosis in the ATMSCs-treated animals (48.6±6% versus 55.9±5.7% in vehicle; P=0.017); enhancement of the reparative process with up-regulated vascular endothelial growth factor, granulocyte macrophage colony-stimulating factor, and stromal-derived factor-1α gene expression; and increased M2 macrophages (67.2±10% versus 54.7±10.2% in vehicle; P=0.016). In long-term groups, increase in myocardial perfusion at the anterior infarct border was observed both on day-7 and day-60 cardiac magnetic resonance studies in ATMSCs-treated animals, compared to vehicle (87.9±28.7 versus 57.4±17.7 mL/min per gram at 7 days; P=0.034 and 99±22.6 versus 43.3±14.7 22.6 mL/min per gram at 60 days; P=0.0001, respectively). At day 60, higher vascular density was detected at the border zone in the ATMSCs-treated animals (118±18 versus 92.4±24.3 vessels/mm2 in vehicle; P=0.045). Cardiac magnetic resonance-measured left ventricular ejection fraction of left ventricular volumes was not different between groups at any time point. CONCLUSIONS In this porcine acute myocardial infarction model, allogeneic ATMSCs-based therapy was associated with increased cardioprotective and reparative mechanisms and with better cardiac magnetic resonance-measured perfusion. No effect on left ventricular volumes or ejection fraction was observed.
Collapse
Affiliation(s)
- Joaquim Bobi
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Institut de Malalties Cardiovasculars, Hospital Clínic de Barcelona, Universitat de Barcelona, Spain
| | - Núria Solanes
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Institut de Malalties Cardiovasculars, Hospital Clínic de Barcelona, Universitat de Barcelona, Spain
| | - Rodrigo Fernández-Jiménez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, CNIC, Madrid, Spain
- Icahn School of Medicine at Mount Sinai, New York, NY
- CIBER de enfermedades CardioVasculares (CIBERCV), Madrid, Spain
| | - Carlos Galán-Arriola
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, CNIC, Madrid, Spain
- CIBER de enfermedades CardioVasculares (CIBERCV), Madrid, Spain
| | - Ana Paula Dantas
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Institut de Malalties Cardiovasculars, Hospital Clínic de Barcelona, Universitat de Barcelona, Spain
| | - Leticia Fernández-Friera
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, CNIC, Madrid, Spain
- Hospital Universitario HM Montepríncipe, Madrid, Spain
- CIBER de enfermedades CardioVasculares (CIBERCV), Madrid, Spain
| | - Carolina Gálvez-Montón
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol, Badalona, Spain
- CIBER de enfermedades CardioVasculares (CIBERCV), Madrid, Spain
| | | | - Jaume Agüero
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, CNIC, Madrid, Spain
- CIBER de enfermedades CardioVasculares (CIBERCV), Madrid, Spain
- Cardiology Department, Hospital Universitari i Politecnic La Fe, Valencia, Spain
| | - José Ramírez
- Servei d'Anatomia Patològica, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Mercè Roqué
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Institut de Malalties Cardiovasculars, Hospital Clínic de Barcelona, Universitat de Barcelona, Spain
| | - Antoni Bayés-Genís
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol, Badalona, Spain
- Cardiology Service, Germans Trias i Pujol University Hospital, Badalona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- CIBER de enfermedades CardioVasculares (CIBERCV), Madrid, Spain
| | | | - Ana García-Álvarez
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Institut de Malalties Cardiovasculars, Hospital Clínic de Barcelona, Universitat de Barcelona, Spain
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, CNIC, Madrid, Spain
| | - Manel Sabaté
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Institut de Malalties Cardiovasculars, Hospital Clínic de Barcelona, Universitat de Barcelona, Spain
| | - Santiago Roura
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol, Badalona, Spain
- Center of Regenerative Medicine in Barcelona, Barcelona, Spain
- CIBER de enfermedades CardioVasculares (CIBERCV), Madrid, Spain
| | - Borja Ibáñez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, CNIC, Madrid, Spain
- IIS- Fundación Jiménez Díaz Hospital, Madrid, Spain
- CIBER de enfermedades CardioVasculares (CIBERCV), Madrid, Spain
| | - Montserrat Rigol
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Institut de Malalties Cardiovasculars, Hospital Clínic de Barcelona, Universitat de Barcelona, Spain
| |
Collapse
|
27
|
Ladeiras-Lopes R, Sampaio F, Bettencourt N, Fontes-Carvalho R, Ferreira N, Leite-Moreira A, Gama V. El cociente entre la grasa abdominal visceral y la subcutánea evaluado por tomografía computarizada es un predictor independiente de mortalidad y eventos cardiacos. Rev Esp Cardiol 2017. [DOI: 10.1016/j.recesp.2016.09.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
28
|
Vilahur G, Oñate B, Cubedo J, Béjar MT, Arderiu G, Peña E, Casaní L, Gutiérrez M, Capdevila A, Pons-Lladó G, Carreras F, Hidalgo A, Badimon L. Allogenic adipose-derived stem cell therapy overcomes ischemia-induced microvessel rarefaction in the myocardium: systems biology study. Stem Cell Res Ther 2017; 8:52. [PMID: 28279225 PMCID: PMC5345145 DOI: 10.1186/s13287-017-0509-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 02/10/2017] [Accepted: 02/14/2017] [Indexed: 12/19/2022] Open
Abstract
Background Myocardial microvascular loss after myocardial infarction (MI) remains a therapeutic challenge. Autologous stem cell therapy was considered as an alternative; however, it has shown modest benefits due to the impairing effects of cardiovascular risk factors on stem cells. Allogenic adipose-derived stem cells (ASCs) may overcome such limitations, and because of their low immunogenicity and paracrine potential may be good candidates for cell therapy. In the present study we investigated the effects of allogenic ASCs and their released products on cardiac rarefaction post MI. Methods Pig subcutaneous adipose tissue ASCs were isolated, expanded and GFP-labeled. ASC angiogenic function was assessed by the in-vivo chick chorioallantoic membrane (CAM) model. Pigs underwent MI induction and 7 days after were randomized to receive: allogenic ASCs (intracoronary infusion); conditioned media (CM; intravenous infusion); ASCs + CM; or PBS/placebo (control). Cardiac damage and function were monitored by 3-T cardiac magnetic resonance imaging upon infusion (baseline CMR) and 1 and 3 weeks thereafter. We assessed in the myocardium: microvessel density; angiogenic markers (CD105, CD31, TF, VEGFR2, VEGFR1, vWF, eNOS, CD62); collagen deposition; and reparative fibrosis (TGFβ/TβRII/collagen). Differential proteomics of ASCs and CM was performed to characterize the ASC protein signature. Results CAM indicated a significant ASC proangiogenic capacity. In pigs after MI, only PBS/placebo animals displayed an impaired cardiac function 3 weeks after infusion (p < 0.05 vs baseline). Administration of ASCs + CM significantly enhanced neovessel formation and favored cardiac repair post MI (p < 0.05 vs the other groups). Molecular markers of angiogenesis were significantly upregulated both at transcriptional and protein levels (p < 0.05). The in-silico bioinformatics analysis of the ASC and CM proteome (interactome) indicated activation of a coordinated protein network involved in the formation of microvessels and the resolution of rarefaction. Conclusion Coadministration of allogenic ASCs and their CM synergistically contribute to the neovascularization of the infarcted myocardium through a coordinated upregulation of the proangiogenic protein interactome. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0509-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gemma Vilahur
- Cardiovascular Research Center (CSIC-ICCC) Hospital de la Santa Creu i Sant Pau (HSCSP), c/Sant Antoni Ma Claret 167, 08025, Barcelona, Spain.,CIBERCV, ISCIII, Madrid, Spain
| | - Blanca Oñate
- Cardiovascular Research Center (CSIC-ICCC) Hospital de la Santa Creu i Sant Pau (HSCSP), c/Sant Antoni Ma Claret 167, 08025, Barcelona, Spain
| | - Judit Cubedo
- Cardiovascular Research Center (CSIC-ICCC) Hospital de la Santa Creu i Sant Pau (HSCSP), c/Sant Antoni Ma Claret 167, 08025, Barcelona, Spain
| | - Maria Teresa Béjar
- Cardiovascular Research Center (CSIC-ICCC) Hospital de la Santa Creu i Sant Pau (HSCSP), c/Sant Antoni Ma Claret 167, 08025, Barcelona, Spain
| | - Gemma Arderiu
- Cardiovascular Research Center (CSIC-ICCC) Hospital de la Santa Creu i Sant Pau (HSCSP), c/Sant Antoni Ma Claret 167, 08025, Barcelona, Spain
| | - Esther Peña
- Cardiovascular Research Center (CSIC-ICCC) Hospital de la Santa Creu i Sant Pau (HSCSP), c/Sant Antoni Ma Claret 167, 08025, Barcelona, Spain.,CIBERCV, ISCIII, Madrid, Spain
| | - Laura Casaní
- Cardiovascular Research Center (CSIC-ICCC) Hospital de la Santa Creu i Sant Pau (HSCSP), c/Sant Antoni Ma Claret 167, 08025, Barcelona, Spain.,CIBERCV, ISCIII, Madrid, Spain
| | | | | | | | | | | | - Lina Badimon
- Cardiovascular Research Center (CSIC-ICCC) Hospital de la Santa Creu i Sant Pau (HSCSP), c/Sant Antoni Ma Claret 167, 08025, Barcelona, Spain. .,CIBERCV, ISCIII, Madrid, Spain. .,Cardiovascular Research Chair, UAB (Autonomous University of Barcelona), Barcelona, Spain.
| |
Collapse
|
29
|
|
30
|
Ladeiras-Lopes R, Sampaio F, Bettencourt N, Fontes-Carvalho R, Ferreira N, Leite-Moreira A, Gama V. The Ratio Between Visceral and Subcutaneous Abdominal Fat Assessed by Computed Tomography Is an Independent Predictor of Mortality and Cardiac Events. ACTA ACUST UNITED AC 2016; 70:331-337. [PMID: 27765543 DOI: 10.1016/j.rec.2016.09.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/06/2016] [Indexed: 12/28/2022]
Abstract
INTRODUCTION AND OBJECTIVES Obesity is an important cardiovascular risk factor and the location of fat deposits seems to be an important determinant of its metabolic impact. Visceral adipose tissue (VAT) exerts a harmful effect on metabolic homeostasis, but few longitudinal studies have evaluated the prognostic impact of the ratio of VAT to subcutaneous adipose tissue (SAT). This study aimed to evaluate whether the VAT/SAT ratio was associated with all-cause mortality and cardiac events. METHODS Registry-based retrospective cohort study. Eligible patients consisted of those without known heart disease referred to cardiac computed tomography (CT) angiography to evaluate suspected coronary artery disease (CAD). We included all patients with available information on VAT and SAT areas and coronary artery calcium (CAC) score. We assessed the combined endpoint of all-cause mortality, myocardial infarction or revascularization procedure at least 1 month after cardiac CT. RESULTS The final population consisted of 713 participants (61% male; mean age, 57.7±10.2 years) followed up for a median of 1.3 years. The combined endpoint occurred in 66 patients; these patients showed a higher VAT/SAT ratio (1.06±0.74 vs 0.80±0.52, P=.0001). The VAT/SAT ratio was an independent predictor of death and cardiac events (HR = 1.43; 95%CI, 1.03-1.99), irrespective of cardiovascular risk factors, CAC, and the presence of CAD. CONCLUSIONS The ratio between abdominal VAT/SAT was an independent predictor of death and coronary events, irrespective of cardiovascular risk factors, CAC, and the presence of CAD. This ratio is a CT-derived metric that may help to better identify patients with increased risk of death or cardiac events.
Collapse
Affiliation(s)
- Ricardo Ladeiras-Lopes
- Department of Cardiology, Gaia/Espinho Hospital Centre, Vila Nova de Gaia, Portugal; Cardiovascular Research and Development Centre, Faculty of Medicine of the University of Porto, Porto, Portugal.
| | - Francisco Sampaio
- Department of Cardiology, Gaia/Espinho Hospital Centre, Vila Nova de Gaia, Portugal; Cardiovascular Research and Development Centre, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Nuno Bettencourt
- Cardiovascular Research and Development Centre, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Ricardo Fontes-Carvalho
- Department of Cardiology, Gaia/Espinho Hospital Centre, Vila Nova de Gaia, Portugal; Cardiovascular Research and Development Centre, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Nuno Ferreira
- Department of Cardiology, Gaia/Espinho Hospital Centre, Vila Nova de Gaia, Portugal; Cardiovascular Research and Development Centre, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Adelino Leite-Moreira
- Cardiovascular Research and Development Centre, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Vasco Gama
- Department of Cardiology, Gaia/Espinho Hospital Centre, Vila Nova de Gaia, Portugal; Cardiovascular Research and Development Centre, Faculty of Medicine of the University of Porto, Porto, Portugal
| |
Collapse
|
31
|
Could stem cells be the future therapy for sepsis? Blood Rev 2016; 30:439-452. [PMID: 27297212 DOI: 10.1016/j.blre.2016.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 12/15/2022]
Abstract
The severity and threat of sepsis is well known, and despite several decades of research, the mortality continues to be high. Stem cells have great potential to be used in various clinical disorders. The innate ability of stem cells such as pluripotency, self-renewal makes them potential agents for therapeutic intervention. The pathophysiology of sepsis is a plethora of complex mechanisms which include the initial microbial infection, followed by "cytokine storm," endothelial dysfunction, coagulation cascade, and the late phase of apoptosis and immune paralysis which ultimately results in multiple organ dysfunction. Stem cells could potentially alter each step of this complex pathophysiology of sepsis. Multiple organ dysfunction associated with sepsis most often leads to death and stem cells have shown their ability to prevent the organ damage and improve the organ function. The possible mechanisms of therapeutic potential of stem cells in sepsis have been discussed in detail. The route of administration, dose level, and timing also play vital role in the overall effect of stem cells in sepsis.
Collapse
|
32
|
Kusminski CM, Bickel PE, Scherer PE. Targeting adipose tissue in the treatment of obesity-associated diabetes. Nat Rev Drug Discov 2016; 15:639-660. [PMID: 27256476 DOI: 10.1038/nrd.2016.75] [Citation(s) in RCA: 490] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Adipose tissue regulates numerous physiological processes, and its dysfunction in obese humans is associated with disrupted metabolic homeostasis, insulin resistance and type 2 diabetes mellitus (T2DM). Although several US-approved treatments for obesity and T2DM exist, these are limited by adverse effects and a lack of effective long-term glucose control. In this Review, we provide an overview of the role of adipose tissue in metabolic homeostasis and assess emerging novel therapeutic strategies targeting adipose tissue, including adipokine-based strategies, promotion of white adipose tissue beiging as well as reduction of inflammation and fibrosis.
Collapse
Affiliation(s)
- Christine M Kusminski
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center
| | - Perry E Bickel
- Division of Endocrinology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center
| |
Collapse
|
33
|
Comella K, Parcero J, Bansal H, Perez J, Lopez J, Agrawal A, Ichim T. Effects of the intramyocardial implantation of stromal vascular fraction in patients with chronic ischemic cardiomyopathy. J Transl Med 2016; 14:158. [PMID: 27255774 PMCID: PMC4890248 DOI: 10.1186/s12967-016-0918-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 05/20/2016] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Stromal vascular fraction (SVF) can easily be obtained from a mini-lipoaspirate procedure of fat tissue. The SVF contains a mixture of cells including ADSCs and growth factors and has been depleted of the adipocyte (fat cell) population. We evaluated the safety and efficacy of administering SVF intra-myocardially into patients with chronic ischemic cardiomyopathy. METHODS A total of 28 patients underwent a local tumescent liposuction procedure to remove approximately 60 ml of fat tissue. The fat was separated to isolate the SVF and the cells were delivered into the akinetic myocardial scar region using a transendocardial delivery system (MyoCath(®)) in patients who had experienced a previous myocardial infarct. The subjects were then monitored for adverse events, ejection fraction via echocardiogram and six-minute walk test (6MWT) over a period of 6 months. RESULTS The average EF was 29 % at baseline and significantly increased to 35 % at both 3 and 6 months. Patients walked an average of 349 m at baseline and demonstrated a statistically significant improvement at 3 and 6 months' post treatment of more than 80 m. CONCLUSIONS Overall, patients were pleased with the treatment results. More importantly, the procedure demonstrated a strong safety profile with no severe adverse events or complications linked to the therapy. Trial registration NCT01502514 Name of registry: http://www.clinicaltrials.gov URL: https://www.clinicaltrials.gov/ct2/show/NCT01502514?term=adipose+cells+heart&rank=4 Date of registration: December 27, 2011 Date of enrollment: January 2012.
Collapse
Affiliation(s)
| | - J. Parcero
- />Regenerative Medicine Institute, Tijuana, Mexico
| | - H. Bansal
- />Consultant Regenerative Medicine, Mother Cell Spinal Injury and Stem Cell Research, Anupam Hospital, Rudrapur, Uttarakhand 263153 India
| | - J. Perez
- />Regenerative Medicine Institute, Tijuana, Mexico
| | - J. Lopez
- />Regenerative Medicine Institute, Tijuana, Mexico
| | - A. Agrawal
- />Consultant Regenerative Medicine, Mother Cell Spinal Injury and Stem Cell Research, Anupam Hospital, Rudrapur, Uttarakhand 263153 India
| | - T. Ichim
- />Regenerative Medicine Institute, Tijuana, Mexico
| |
Collapse
|
34
|
Su X, Peng D, Zheng X. Apolipoprotein A5 inhibits adipogenesis of AMSCs potentially through the Cidec pathway. Int J Cardiol 2016; 212:107-8. [PMID: 27045875 DOI: 10.1016/j.ijcard.2016.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/13/2016] [Indexed: 11/18/2022]
Affiliation(s)
- Xin Su
- Department of Cardiology, The Second Xiangya Hospital, Changsha, China.
| | - Daoquan Peng
- Department of Cardiology, The Second Xiangya Hospital, Changsha, China.
| | - Xiaoyan Zheng
- Department of Cardiology, The Second Xiangya Hospital, Changsha, China
| |
Collapse
|