1
|
Zhou Q, Liu X, Lu H, Li N, Meng J, Huang J, Zhang Z, Liu J, Fan W, Li W, Li X, Liu X, Zuo H, Yang P, Hou S. m6A-methylase METTL3 promotes retinal angiogenesis through modulation of metabolic reprogramming in RPE cells. J Neuroinflammation 2024; 21:289. [PMID: 39506758 PMCID: PMC11539582 DOI: 10.1186/s12974-024-03279-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
Retinal neovascularization (RNV) disease is one of the leading causes of blindness, yet the molecular underpinnings of this condition are not well understood. To delve into the critical aspects of cell-mediated angiogenesis, we analyzed our previously published single-cell data. Our analysis revealed that retinal pigment epithelium (RPE) cells serve a crucial promotional function in angiogenesis. RPE cells were regulated by N6-methyladenosine (m6A). Next, we detected several critical m6A methylase in hypoxic ARPE-19 cells and in oxygen-induced retinopathy (OIR) mice, our results revealed a significant decrease in the level of methyltransferase like 3 (METTL3). METTL3 specific inhibitor STM2457 intravitreal injection or METTL3 conditional knockout mice both showed a significantly reduced neovascularization area of retina. Additionally, the angiogenesis-related abilities of human retinal endothelial cells (HRECs) were diminished after co-cultured with ARPE-19 treated with STM2457 or sh-METTL3 in vitro. Furthermore, through the integration of Methylated RNA immunoprecipitation (MeRIP) sequencing and RNA sequencing, we discovered that the metabolic enzyme quinolinate phosphoribosyltransferase (QPRT) was directly modified by METTL3 and recognized by the YTH N6-methyladenosine RNA binding protein C1 (YTHDC1). Moreover, after over-expressing QPRT, the angiogenic abilities of HRECs were improved through the phosphorylated phosphatidylinositol-3-kinase (p-PI3K)/ phosphorylated threonine kinase (p-AKT) pathway. Collectively, our study provided a novel therapeutic target for retinal angiogenesis.
Collapse
Affiliation(s)
- Qian Zhou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, and Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, China
| | - Xianyang Liu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, and Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, China
- Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Huiping Lu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, and Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, China
| | - Na Li
- Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Jiayu Meng
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Jiaxing Huang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, and Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, China
| | - Zhi Zhang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, and Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, China
| | - Jiangyi Liu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, and Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, China
| | - Wei Fan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, and Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, China
| | - Wanqian Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, and Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, China
| | - Xingran Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, and Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, China
| | - Xiaoyan Liu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, and Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, China
| | - Hangjia Zuo
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, and Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, China
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, and Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, China.
| | - Shengping Hou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, and Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, China.
- Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| |
Collapse
|
2
|
Almalki WH, Almujri SS. The impact of NF-κB on inflammatory and angiogenic processes in age-related macular degeneration. Exp Eye Res 2024; 248:110111. [PMID: 39326776 DOI: 10.1016/j.exer.2024.110111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/09/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Age-related macular degeneration (AMD) is a prominent cause of vision loss, characterized by two different types, dry (atrophic) and wet (neovascular). Dry AMD is distinguished by the progressive deterioration of retinal cells, which ultimately causes a decline in vision. In contrast, wet AMD is defined by the abnormal development of blood vessels underneath the retina, leading to a sudden and severe vision impairment. The course of AMD is primarily driven by chronic inflammation and pathological angiogenesis, in which the NF-κB signaling pathway plays a crucial role. The activation of NF-κB results in the generation of pro-inflammatory cytokines, chemokines, and angiogenic factors like VEGF, which contribute to inflammation and the formation of new blood vessels in AMD. This review analyzes the intricate relationship between NF-κB signaling, inflammation, and angiogenesis in AMD and assesses the possibility of using NF-κB as a target for therapy. The evaluation involves a comprehensive examination of preclinical and clinical evidence that substantiates the effectiveness of NF-κB inhibitors in treating AMD by diminishing inflammation and pathological angiogenesis.
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Aseer, Saudi Arabia
| |
Collapse
|
3
|
Hu ZL, Wang YX, Lin ZY, Ren WS, Liu B, Zhao H, Qin Q. Regulatory factors of Nrf2 in age-related macular degeneration pathogenesis. Int J Ophthalmol 2024; 17:1344-1362. [PMID: 39026906 PMCID: PMC11246936 DOI: 10.18240/ijo.2024.07.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/06/2024] [Indexed: 07/20/2024] Open
Abstract
Age-related macular degeneration (AMD) is a complicated disease that causes irreversible visual impairment. Increasing evidences pointed retinal pigment epithelia (RPE) cells as the decisive cell involved in the progress of AMD, and the function of anti-oxidant capacity of PRE plays a fundamental physiological role. Nuclear factor erythroid 2 related factor 2 (Nrf2) is a significant transcription factor in the cellular anti-oxidant system as it regulates the expression of multiple anti-oxidative genes. Its functions of protecting RPE cells against oxidative stress (OS) and ensuing physiological changes, including inflammation, mitochondrial damage and autophagy dysregulation, have already been elucidated. Understanding the roles of upstream regulators of Nrf2 could provide further insight to the OS-mediated AMD pathogenesis. For the first time, this review summarized the reported upstream regulators of Nrf2 in AMD pathogenesis, including proteins and miRNAs, and their underlying molecular mechanisms, which may help to find potential targets via regulating the Nrf2 pathway in the future research and further discuss the existing Nrf2 regulators proved to be beneficial in preventing AMD.
Collapse
Affiliation(s)
- Zi-Ling Hu
- Five Year Program of Ophthalmology and Optometry 2019, Beijing Tong Ren Hospital, Capital Medical University, Beijing 100054, China
| | - Yu-Xuan Wang
- Four Year Program of Traditional Chinese Pharmacy 2020, School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Zi-Yue Lin
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Wen-Shuo Ren
- Four Year Program of Traditional Chinese Pharmacy 2020, School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Bo Liu
- Five Year Program of Ophthalmology and Optometry 2021, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Hui Zhao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing 100069, China
| | - Qiong Qin
- Biochemistry & Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
4
|
Diao J, Fan H, Zhang J, Fu X, Liao R, Zhao P, Huang W, Huang S, Liao H, Yu J, Pan D, Wang M, Xiao W, Wen X. Activation of APE1 modulates Nrf2 protected against acute liver injury by inhibit hepatocyte ferroptosis and promote hepatocyte autophagy. Int Immunopharmacol 2024; 128:111529. [PMID: 38244516 DOI: 10.1016/j.intimp.2024.111529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/22/2024]
Abstract
BACKGROUND Apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1) plays a crucial role in DNA base excision repair, cell apoptosis, cell signaling, and the regulation of transcription factors through redox modulation and the control of reactive oxygen species (ROS). However, the connection between APE1 and acute liver injury (ALI) remains enigmatic. This study aims to unravel the molecular mechanisms underlying ALI and shed light on the role of APE1 in this context. METHOD We induced acute liver injury (ALI) in mice by lipopolysaccharide/D-galactosamine (LPS/GalN) and intervened with the APE1 inhibitor E3330. We examined the expression of APE1 in ALI mice and ALI patient tissues after E3330 intervention, Additionally, we measured hepatic oxidative stress, ferroptosis, and autophagy marker proteins and genes. In establishing an AML-12 liver cell injury model, we utilized the Nrf2 activator tert-butylhydroquinone (TBHQ) as an intervention and examined APE1, Nrf2, ferroptosis-related proteins, and autophagy marker proteins and mRNA. RESULTS Both ALI patients and ALI mice exhibited reduced APE1 expression levels. After E3330 intervention, there was a significant exacerbation of liver injury, oxidative stress, and a reduction in the expression of proteins, including GPX4, X-CT, ATG3, ATG5, and LC3 (LC3I/II). Consistent results were also observed in AML-12 cells. With TBHQ intervention, Nrf2 expression increased, along with the expression of proteins associated with iron death and autophagy. Mechanistically, APE1 activation regulates Nrf2 to inhibit ferroptosis and promote autophagy in hepatocytes. CONCLUSION The data suggest that APE1 is a pivotal player in ALI, closely linked to its regulation of Nrf2. Strategies involving APE1 activation to modulate Nrf2, thereby inhibiting hepatocyte ferroptosis and promoting autophagy, may represent innovative therapeutic approaches for ALI. Additionally, tert-butylhydroquinone (TBHQ) holds significant promise in the treatment of acute liver injury.
Collapse
Affiliation(s)
- Jianxin Diao
- Center of TCM Preventive Treatment, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Huijie Fan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China; Department of Traditional Chinese Medicine, People's Hospital of Yangjiang, Yangjiang 529500, China
| | - Jia Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiuqiong Fu
- School of Chinese Medicine, Consun Chinese Medicines Research Centre for Renal Diseases, Hong Kong Baptist University, Hong Kong, China
| | - Rongxin Liao
- Center of TCM Preventive Treatment, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Peng Zhao
- Center of TCM Preventive Treatment, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Wei Huang
- Center of TCM Preventive Treatment, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Shiying Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Huajun Liao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jieying Yu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Dongmei Pan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ming Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China; Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Wei Xiao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China.
| | - Xiaomin Wen
- Center of TCM Preventive Treatment, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
5
|
Kushwah N, Bora K, Maurya M, Pavlovich MC, Chen J. Oxidative Stress and Antioxidants in Age-Related Macular Degeneration. Antioxidants (Basel) 2023; 12:1379. [PMID: 37507918 PMCID: PMC10376043 DOI: 10.3390/antiox12071379] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Oxidative stress plays a crucial role in aging-related eye diseases, including age-related macular degeneration (AMD), cataracts, and glaucoma. With age, antioxidant reparative capacity decreases, and excess levels of reactive oxygen species produce oxidative damage in many ocular cell types underling age-related pathologies. In AMD, loss of central vision in the elderly is caused primarily by retinal pigment epithelium (RPE) dysfunction and degeneration and/or choroidal neovascularization that trigger malfunction and loss of photo-sensing photoreceptor cells. Along with various genetic and environmental factors that contribute to AMD, aging and age-related oxidative damage have critical involvement in AMD pathogenesis. To this end, dietary intake of antioxidants is a proven way to scavenge free radicals and to prevent or slow AMD progression. This review focuses on AMD and highlights the pathogenic role of oxidative stress in AMD from both clinical and experimental studies. The beneficial roles of antioxidants and dietary micronutrients in AMD are also summarized.
Collapse
Affiliation(s)
| | | | | | | | - Jing Chen
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
6
|
Shughoury A, Bhatwadekar A, Jusufbegovic D, Hajrasouliha A, Ciulla TA. The evolving therapeutic landscape of diabetic retinopathy. Expert Opin Biol Ther 2023; 23:969-985. [PMID: 37578843 PMCID: PMC10592121 DOI: 10.1080/14712598.2023.2247987] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/30/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
INTRODUCTION Diabetic retinopathy (DR) is a leading cause of blindness worldwide. Recent decades have seen rapid progress in the management of diabetic eye disease, evolving from pituitary ablation to photocoagulation and intravitreal pharmacotherapy. The advent of effective intravitreal drugs inhibiting vascular endothelial growth factor (VEGF) marked a new era in DR therapy. Sustained innovation has since produced several promising biologics targeting angiogenesis, inflammation, oxidative stress, and neurodegeneration. AREAS COVERED This review surveys traditional, contemporary, and emerging therapeutics for DR, with an emphasis on anti-VEGF therapies, receptor tyrosine kinase inhibitors, angiopoietin-Tie2 pathway inhibitors, integrin pathway inhibitors, gene therapy 'biofactory' approaches, and novel systemic therapies. Some of these investigational therapies are being delivered intravitreally via sustained release technologies for extended durability. Other investigational agents are being delivered non-invasively via topical and systemic routes. These strategies hold promise for early and long-lasting treatment of DR. EXPERT OPINION The evolving therapeutic landscape of DR is rapidly expanding our toolkit for the effective and durable treatment of blinding eye disease. However, further research is required to validate the efficacy of novel therapeutics and characterize real world outcomes.
Collapse
Affiliation(s)
- Aumer Shughoury
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA 46202
| | - Ashay Bhatwadekar
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA 46202
| | - Denis Jusufbegovic
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA 46202
| | - Amir Hajrasouliha
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA 46202
| | - Thomas A Ciulla
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA 46202
- Midwest Eye Institute, Indianapolis, IN, USA 46290
- Clearside Biomedical, Inc., Alpharetta, GA, USA 30005
| |
Collapse
|
7
|
Muniyandi A, Hartman GD, Song Y, Mijit M, Kelley MR, Corson TW. Beyond VEGF: Targeting Inflammation and Other Pathways for Treatment of Retinal Disease. J Pharmacol Exp Ther 2023; 386:15-25. [PMID: 37142441 PMCID: PMC10289243 DOI: 10.1124/jpet.122.001563] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/17/2023] [Accepted: 04/03/2023] [Indexed: 05/06/2023] Open
Abstract
Neovascular eye diseases include conditions such as retinopathy of prematurity, proliferative diabetic retinopathy, and neovascular age-related macular degeneration. Together, they are a major cause of vision loss and blindness worldwide. The current therapeutic mainstay for these diseases is intravitreal injections of biologics targeting vascular endothelial growth factor (VEGF) signaling. Lack of universal response to these anti-VEGF agents coupled with the challenging delivery method underscore a need for new therapeutic targets and agents. In particular, proteins that mediate both inflammatory and proangiogenic signaling are appealing targets for new therapeutic development. Here, we review agents currently in clinical trials and highlight some promising targets in preclinical and early clinical development, focusing on the redox-regulatory transcriptional activator APE1/Ref-1, the bioactive lipid modulator soluble epoxide hydrolase, the transcription factor RUNX1, and others. Small molecules targeting each of these proteins show promise for blocking neovascularization and inflammation. The affected signaling pathways illustrate the potential of new antiangiogenic strategies for posterior ocular disease. SIGNIFICANCE STATEMENT: Discovery and therapeutic targeting of new angiogenesis mediators is necessary to improve treatment of blinding eye diseases like retinopathy of prematurity, diabetic retinopathy, and neovascular age-related macular degeneration. Novel targets undergoing evaluation and drug discovery work include proteins important for both angiogenesis and inflammation signaling, including APE1/Ref-1, soluble epoxide hydrolase, RUNX1, and others.
Collapse
Affiliation(s)
- Anbukkarasi Muniyandi
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute (A.M., G.D.H., Y.S., M.R.K., T.W.C.), Department of Pediatrics, Herman B Wells Center for Pediatric Research (M.M., M.R.K.), Stark Neurosciences Research Institute (G.D.H., T.W.C.), Departments of Pharmacology and Toxicology (M.R.K., T.W.C.) and Biochemistry and Molecular Biology (M.R.K., T.W.C.), and Melvin and Bren Simon Comprehensive Cancer Center (M.R.K., T.W.C.), Indiana University School of Medicine, Indianapolis, Indiana
| | - Gabriella D Hartman
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute (A.M., G.D.H., Y.S., M.R.K., T.W.C.), Department of Pediatrics, Herman B Wells Center for Pediatric Research (M.M., M.R.K.), Stark Neurosciences Research Institute (G.D.H., T.W.C.), Departments of Pharmacology and Toxicology (M.R.K., T.W.C.) and Biochemistry and Molecular Biology (M.R.K., T.W.C.), and Melvin and Bren Simon Comprehensive Cancer Center (M.R.K., T.W.C.), Indiana University School of Medicine, Indianapolis, Indiana
| | - Yang Song
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute (A.M., G.D.H., Y.S., M.R.K., T.W.C.), Department of Pediatrics, Herman B Wells Center for Pediatric Research (M.M., M.R.K.), Stark Neurosciences Research Institute (G.D.H., T.W.C.), Departments of Pharmacology and Toxicology (M.R.K., T.W.C.) and Biochemistry and Molecular Biology (M.R.K., T.W.C.), and Melvin and Bren Simon Comprehensive Cancer Center (M.R.K., T.W.C.), Indiana University School of Medicine, Indianapolis, Indiana
| | - Mahmut Mijit
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute (A.M., G.D.H., Y.S., M.R.K., T.W.C.), Department of Pediatrics, Herman B Wells Center for Pediatric Research (M.M., M.R.K.), Stark Neurosciences Research Institute (G.D.H., T.W.C.), Departments of Pharmacology and Toxicology (M.R.K., T.W.C.) and Biochemistry and Molecular Biology (M.R.K., T.W.C.), and Melvin and Bren Simon Comprehensive Cancer Center (M.R.K., T.W.C.), Indiana University School of Medicine, Indianapolis, Indiana
| | - Mark R Kelley
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute (A.M., G.D.H., Y.S., M.R.K., T.W.C.), Department of Pediatrics, Herman B Wells Center for Pediatric Research (M.M., M.R.K.), Stark Neurosciences Research Institute (G.D.H., T.W.C.), Departments of Pharmacology and Toxicology (M.R.K., T.W.C.) and Biochemistry and Molecular Biology (M.R.K., T.W.C.), and Melvin and Bren Simon Comprehensive Cancer Center (M.R.K., T.W.C.), Indiana University School of Medicine, Indianapolis, Indiana
| | - Timothy W Corson
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute (A.M., G.D.H., Y.S., M.R.K., T.W.C.), Department of Pediatrics, Herman B Wells Center for Pediatric Research (M.M., M.R.K.), Stark Neurosciences Research Institute (G.D.H., T.W.C.), Departments of Pharmacology and Toxicology (M.R.K., T.W.C.) and Biochemistry and Molecular Biology (M.R.K., T.W.C.), and Melvin and Bren Simon Comprehensive Cancer Center (M.R.K., T.W.C.), Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
8
|
Markitantova Y, Simirskii V. Endogenous and Exogenous Regulation of Redox Homeostasis in Retinal Pigment Epithelium Cells: An Updated Antioxidant Perspective. Int J Mol Sci 2023; 24:10776. [PMID: 37445953 DOI: 10.3390/ijms241310776] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The retinal pigment epithelium (RPE) performs a range of necessary functions within the neural layers of the retina and helps ensure vision. The regulation of pro-oxidative and antioxidant processes is the basis for maintaining RPE homeostasis and preventing retinal degenerative processes. Long-term stable changes in the redox balance under the influence of endogenous or exogenous factors can lead to oxidative stress (OS) and the development of a number of retinal pathologies associated with RPE dysfunction, and can eventually lead to vision loss. Reparative autophagy, ubiquitin-proteasome utilization, the repair of damaged proteins, and the maintenance of their conformational structure are important interrelated mechanisms of the endogenous defense system that protects against oxidative damage. Antioxidant protection of RPE cells is realized as a result of the activity of specific transcription factors, a large group of enzymes, chaperone proteins, etc., which form many signaling pathways in the RPE and the retina. Here, we discuss the role of the key components of the antioxidant defense system (ADS) in the cellular response of the RPE against OS. Understanding the role and interactions of OS mediators and the components of the ADS contributes to the formation of ideas about the subtle mechanisms in the regulation of RPE cellular functions and prospects for experimental approaches to restore RPE functions.
Collapse
Affiliation(s)
- Yuliya Markitantova
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Vladimir Simirskii
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
9
|
Muniyandi A, Martin M, Sishtla K, Motolani A, Sun M, Jensen NR, Qi X, Boulton ME, Prabhu L, Lu T, Corson TW. PRMT5 is a therapeutic target in choroidal neovascularization. Sci Rep 2023; 13:1747. [PMID: 36720900 PMCID: PMC9889383 DOI: 10.1038/s41598-023-28215-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/16/2023] [Indexed: 02/02/2023] Open
Abstract
Ocular neovascular diseases including neovascular age-related macular degeneration (nvAMD) are widespread causes of blindness. Patients' non-responsiveness to currently used biologics that target vascular endothelial growth factor (VEGF) poses an unmet need for novel therapies. Here, we identify protein arginine methyltransferase 5 (PRMT5) as a novel therapeutic target for nvAMD. PRMT5 is a well-known epigenetic enzyme. We previously showed that PRMT5 methylates and activates a proangiogenic and proinflammatory transcription factor, the nuclear factor kappa B (NF-κB), which has a master role in tumor progression, notably in pancreatic ductal adenocarcinoma and colorectal cancer. We identified a potent and specific small molecule inhibitor of PRMT5, PR5-LL-CM01, that dampens the methylation and activation of NF-κB. Here for the first time, we assessed the antiangiogenic activity of PR5-LL-CM01 in ocular cells. Immunostaining of human nvAMD sections revealed that PRMT5 is highly expressed in the retinal pigment epithelium (RPE)/choroid where neovascularization occurs, while mouse eyes with laser induced choroidal neovascularization (L-CNV) showed PRMT5 is overexpressed in the retinal ganglion cell layer and in the RPE/choroid. Importantly, inhibition of PRMT5 by PR5-LL-CM01 or shRNA knockdown of PRMT5 in human retinal endothelial cells (HRECs) and induced pluripotent stem cell (iPSC)-derived choroidal endothelial cells (iCEC2) reduced NF-κB activity and the expression of its target genes, such as tumor necrosis factor α (TNF-α) and VEGF-A. In addition to inhibiting angiogenic properties of proliferation and tube formation, PR5-LL-CM01 blocked cell cycle progression at G1/S-phase in a dose-dependent manner in these cells. Thus, we provide the first evidence that inhibition of PRMT5 impedes angiogenesis in ocular endothelial cells, suggesting PRMT5 as a potential therapeutic target to ameliorate ocular neovascularization.
Collapse
Affiliation(s)
- Anbukkarasi Muniyandi
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Matthew Martin
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Kamakshi Sishtla
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Aishat Motolani
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Mengyao Sun
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Nathan R Jensen
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Xiaoping Qi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Michael E Boulton
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Lakshmi Prabhu
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Tao Lu
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Timothy W Corson
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
10
|
Mijit M, Liu S, Sishtla K, Hartman GD, Wan J, Corson TW, Kelley MR. Identification of Novel Pathways Regulated by APE1/Ref-1 in Human Retinal Endothelial Cells. Int J Mol Sci 2023; 24:1101. [PMID: 36674619 PMCID: PMC9865623 DOI: 10.3390/ijms24021101] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/26/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
APE1/Ref-1 (apurinic/apyrimidinic endonuclease 1, APE1 or APEX1; redox factor-1, Ref-1) is a dual-functional enzyme with crucial roles in DNA repair, reduction/oxidation (redox) signaling, and RNA processing and metabolism. The redox function of Ref-1 regulates several transcription factors, such as NF-κB, STAT3, HIF-1α, and others, which have been implicated in multiple human diseases, including ocular angiogenesis, inflammation, and multiple cancers. To better understand how APE1 influences these disease processes, we investigated the effects of APEX1 knockdown (KD) on gene expression in human retinal endothelial cells. This abolishes both DNA repair and redox signaling functions, as well as RNA interactions. Using RNA-seq analysis, we identified the crucial signaling pathways affected following APEX1 KD, with subsequent validation by qRT-PCR. Gene expression data revealed that multiple genes involved in DNA base excision repair, other DNA repair pathways, purine or pyrimidine metabolism signaling, and histidine/one carbon metabolism pathways were downregulated by APEX1 KD. This is in contrast with the alteration of pathways by APEX1 KD in human cancer lines, such as pancreatic ductal adenocarcinoma, lung, HeLa, and malignant peripheral nerve sheath tumors. These results highlight the unique role of APE1/Ref-1 and the clinical therapeutic potential of targeting APE1 and pathways regulated by APE1 in the eye. These findings provide novel avenues for ocular neovascularization treatment.
Collapse
Affiliation(s)
- Mahmut Mijit
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kamakshi Sishtla
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Gabriella D. Hartman
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Timothy W. Corson
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mark R. Kelley
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
11
|
Champion JD, Dodd KM, Lam HC, Alzahrani MAM, Seifan S, Rad E, Scourfield DO, Fishel ML, Calver BL, Ager A, Henske EP, Davies DM, Kelley MR, Tee AR. Drug Inhibition of Redox Factor-1 Restores Hypoxia-Driven Changes in Tuberous Sclerosis Complex 2 Deficient Cells. Cancers (Basel) 2022; 14:6195. [PMID: 36551683 PMCID: PMC9776744 DOI: 10.3390/cancers14246195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/17/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Therapies with the mechanistic target of rapamycin complex 1 (mTORC1) inhibitors are not fully curative for tuberous sclerosis complex (TSC) patients. Here, we propose that some mTORC1-independent disease facets of TSC involve signaling through redox factor-1 (Ref-1). Ref-1 possesses a redox signaling activity that stimulates the transcriptional activity of STAT3, NF-kB, and HIF-1α, which are involved in inflammation, proliferation, angiogenesis, and hypoxia, respectively. Here, we demonstrate that redox signaling through Ref-1 contributes to metabolic transformation and tumor growth in TSC cell model systems. In TSC2-deficient cells, the clinically viable Ref-1 inhibitor APX3330 was effective at blocking the hyperactivity of STAT3, NF-kB, and HIF-1α. While Ref-1 inhibitors do not inhibit mTORC1, they potently block cell invasion and vasculature mimicry. Of interest, we show that cell invasion and vasculature mimicry linked to Ref-1 redox signaling are not blocked by mTORC1 inhibitors. Metabolic profiling revealed that Ref-1 inhibitors alter metabolites associated with the glutathione antioxidant pathway as well as metabolites that are heavily dysregulated in TSC2-deficient cells involved in redox homeostasis. Therefore, this work presents Ref-1 and associated redox-regulated transcription factors such as STAT3, NF-kB, and HIF-1α as potential therapeutic targets to treat TSC, where targeting these components would likely have additional benefits compared to using mTORC1 inhibitors alone.
Collapse
Affiliation(s)
- Jesse D. Champion
- Division of Cancer and Genetics, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Kayleigh M. Dodd
- Division of Cancer and Genetics, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Hilaire C. Lam
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Sara Seifan
- Division of Cancer and Genetics, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Ellie Rad
- Division of Cancer and Genetics, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | | | - Melissa L. Fishel
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Brian L. Calver
- Division of Cancer and Genetics, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Ann Ager
- Division of Infection and Immunity, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Elizabeth P. Henske
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - David Mark Davies
- Division of Cancer and Genetics, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
- Department of Oncology, South West Wales Cancer Centre, Singleton Hospital, Swansea SA2 8QA, UK
| | - Mark R. Kelley
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Andrew R. Tee
- Division of Cancer and Genetics, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
12
|
Lv D, Chen D, Wang Z, Cui Z, Ma JH, Ji S, Chen J, Tang S. COL10A1 is a novel factor in the development of choroidal neovascularization. Microvasc Res 2022; 139:104239. [PMID: 34520774 DOI: 10.1016/j.mvr.2021.104239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/16/2021] [Accepted: 08/31/2021] [Indexed: 11/29/2022]
Abstract
With the dramatic rise in the aging population, researching age-related macular degeneration (AMD), especially the severe form neovascular AMD (nAMD), has become more important than ever. In this study, we found that collagen type X was increased in retina-choroid tissue of mice with laser-induced choroidal neovascularization (CNV) based on immunohistofluorescence. RNA sequencing and bioinformatic analyses were performed to compare the retina-choroid tissue complex of the CNV mouse model to normal controls. Collagen type X alpha 1 chain (Col10a1) was among the most significantly upregulated genes, and the results were validated with an animal model at the mRNA and protein levels by quantitative real-time polymerase chain reaction (qPCR) and western blotting, respectively. COL10A1 was also upregulated in human retinal microvascular endothelial cells (HRMECs), human umbilical vein endothelial cells (HUVECs), RPE19 cells and RF/6A cells under hypoxic conditions. Next, in vitro and in vivo experiments were performed to study the effect of COL10A1 on neovascularization. siRNA knockdown of COL10A1 suppressed the proliferation and tube formation ability of HRMECs under hypoxic conditions. Snail family transcriptional repressor 1 (SNAIL1) and angiopoietin-2 (ANGPT2) were downregulated in COL10A1 knockdown HRMECs under hypoxic conditions and thus were potential downstream genes. Significant decreases in CNV leakage and CNV lesion area, as assessed by fundus fluorescein angiography (FFA) and immunofluorescence of choroidal flat mounts, respectively, were observed in a mouse model intravitreally injected with anti-collagen X monoclonal antibody (mAb) compared to the controls. In conclusion, COL10A1 promotes CNV formation and may represent a new candidate target for the treatment and diagnosis of nAMD and other neovascular diseases.
Collapse
Affiliation(s)
- Da Lv
- Aier School of Ophthalmology, Central South University, Changsha, China; Aier Eye Institute, Changsha, China
| | | | - Zhijie Wang
- Aier School of Ophthalmology, Central South University, Changsha, China; Aier Eye Institute, Changsha, China
| | | | - Jacey Hongjie Ma
- Aier School of Ophthalmology, Central South University, Changsha, China; Aier Eye Institute, Changsha, China
| | | | - Jiansu Chen
- Aier School of Ophthalmology, Central South University, Changsha, China; Aier Eye Institute, Changsha, China; Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China; Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China.
| | - Shibo Tang
- Aier School of Ophthalmology, Central South University, Changsha, China; Aier Eye Institute, Changsha, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
13
|
Oliveira TT, Fontes-Dantas FL, de Medeiros Oliveira RK, Pinheiro DML, Coutinho LG, da Silva VL, de Souza SJ, Agnez-Lima LF. Chemical Inhibition of Apurinic-Apyrimidinic Endonuclease 1 Redox and DNA Repair Functions Affects the Inflammatory Response via Different but Overlapping Mechanisms. Front Cell Dev Biol 2021; 9:731588. [PMID: 34616737 PMCID: PMC8488223 DOI: 10.3389/fcell.2021.731588] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/27/2021] [Indexed: 01/21/2023] Open
Abstract
The presence of oxidized DNA lesions, such as 7,8-dihydro-8-oxoguanine (8-oxoG) and apurinic/apyrimidinic sites (AP sites), has been described as epigenetic signals that are involved in gene expression control. In mammals, Apurinic-apyrimidinic endonuclease 1/Redox factor-1 (APE1/Ref-1) is the main AP endonuclease of the base excision repair (BER) pathway and is involved in active demethylation processes. In addition, APE1/Ref-1, through its redox function, regulates several transcriptional factors. However, the transcriptional control targets of each APE1 function are not completely known. In this study, a transcriptomic approach was used to investigate the effects of chemical inhibition of APE1/Ref-1 redox or DNA repair functions by E3330 or methoxyamine (MX) in an inflammatory cellular model. Under lipopolysaccharide (LPS) stimulation, both E3330 and MX reduced the expression of some cytokines and chemokines. Interestingly, E3330 treatment reduced cell viability after 48 h of the treatment. Genes related to inflammatory response and mitochondrial processes were downregulated in both treatments. In the E3330 treatment, RNA processing and ribosome biogenesis genes were downregulated, while they were upregulated in the MX treatment. Furthermore, in the E3330 treatment, the cellular stress response was the main upregulated process, while the cellular macromolecule metabolic process was observed in MX-upregulated genes. Nuclear respiratory factor 1 (NRF1) was predicted to be a master regulator of the downregulated genes in both treatments, while the ETS transcription factor ELK1 (ELK1) was predicted to be a master regulator only for E3330 treatment. Decreased expression of ELK1 and its target genes and a reduced 28S/18S ratio were observed, suggesting impaired rRNA processing. In addition, both redox and repair functions can affect the expression of NRF1 and GABPA target genes. The master regulators predicted for upregulated genes were YY1 and FLI1 for the E3330 and MX treatments, respectively. In summary, the chemical inhibition of APE1/Ref-1 affects gene expression regulated mainly by transcriptional factors of the ETS family, showing partial overlap of APE1 redox and DNA repair functions, suggesting that these activities are not entirely independent. This work provides a new perspective on the interaction between APE1 redox and DNA repair activity in inflammatory response modulation and transcription.
Collapse
Affiliation(s)
- Thais Teixeira Oliveira
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, Brazil
| | - Fabrícia Lima Fontes-Dantas
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, Brazil
| | | | | | - Leonam Gomes Coutinho
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, Brazil.,Instituto Federal de Educação Tecnológica do Rio Grande do Norte, IFRN, São Paulo do Potengi, Brazil
| | - Vandeclecio Lira da Silva
- Instituto do Cérebro, Universidade Federal do Rio Grande do Norte, Natal, Brazil.,Bioinformatics Multidisciplinary Environment (BioME), IMD, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Sandro José de Souza
- Instituto do Cérebro, Universidade Federal do Rio Grande do Norte, Natal, Brazil.,Bioinformatics Multidisciplinary Environment (BioME), IMD, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | | |
Collapse
|
14
|
Inhibition of APE1/Ref-1 for Neovascular Eye Diseases: From Biology to Therapy. Int J Mol Sci 2021; 22:ijms221910279. [PMID: 34638620 PMCID: PMC8508814 DOI: 10.3390/ijms221910279] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 01/05/2023] Open
Abstract
Proliferative diabetic retinopathy (PDR), neovascular age-related macular degeneration (nvAMD), retinopathy of prematurity (ROP) and other eye diseases are characterized by retinal and/or choroidal neovascularization, ultimately causing vision loss in millions of people worldwide. nvAMD and PDR are associated with aging and the number of those affected is expected to increase as the global median age and life expectancy continue to rise. With this increase in prevalence, the development of novel, orally bioavailable therapies for neovascular eye diseases that target multiple pathways is critical, since current anti-vascular endothelial growth factor (VEGF) treatments, delivered by intravitreal injection, are accompanied with tachyphylaxis, a high treatment burden and risk of complications. One potential target is apurinic/apyrimidinic endonuclease 1/reduction-oxidation factor 1 (APE1/Ref-1). The multifunctional protein APE1/Ref-1 may be targeted via inhibitors of its redox-regulating transcription factor activation activity to modulate angiogenesis, inflammation, oxidative stress response and cell cycle in neovascular eye disease; these inhibitors also have neuroprotective effects in other tissues. An APE1/Ref-1 small molecule inhibitor is already in clinical trials for cancer, PDR and diabetic macular edema. Efforts to develop further inhibitors are underway. APE1/Ref-1 is a novel candidate for therapeutically targeting neovascular eye diseases and alleviating the burden associated with anti-VEGF intravitreal injections.
Collapse
|
15
|
Heisel C, Yousif J, Mijiti M, Charizanis K, Brigell M, Corson TW, Kelley MR. APE1/Ref-1 as a Novel Target for Retinal Diseases. JOURNAL OF CELLULAR SIGNALING 2021; 2:133-138. [PMID: 34322687 PMCID: PMC8315574 DOI: 10.33696/signaling.2.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
APE1/Ref-1 (also called Ref-1) has been extensively studied for its role in DNA repair and reduction-oxidation (redox) signaling. The review titled: “The multifunctional APE1 DNA repair-redox signaling protein as a drug target in human disease” by Caston et. al. summarizes the molecular functions of Ref-1 and the role it plays in a number of diseases, with a specific focus on various types of cancer [1]. Previous studies have demonstrated that Ref-1 plays a critical role in regulating specific transcription factors (TFs) involved in a number of pathways, not only in cancer, but other disease indications as well. Disease indications of particular therapeutic interest include retinal vascular diseases such as diabetic retinopathy (DR), diabetic macular edema (DME), and neovascular age-related macular degeneration (nvAMD). While Ref-1 controls a number of TFs that are under redox regulation, three have been found to directly link cancer studies to retinal diseases; HIF-1α, NF-κB and STAT3. HIF-1α controls the expression of VEGF for angiogenesis while NF-κB and STAT3 regulate a number of known cytokines and factors involved in inflammation. These pathways are highly implicated and validated as major players in DR, DME and AMD. Therefore, findings in cancer studies for Ref-1 and its inhibition may be translated to these ocular diseases. This report discusses the path from cancer to the potential treatment of retinal disease, the Ref-1 redox signaling function as a possible target, and the current small molecules which have been identified to block this activity. One molecule, APX3330, is in clinical trials, while the others are in preclinical development. Inhibition of Ref-1 and its effects on inflammation and angiogenesis makes it a potential new therapeutic target for the treatment of retinal vascular diseases. This commentary summarizes the retinal-relevant research that built on the results summarized in the review by Caston et. al. [1].
Collapse
Affiliation(s)
- Curtis Heisel
- University of Michigan Medical School, 1301 Catherine St, Ann Arbor, MI 48105, USA
| | - Jonah Yousif
- University of Michigan Medical School, 1301 Catherine St, Ann Arbor, MI 48105, USA
| | - Mahmut Mijiti
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202, USA
| | | | | | - Timothy W Corson
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202, USA.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202, USA.,Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202, USA.,Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202, USA
| | - Mark R Kelley
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202, USA.,Department of Pharmacology and Toxicology, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202, USA.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202, USA.,Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202, USA.,Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202, USA
| |
Collapse
|
16
|
Caston RA, Gampala S, Armstrong L, Messmann RA, Fishel ML, Kelley MR. The multifunctional APE1 DNA repair-redox signaling protein as a drug target in human disease. Drug Discov Today 2021; 26:218-228. [PMID: 33148489 PMCID: PMC7855940 DOI: 10.1016/j.drudis.2020.10.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/27/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023]
Abstract
Apurinic/apyrimidinic (AP) endonuclease-reduction/oxidation factor 1 (APE1/Ref-1, also called APE1) is a multifunctional enzyme with crucial roles in DNA repair and reduction/oxidation (redox) signaling. APE1 was originally described as an endonuclease in the Base Excision Repair (BER) pathway. Further study revealed it to be a redox signaling hub regulating critical transcription factors (TFs). Although a significant amount of focus has been on the role of APE1 in cancer, recent findings support APE1 as a target in other indications, including ocular diseases [diabetic retinopathy (DR), diabetic macular edema (DME), and age-related macular degeneration (AMD)], inflammatory bowel disease (IBD) and others, where APE1 regulation of crucial TFs impacts important pathways in these diseases. The central responsibilities of APE1 in DNA repair and redox signaling make it an attractive therapeutic target for cancer and other diseases.
Collapse
Affiliation(s)
- Rachel A Caston
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut, Indianapolis, IN 46202, USA
| | - Silpa Gampala
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut, Indianapolis, IN 46202, USA
| | - Lee Armstrong
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut, Indianapolis, IN 46202, USA
| | | | - Melissa L Fishel
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut, Indianapolis, IN 46202, USA; Department of Pharmacology and Toxicology, Indiana University School of Medicine, 1044 W. Walnut, Indianapolis, IN 46202, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 1044 W. Walnut, Indianapolis, IN 46202, USA; Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, 1044 W. Walnut, Indianapolis, IN 46202, USA
| | - Mark R Kelley
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut, Indianapolis, IN 46202, USA; Department of Pharmacology and Toxicology, Indiana University School of Medicine, 1044 W. Walnut, Indianapolis, IN 46202, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 1044 W. Walnut, Indianapolis, IN 46202, USA; Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, 1044 W. Walnut, Indianapolis, IN 46202, USA.
| |
Collapse
|
17
|
The redox function of apurinic/apyrimidinic endonuclease 1 as key modulator in photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 211:111992. [DOI: 10.1016/j.jphotobiol.2020.111992] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 01/04/2023]
|
18
|
Wicker CA, Takiar V, Suganya R, Arnold SM, Brill YM, Chen L, Horbinski CM, Napier D, Valentino J, Kudrimoti MR, Yu G, Izumi T. Evaluation of antioxidant network proteins as novel prognostic biomarkers for head and neck cancer patients. Oral Oncol 2020; 111:104949. [PMID: 32801084 DOI: 10.1016/j.oraloncology.2020.104949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/07/2020] [Accepted: 07/28/2020] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Recurrence rates for head and neck squamous cell carcinoma (HNSCC) approach 50% at 5 years. Current staging fails to identify patients with a worse prognosis who might benefit from intensified treatment, which warrants improved prognostic biomarkers. The purpose of this retrospective case study is to identify potential prognostic biomarkers in patients with HNSCC including APE1 (DNA repair/redox gene regulator), NRF2 and PPARGC1A (redox gene regulators), SOD3 and DCN (antioxidant proteins). MATERIALS AND METHODS Differential protein expression between benign, carcinoma in situ (CIS), and invasive HNSCC tissue specimens from 77 patients was assessed using immunohistochemistry. Protein expression was analyzed with multivariate, pair-wise, and Kaplan-Meier survival analyses to identify potential prognostic biomarkers. Utilizing The Cancer Genome Atlas's transcriptome database, pair-wise and survival analysis was performed to identify potential prognostic biomarkers. RESULTS APE1, NRF2, PPARGC1A, SOD3, and DCN expression in HNSCC in relation to, lymph node invasion, and patient survival were examined. Elevated APE1 protein expression in CIS corresponded with reduced survival (p = 0.0243). Increased APE1 gene expression in stage T4a HNSCC was associated with reduced patient survival (p < 0.015). Increased PPARGC1A in invasive tumor correlated with reduced survival (p = 0.0281). Patients with lymph node invasion at diagnosis had significantly increased APE1 protein in the primary sites (p < 0.05). Patients with poorly differentiated invasive tumors had reduced PPARGC1A in CIS proximal to the invasive tumor and had elevated DCN and SOD3 in proximal benign tissue (p < 0.05). CONCLUSIONS The expression of APE1, DCN, and SOD3 is a potential prognostic signature that identifies patients with worsened survival.
Collapse
Affiliation(s)
- Christina A Wicker
- Department of Radiation Oncology, University of Cincinnati, Cincinnati, OH, United States
| | - Vinita Takiar
- Department of Radiation Oncology, University of Cincinnati, Cincinnati, OH, United States
| | - Rangaswamy Suganya
- Houston Eye Associates, Clinical Research Department, Houston, TX, United States
| | - Susanne M Arnold
- Department of Internal Medicine, University of Kentucky, Lexington, KY, United States; Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - Yolanda M Brill
- Department of Pathology, University of Kentucky, Lexington, KY, United States
| | - Li Chen
- Department of Internal Medicine, University of Kentucky, Lexington, KY, United States; Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - Craig M Horbinski
- Department of Pathology, Northwestern University, Chicago, IL, United States
| | - Dana Napier
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - Joseph Valentino
- Department of Otolaryngology, University of Kentucky, Lexington, KY, United States
| | - Mahesh R Kudrimoti
- Department of Radiation Medicine, University of Kentucky, Lexington, KY, United States
| | - Guoqiang Yu
- F. Joseph Halcomb III M.D. Department of Biomedical Engineering, University of Kentucky, Lexington, KY, United States
| | - Tadahide Izumi
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
19
|
B. Domènech E, Marfany G. The Relevance of Oxidative Stress in the Pathogenesis and Therapy of Retinal Dystrophies. Antioxidants (Basel) 2020; 9:E347. [PMID: 32340220 PMCID: PMC7222416 DOI: 10.3390/antiox9040347] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022] Open
Abstract
Retinal cell survival requires an equilibrium between oxygen, reactive oxygen species, and antioxidant molecules that counteract oxidative stress damage. Oxidative stress alters cell homeostasis and elicits a protective cell response, which is most relevant in photoreceptors and retinal ganglion cells, neurons with a high metabolic rate that are continuously subject to light/oxidative stress insults. We analyze how the alteration of cellular endogenous pathways for protection against oxidative stress leads to retinal dysfunction in prevalent (age-related macular degeneration, glaucoma) as well as in rare genetic visual disorders (Retinitis pigmentosa, Leber hereditary optic neuropathy). We also highlight some of the key molecular actors and discuss potential therapies using antioxidants agents, modulators of gene expression and inducers of cytoprotective signaling pathways to treat damaging oxidative stress effects and ameliorate severe phenotypic symptoms in multifactorial and rare retinal dystrophies.
Collapse
Affiliation(s)
- Elena B. Domènech
- Departament de Genètica, Microbiologia i Estadística, Avda. Diagonal 643, Universitat de Barcelona, 08028 Barcelona, Spain;
- CIBERER, ISCIII, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Gemma Marfany
- Departament de Genètica, Microbiologia i Estadística, Avda. Diagonal 643, Universitat de Barcelona, 08028 Barcelona, Spain;
- CIBERER, ISCIII, Universitat de Barcelona, 08028 Barcelona, Spain
- Institute of Biomedicine (IBUB, IBUB-IRSJD), Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
20
|
Hong M, Shi H, Wang N, Tan HY, Wang Q, Feng Y. Dual Effects of Chinese Herbal Medicines on Angiogenesis in Cancer and Ischemic Stroke Treatments: Role of HIF-1 Network. Front Pharmacol 2019; 10:696. [PMID: 31297056 PMCID: PMC6606950 DOI: 10.3389/fphar.2019.00696] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1)–induced angiogenesis has been involved in numerous pathological conditions, and it may be harmful or beneficial depending on the types of diseases. Exploration on angiogenesis has sparked hopes in providing novel therapeutic approaches on multiple diseases with high mortality rates, such as cancer and ischemic stroke. The HIF-1 pathway is considered to be a major regulator of angiogenesis. HIF-1 seems to be involved in the vascular formation process by synergistic correlations with other proangiogenic factors in cancer and cerebrovascular disease. The regulation of HIF-1–dependent angiogenesis is related to the modulation of HIF-1 bioactivity by regulating HIF-1α transcription or protein translation, HIF-1α DNA binding, HIF-1α and HIF-1α dimerization, and HIF-1 degradation. Traditional Chinese herbal medicines have a long history of clinical use in both cancer and stroke treatments in Asia. Growing evidence has demonstrated potential proangiogenic benefits of Chinese herbal medicines in ischemic stroke, whereas tumor angiogenesis could be inhibited by the active components in Chinese herbal medicines. The objective of this review is to provide comprehensive insight on the effects of Chinese herbal medicines on angiogenesis by regulating HIF-1 pathways in both cancer and ischemic stroke.
Collapse
Affiliation(s)
- Ming Hong
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Honglian Shi
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, United States
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Hor-Yue Tan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
21
|
Du Z, Zhang W, Wang S, Zhang J, He J, Wang Y, Dong Y, Huo M. Celastrol protects human retinal pigment epithelial cells against hydrogen peroxide mediated oxidative stress, autophagy, and apoptosis through sirtuin 3 signal pathway. J Cell Biochem 2019; 120:10413-10420. [PMID: 30618198 DOI: 10.1002/jcb.28326] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/28/2018] [Indexed: 01/13/2023]
Abstract
Age-related macular degeneration (AMD), one of the most common causes of visual impairment, often occurrs in the elderly in developed countries. Oxidative stress, autophagy, and apoptosis of retinal pigment epithelial (RPE) cells play roles in the pathogenesis of AMD. In the current study, the protective effect of celastrol against hydrogen peroxide (H2 O2 )-induced oxidative stress and apoptosis was investigated using a human RPE cell line (ARPE-19). H2 O2 inhibited ARPE-19 cells' survival and autophagy and induced their oxidative stress and apoptosis. Compared with the H2 O2 group, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay showed that celastrol increased ARPE-19 cells' survival in a dose- and time-dependent manner. Further, studies have suggested that celastrol has antioxidative stress and antiapoptosis effects in H2 O2 -treated ARPE-19 cells. Also, cell autophagy is activated by celastrol in H2 O2 -treated ARPE-19 cells. Reverse transcription polymerase chain reaction and Western blot showed that celastrol elevated the messenger RNA (mRNA) and protein expression of sirtuin 3 (SIRT3) in H2 O2 -induced ARPE-19 cells. Inhibition of the level of SIRT3 by SIRT3 small interfering RNA (siRNA) reversed the effects of celastrol on oxidative stress, autophagy, and apoptosis in H2 O2 -induced ARPE-19 cells. In conclusion, these observations suggest that celastrol activates the SIRT3 pathway in RPE cells and protects against H2 O2 -induced oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Zhaojiang Du
- Department of Ophthalmology, Xi'an Central Hospital, Xi'an, Shaanxi, China
| | - Wen Zhang
- Department of Ophthalmology, Xi'an Central Hospital, Xi'an, Shaanxi, China
| | - Shengyu Wang
- Department of Ophthalmology, Xi'an Central Hospital, Xi'an, Shaanxi, China
| | - Jing Zhang
- Department of Ophthalmology, Xi'an Central Hospital, Xi'an, Shaanxi, China
| | - Jingang He
- Department of Ophthalmology, Xi'an Central Hospital, Xi'an, Shaanxi, China
| | - Yuan Wang
- Department of Ophthalmology, Xi'an Central Hospital, Xi'an, Shaanxi, China
| | - Yuhong Dong
- Department of Ophthalmology, Xi'an Central Hospital, Xi'an, Shaanxi, China
| | - Min Huo
- Department of Ophthalmology, Xi'an Central Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
22
|
Reactive Oxygen Species-Mediated Damage of Retinal Neurons: Drug Development Targets for Therapies of Chronic Neurodegeneration of the Retina. Int J Mol Sci 2018; 19:ijms19113362. [PMID: 30373222 PMCID: PMC6274960 DOI: 10.3390/ijms19113362] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 02/06/2023] Open
Abstract
The significance of oxidative stress in the development of chronic neurodegenerative diseases of the retina has become increasingly apparent in recent years. Reactive oxygen species (ROS) are free radicals produced at low levels as a result of normal cellular metabolism that are ultimately metabolized and detoxified by endogenous and exogenous mechanisms. In the presence of oxidative cellular stress, ROS are produced in excess, resulting in cellular injury and death and ultimately leading to tissue and organ dysfunction. Recent studies have investigated the role of excess ROS in the pathogenesis and development of chronic neurodegenerative diseases of the retina including glaucoma, diabetic retinopathy, and age-related macular degeneration. Findings from these studies are promising insofar as they provide clear rationales for innovative treatment and prevention strategies of these prevalent and disabling diseases where currently therapeutic options are limited. Here, we briefly outline recent developments that have contributed to our understanding of the role of ROS in the pathogenesis of chronic neurodegenerative diseases of the retina. We then examine and analyze the peer-reviewed evidence in support of ROS as targets for therapy development in the area of chronic neurodegeneration of the retina.
Collapse
|
23
|
Di Y, Chen XL. Effects of LY294002 on the function of retinal endothelial cell in vitro. Int J Ophthalmol 2018; 11:1447-1450. [PMID: 30225216 DOI: 10.18240/ijo.2018.09.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 05/28/2018] [Indexed: 11/23/2022] Open
Abstract
AIM To study the effects of LY294002 [phosphatidylinositol 3-kinase (PI3K) inhibitor] on the function and mechanisms of retinal endothelial cells (RECs) in vitro. METHODS RECs were randomly divided into control group and LY294002 treatment group. RECs in the control group were placed the incubator for hypoxic exposure in vitro. RECs in the LY294002 treatment group were pretreated with LY294002 (40 µmol/L) under hypoxic condition. The expression of matrix metalloproteinase (MMP)-2, MMP-9, vascular endothelial growth factor (VEGF), and apoptosis and proliferation of RECs were evaluated with Western blot, real-time reverse transcription-polymerase chain reaction (RT-PCR), and flow cytometric analysis, correspondently. RESULTS Compared with the control group, treating the RECs with LY294002 was able to remarkably inhibit cell proliferation rates (t1d=2.13, t2d=2.65, t3d=2.36, t4d=2.06, all P<0.05). Flow cytometric analysis indicated that a moderate increase in apoptosis in the LY294002 treatment group compared to the control group (t=2.51, P<0.05). The expression of MMP-2, MMP-9 and VEGF were downregulated in the LY294002 treatment group by Western blot and real-time RT-PCR (all P<0.05). CONCLUSION LY294002 regulates the function of RECs by reducing the expression of MMP-2, MMP-9, and VEGF in vitro. LY294002 may provide an effective method for preventing pathological angiogenesis.
Collapse
Affiliation(s)
- Yu Di
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Xiao-Long Chen
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| |
Collapse
|
24
|
Sardar Pasha SPB, Sishtla K, Sulaiman RS, Park B, Shetty T, Shah F, Fishel ML, Wikel JH, Kelley MR, Corson TW. Ref-1/APE1 Inhibition with Novel Small Molecules Blocks Ocular Neovascularization. J Pharmacol Exp Ther 2018; 367:108-118. [PMID: 30076264 DOI: 10.1124/jpet.118.248088] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 08/01/2018] [Indexed: 01/11/2023] Open
Abstract
Ocular neovascular diseases like wet age-related macular degeneration are a major cause of blindness. Novel therapies are greatly needed for these diseases. One appealing antiangiogenic target is reduction-oxidation factor 1-apurinic/apyrimidinic endonuclease 1 (Ref-1/APE1). This protein can act as a redox-sensitive transcriptional activator for nuclear factor (NF)-κB and other proangiogenic transcription factors. An existing inhibitor of Ref-1's function, APX3330, previously showed antiangiogenic effects. Here, we developed improved APX3330 derivatives and assessed their antiangiogenic activity. We synthesized APX2009 and APX2014 and demonstrated enhanced inhibition of Ref-1 function in a DNA-binding assay compared with APX3330. Both compounds were antiproliferative against human retinal microvascular endothelial cells (HRECs; GI50 APX2009: 1.1 μM, APX2014: 110 nM) and macaque choroidal endothelial cells (Rf/6a; GI50 APX2009: 26 μM, APX2014: 5.0 μM). Both compounds significantly reduced the ability of HRECs and Rf/6a cells to form tubes at mid-nanomolar concentrations compared with control, and both significantly inhibited HREC and Rf/6a cell migration in a scratch wound assay, reducing NF-κB activation and downstream targets. Ex vivo, APX2009 and APX2014 inhibited choroidal sprouting at low micromolar and high nanomolar concentrations, respectively. In the laser-induced choroidal neovascularization mouse model, intraperitoneal APX2009 treatment significantly decreased lesion volume by 4-fold compared with vehicle (P < 0.0001, ANOVA with Dunnett's post-hoc tests), without obvious intraocular or systemic toxicity. Thus, Ref-1 inhibition with APX2009 and APX2014 blocks ocular angiogenesis in vitro and ex vivo, and APX2009 is an effective systemic therapy for choroidal neovascularization in vivo, establishing Ref-1 inhibition as a promising therapeutic approach for ocular neovascularization.
Collapse
Affiliation(s)
- Sheik Pran Babu Sardar Pasha
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology (S.P.B.S.P., K.S., R.S.S., B.P., T.S., T.W.C.), Department of Pharmacology and Toxicology (R.S.S., B.P., T.S., M.L.F., M.R.K., T.W.C.), Department of Biochemistry and Molecular Biology (M.R.K., T.W.C.), Herman B Wells Center for Pediatric Research, Department of Pediatrics (F.S., M.L.F., M.R.K.), and Melvin and Bren Simon Cancer Center (M.L.F., M.R.K., T.W.C.), Indiana University School of Medicine, Indianapolis, Indiana; and Apexian Pharmaceuticals (J.H.W.), Indianapolis, Indiana
| | - Kamakshi Sishtla
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology (S.P.B.S.P., K.S., R.S.S., B.P., T.S., T.W.C.), Department of Pharmacology and Toxicology (R.S.S., B.P., T.S., M.L.F., M.R.K., T.W.C.), Department of Biochemistry and Molecular Biology (M.R.K., T.W.C.), Herman B Wells Center for Pediatric Research, Department of Pediatrics (F.S., M.L.F., M.R.K.), and Melvin and Bren Simon Cancer Center (M.L.F., M.R.K., T.W.C.), Indiana University School of Medicine, Indianapolis, Indiana; and Apexian Pharmaceuticals (J.H.W.), Indianapolis, Indiana
| | - Rania S Sulaiman
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology (S.P.B.S.P., K.S., R.S.S., B.P., T.S., T.W.C.), Department of Pharmacology and Toxicology (R.S.S., B.P., T.S., M.L.F., M.R.K., T.W.C.), Department of Biochemistry and Molecular Biology (M.R.K., T.W.C.), Herman B Wells Center for Pediatric Research, Department of Pediatrics (F.S., M.L.F., M.R.K.), and Melvin and Bren Simon Cancer Center (M.L.F., M.R.K., T.W.C.), Indiana University School of Medicine, Indianapolis, Indiana; and Apexian Pharmaceuticals (J.H.W.), Indianapolis, Indiana
| | - Bomina Park
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology (S.P.B.S.P., K.S., R.S.S., B.P., T.S., T.W.C.), Department of Pharmacology and Toxicology (R.S.S., B.P., T.S., M.L.F., M.R.K., T.W.C.), Department of Biochemistry and Molecular Biology (M.R.K., T.W.C.), Herman B Wells Center for Pediatric Research, Department of Pediatrics (F.S., M.L.F., M.R.K.), and Melvin and Bren Simon Cancer Center (M.L.F., M.R.K., T.W.C.), Indiana University School of Medicine, Indianapolis, Indiana; and Apexian Pharmaceuticals (J.H.W.), Indianapolis, Indiana
| | - Trupti Shetty
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology (S.P.B.S.P., K.S., R.S.S., B.P., T.S., T.W.C.), Department of Pharmacology and Toxicology (R.S.S., B.P., T.S., M.L.F., M.R.K., T.W.C.), Department of Biochemistry and Molecular Biology (M.R.K., T.W.C.), Herman B Wells Center for Pediatric Research, Department of Pediatrics (F.S., M.L.F., M.R.K.), and Melvin and Bren Simon Cancer Center (M.L.F., M.R.K., T.W.C.), Indiana University School of Medicine, Indianapolis, Indiana; and Apexian Pharmaceuticals (J.H.W.), Indianapolis, Indiana
| | - Fenil Shah
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology (S.P.B.S.P., K.S., R.S.S., B.P., T.S., T.W.C.), Department of Pharmacology and Toxicology (R.S.S., B.P., T.S., M.L.F., M.R.K., T.W.C.), Department of Biochemistry and Molecular Biology (M.R.K., T.W.C.), Herman B Wells Center for Pediatric Research, Department of Pediatrics (F.S., M.L.F., M.R.K.), and Melvin and Bren Simon Cancer Center (M.L.F., M.R.K., T.W.C.), Indiana University School of Medicine, Indianapolis, Indiana; and Apexian Pharmaceuticals (J.H.W.), Indianapolis, Indiana
| | - Melissa L Fishel
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology (S.P.B.S.P., K.S., R.S.S., B.P., T.S., T.W.C.), Department of Pharmacology and Toxicology (R.S.S., B.P., T.S., M.L.F., M.R.K., T.W.C.), Department of Biochemistry and Molecular Biology (M.R.K., T.W.C.), Herman B Wells Center for Pediatric Research, Department of Pediatrics (F.S., M.L.F., M.R.K.), and Melvin and Bren Simon Cancer Center (M.L.F., M.R.K., T.W.C.), Indiana University School of Medicine, Indianapolis, Indiana; and Apexian Pharmaceuticals (J.H.W.), Indianapolis, Indiana
| | - James H Wikel
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology (S.P.B.S.P., K.S., R.S.S., B.P., T.S., T.W.C.), Department of Pharmacology and Toxicology (R.S.S., B.P., T.S., M.L.F., M.R.K., T.W.C.), Department of Biochemistry and Molecular Biology (M.R.K., T.W.C.), Herman B Wells Center for Pediatric Research, Department of Pediatrics (F.S., M.L.F., M.R.K.), and Melvin and Bren Simon Cancer Center (M.L.F., M.R.K., T.W.C.), Indiana University School of Medicine, Indianapolis, Indiana; and Apexian Pharmaceuticals (J.H.W.), Indianapolis, Indiana
| | - Mark R Kelley
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology (S.P.B.S.P., K.S., R.S.S., B.P., T.S., T.W.C.), Department of Pharmacology and Toxicology (R.S.S., B.P., T.S., M.L.F., M.R.K., T.W.C.), Department of Biochemistry and Molecular Biology (M.R.K., T.W.C.), Herman B Wells Center for Pediatric Research, Department of Pediatrics (F.S., M.L.F., M.R.K.), and Melvin and Bren Simon Cancer Center (M.L.F., M.R.K., T.W.C.), Indiana University School of Medicine, Indianapolis, Indiana; and Apexian Pharmaceuticals (J.H.W.), Indianapolis, Indiana
| | - Timothy W Corson
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology (S.P.B.S.P., K.S., R.S.S., B.P., T.S., T.W.C.), Department of Pharmacology and Toxicology (R.S.S., B.P., T.S., M.L.F., M.R.K., T.W.C.), Department of Biochemistry and Molecular Biology (M.R.K., T.W.C.), Herman B Wells Center for Pediatric Research, Department of Pediatrics (F.S., M.L.F., M.R.K.), and Melvin and Bren Simon Cancer Center (M.L.F., M.R.K., T.W.C.), Indiana University School of Medicine, Indianapolis, Indiana; and Apexian Pharmaceuticals (J.H.W.), Indianapolis, Indiana
| |
Collapse
|
25
|
Taurine Attenuates Calpain-2 Induction and a Series of Cell Damage via Suppression of NOX-Derived ROS in ARPE-19 Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4596746. [PMID: 30151070 PMCID: PMC6087582 DOI: 10.1155/2018/4596746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/24/2018] [Accepted: 06/07/2018] [Indexed: 12/23/2022]
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) are key transmembrane proteins leading to reactive oxygen species (ROS) overproduction. However, the detailed roles of NOXs in retinal pigment epithelial (RPE) cell metabolic stress induced by Earle's balanced salt solution (EBSS) through starvation remain unclear. In this study, we investigated what roles NOXs play in regard to calpain activity, endoplasmic stress (ER), autophagy, and apoptosis during metabolic stress in ARPE-19 cells. We first found that EBSS induced an increase in NOX2, NOX4, p22phox, and NOX5 compared to NOX1. Secondly, suppression of NOXs resulted in reduced ER stress and autophagy, decreased ROS generation, and alleviated cell apoptosis. Thirdly, silencing of NOX4, NOX5, and p22phox resulted in reduced levels of cell damage. However, silencing of NOX1 was unaffected. Finally, taurine critically mediated NOXs in response to EBSS stress. In conclusion, this study demonstrated for the first time that NOX oxidases are the upstream regulators of calpain-2, ER stress, autophagy, and apoptosis. Furthermore, the protective effect of taurine is mediated by the reduction of NOX-derived ROS, leading to sequential suppression of calpain induction, ER stress, autophagy, and apoptosis.
Collapse
|
26
|
McIlwain DW, Fishel ML, Boos A, Kelley MR, Jerde TJ. APE1/Ref-1 redox-specific inhibition decreases survivin protein levels and induces cell cycle arrest in prostate cancer cells. Oncotarget 2018; 9:10962-10977. [PMID: 29541389 PMCID: PMC5834255 DOI: 10.18632/oncotarget.23493] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 09/15/2017] [Indexed: 01/23/2023] Open
Abstract
A key feature of prostate cancer progression is the induction and activation of survival proteins, including the Inhibitor of Apoptosis (IAP) family member survivin. Apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1) is a multifunctional protein that is essential in activating oncogenic transcription factors. Because APE1/Ref-1 is expressed and elevated in prostate cancer, we sought to characterize APE1/Ref-1 expression and activity in human prostate cancer cell lines and determine the effect of selective reduction-oxidation (redox) function inhibition on prostate cancer cells in vitro and in vivo. Due to the role of oncogenic transcriptional activators NFĸB and STAT3 in survivin protein expression, and APE1/Ref-1 redox activity regulating their transcriptional activity, we assessed selective inhibition of APE1/Ref-1's redox function as a novel method to halt prostate cancer cell growth and survival. Our study demonstrates that survivin and APE1/Ref-1 are significantly higher in human prostate cancer specimens compared to noncancerous controls and that APE1/Ref-1 redox-specific inhibition with small molecule inhibitor, APX3330 and a second-generation inhibitor, APX2009, decreases prostate cancer cell proliferation and induces cell cycle arrest. Inhibition of APE1/Ref-1 redox function significantly reduced NFĸB transcriptional activity, survivin mRNA and survivin protein levels. These data indicate that APE1/Ref-1 is a key regulator of survivin and a potentially viable target in prostate cancer.
Collapse
Affiliation(s)
- David W. McIlwain
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Melissa L. Fishel
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Alexander Boos
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Mark R. Kelley
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Travis J. Jerde
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
27
|
Ortelli S, Costa A, Matteucci P, Miller MR, Blosi M, Gardini D, Tofail SAM, Tran L, Tonelli D, Poland CA. Silica modification of titania nanoparticles enhances photocatalytic production of reactive oxygen species without increasing toxicity potential in vitro. RSC Adv 2018; 8:40369-40377. [PMID: 35558206 PMCID: PMC9091411 DOI: 10.1039/c8ra07374k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/12/2018] [Indexed: 11/21/2022] Open
Abstract
Titania (TiO2) nanoparticles were surface modified using silica and citrate to implement a ‘safe-by-design’ approach for managing potential toxicity of titania nanoparticles by controlling surface redox reactivity.
Collapse
Affiliation(s)
- Simona Ortelli
- CNR-ISTEC
- Institute of Science and Technology for Ceramics – National Research Council of Italy
- I-48018 Faenza
- Italy
| | - Anna L. Costa
- CNR-ISTEC
- Institute of Science and Technology for Ceramics – National Research Council of Italy
- I-48018 Faenza
- Italy
| | - Pietro Matteucci
- Department of Industrial Chemistry
- University of Bologna
- 40136 Bologna
- Italy
| | - Mark R. Miller
- Queen's Medical Research Institute
- University of Edinburgh
- Edinburgh EH16 4TJ
- UK
| | - Magda Blosi
- CNR-ISTEC
- Institute of Science and Technology for Ceramics – National Research Council of Italy
- I-48018 Faenza
- Italy
| | - Davide Gardini
- CNR-ISTEC
- Institute of Science and Technology for Ceramics – National Research Council of Italy
- I-48018 Faenza
- Italy
| | | | - Lang Tran
- Institute of Occupational Medicine
- Edinburgh EH14 4AP
- UK
| | - Domenica Tonelli
- Department of Industrial Chemistry
- University of Bologna
- 40136 Bologna
- Italy
| | - Craig A. Poland
- Queen's Medical Research Institute
- University of Edinburgh
- Edinburgh EH16 4TJ
- UK
| |
Collapse
|
28
|
Kheitan S, Minuchehr Z, Soheili ZS. Exploring the cross talk between ER stress and inflammation in age-related macular degeneration. PLoS One 2017; 12:e0181667. [PMID: 28742151 PMCID: PMC5524348 DOI: 10.1371/journal.pone.0181667] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/05/2017] [Indexed: 12/15/2022] Open
Abstract
Increasing evidence demonstrates that inflammation and endoplasmic reticulum (ER) stress is implicated in the development and progression of age-related macular degeneration (AMD), a multifactorial neurodegenerative disease. However the cross talk between these cellular mechanisms has not been clearly and fully understood. The present study investigates a possible intersection between ER stress and inflammation in AMD. In this study, we recruited two collections of involved protein markers to retrieve their interaction information from IMEx-curated databases, which are the most well- known protein-protein interaction collections, allowing us to design an intersection network for AMD that is unprecedented. In order to find expression activated subnetworks, we utilized AMD expression profiles in our network. In addition, we studied topological characteristics of the most expressed active subnetworks to identify the hubs. With regard to topological quantifications and expressional activity, we reported a list of the most pivotal hubs which are potentially applicable as probable therapeutic targets. Furthermore, we introduced MAPK signaling pathway as a significantly involved pathway in the association between ER stress and inflammation, leading to promising new directions in discovering AMD formation mechanisms and possible treatments.
Collapse
Affiliation(s)
- Samira Kheitan
- Systems Biotechnology Department, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Zarrin Minuchehr
- Systems Biotechnology Department, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
- * E-mail:
| | - Zahra-Soheila Soheili
- Molecular Medicine Department, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
29
|
Abstract
Reduction-oxidation factor 1-apurinic/apyrimidinic endonuclease (Ref-1/APE1) is a critical node in tumor cells, both as a redox regulator of transcription factor activation and as part of the DNA damage response. As a redox signaling protein, Ref-1/APE1 enhances the transcriptional activity of STAT3, HIF-1α, nuclear factor kappa B, and other transcription factors to promote growth, migration, and survival in tumor cells as well as inflammation and angiogenesis in the tumor microenvironment. Ref-1/APE1 is activated in a variety of cancers, including prostate, colon, pancreatic, ovarian, lung and leukemias, leading to increased aggressiveness. Transcription factors downstream of Ref-1/APE1 are key contributors to many cancers, and Ref-1/APE1 redox signaling inhibition slows growth and progression in a number of tumor types. Ref-1/APE1 inhibition is also highly effective when paired with other drugs, including standard-of-care therapies and therapies targeting pathways affected by Ref-1/APE1 redox signaling. Additionally, Ref-1/APE1 plays a role in a variety of other indications, such as retinopathy, inflammation, and neuropathy. In this review, we discuss the functional consequences of activation of the Ref-1/APE1 node in cancer and other diseases, as well as potential therapies targeting Ref-1/APE1 and related pathways in relevant diseases. APX3330, a novel oral anticancer agent and the first drug to target Ref-1/APE1 for cancer is entering clinical trials and will be explored in various cancers and other diseases bringing bench discoveries to the clinic.
Collapse
|
30
|
Guerreiro PS, Corvacho E, Costa JG, Saraiva N, Fernandes AS, Castro M, Miranda JP, Oliveira NG. The APE1 redox inhibitor E3330 reduces collective cell migration of human breast cancer cells and decreases chemoinvasion and colony formation when combined with docetaxel. Chem Biol Drug Des 2017; 90:561-571. [DOI: 10.1111/cbdd.12979] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 03/08/2017] [Accepted: 03/11/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Patrícia S. Guerreiro
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
| | - Eduardo Corvacho
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
| | - João G. Costa
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
- CBIOS; Universidade Lusófona Research Center for Biosciences & Health Technologies; Lisbon Portugal
| | - Nuno Saraiva
- CBIOS; Universidade Lusófona Research Center for Biosciences & Health Technologies; Lisbon Portugal
| | - Ana S. Fernandes
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
- CBIOS; Universidade Lusófona Research Center for Biosciences & Health Technologies; Lisbon Portugal
| | - Matilde Castro
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
| | - Joana P. Miranda
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
| | - Nuno G. Oliveira
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
| |
Collapse
|
31
|
Zhong C, Xu M, Wang Y, Xu J, Yuan Y. An APE1 inhibitor reveals critical roles of the redox function of APE1 in KSHV replication and pathogenic phenotypes. PLoS Pathog 2017; 13:e1006289. [PMID: 28380040 PMCID: PMC5381946 DOI: 10.1371/journal.ppat.1006289] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 03/11/2017] [Indexed: 01/04/2023] Open
Abstract
APE1 is a multifunctional protein with a DNA base excision repair function in its C-terminal domain and a redox activity in its N-terminal domain. The redox function of APE1 converts certain transcription factors from inactive oxidized to active reduced forms. Given that among the APE1-regulated transcription factors many are critical for KSHV replication and pathogenesis, we investigated whether inhibition of APE1 redox function blocks KSHV replication and Kaposi’s sarcoma (KS) phenotypes. With an shRNA-mediated silencing approach and a known APE-1 redox inhibitor, we demonstrated that APE1 redox function is indeed required for KSHV replication as well as KSHV-induced angiogenesis, validating APE1 as a therapeutic target for KSHV-associated diseases. A ligand-based virtual screening yielded a small molecular compound, C10, which is proven to bind to APE1. C10 exhibits low cytotoxicity but efficiently inhibits KSHV lytic replication (EC50 of 0.16 μM and selective index of 165) and KSHV-mediated pathogenic phenotypes including cytokine production, angiogenesis and cell invasion, demonstrating its potential to become an effective drug for treatment of KS. As a major AIDS-associated malignancy, Kaposi’s sarcoma (KS) is caused by Kaposi’s sarcoma-associated herpesvirus (KSHV). Currently there is no definitive cure for KS. In this study, we identified a cellular protein, namely APE1, as an effective therapeutic target for blocking KSHV replication and inhibiting the development of KS phenotypes. We showed that the redox function of APE1 is absolutely required for KSHV replication, virally induced cytokine secretion and angiogenesis. Blockade of APE1 expression or inhibition of APE1 redox activity led to inhibition of KSHV replication and reduction of cytokine release and angiogenesis. Furthermore, we identified a novel small molecular compound, C10, which exhibited specific inhibitory activity on APE1 redox function and was demonstrated to efficiently inhibit KSHV replication and paracrine-mediated KS phenotypes such as angiogenesis and cell invasion. As a potent inhibitor of APE1 redox, C10 not only has value in development of a novel therapeutics for KS, but also may be used in therapies for other human diseases such as leukemia, pancreatic cancer and macular degeneration.
Collapse
Affiliation(s)
- Canrong Zhong
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Mengyang Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yan Wang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
- * E-mail: (YY); (JX)
| | - Yan Yuan
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Department of Microbiology, University of Pennsylvania School of Dental Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail: (YY); (JX)
| |
Collapse
|
32
|
Involvement of Nrf2 in Ocular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1703810. [PMID: 28473877 PMCID: PMC5394909 DOI: 10.1155/2017/1703810] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/14/2017] [Indexed: 12/15/2022]
Abstract
The human body harbors within it an intricate and delicate balance between oxidants and antioxidants. Any disruption in this checks-and-balances system can lead to harmful consequences in various organs and tissues, such as the eye. This review focuses on the effects of oxidative stress and the role of a particular antioxidant system—the Keap1-Nrf2-ARE pathway—on ocular diseases, specifically age-related macular degeneration, cataracts, diabetic retinopathy, and glaucoma. Together, they are the major causes of blindness in the world.
Collapse
|
33
|
Nutritional Supplementation Inhibits the Increase in Serum Malondialdehyde in Patients with Wet Age-Related Macular Degeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9548767. [PMID: 28243361 PMCID: PMC5294377 DOI: 10.1155/2017/9548767] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 12/04/2016] [Accepted: 12/21/2016] [Indexed: 12/18/2022]
Abstract
Purpose. To compare serum levels of malondialdehyde (MDA) in patients with wet age-related macular degeneration (wAMD), patients with dry AMD (dAMD), and patients without AMD and to evaluate the efficacy of nutritional supplementation for treating elevated serum MDA in patients with wAMD. Methods. MDA levels were measured in sera from 20 patients with wAMD, 20 with dAMD, and 24 without AMD. Patients with wAMD were randomized to receive or not receive nutritional supplementation (10 patients in each group), and MDA levels were measured after 3 months of treatment. Results. MDA levels in patients with wAMD were significantly greater compared with patients without AMD. In eyes with wAMD, there was a significant correlation between MDA levels and choroidal neovascularization lesion area. Serum MDA levels decreased in most patients that received supplementation and significantly increased in those who did not. Conclusion. Baseline serum MDA levels were elevated in patients with wAMD, and MDA levels were directly correlated with choroidal neovascularization lesion area. In addition, nutritional supplementation appeared to exert a protective effect against oxidative stress in patients with wAMD.
Collapse
|
34
|
Laev SS, Salakhutdinov NF, Lavrik OI. Inhibitors of nuclease and redox activity of apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1). Bioorg Med Chem 2017; 25:2531-2544. [PMID: 28161249 DOI: 10.1016/j.bmc.2017.01.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/16/2017] [Accepted: 01/18/2017] [Indexed: 01/15/2023]
Abstract
Human apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1) is a multifunctional protein which is essential in the base excision repair (BER) pathway of DNA lesions caused by oxidation and alkylation. This protein hydrolyzes DNA adjacent to the 5'-end of an apurinic/apyrimidinic (AP) site to produce a nick with a 3'-hydroxyl group and a 5'-deoxyribose phosphate moiety or activates the DNA-binding activity of certain transcription factors through its redox function. Studies have indicated a role for APE1/Ref-1 in the pathogenesis of cancer and in resistance to DNA-interactive drugs. Thus, this protein has potential as a target in cancer treatment. As a result, major efforts have been directed to identify small molecule inhibitors against APE1/Ref-1 activities. These agents have the potential to become anticancer drugs. The aim of this review is to present recent progress in studies of all published small molecule APE1/Ref-1 inhibitors. The structures and activities of APE1/Ref-1 inhibitors, that target both DNA repair and redox activities, are presented and discussed. To date, there is an urgent need for further development of the design and synthesis of APE1/Ref-1 inhibitors due to high importance of this protein target.
Collapse
Affiliation(s)
- Sergey S Laev
- Vorozhtsov Institute of Organic Chemistry, Siberian Division, Russian Academy of Sciences, pr. akademika Lavrent'eva 9, Novosibirsk 630090, Russian Federation.
| | - Nariman F Salakhutdinov
- Vorozhtsov Institute of Organic Chemistry, Siberian Division, Russian Academy of Sciences, pr. akademika Lavrent'eva 9, Novosibirsk 630090, Russian Federation; Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russian Federation
| | - Olga I Lavrik
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russian Federation; Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Division, Russian Academy of Sciences, pr. akademika Lavrent'eva 8, Novosibirsk 630090, Russian Federation
| |
Collapse
|
35
|
Logsdon DP, Grimard M, Luo M, Shahda S, Jiang Y, Tong Y, Yu Z, Zyromski N, Schipani E, Carta F, Supuran CT, Korc M, Ivan M, Kelley MR, Fishel ML. Regulation of HIF1α under Hypoxia by APE1/Ref-1 Impacts CA9 Expression: Dual Targeting in Patient-Derived 3D Pancreatic Cancer Models. Mol Cancer Ther 2016; 15:2722-2732. [PMID: 27535970 DOI: 10.1158/1535-7163.mct-16-0253] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/03/2016] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-related mortality in the United States. Aggressive treatment regimens have not changed the disease course, and the median survival has just recently reached a year. Several mechanisms are proposed to play a role in PDAC therapeutic resistance, including hypoxia, which creates a more aggressive phenotype with increased metastatic potential and impaired therapeutic efficacy. AP Endonuclease-1/Redox Effector Factor 1 (APE1/Ref-1) is a multifunctional protein possessing a DNA repair function in base excision repair and the ability to reduce oxidized transcription factors, enabling them to bind to their DNA target sequences. APE1/Ref-1 regulates several transcription factors involved in survival mechanisms, tumor growth, and hypoxia signaling. Here, we explore the mechanisms underlying PDAC cell responses to hypoxia and modulation of APE1/Ref-1 redox signaling activity, which regulates the transcriptional activation of hypoxia-inducible factor 1 alpha (HIF1α). Carbonic anhydrase IX (CA9) is regulated by HIF1α and functions as a part of the cellular response to hypoxia to regulate intracellular pH, thereby promoting cell survival. We hypothesized that modulating APE1/Ref-1 function will block activation of downstream transcription factors, STAT3 and HIF1α, interfering with the hypoxia-induced gene expression. We demonstrate APE1/Ref-1 inhibition in patient-derived and established PDAC cells results in decreased HIF1α-mediated induction of CA9. Furthermore, an ex vivo three-dimensional tumor coculture model demonstrates dramatic enhancement of APE1/Ref-1-induced cell killing upon dual targeting of APE1/Ref-1 and CA9. Both APE1/Ref-1 and CA9 are under clinical development; therefore, these studies have the potential to direct novel PDAC therapeutic treatment. Mol Cancer Ther; 15(11); 2722-32. ©2016 AACR.
Collapse
Affiliation(s)
- Derek P Logsdon
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Michelle Grimard
- Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Meihua Luo
- Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Safi Shahda
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,Pancreatic Cancer Signature Center, Indianapolis, Indiana
| | - Yanlin Jiang
- Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Yan Tong
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Zhangsheng Yu
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Nicholas Zyromski
- Pancreatic Cancer Signature Center, Indianapolis, Indiana.,Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ernestina Schipani
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan
| | - Fabrizio Carta
- Neurofarba Department, Section of Medicinal Chemistry, University of Florence, Florence, Italy
| | - Claudiu T Supuran
- Neurofarba Department, Section of Medicinal Chemistry, University of Florence, Florence, Italy
| | - Murray Korc
- Pancreatic Cancer Signature Center, Indianapolis, Indiana.,Division of Endocrinology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mircea Ivan
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,Pancreatic Cancer Signature Center, Indianapolis, Indiana.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mark R Kelley
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana.,Pancreatic Cancer Signature Center, Indianapolis, Indiana.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Melissa L Fishel
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana. .,Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana.,Pancreatic Cancer Signature Center, Indianapolis, Indiana
| |
Collapse
|
36
|
Abstract
Titanium dioxide (TiO2) nanofibres are a novel fibrous nanomaterial with increasing applications in a variety of fields. While the biological effects of TiO2 nanoparticles have been extensively studied, the toxicological characterization of TiO2 nanofibres is far from being complete. In this study, we evaluated the toxicity of commercially available anatase TiO2 nanofibres using TiO2 nanoparticles (NP) and crocidolite asbestos as non-fibrous or fibrous benchmark materials. The evaluated endpoints were cell viability, haemolysis, macrophage activation, trans-epithelial electrical resistance (an indicator of the epithelial barrier competence), ROS production and oxidative stress as well as the morphology of exposed cells. The results showed that TiO2 nanofibres caused a cell-specific, dose-dependent decrease of cell viability, with larger effects on alveolar epithelial cells than on macrophages. The observed effects were comparable to those of crocidolite, while TiO2 NP did not decrease cell viability. TiO2 nanofibres were also found endowed with a marked haemolytic activity, at levels significantly higher than those observed with TiO2 nanoparticles or crocidolite. Moreover, TiO2 nanofibres and crocidolite, but not TiO2 nanoparticles, caused a significant decrease of the trans-epithelial electrical resistance of airway cell monolayers. SEM images demonstrated that the interaction with nanofibres and crocidolite caused cell shape perturbation with the longest fibres incompletely or not phagocytosed. The expression of several pro-inflammatory markers, such as NO production and the induction of Nos2 and Ptgs2, was significantly increased by TiO2 nanofibres, as well as by TiO2 nanoparticles and crocidolite. This study indicates that TiO2 nanofibres had significant toxic effects and, for most endpoints with the exception of pro-inflammatory changes, are more bio-active than TiO2 nanoparticles, showing the relevance of shape in determining the toxicity of nanomaterials. Given that several toxic effects of TiO2 nanofibres appear comparable to those observed with crocidolite, the possibility that they exert length dependent toxicity in vivo seems worthy of further investigation.
Collapse
|
37
|
Kim HS, Guo C, Thompson EL, Jiang Y, Kelley MR, Vasko MR, Lee SH. APE1, the DNA base excision repair protein, regulates the removal of platinum adducts in sensory neuronal cultures by NER. Mutat Res 2015; 779:96-104. [PMID: 26164266 DOI: 10.1016/j.mrfmmm.2015.06.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 06/22/2015] [Indexed: 01/24/2023]
Abstract
Peripheral neuropathy is one of the major side effects of treatment with the anticancer drug, cisplatin. One proposed mechanism for this neurotoxicity is the formation of platinum adducts in sensory neurons that could contribute to DNA damage. Although this damage is largely repaired by nuclear excision repair (NER), our previous findings suggest that augmenting the base excision repair pathway (BER) by overexpressing the repair protein APE1 protects sensory neurons from cisplatin-induced neurotoxicity. The question remains whether APE1 contributes to the ability of the NER pathway to repair platinum-damage in neuronal cells. To examine this, we manipulated APE1 expression in sensory neuronal cultures and measured Pt-removal after exposure to cisplatin. When neuronal cultures were treated with increasing concentrations of cisplatin for two or three hours, there was a concentration-dependent increase in Pt-damage that peaked at four hours and returned to near baseline levels after 24h. In cultures where APE1 expression was reduced by ∼ 80% using siRNA directed at APE1, there was a significant inhibition of Pt-removal over eight hours which was reversed by overexpressing APE1 using a lentiviral construct for human wtAPE1. Overexpressing a mutant APE1 (C65 APE1), which only has DNA repair activity, but not its other significant redox-signaling function, mimicked the effects of wtAPE1. Overexpressing DNA repair activity mutant APE1 (226 + 177APE1), with only redox activity was ineffective suggesting it is the DNA repair function of APE1 and not its redox-signaling, that restores the Pt-damage removal. Together, these data provide the first evidence that a critical BER enzyme, APE1, helps regulate the NER pathway in the repair of cisplatin damage in sensory neurons.
Collapse
Affiliation(s)
- Hyun-Suk Kim
- Department of Biochemistry and Molecular Biology, Indianapolis, IN 46202, USA
| | - Chunlu Guo
- Department of Pharmacology and Toxicology, Indianapolis, IN 46202, USA
| | - Eric L Thompson
- Department of Pharmacology and Toxicology, Indianapolis, IN 46202, USA
| | - Yanlin Jiang
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mark R Kelley
- Department of Biochemistry and Molecular Biology, Indianapolis, IN 46202, USA; Department of Pharmacology and Toxicology, Indianapolis, IN 46202, USA; Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Michael R Vasko
- Department of Pharmacology and Toxicology, Indianapolis, IN 46202, USA
| | - Suk-Hee Lee
- Department of Biochemistry and Molecular Biology, Indianapolis, IN 46202, USA.
| |
Collapse
|
38
|
Biswas A, Khanna S, Roy S, Pan X, Sen CK, Gordillo GM. Endothelial cell tumor growth is Ape/ref-1 dependent. Am J Physiol Cell Physiol 2015; 309:C296-307. [PMID: 26108661 DOI: 10.1152/ajpcell.00022.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/17/2015] [Indexed: 01/12/2023]
Abstract
Tumor-forming endothelial cells have highly elevated levels of Nox-4 that release H2O2 into the nucleus, which is generally not compatible with cell survival. We sought to identify compensatory mechanisms that enable tumor-forming endothelial cells to survive and proliferate under these conditions. Ape-1/ref-1 (Apex-1) is a multifunctional protein that promotes DNA binding of redox-sensitive transcription factors, such as AP-1, and repairs oxidative DNA damage. A validated mouse endothelial cell (EOMA) tumor model was used to demonstrate that Nox-4-derived H2O2 causes DNA oxidation that induces Apex-1 expression. Apex-1 functions as a chaperone to keep transcription factors in a reduced state. In EOMA cells Apex-1 enables AP-1 binding to the monocyte chemoattractant protein-1 (mcp-1) promoter and expression of that protein is required for endothelial cell tumor formation. Intraperitoneal injection of the small molecule inhibitor E3330, which specifically targets Apex-1 redox-sensitive functions, resulted in a 50% decrease in tumor volume compared with mice injected with vehicle control (n = 6 per group), indicating that endothelial cell tumor proliferation is dependent on Apex-1 expression. These are the first reported results to establish Nox-4 induction of Apex-1 as a mechanism promoting endothelial cell tumor formation.
Collapse
Affiliation(s)
- Ayan Biswas
- Department of Plastic Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio; Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio; and
| | - Savita Khanna
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio; Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio; and
| | - Sashwati Roy
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio; Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio; and
| | - Xueliang Pan
- Center for Biostatistics, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Chandan K Sen
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio; Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio; and
| | - Gayle M Gordillo
- Department of Plastic Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio; Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio; and
| |
Collapse
|
39
|
Ren T, Shan J, Li M, Qing Y, Qian C, Wang G, Li Q, Lu G, Li C, Peng Y, Luo H, Zhang S, Yang Y, Cheng Y, Wang D, Zhou SF. Small-molecule BH3 mimetic and pan-Bcl-2 inhibitor AT-101 enhances the antitumor efficacy of cisplatin through inhibition of APE1 repair and redox activity in non-small-cell lung cancer. Drug Des Devel Ther 2015; 9:2887-910. [PMID: 26089640 PMCID: PMC4467754 DOI: 10.2147/dddt.s82724] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AT-101 is a BH3 mimetic and pan-Bcl-2 inhibitor that has shown potent anticancer activity in non-small-cell lung cancer (NSCLC) in murine models, but failed to show clinical efficacy when used in combination with docetaxel in NSCLC patients. Our recent study has demonstrated that AT-101 enhanced the antitumor effect of cisplatin (CDDP) in a murine model of NSCLC via inhibition of the interleukin-6/signal transducer and activator of transcription 3 (STAT3) pathway. This study explored the underlying mechanisms for the enhanced anticancer activity of CDDP by AT-101. Our results show that, when compared with monotherapy, AT-101 significantly enhanced the inhibitory effects of CDDP on proliferation and migration of A549 cells and on tube formation and migration in human umbilical vein endothelial cells. AT-101 promoted the proapoptotic activity of CDDP in A549 cells. AT-101 also enhanced the inhibitory effect of CDDP on DNA repair and redox activities of apurinic/apyrimidinic endonuclease 1 (APE1) in A549 cells. In tumor tissues from nude mice treated with AT-101 plus CDDP or monotherapy, the combination therapy resulted in greater inhibition of angiogenesis and tumor cell proliferation than the monotherapy. These results suggest that AT-101 can enhance the antitumor activity of CDDP in NSCLC via inhibition of APE1 DNA repair and redox activities and by angiogenesis and induction of apoptosis, but other mechanisms cannot be excluded. We are now conducting a Phase II trial to examine the clinical efficacy and safety profile of combined use of AT-101 plus CDDP in advanced NSCLC patients.
Collapse
Affiliation(s)
- Tao Ren
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
- Department of Oncology, The Affiliated Hospital, North Sichuan Medical College, Sichuan, People’s Republic of China
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Jinlu Shan
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Mengxia Li
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Yi Qing
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Chengyuan Qian
- Department of Oncology, The 97 Hospital of PLA, Jiangsu, People’s Republic of China
| | - Guangjie Wang
- Cancer Diagnosis and Treatment Center, Military District General Hospital of Chengdu Military Region, Sichuan, People’s Republic of China
| | - Qing Li
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Guoshou Lu
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Chongyi Li
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Yu Peng
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Hao Luo
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Shiheng Zhang
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Yuxing Yang
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Yi Cheng
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Dong Wang
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| |
Collapse
|
40
|
LI LANGEN, WEI WEI, ZHANG YUFENG, TU GERILE, ZHANG YANMEI, YANG JIA, XING YIQIAO. SirT1 and STAT3 protect retinal pigmented epithelium cells against oxidative stress. Mol Med Rep 2015; 12:2231-8. [DOI: 10.3892/mmr.2015.3570] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 02/19/2015] [Indexed: 11/06/2022] Open
|
41
|
Thakur S, Dhiman M, Tell G, Mantha AK. A review on protein-protein interaction network of APE1/Ref-1 and its associated biological functions. Cell Biochem Funct 2015; 33:101-12. [DOI: 10.1002/cbf.3100] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 02/10/2015] [Accepted: 02/24/2015] [Indexed: 12/17/2022]
Affiliation(s)
- S. Thakur
- Center for Biosciences, School of Basic and Applied Sciences; Central University of Punjab; Bathinda Punjab India
| | - M. Dhiman
- Center for Genetic Diseases and Molecular Medicine, School of Emerging Life Science Technologies; Central University of Punjab; Bathinda Punjab India
| | - G. Tell
- Department of Medical and Biological Sciences; University of Udine; Udine Italy
| | - A. K. Mantha
- Center for Biosciences, School of Basic and Applied Sciences; Central University of Punjab; Bathinda Punjab India
- Department of Biochemistry and Molecular Biology; University of Texas Medical Branch; Galveston TX USA
| |
Collapse
|
42
|
Redox Changes Induced by General Anesthesia in Critically Ill Patients with Multiple Traumas. Mol Biol Int 2015; 2015:238586. [PMID: 26693352 PMCID: PMC4674615 DOI: 10.1155/2015/238586] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/15/2015] [Indexed: 01/07/2023] Open
Abstract
The critically ill polytrauma patient is a constant challenge for the trauma team due to the complexity of the complications presented. Intense inflammatory response and infections, as well as multiple organ dysfunctions, significantly increase the rate of morbidity and mortality in these patients. Moreover, due to the physiological and biochemical imbalances present in this type of patients, the bioproduction of free radicals is significantly accelerated, thus installing the oxidative stress. In the therapeutic management of such patients, multiple surgical interventions are required and therefore they are being subjected to repeated general anesthesia. In this paper, we want to present the pathophysiological implications of oxidative stress in critically ill patients with multiple traumas and the implications of general anesthesia on the redox mechanisms of the cell. We also want to summarize the antioxidant treatments able to reduce the intensity of oxidative stress by modulating the biochemical activity of some cellular mechanisms.
Collapse
|
43
|
Induction of apurinic endonuclease 1 overexpression by endoplasmic reticulum stress in hepatoma cells. Int J Mol Sci 2014; 15:12442-57. [PMID: 25026174 PMCID: PMC4139852 DOI: 10.3390/ijms150712442] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 06/19/2014] [Accepted: 06/20/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide with poor prognosis due to resistance to conventional chemotherapy and limited efficacy of radiotherapy. Previous studies have noted the induction of endoplasmic reticulum stress or apurinic endonuclease 1 (APE1) expression in many tumors. Therefore, the aim of this study was to investigate the relationship between endoplasmic reticulum (ER stress) and APE1 in hepatocellular carcinoma. Here we investigate the expression of APE1 during ER stress in HepG2 and Huh-7 cell lines. Tunicamycin or brefeldin A, two ER stress inducers, increased APE1 and GRP78, an ER stress marker, expression in HepG2 and Huh-7 cells. Induction of APE1 expression was observed through transcription level in response to ER stress. APE1 nuclear localization during ER stress was determined using immunofluorescence assays in HepG2 cells. Furthermore, expression of Hepatitis B virus pre-S2∆ large mutant surface protein (pre-S2∆), an ER stress-induced protein, also increased GRP78 and APE1 expression in the normal hepatocyte NeHepLxHT cell line. Similarly, tumor samples showed higher expression of APE1 in ER stress-correlated liver cancer tissue in vivo. Our results demonstrate that ER stress and HBV pre-S2∆ increased APE1 expression, which may play an important role in resistance to chemotherapeutic agents or tumor development. Therefore, these data provide an important chemotherapeutic strategy in ER stress and HBV pre-S2∆-associated tumors.
Collapse
|
44
|
Li Y, Liu X, Zhou T, Kelley MR, Edwards PA, Gao H, Qiao X. Suppression of choroidal neovascularization through inhibition of APE1/Ref-1 redox activity. Invest Ophthalmol Vis Sci 2014; 55:4461-9. [PMID: 24970265 DOI: 10.1167/iovs.14-14451] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE The redox function of APE1/Ref-1 is a key regulator in pathological angiogenesis, such as retinal neovascularization and tumor growth. In this study, we examined whether inhibition of APE1/Ref-1 redox function by a small molecule inhibitor E3330 suppresses experimental choroidal neovascularization (CNV) in vitro and in vivo. METHODS Primate choroid endothelial cells (CECs) received treatment of 0 to 100 μM E3330 alone or cotreatment of E3330 and 500 μg/mL anti-VEGF antibody bevacizumab. Choroid endothelial cell angiogenic function was examined by cell proliferation, migration, and tube formation assays. The effects of E3330 on NF-κB and STAT3 signaling pathways were determined by reporter gene assay, Western blot, and ELISA. Laser-induced CNV mouse model was used to test the effects of E3330 in vivo. Potential toxicity of E3330 was evaluated by TUNEL assay. RESULTS The E3330 of 25 to 100 μM dose-dependently suppressed CEC proliferation, migration, and tube formation, in the absence of noticeable cell toxicity. Lower doses of E3330 (10-20 μM) reduced the transcriptional activity of NF-κB and STAT3 without affecting protein phosphorylation of both molecules. At the same time, E3330 downregulated MCP-1 production in CECs. The antiangiogenic effect of E3330 was comparable and additive to bevacizumab. The E3330 effectively attenuated the progression of laser-induced CNV in mice after a single intravitreal injection. CONCLUSIONS The APE1/Ref-1 redox function regulates multiple transcription factors and inflammatory molecules, and is essential for CEC angiogenesis. Specific inhibition of APE1/Ref-1 redox function with E3330 may represent a promising novel treatment for wet AMD.
Collapse
Affiliation(s)
- Yue Li
- Department of Ophthalmology, Henry Ford Health System, Detroit, Michigan, United States Department of Ophthalmology, Shaanxi Maternity and Child Healthcare Hospital, Xi'an, Shaanxi, People's Republic of China
| | - Xiuli Liu
- Department of Ophthalmology, Henry Ford Health System, Detroit, Michigan, United States
| | - Tongrong Zhou
- Department of Ophthalmology, Henry Ford Health System, Detroit, Michigan, United States
| | - Mark R Kelley
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Paul A Edwards
- Department of Ophthalmology, Henry Ford Health System, Detroit, Michigan, United States
| | - Hua Gao
- Department of Ophthalmology, Henry Ford Health System, Detroit, Michigan, United States
| | - Xiaoxi Qiao
- Department of Ophthalmology, Henry Ford Health System, Detroit, Michigan, United States
| |
Collapse
|