1
|
Sheng J, Luo S, Zheng B, He K, Hu J. Codelivery of Gaseous Signaling Molecules for Biomedical Applications. Chempluschem 2024; 89:e202400080. [PMID: 38514396 DOI: 10.1002/cplu.202400080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 03/23/2024]
Abstract
Gaseous signaling molecules (GSMs) including nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) have presented excellent therapeutic efficacy such as anti-inflammatory, anti-microbial and anti-cancer effects and multiple biomedical applications in recent years. As the three most vital signaling molecules in human physiology, these three GSMs show so intertwined and orchestrated interactions that the synergy of multiple gases may demonstrate a more complex therapeutic potential than single gas delivery. Consequently, researchers have been devoted to developing codelivery systems of GSMs by synthesizing a single molecule as a dual donor to maximize the gaseous therapeutic efficacy. In this minireview, we summarize the recent developments of molecules or materials enabling codelivery of GSMs for biomedical applications. It appears that compared with the abundant cases of codelivery of NO and H2S, research on codelivery of CO and the other two GSMs separately remains to be explored.
Collapse
Affiliation(s)
- Jiahui Sheng
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Siyuan Luo
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Bin Zheng
- School of Chemistry and Pharmaceutical Engineering, Hefei Normal University, Hefei, Anhui, 230061, China
| | - Kewu He
- Imaging Center of the Third Affiliated Hospital of Anhui Medical University, Hefei, 230031, Anhui, China
| | - Jinming Hu
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China
| |
Collapse
|
2
|
Corvino A, Scognamiglio A, Fiorino F, Perissutti E, Santagada V, Caliendo G, Severino B. Pills of Multi-Target H 2S Donating Molecules for Complex Diseases. Int J Mol Sci 2024; 25:7014. [PMID: 39000122 PMCID: PMC11240940 DOI: 10.3390/ijms25137014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Among the various drug discovery methods, a very promising modern approach consists in designing multi-target-directed ligands (MTDLs) able to modulate multiple targets of interest, including the pathways where hydrogen sulfide (H2S) is involved. By incorporating an H2S donor moiety into a native drug, researchers have been able to simultaneously target multiple therapeutic pathways, resulting in improved treatment outcomes. This review gives the reader some pills of successful multi-target H2S-donating molecules as worthwhile tools to combat the multifactorial nature of complex disorders, such as inflammatory-based diseases and cancer, as well as cardiovascular, metabolic, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Angela Corvino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy; (A.S.); (F.F.); (E.P.); (V.S.); (G.C.); (B.S.)
| | | | | | | | | | | | | |
Collapse
|
3
|
Bhowmik R, Roy M. Recent advances on the development of NO-releasing molecules (NORMs) for biomedical applications. Eur J Med Chem 2024; 268:116217. [PMID: 38367491 DOI: 10.1016/j.ejmech.2024.116217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/19/2024]
Abstract
Nitric oxide (NO) is an important biological messenger as well as a signaling molecule that participates in a broad range of physiological events and therapeutic applications in biological systems. However, due to its very short half-life in physiological conditions, its therapeutic applications are restricted. Efforts have been made to develop an enormous number of NO-releasing molecules (NORMs) and motifs for NO delivery to the target tissues. These NORMs involve organic nitrate, nitrite, nitro compounds, transition metal nitrosyls, and several nanomaterials. The controlled release of NO from these NORMs to the specific site requires several external stimuli like light, sound, pH, heat, enzyme, etc. Herein, we have provided a comprehensive review of the biochemistry of nitric oxide, recent advancements in NO-releasing materials with the appropriate stimuli of NO release, and their biomedical applications in cancer and other disease control.
Collapse
Affiliation(s)
- Rintu Bhowmik
- Department of Chemistry, National Institute of Technology Manipur, Langol, 795004, Imphal West, Manipur, India
| | - Mithun Roy
- Department of Chemistry, National Institute of Technology Manipur, Langol, 795004, Imphal West, Manipur, India.
| |
Collapse
|
4
|
Gao W, Liu YF, Zhang YX, Wang Y, Jin YQ, Yuan H, Liang XY, Ji XY, Jiang QY, Wu DD. The potential role of hydrogen sulfide in cancer cell apoptosis. Cell Death Discov 2024; 10:114. [PMID: 38448410 PMCID: PMC10917771 DOI: 10.1038/s41420-024-01868-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 02/05/2024] [Accepted: 02/14/2024] [Indexed: 03/08/2024] Open
Abstract
For a long time, hydrogen sulfide (H2S) has been considered a toxic compound, but recent studies have found that H2S is the third gaseous signaling molecule which plays a vital role in physiological and pathological conditions. Currently, a large number of studies have shown that H2S mediates apoptosis through multiple signaling pathways to participate in cancer occurrence and development, for example, PI3K/Akt/mTOR and MAPK signaling pathways. Therefore, the regulation of the production and metabolism of H2S to mediate the apoptotic process of cancer cells may improve the effectiveness of cancer treatment. In this review, the role and mechanism of H2S in cancer cell apoptosis in mammals are summarized.
Collapse
Affiliation(s)
- Wei Gao
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Ya-Fang Liu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yan-Xia Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yan Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yu-Qing Jin
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Hang Yuan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Xiao-Yi Liang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
- Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, 450064, China.
| | - Qi-Ying Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
- School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.
- Department of Stomatology, Huaihe Hospital of Henan University, Kaifeng, Henan, 475000, China.
| |
Collapse
|
5
|
Coavoy-Sanchez SA, da Costa Marques LA, Costa SKP, Muscara MN. Role of Gasotransmitters in Inflammatory Edema. Antioxid Redox Signal 2024; 40:272-291. [PMID: 36974358 DOI: 10.1089/ars.2022.0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Significance: Nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) are, to date, the identified members of the gasotransmitter family, which consists of gaseous signaling molecules that play central roles in the regulation of a wide variety of physiological and pathophysiological processes, including inflammatory edema. Recent Advances: Recent studies show the potential anti-inflammatory and antiedematogenic effects of NO-, CO-, and H2S-donors in vivo. In general, it has been observed that the therapeutical effects of NO-donors are more relevant when administered at low doses at the onset of the inflammatory process. Regarding CO-donors, their antiedematogenic effects are mainly associated with inhibition of proinflammatory mediators (such as inducible NO synthase [iNOS]-derived NO), and the observed protective effects of H2S-donors seem to be mediated by reducing some proinflammatory enzyme activities. Critical Issues: The most recent investigations focus on the interactions among the gasotransmitters under different pathophysiological conditions. However, the biochemical/pharmacological nature of these interactions is neither general nor fully understood, although specifically dependent on the site where the inflammatory edema occurs. Future Directions: Considering the nature of the involved mechanisms, a deeper knowledge of the interactions among the gasotransmitters is mandatory. In addition, the development of new pharmacological tools, either donors or synthesis inhibitors of the three gasotransmitters, will certainly aid the basic investigations and open new strategies for the therapeutic treatment of inflammatory edema. Antioxid. Redox Signal. 40, 272-291.
Collapse
Affiliation(s)
| | | | - Soraia Katia Pereira Costa
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Marcelo Nicolas Muscara
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| |
Collapse
|
6
|
Chevalier E, Benamouzig R. Chemoprevention in hereditary digestive neoplasia: A comprehensive review. Therap Adv Gastroenterol 2023; 16:17562848231215585. [PMID: 38050626 PMCID: PMC10693784 DOI: 10.1177/17562848231215585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/23/2023] [Indexed: 12/06/2023] Open
Abstract
Hereditary syndromes, such as familial adenomatous polyposis (FAP), MUTYH polyposis or Lynch syndrome, are particularly predisposing to the development of colorectal cancer. These situations have necessitated the development of adapted prevention strategies based largely on reinforced endoscopic surveillance and the search for complementary prevention strategies. This is the case for chemoprevention, which is the long-term administration of chemical agents limiting carcinogenesis, used as primary or secondary prophylaxis. The aim of this review is to present the available literature and the latest advances in chemoprevention in patients with FAP or MUTYH and other polyposis as well as in patients with Lynch syndrome. The main conclusions of the few available guidelines in these situations are also discussed.
Collapse
Affiliation(s)
- Eugénie Chevalier
- Department of Gastroenterology and Digestive Oncology, Avicenne Hospital, Bobigny, France
| | - Robert Benamouzig
- Department of Gastroenterology and Digestive Oncology, Avicenne Hospital, AP-HP, Paris Nord la Sorbonne University, 125 Rue de Stalingrad, Bobigny 93000, France
| |
Collapse
|
7
|
Oza PP, Kashfi K. The Triple Crown: NO, CO, and H 2S in cancer cell biology. Pharmacol Ther 2023; 249:108502. [PMID: 37517510 PMCID: PMC10529678 DOI: 10.1016/j.pharmthera.2023.108502] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
Nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) are three endogenously produced gases with important functions in the vasculature, immune defense, and inflammation. It is increasingly apparent that, far from working in isolation, these three exert many effects by modulating each other's activity. Each gas is produced by three enzymes, which have some tissue specificities and can also be non-enzymatically produced by redox reactions of various substrates. Both NO and CO share similar properties, such as activating soluble guanylate cyclase (sGC) to increase cyclic guanosine monophosphate (cGMP) levels. At the same time, H2S both inhibits phosphodiesterase 5A (PDE5A), an enzyme that metabolizes sGC and exerts redox regulation on sGC. The role of NO, CO, and H2S in the setting of cancer has been quite perplexing, as there is evidence for both tumor-promoting and pro-inflammatory effects and anti-tumor and anti-inflammatory activities. Each gasotransmitter has been found to have dual effects on different aspects of cancer biology, including cancer cell proliferation and apoptosis, invasion and metastasis, angiogenesis, and immunomodulation. These seemingly contradictory actions may relate to each gas having a dual effect dependent on its local flux. In this review, we discuss the major roles of NO, CO, and H2S in the context of cancer, with an effort to highlight the dual nature of each gas in different events occurring during cancer progression.
Collapse
Affiliation(s)
- Palak P Oza
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA; Graduate Program in Biology, City University of New York Graduate Center, New York 10091, USA.
| |
Collapse
|
8
|
Xu S, Shieh M, Paul BD, Xian M. Hydrogen sulfide: Recent development of its dual donors and hybrid drugs. Br J Pharmacol 2023:10.1111/bph.16211. [PMID: 37553774 PMCID: PMC10850433 DOI: 10.1111/bph.16211] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023] Open
Abstract
Hydrogen sulfide (H2 S) is an important gaseous signalling molecule known to be critically involved in regulating cellular redox homeostasis. As the beneficial and therapeutic effects of H2 S in pathophysiology, such as in cardiovascular and neurodegenerative diseases, have emerged, so too has the drive for the development of H2 S-releasing compounds (aka donors) and their therapeutic applications. Most reported donor compounds singularly release H2 S through biocompatible triggers. An emerging area in the field is the development of compounds that can co-deliver H2 S with other drugs or biologically relevant species, such as reactive oxygen and nitrogen species (ROS and RNS, respectively). These H2 S-based dual donors and hybrid drugs are expected to offset negative side effects from individual treatments or achieve synergistic effects rendering them more clinically effective. Additionally, considering that molecules exist and interact physiologically, dual donors may more accurately mimic biological systems as compared to single donors and allow for the elucidation of fundamental chemistry and biology. This review focuses on the recent advances in the development of H2 S-based dual donors and hybrid drugs along with their design principles and synergistic effects.
Collapse
Affiliation(s)
- Shi Xu
- Department of Chemistry, Brown University, Providence, Rhode Island, USA
| | - Meg Shieh
- Department of Chemistry, Brown University, Providence, Rhode Island, USA
| | - Bindu D Paul
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Lieber Institute for Brain Development, Baltimore, Maryland, USA
| | - Ming Xian
- Department of Chemistry, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
9
|
Mukherjee S, Corpas FJ. H 2 O 2 , NO, and H 2 S networks during root development and signalling under physiological and challenging environments: Beneficial or toxic? PLANT, CELL & ENVIRONMENT 2023; 46:688-717. [PMID: 36583401 PMCID: PMC10108057 DOI: 10.1111/pce.14531] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/25/2022] [Accepted: 12/27/2022] [Indexed: 05/27/2023]
Abstract
Hydrogen peroxide (H2 O2 ) is a reactive oxygen species (ROS) and a key modulator of the development and architecture of the root system under physiological and adverse environmental conditions. Nitric oxide (NO) and hydrogen sulphide (H2 S) also exert myriad functions on plant development and signalling. Accumulating pieces of evidence show that depending upon the dose and mode of applications, NO and H2 S can have synergistic or antagonistic actions in mediating H2 O2 signalling during root development. Thus, H2 O2 -NO-H2 S crosstalk might essentially impart tolerance to elude oxidative stress in roots. Growth and proliferation of root apex involve crucial orchestration of NO and H2 S-mediated ROS signalling which also comprise other components including mitogen-activated protein kinase, cyclins, cyclin-dependent kinases, respiratory burst oxidase homolog (RBOH), and Ca2+ flux. This assessment provides a comprehensive update on the cooperative roles of NO and H2 S in modulating H2 O2 homoeostasis during root development, abiotic stress tolerance, and root-microbe interaction. Furthermore, it also analyses the scopes of some fascinating future investigations associated with strigolactone and karrikins concerning H2 O2 -NO-H2 S crosstalk in plant roots.
Collapse
Affiliation(s)
- Soumya Mukherjee
- Department of Botany, Jangipur CollegeUniversity of KalyaniWest BengalIndia
| | - Francisco J. Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signalling in PlantsEstación Experimental del Zaidín (Spanish National Research Council, CSIC)GranadaSpain
| |
Collapse
|
10
|
Roy B, Shieh M, Xu S, Ni X, Xian M. Single-Component Photo-Responsive Template for the Controlled Release of NO and H 2S 2. J Am Chem Soc 2023; 145:277-287. [PMID: 36548022 DOI: 10.1021/jacs.2c09914] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Redox signaling molecules include a number of reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species (RSS). These molecules work collectively in the regulation of many physiological processes. Understanding the crosstalk mechanisms in these signaling molecules is important but challenging. The development of donor compounds of ROS/RNS/RSS will aid the advances in this field. While many donors that can release one ROS/RNS/RSS have been developed, dual donors that can release two signaling species and facilitate their crosstalk studies are still very rare. Those limited examples lack the ability to precisely control the timing of two releases. In this work, a 2-methoxy-6-naphthacyl-derived tertiary SNO compound, Naph-SNO, was designed and evaluated as the dual donor for NO and H2S2. The 2-methoxy-6-naphthacyl structure was demonstrated to be a novel photoremovable protecting group that could directly uncage C-S bonds. Under the irradiation of lights with different wavelengths (visible or UV), Naph-SNO could release NO and H2S2 in a stepwise manner, or simultaneously (i.e., likely producing the crosstalk product HSNO/HSSNO). In addition, the release of payloads from the donor also produced an end product with blue fluorescence. Therefore, the release process could be easily monitored in "real time." This controllable photo-triggered release strategy has the potential to be used in the design of other RNS/RSS dual donors.
Collapse
Affiliation(s)
- Biswajit Roy
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Meg Shieh
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Shi Xu
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Xiang Ni
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Ming Xian
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
11
|
Lin H, Yu Y, Zhu L, Lai N, Zhang L, Guo Y, Lin X, Yang D, Ren N, Zhu Z, Dong Q. Implications of hydrogen sulfide in colorectal cancer: Mechanistic insights and diagnostic and therapeutic strategies. Redox Biol 2023; 59:102601. [PMID: 36630819 PMCID: PMC9841368 DOI: 10.1016/j.redox.2023.102601] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 01/09/2023] Open
Abstract
Hydrogen sulfide (H2S) is an important signaling molecule in colorectal cancer (CRC). It is produced in the colon by the catalytic synthesis of the colonocytes' enzymatic systems and the release of intestinal microbes, and is oxidatively metabolized in the colonocytes' mitochondria. Both endogenous H2S in colonic epithelial cells and exogenous H2S in intestinal lumen contribute to the onset and progression of CRC. The up-regulation of endogenous synthetases is thought to be the cause of the elevated H2S levels in CRC cells. Different diagnostic probes and combination therapies, as well as tumor treatment approaches through H2S modulation, have been developed in recent years and have become active area of investigation for the diagnosis and treatment of CRC. In this review, we focus on the specific mechanisms of H2S production and oxidative metabolism as well as the function of H2S in the occurrence, progression, diagnosis, and treatment of CRC. We also discuss the present challenges and provide insights into the future research of this burgeoning field.
Collapse
Affiliation(s)
- Hanchao Lin
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission, Minhang Hospital, Fudan University, China; Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, China
| | - Yixin Yu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, China
| | - Le Zhu
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, China
| | - Nannan Lai
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission, Minhang Hospital, Fudan University, China
| | - Luming Zhang
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission, Minhang Hospital, Fudan University, China
| | - Yu Guo
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, China
| | - Xinxin Lin
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission, Minhang Hospital, Fudan University, China
| | - Dongqin Yang
- Department of Digestive Diseases, Huashan Hospital, Fudan University, China.
| | - Ning Ren
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission, Minhang Hospital, Fudan University, China; Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, And Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, China.
| | - Zhiling Zhu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, China.
| | - Qiongzhu Dong
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission, Minhang Hospital, Fudan University, China.
| |
Collapse
|
12
|
Lichtenberger LM. Development of the PC-NSAID technology: From contact angle to Vazalore®. Drug Discov Today 2023; 28:103411. [PMID: 36270473 DOI: 10.1016/j.drudis.2022.103411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/10/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022]
Abstract
We describe strategies in drug development to reduce the gastrointestinal (GI) toxicity of nonsteroidal anti-inflammatory drugs (NSAIDs). We then provide an overview of the experiments that led to the development of PC-NSAIDs, a novel family of NSAIDs associated with phosphatidylcholine (PC) that have reduced GI toxicity and full therapeutic activity. Furthermore, we describe the evidence showing: that the stomach possesses hydrophobic properties that are attributable to phospholipids lining the mucus gel layer; and that NSAIDs chemically associate with intrinsic PC, thereby attenuating the tissue's hydrophobic properties. Further, pre-associating NSAIDs with PC reduces the GI toxicity of these drugs, both in rodent ulcer models and in human subjects, without affecting the drugs' therapeutic activity. Finally, we discuss the commercialization and launch of Aspirin-PC, an over-the-counter (OTC) drug with the brand name Vazalore®.
Collapse
Affiliation(s)
- Lenard M Lichtenberger
- Department of Integrative Biology & Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
13
|
Wen S, Cao C, Ge J, Yang W, Wang Y, Mou Y. Research Progress of H 2S Donors Conjugate Drugs Based on ADTOH. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010331. [PMID: 36615525 PMCID: PMC9822322 DOI: 10.3390/molecules28010331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/11/2022] [Accepted: 12/22/2022] [Indexed: 01/03/2023]
Abstract
H2S is an endogenous gas signaling molecule and its multiple biological effects have been demonstrated. The abnormal level of H2S is closely related to the occurrence and development of many diseases, and H2S donors has important pharmacological implications. In recent years, H2S donors represented by ADTOH (5-(4-hydroxyphenyl)-3H-1,2-dithiole-3-thione) are often used to synthesize new 'conjugate' compounds that can release H2S and parent drugs. These hybrids retain the pharmacological activity of the parent drugs and H2S and have a synergistic effect. ADTOH and parent drug hybrids have become one of the important strategies for the development of H2S donor conjugate drugs. This review summarizes molecular hybrids between ADTOH and clinical drugs to provide new ideas for the study of H2S donor drug design.
Collapse
|
14
|
Anticancer and Anti-Inflammatory Mechanisms of NOSH-Aspirin and Its Biological Effects. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4463294. [PMID: 36035295 PMCID: PMC9402325 DOI: 10.1155/2022/4463294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022]
Abstract
NOSH-Aspirin, which is generated from NO, H2S, and aspirin, affects a variety of essential pathophysiological processes, including anti-inflammatory, analgesic, antipyretic, antiplatelet, and anticancer properties. Although many people acknowledge the biological significance of NOSH-Aspirin and its therapeutic effects, the mechanism of action of NOSH-Aspirin and its regulation of tissue levels remains obscure. This is in part due to its chemical and physical features, which make processing and analysis difficult. This review focuses on the biological effects of NOSH-Aspirin and provides a comprehensive analysis to elucidate the mechanism underlying its disease-protective benefits.
Collapse
|
15
|
Munteanu C, Rotariu M, Turnea M, Dogaru G, Popescu C, Spînu A, Andone I, Postoiu R, Ionescu EV, Oprea C, Albadi I, Onose G. Recent Advances in Molecular Research on Hydrogen Sulfide (H 2S) Role in Diabetes Mellitus (DM)-A Systematic Review. Int J Mol Sci 2022; 23:ijms23126720. [PMID: 35743160 PMCID: PMC9223903 DOI: 10.3390/ijms23126720] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 02/01/2023] Open
Abstract
Abundant experimental data suggest that hydrogen sulfide (H2S) is related to the pathophysiology of Diabetes Mellitus (DM). Multiple molecular mechanisms, including receptors, membrane ion channels, signalingmolecules, enzymes, and transcription factors, are known to be responsible for the H2S biological actions; however, H2S is not fully documented as a gaseous signaling molecule interfering with DM and vascular-linked pathology. In recent decades, multiple approaches regarding therapeutic exploitation of H2S have been identified, either based on H2S exogenous apport or on its modulated endogenous biosynthesis. This paper aims to synthesize and systematize, as comprehensively as possible, the recent literature-related data regarding the therapeutic/rehabilitative role of H2S in DM. This review was conducted following the “Preferred reporting items for systematic reviews and meta-analyses” (PRISMA) methodology, interrogating five international medically renowned databases by specific keyword combinations/“syntaxes” used contextually, over the last five years (2017–2021). The respective search/filtered and selection methodology we applied has identified, in the first step, 212 articles. After deploying the next specific quest steps, 51 unique published papers qualified for minute analysis resulted. To these bibliographic resources obtained through the PRISMA methodology, in order to have the best available information coverage, we added 86 papers that were freely found by a direct internet search. Finally, we selected for a connected meta-analysis eight relevant reports that included 1237 human subjects elicited from clinical trial registration platforms. Numerous H2S releasing/stimulating compounds have been produced, some being used in experimental models. However, very few of them were further advanced in clinical studies, indicating that the development of H2S as a therapeutic agent is still at the beginning.
Collapse
Affiliation(s)
- Constantin Munteanu
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700115 Iași, Romania; (M.R.); (M.T.)
- Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (C.P.); (A.S.); (I.A.); (R.P.)
- Correspondence: (C.M.); (G.O.)
| | - Mariana Rotariu
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700115 Iași, Romania; (M.R.); (M.T.)
| | - Marius Turnea
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700115 Iași, Romania; (M.R.); (M.T.)
| | - Gabriela Dogaru
- Clinical Rehabilitation Hospital, 400066 Cluj-Napoca, Romania;
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Cristina Popescu
- Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (C.P.); (A.S.); (I.A.); (R.P.)
| | - Aura Spînu
- Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (C.P.); (A.S.); (I.A.); (R.P.)
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| | - Ioana Andone
- Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (C.P.); (A.S.); (I.A.); (R.P.)
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| | - Ruxandra Postoiu
- Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (C.P.); (A.S.); (I.A.); (R.P.)
| | - Elena Valentina Ionescu
- Faculty of Medicine, Ovidius University of Constanta, 900527 Constanta, Romania; (E.V.I.); (C.O.); (I.A.)
- Balneal and Rehabilitation Sanatorium of Techirghiol, 906100 Techirghiol, Romania
| | - Carmen Oprea
- Faculty of Medicine, Ovidius University of Constanta, 900527 Constanta, Romania; (E.V.I.); (C.O.); (I.A.)
- Balneal and Rehabilitation Sanatorium of Techirghiol, 906100 Techirghiol, Romania
| | - Irina Albadi
- Faculty of Medicine, Ovidius University of Constanta, 900527 Constanta, Romania; (E.V.I.); (C.O.); (I.A.)
- Teaching Emergency County Hospital “Sf. Apostol Andrei” Constanta, 900591 Constanta, Romania
| | - Gelu Onose
- Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (C.P.); (A.S.); (I.A.); (R.P.)
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
- Correspondence: (C.M.); (G.O.)
| |
Collapse
|
16
|
Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues and organs. Physiol Rev 2022; 103:31-276. [DOI: 10.1152/physrev.00028.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
H2S belongs to the class of molecules known as gasotransmitters, which also includes nitric oxide (NO) and carbon monoxide (CO). Three enzymes are recognized as endogenous sources of H2S in various cells and tissues: cystathionine g-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). The current article reviews the regulation of these enzymes as well as the pathways of their enzymatic and non-enzymatic degradation and elimination. The multiple interactions of H2S with other labile endogenous molecules (e.g. NO) and reactive oxygen species are also outlined. The various biological targets and signaling pathways are discussed, with special reference to H2S and oxidative posttranscriptional modification of proteins, the effect of H2S on channels and intracellular second messenger pathways, the regulation of gene transcription and translation and the regulation of cellular bioenergetics and metabolism. The pharmacological and molecular tools currently available to study H2S physiology are also reviewed, including their utility and limitations. In subsequent sections, the role of H2S in the regulation of various physiological and cellular functions is reviewed. The physiological role of H2S in various cell types and organ systems are overviewed. Finally, the role of H2S in the regulation of various organ functions is discussed as well as the characteristic bell-shaped biphasic effects of H2S. In addition, key pathophysiological aspects, debated areas, and future research and translational areas are identified A wide array of significant roles of H2S in the physiological regulation of all organ functions emerges from this review.
Collapse
Affiliation(s)
- Giuseppe Cirino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece & Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| |
Collapse
|
17
|
Ramos-Inza S, Ruberte AC, Sanmartín C, Sharma AK, Plano D. NSAIDs: Old Acquaintance in the Pipeline for Cancer Treatment and Prevention─Structural Modulation, Mechanisms of Action, and Bright Future. J Med Chem 2021; 64:16380-16421. [PMID: 34784195 DOI: 10.1021/acs.jmedchem.1c01460] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The limitations of current chemotherapeutic drugs are still a major issue in cancer treatment. Thus, targeted multimodal therapeutic approaches need to be strategically developed to successfully control tumor growth and prevent metastatic burden. Inflammation has long been recognized as a hallmark of cancer and plays a key role in the tumorigenesis and progression of the disease. Several epidemiological, clinical, and preclinical studies have shown that traditional nonsteroidal anti-inflammatory drugs (NSAIDs) exhibit anticancer activities. This Perspective reports the most recent outcomes for the treatment and prevention of different types of cancers for several NSAIDs alone or in combination with current chemotherapeutic drugs. Furthermore, an extensive review of the most promising structural modifications is reported, such as phospho, H2S, and NO releasing-, selenium-, metal complex-, and natural product-NSAIDs, among others. We also provide a perspective about the new strategies used to obtain more efficient NSAID- or NSAID derivative- formulations for targeted delivery.
Collapse
Affiliation(s)
- Sandra Ramos-Inza
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| | - Ana Carolina Ruberte
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| | - Carmen Sanmartín
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| | - Arun K Sharma
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Daniel Plano
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| |
Collapse
|
18
|
Pinto RV, Carvalho S, Antunes F, Pires J, Pinto ML. Emerging Nitric Oxide and Hydrogen Sulfide Releasing Carriers for Skin Wound Healing Therapy. ChemMedChem 2021; 17:e202100429. [PMID: 34714595 DOI: 10.1002/cmdc.202100429] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/26/2021] [Indexed: 12/19/2022]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2 S) have been recognized as important signalling molecules involved in multiple physiological functions, including wound healing. Their exogenous delivery has been established as a new route for therapies, being the topical application the nearest to commercialization. Nevertheless, the gaseous nature of these therapeutic agents and their toxicity at high levels imply additional challenges in the design of effective delivery systems, including the tailoring of their morphology and surface chemistry to get controllable release kinetics and suitable lifetimes. This review highlights the increasing interest in the use of these gases in wound healing applications by presenting the various potential strategies in which NO and/or H2 S are the main therapeutic agents, with focus on their conceptual design, release behaviour and therapeutic performance. These strategies comprise the application of several types of nanoparticles, polymers, porous materials, and composites as new releasing carriers of NO and H2 S, with characteristics that will facilitate the application of these molecules in the clinical practice.
Collapse
Affiliation(s)
- Rosana V Pinto
- CERENA-Centro de Recursos Naturais e Ambiente, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001, Lisboa, Portugal.,CQE-Ciências-Centro de Química Estrutural, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande 16, 1749-016, Lisboa, Portugal
| | - Sílvia Carvalho
- CERENA-Centro de Recursos Naturais e Ambiente, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001, Lisboa, Portugal.,CQE-Ciências-Centro de Química Estrutural, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande 16, 1749-016, Lisboa, Portugal
| | - Fernando Antunes
- CQE-Ciências-Centro de Química Estrutural, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande 16, 1749-016, Lisboa, Portugal
| | - João Pires
- CQE-Ciências-Centro de Química Estrutural, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande 16, 1749-016, Lisboa, Portugal
| | - Moisés L Pinto
- CERENA-Centro de Recursos Naturais e Ambiente, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001, Lisboa, Portugal
| |
Collapse
|
19
|
Hu X, Xiao Y, Sun J, Ji B, Luo S, Wu B, Zheng C, Wang P, Xu F, Cheng K, Hua H, Li D. New possible silver lining for pancreatic cancer therapy: Hydrogen sulfide and its donors. Acta Pharm Sin B 2021; 11:1148-1157. [PMID: 34094825 PMCID: PMC8144891 DOI: 10.1016/j.apsb.2020.10.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/30/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
As one of the most lethal diseases, pancreatic cancer shows a dismal overall prognosis and high resistance to most treatment modalities. Furthermore, pancreatic cancer escapes early detection during the curable period because early symptoms rarely emerge and specific markers for this disease have not been found. Although combinations of new drugs, multimodal therapies, and adjuvants prolong survival, most patients still relapse after surgery and eventually die. Consequently, the search for more effective treatments for pancreatic cancer is highly relevant and justified. As a newly re-discovered mediator of gasotransmission, hydrogen sulfide (H2S) undertakes essential functions, encompassing various signaling complexes that occupy key processes in human biology. Accumulating evidence indicates that H2S exhibits bimodal modulation of cancer development. Thus, endogenous or low levels of exogenous H2S are thought to promote cancer, whereas high doses of exogenous H2S suppress tumor proliferation. Similarly, inhibition of endogenous H2S production also suppresses tumor proliferation. Accordingly, H2S biosynthesis inhibitors and H2S supplementation (H2S donors) are two distinct strategies for the treatment of cancer. Unfortunately, modulation of endogenous H2S on pancreatic cancer has not been studied so far. However, H2S donors and their derivatives have been extensively studied as potential therapeutic agents for pancreatic cancer therapy by inhibiting cell proliferation, inducing apoptosis, arresting cell cycle, and suppressing invasion and migration through exploiting multiple signaling pathways. As far as we know, there is no review of the effects of H2S donors on pancreatic cancer. Based on these concerns, the therapeutic effects of some H2S donors and NO–H2S dual donors on pancreatic cancer were summarized in this paper. Exogenous H2S donors may be promising compounds for pancreatic cancer treatment.
Collapse
Key Words
- 3-MST, 3-mercaptopyruvate sulfurtransferase
- AMPK, adenosine 5′-monophosphate-activated protein kinase
- Antitumor effect
- BCL-2, B-cell lymphoma-2
- BITC, benzyl isothiocyanate
- BRCA2, breast cancer 2
- CAT, cysteine aminotransferase
- CBS, cystathionine-β-synthase
- CDC25B, cell division cycle 25B
- CDK1, cyclin-dependent kinase 1
- CHK2, checkpoint kinase 2
- CSE, cystathionine-γ-lyase
- Cell proliferation
- DATS, diallyl trisulfide
- DR4, death receptor
- EMT, epithelial–mesenchymal transition
- ERK1/2, extracellular signal-regulated kinase
- ERU, erucin
- FOXM1, forkhead box protein M1
- GLUTs, glucose transporters
- H2S, hydrogen sulfide
- HDAC, histone deacetylase
- HEATR1, human HEAT repeat-containing protein 1
- HIF-1α, hypoxia inducible factor
- Hydrogen sulfide donor
- ITCs, isothiocyanates
- JNK, c-Jun N-terminal kinase
- KEAP1‒NRF2‒ARE, the recombinant protein 1-nuclear factor erythroid-2 related factor 2-antioxidant response element
- KRAS, kirsten rat sarcoma viral oncogene
- NF-κB, nuclear factor kappa B
- NO, nitric oxide
- OCT-4, octamer-binding transcription factor 4
- P16, multiple tumor suppressor 1
- PARP, poly(ADP-ribose)-polymerase
- PDGFRα, platelet-derived growth factor receptor
- PEITC, phenethyl isothiocyanate
- PI3K/AKT, phosphoinositide 3-kinase/v-AKT murine thymoma viral oncogene
- Pancreatic cancer
- RASAL2, RAS protein activator like 2
- ROS, reactive oxygen species
- RPL10, human ribosomal protein L10
- SFN, sulforaphane
- SHH, sonic hedgehog
- SMAD4, mothers against decapentaplegic homolog 4
- STAT-3, signal transducer and activator of transcription 3
- Signaling pathway
- Sulfur-containing compound
- TRAIL, The human tumor necrosis factor-related apoptosis-inducing ligand
- VEGF, vascular endothelial growth factor
- XIAP, X-linked inhibitor of apoptosis protein
- ZEB1, zinc finger E box-binding protein-1
- iNOS, inducible nitric oxide synthase
Collapse
Affiliation(s)
- Xu Hu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yan Xiao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jianan Sun
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bao Ji
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shanshan Luo
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Bo Wu
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - Chao Zheng
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Peng Wang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Fanxing Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Corresponding authors. Tel./fax: +86 24 23986465.
| | - Keguang Cheng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources; School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, China
| | - Huiming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
- Corresponding authors. Tel./fax: +86 24 23986465.
| | - Dahong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
- Corresponding authors. Tel./fax: +86 24 23986465.
| |
Collapse
|
20
|
The Role of Hydrogen Sulfide in Respiratory Diseases. Biomolecules 2021; 11:biom11050682. [PMID: 34062820 PMCID: PMC8147381 DOI: 10.3390/biom11050682] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 02/08/2023] Open
Abstract
Respiratory diseases are leading causes of death and disability around the globe, with a diverse range of health problems. Treatment of respiratory diseases and infections has been verified to be thought-provoking because of the increasing incidence and mortality rate. Hydrogen sulfide (H2S) is one of the recognized gaseous transmitters involved in an extensive range of cellular functions, and physiological and pathological processes in a variety of diseases, including respiratory diseases. Recently, the therapeutic potential of H2S for respiratory diseases has been widely investigated. H2S plays a vital therapeutic role in obstructive respiratory disease, pulmonary fibrosis, emphysema, pancreatic inflammatory/respiratory lung injury, pulmonary inflammation, bronchial asthma and bronchiectasis. Although the therapeutic role of H2S has been extensively studied in various respiratory diseases, a concrete literature review will have an extraordinary impact on future therapeutics. This review provides a comprehensive overview of the effective role of H2S in respiratory diseases. Besides, we also summarized H2S production in the lung and its metabolism processes in respiratory diseases.
Collapse
|
21
|
Danielak A, Wallace JL, Brzozowski T, Magierowski M. Gaseous Mediators as a Key Molecular Targets for the Development of Gastrointestinal-Safe Anti-Inflammatory Pharmacology. Front Pharmacol 2021; 12:657457. [PMID: 33995080 PMCID: PMC8116801 DOI: 10.3389/fphar.2021.657457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) represent one of the most widely used classes of drugs and play a pivotal role in the therapy of numerous inflammatory diseases. However, the adverse effects of these drugs, especially when applied chronically, frequently affect gastrointestinal (GI) tract, resulting in ulceration and bleeding, which constitutes a significant limitation in clinical practice. On the other hand, it has been recently discovered that gaseous mediators nitric oxide (NO), hydrogen sulfide (H2S) and carbon monoxide (CO) contribute to many physiological processes in the GI tract, including the maintenance of GI mucosal barrier integrity. Therefore, based on the possible therapeutic properties of NO, H2S and CO, a novel NSAIDs with ability to release one or more of those gaseous messengers have been synthesized. Until now, both preclinical and clinical studies have shown promising effects with respect to the anti-inflammatory potency as well as GI-safety of these novel NSAIDs. This review provides an overview of the gaseous mediators-based NSAIDs along with their mechanisms of action, with special emphasis on possible implications for GI mucosal defense mechanisms.
Collapse
Affiliation(s)
- Aleksandra Danielak
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland
| | - John L Wallace
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Tomasz Brzozowski
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland
| | - Marcin Magierowski
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland
| |
Collapse
|
22
|
Hassan AY, Maulood IM, Salihi A. The vasodilatory mechanism of nitric oxide and hydrogen sulfide in the human mesenteric artery in patients with colorectal cancer. Exp Ther Med 2021; 21:214. [PMID: 33500703 DOI: 10.3892/etm.2021.9646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 08/19/2020] [Indexed: 12/24/2022] Open
Abstract
Recent studies have focused on the role of gasotransmitters in cancer progression and prevention. Therefore, the current study was designed to explore the vasodilator activity of NO and H2S in the human mesenteric arteries of patients with colorectal cancer (CRC) via the activation of K+ channels. A total of two sets of experiments were established for the current investigation. Blood samples from patients with CRC were obtained to detect serum levels of endocan and malondialdehyde (MDA). The role of K+ channels in mediating the vasodilation of the human mesenteric artery in response to sodium nitroprusside (SNP) and sodium disulfide (Na2S) was assessed. The level of serum endocan was indicated to be decreased in patients with CRC compared with healthy individuals, while the level of serum MDA remained unaltered between groups. The arterial rings pre-contracted with norepinephrine were first relaxed by the cumulative addition of increasing concentrations of either SNP (30 nM-30 µM) or (1-6 mM). Maximal relaxation rates were then calculated at 15 min intervals for 60 min. Pre-incubation of arterial rings for 20 min with individual K+ channel blockers was indicated to significantly reduce SNP- and Na2S-induced relaxation at different time points. Pre-treatment of L-nitro-arginine methyl ester did not alter vasodilation that was induced by Na2S. Furthermore, vasodilation of the CRC mesenteric artery was not altered by the synergistic application of SNP and Na2S, while pre-incubation of arterial rings with D,L-propargylglycine significantly enhanced vasodilation induced by SNP. These results indicated that endothelial dysfunction and oxidative stress do not serve roles in the pathogenesis of CRC. The dilatory mechanisms of NO and H2S in mesenteric arteries of patients with CRC were K+ channel- and time-dependent, and the activity of cystathionine γ-lyase enzyme inhibited the ability of exogenous NO in vasodilation processes.
Collapse
Affiliation(s)
- Awat Y Hassan
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region 44001, Iraq
| | - Ismail M Maulood
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region 44001, Iraq
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region 44001, Iraq.,Department of Medical Analysis, Faculty of Science, Tishk International University, Erbil, Kurdistan Region 44001, Iraq
| |
Collapse
|
23
|
Zhang H, Bai Z, Zhu L, Liang Y, Fan X, Li J, Wen H, Shi T, Zhao Q, Wang Z. Hydrogen sulfide donors: Therapeutic potential in anti-atherosclerosis. Eur J Med Chem 2020; 205:112665. [DOI: 10.1016/j.ejmech.2020.112665] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/09/2020] [Accepted: 07/12/2020] [Indexed: 12/15/2022]
|
24
|
Mukherjee S, Corpas FJ. Crosstalk among hydrogen sulfide (H 2S), nitric oxide (NO) and carbon monoxide (CO) in root-system development and its rhizosphere interactions: A gaseous interactome. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:800-814. [PMID: 32882618 DOI: 10.1016/j.plaphy.2020.08.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 05/08/2023]
Abstract
Root development in higher plants is achieved by a precise intercellular communication which determines cell fate in the primary embryonic meristem where the gasotransmitters H2S, NO and CO participate dynamically. Furthermore, the rhizosphere interaction of these molecules with microbial and soil metabolism also affects root development. NO regulates root growth and architecture in association with several other biomolecules like auxin indole-3-acetic acid (IAA), ethylene, jasmonic acid (JA), strigolactones, alkamides and melatonin. The CO-mediated signal transduction pathway in roots is closely linked to the NO-mediated signal cascades. Interestingly, H2S acts also as an upstream component in IAA and NO-mediated crosstalk during root development. Heme oxygenase (HO) 1 generates CO and functions as a downstream component in H2S-mediated adventitious rooting and H2S-CO crosstalk. Likewise, reactive oxygen species (ROS), H2S and NO crosstalk are important components in the regulation of root architecture. Deciphering these interactions will be a potential biotechnological tool which could provide benefits in crop management in soils, especially under adverse environmental conditions. This review aims to provide a comprehensive update of the complex networks of these gasotransmitters during the development of roots.
Collapse
Affiliation(s)
- Soumya Mukherjee
- Department of Botany, Jangipur College, University of Kalyani, West Bengal, 742213, India.
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, E-18080, Granada, Spain
| |
Collapse
|
25
|
Wang H, Wang L, Xie Z, Zhou S, Li Y, Zhou Y, Sun M. Nitric Oxide (NO) and NO Synthases (NOS)-Based Targeted Therapy for Colon Cancer. Cancers (Basel) 2020; 12:E1881. [PMID: 32668616 PMCID: PMC7408898 DOI: 10.3390/cancers12071881] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most lethal malignancies worldwide and CRC therapy remains unsatisfactory. In recent decades, nitric oxide (NO)-a free-radical gas-plus its endogenous producer NO synthases (NOS), have attracted considerable attention. NO exerts dual effects (pro- and anti-tumor) in cancers. Endogenous levels of NO promote colon neoplasms, whereas exogenously sustained doses lead to cytotoxic functions. Importantly, NO has been implicated as an essential mediator in many signaling pathways in CRC, such as the Wnt/β-catenin and extracellular-signal-regulated kinase (ERK) pathways, which are closely associated with cancer initiation, metastasis, inflammation, and chemo-/radio-resistance. Therefore, NO/NOS have been proposed as promising targets in the regulation of CRC carcinogenesis. Clinically relevant NO-donating agents have been developed for CRC therapy to deliver a high level of NO to tumor sites. Notably, inducible NOS (iNOS) is ubiquitously over-expressed in inflammatory-associated colon cancer. The development of iNOS inhibitors contributes to targeted therapies for CRC with clinical benefits. In this review, we summarize the multifaceted mechanisms of NO-mediated networks in several hallmarks of CRC. We review the clinical manifestation and limitations of NO donors and NOS inhibitors in clinical trials. We also discuss the possible directions of NO/NOS therapies in the immediate future.
Collapse
Affiliation(s)
- Hao Wang
- College of Laboratory Medicine, Jilin Medical University, Jilin 132013, China;
| | - Liye Wang
- Department of Pharmacological and Pharmaceutical Science, College of Pharmacy, University of Houston, Houston, TX, 77204, USA; (L.W.); (Z.X.); (S.Z.); (Y.L.)
| | - Zuoxu Xie
- Department of Pharmacological and Pharmaceutical Science, College of Pharmacy, University of Houston, Houston, TX, 77204, USA; (L.W.); (Z.X.); (S.Z.); (Y.L.)
| | - Shuang Zhou
- Department of Pharmacological and Pharmaceutical Science, College of Pharmacy, University of Houston, Houston, TX, 77204, USA; (L.W.); (Z.X.); (S.Z.); (Y.L.)
| | - Yan Li
- Department of Pharmacological and Pharmaceutical Science, College of Pharmacy, University of Houston, Houston, TX, 77204, USA; (L.W.); (Z.X.); (S.Z.); (Y.L.)
| | - Yue Zhou
- Department of Statistics, North Dakota University, Fargo, ND 58105, USA;
| | - Meiyan Sun
- College of Laboratory Medicine, Jilin Medical University, Jilin 132013, China;
| |
Collapse
|
26
|
Dillon KM, Carrazzone RJ, Matson JB, Kashfi K. The evolving landscape for cellular nitric oxide and hydrogen sulfide delivery systems: A new era of customized medications. Biochem Pharmacol 2020; 176:113931. [PMID: 32224139 PMCID: PMC7263970 DOI: 10.1016/j.bcp.2020.113931] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/20/2020] [Indexed: 02/09/2023]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) are industrial toxins or pollutants; however, both are produced endogenously and have important biological roles in most mammalian tissues. The recognition that these gasotransmitters have a role in physiological and pathophysiological processes has presented opportunities to harness their intracellular effects either through inhibition of their production; or more commonly, through inducing their levels and or delivering them by various modalities. In this review article, we have focused on an array of NO and H2S donors, their hybrids with other established classes of drugs, and the various engineered delivery platforms such a fibers, polymers, nanoparticles, hydrogels, and others. In each case, we have reviewed the rationale for their development.
Collapse
Affiliation(s)
- Kearsley M Dillon
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA; Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, USA
| | - Ryan J Carrazzone
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA; Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, USA
| | - John B Matson
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA; Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Khosrow Kashfi
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, 160 Convent Avenue, New York, NY 10031, USA; Graduate Program in Biology, City University of New York Graduate Center, NY, USA.
| |
Collapse
|
27
|
H 2S signaling in plants and applications in agriculture. J Adv Res 2020; 24:131-137. [PMID: 32292600 PMCID: PMC7150428 DOI: 10.1016/j.jare.2020.03.011] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/16/2022] Open
Abstract
Hydrogen sulfide (H2S) plays a signaling role in higher plants. It mediates persulfidation, a post-translational modification. It regulates physiological functions ranging from seed germination to fruit ripening. The beneficial effects of exogenous H2S are mainly caused by the stimulation of antioxidant systems.
The signaling properties of the gasotransmitter molecule hydrogen sulfide (H2S), which is endogenously generated in plant cells, are mainly observed during persulfidation, a protein post-translational modification (PTM) that affects redox-sensitive cysteine residues. There is growing experimental evidence that H2S in higher plants may function as a mechanism of response to environmental stress conditions. In addition, exogenous applications of H2S to plants appear to provide additional protection against stresses, such as salinity, drought, extreme temperatures and heavy metals, mainly through the induction of antioxidant systems, in order to palliate oxidative cellular damage. H2S also appears to be involved in regulating physiological functions, such as seed germination, stomatal movement and fruit ripening, as well as molecules that maintain post-harvest quality and rhizobium–legume symbiosis. These properties of H2S open up new challenges in plant research to better understand its functions as well as new opportunities for biotechnological treatments in agriculture in a changing environment.
Collapse
|
28
|
Sunzini F, De Stefano S, Chimenti MS, Melino S. Hydrogen Sulfide as Potential Regulatory Gasotransmitter in Arthritic Diseases. Int J Mol Sci 2020; 21:ijms21041180. [PMID: 32053981 PMCID: PMC7072783 DOI: 10.3390/ijms21041180] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/30/2020] [Accepted: 02/09/2020] [Indexed: 01/12/2023] Open
Abstract
The social and economic impact of chronic inflammatory diseases, such as arthritis, explains the growing interest of the research in this field. The antioxidant and anti-inflammatory properties of the endogenous gasotransmitter hydrogen sulfide (H2S) were recently demonstrated in the context of different inflammatory diseases. In particular, H2S is able to suppress the production of pro-inflammatory mediations by lymphocytes and innate immunity cells. Considering these biological effects of H2S, a potential role in the treatment of inflammatory arthritis, such as rheumatoid arthritis (RA), can be postulated. However, despite the growing interest in H2S, more evidence is needed to understand the pathophysiology and the potential of H2S as a therapeutic agent. Within this review, we provide an overview on H2S biological effects, on its role in immune-mediated inflammatory diseases, on H2S releasing drugs, and on systems of tissue repair and regeneration that are currently under investigation for potential therapeutic applications in arthritic diseases.
Collapse
Affiliation(s)
- Flavia Sunzini
- Institute of Infection Immunity and Inflammation, University of Glasgow, 120 University, Glasgow G31 8TA, UK;
- Rheumatology, Allergology and clinical immunology, University of Rome Tor Vergata, via Montpelier, 00133 Rome, Italy;
| | - Susanna De Stefano
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, via della Ricerca Scientifica 1, 00133 Rome, Italy;
| | - Maria Sole Chimenti
- Rheumatology, Allergology and clinical immunology, University of Rome Tor Vergata, via Montpelier, 00133 Rome, Italy;
| | - Sonia Melino
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, via della Ricerca Scientifica 1, 00133 Rome, Italy;
- Correspondence: ; Tel.: +39-0672594410
| |
Collapse
|
29
|
Chen M, Pritchard C, Fortune D, Kodi P, Grados M. Hydrogen sulfide: a target to modulate oxidative stress and neuroplasticity for the treatment of pathological anxiety. Expert Rev Neurother 2019; 20:109-121. [DOI: 10.1080/14737175.2019.1668270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Mary Chen
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | - Diandra Fortune
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Priyadurga Kodi
- Department of Internal Medicine, Greater Baltimore Medical Center, Baltimore, MD, USA
| | - Marco Grados
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
30
|
Reis AKCA, Stern A, Monteiro HP. S-nitrosothiols and H 2S donors: Potential chemo-therapeutic agents in cancer. Redox Biol 2019; 27:101190. [PMID: 30981679 PMCID: PMC6859576 DOI: 10.1016/j.redox.2019.101190] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/25/2019] [Accepted: 04/01/2019] [Indexed: 02/06/2023] Open
Abstract
Nitric Oxide (NO) and Hydrogen Sulfide (H2S) are components of an "interactome", which is defined as a redox system involving the interactions of RSS, RNS and ROS. Chemical interaction by these species is common and is characterized by one and two electron oxidation, nitrosylation, nitration and sulfuration/polysulfidation reactions. NO and H2S are gases that penetrate cell membranes, are synthesized by specific enzymes, are ubiquitous, regulate protein activities through post-translational modifications and participate in cell signaling. The two molecules at high concentrations compared to physiological concentrations may result in cellular damage particularly through their interaction with other reactive species. NO and H2S can interact with each other and form a variety of molecular species which may have constructive or destructive behavior depending on the cell type, the cellular environment (ex. oxygen tension, pH, redox state), where the products are produced and in what concentrations. Cross talk exists between NO and H2S, whereby they can influence the generation and signaling behavior of each other. Given the above mentioned properties of NO and H2S and studies in cancer cells and animal models employing NO and H2S donors that generate higher than physiological concentrations of NO and H2S and are effective in killing cancer cells but not normal cells, lend credence to the possibility of the utility of these donors in an approach to the treatment of cancer.
Collapse
Affiliation(s)
- Adriana Karla Cardoso Amorim Reis
- Department of Chemistry, Institute of Environmental, Chemical and Pharmaceutical Sciences - Universidade Federal de São Paulo - Campus Diadema, São Paulo, Brazil
| | - Arnold Stern
- New York University, School of Medicine, New York, NY, USA.
| | - Hugo Pequeno Monteiro
- Department of Biochemistry, Center for Cellular and Molecular Therapy - Universidade Federal de São Paulo - Campus São Paulo, São Paulo, Brazil.
| |
Collapse
|
31
|
N P, Ss A, Pv M. Comprehensive biology of antipyretic pathways. Cytokine 2019; 116:120-127. [PMID: 30711851 DOI: 10.1016/j.cyto.2019.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 01/10/2023]
Abstract
Pyrogens, the fever inducing substances accidently enter into a human body through contamination from medical or pharmaceutical products may create mild to severe complications including septicaemia and shocking syndromes. To avoid such drastic situations all the pharmaceuticals and medical devices are analysed for presence of pyrogens prior to their release into market. The entry of exogenous pyrogens like bacterial endotoxins induces the release of endogenous pyrogens or inflammatory cytokines that activate immune system to defend against these pathogens. Generation of heat is considered as one of the important defence mechanism of body achieved through receptor mediated interaction of endogenous pyrogens at the thermoregulatory centre of hypothalamus. However, uncontrolled fever and febrile reaction may cause lethal effects to the subject itself. So a well sophistically functioning antipyretic mechanism is necessary to achieve thermoregulation. The coordinated interaction of antipyretic cytokines and other mediators are active in human immune system which play a crucial role in maintaining thermal homeostasis. The multiple interacting antipyretic signals and their mechanism are the major subjects of this review.
Collapse
Affiliation(s)
- Prajitha N
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojapura, Trivandrum 695 012, Kerala, India
| | - Athira Ss
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojapura, Trivandrum 695 012, Kerala, India
| | - Mohanan Pv
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojapura, Trivandrum 695 012, Kerala, India.
| |
Collapse
|
32
|
Gaseous signaling molecules and their application in resistant cancer treatment: from invisible to visible. Future Med Chem 2019; 11:323-336. [PMID: 30802141 DOI: 10.4155/fmc-2018-0403] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Multidrug resistance (MDR) in cancer remains a critical obstacle for efficient chemotherapy. Many MDR reversal agents have been discovered but failed in clinical trials due to severe toxic effects. Gaseous signaling molecules (GSMs), such as oxygen, nitric oxide, hydrogen sulfide and carbon monoxide, play key roles in regulating cell biological function and MDR. Compared with other toxic chemosensitizing agents, GSMs are endogenous and biocompatible molecules with little side effects. Research show that GSM modulators, including pharmaceutical formulations of GSMs (combined with conventional chemotherapeutic drugs) and GSM-donors (small molecules with GSMs releasing property), can overcome or reverse MDR. This review discusses the roles of these four GSMs in modulating MDR, and summarizes GSMs modulators in treating cancers with drug resistance.
Collapse
|
33
|
Abou-Salim MA, Shaaban MA, Abd El Hameid MK, Elshaier YAMM, Halaweish F. Design, synthesis and biological study of hybrid drug candidates of nitric oxide releasing cucurbitacin-inspired estrone analogs for treatment of hepatocellular carcinoma. Bioorg Chem 2019; 85:515-533. [PMID: 30807895 DOI: 10.1016/j.bioorg.2019.01.068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/27/2019] [Accepted: 01/30/2019] [Indexed: 01/08/2023]
Abstract
Development of hybrid drug candidates is well known strategy for designing antitumor agents. Herein, a novel class of nitric oxide donating cucurbitacin inspired estrone analogs (NO-CIEAs) were designed and synthesized as multitarget agents. Synthesized analogs were initially evaluated for their anti-hepatocellular carcinoma activities. Among the tested analogs, NO-CIEAs 17 and 20a exhibited more potent activity against HepG2 cells (IC50 = 4.69 and 12.5 µM, respectively) than the reference drug Erlotinib (IC50 = 25 µM). Interestingly, NO-CIEA 17 exerted also a high potent activity against Erlotinib-resistant HepG2 cell line (HepG2-R) (IC50 = 8.21 µM) giving insight about its importance in drug resistance therapy. Intracellular measurements of NO revealed that NO-CIEAs 17 and 20a showed a significant increase in NO production in tumor cells after 1 h of incubation comparable to the reference prodrug JS-K. Flow cytometric analysis showed that both NO-CIEAs 17 and 20a mainly arrested the HepG2 cells in the G0/G1 phase. Also, In-Cell Based ELISA screening showed that NO-CIEA 17 resulted in a potential inhibitory activity towards the EGFR and MAPK (25% and 29% inhibition compared to untreated control cells, respectively). This data suggests the binding ability of NO-CIEA 17 to the EGFR and ERK to be well correlated along with the docking and cellular studies. Also, treatment of HepG2-R cells with NO-CIEA 17 showed a potential reduction of MRP2 expression in a dose dependent manner providing a significant impact on the chemotherapeutic resistance. Overall, the current study provides a potential new approach for the discovery of a novel antitumor agent against HCC.
Collapse
Affiliation(s)
- Mahrous A Abou-Salim
- Al-Azhar University, Faculty of Pharmacy, Pharmaceutical Organic Chemistry, Assiut 71524, Egypt; South Dakota State University, Chemistry & Biochemistry, Box 2202, Brookings, SD 57007, USA
| | - Mohamed A Shaaban
- Cairo University, Faculty of Pharmacy, Pharmaceutical Organic Chemistry, Cairo 11562, Egypt
| | | | - Yaseen A M M Elshaier
- University of Sadat City, Faculty of Pharmacy, Organic and Medicinal Chemistry, Menoufia 32958, Egypt
| | - Fathi Halaweish
- South Dakota State University, Chemistry & Biochemistry, Box 2202, Brookings, SD 57007, USA
| |
Collapse
|
34
|
Zhang L, Wang Y, Li Y, Li L, Xu S, Feng X, Liu S. Hydrogen Sulfide (H 2S)-Releasing Compounds: Therapeutic Potential in Cardiovascular Diseases. Front Pharmacol 2018; 9:1066. [PMID: 30298008 PMCID: PMC6160695 DOI: 10.3389/fphar.2018.01066] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/03/2018] [Indexed: 01/03/2023] Open
Abstract
Cardiovascular disease is the main cause of death worldwide, but its pathogenesis is not yet clear. Hydrogen sulfide (H2S) is considered to be the third most important endogenous gasotransmitter in the organism after carbon monoxide and nitric oxide. It can be synthesized in mammalian tissues and can freely cross the cell membrane and exert many biological effects in various systems including cardiovascular system. More and more recent studies have supported the protective effects of endogenous H2S and exogenous H2S-releasing compounds (such as NaHS, Na2S, and GYY4137) in cardiovascular diseases, such as cardiac hypertrophy, heart failure, ischemia/reperfusion injury, and atherosclerosis. Here, we provided an up-to-date overview of the mechanistic actions of H2S as well as the therapeutic potential of various classes of H2S donors in treating cardiovascular diseases.
Collapse
Affiliation(s)
- Lei Zhang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yanan Wang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yi Li
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lingli Li
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Suowen Xu
- Aab Cardiovascular Research Institute, University of Rochester, Rochester, NY, United States
| | - Xiaojun Feng
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Sheng Liu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
35
|
Clinically Relevant Anti-Inflammatory Agents for Chemoprevention of Colorectal Cancer: New Perspectives. Int J Mol Sci 2018; 19:ijms19082332. [PMID: 30096840 PMCID: PMC6121559 DOI: 10.3390/ijms19082332] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 07/31/2018] [Accepted: 08/03/2018] [Indexed: 12/12/2022] Open
Abstract
Substantial efforts are underway for prevention of early stages or recurrence of colorectal cancers (CRC) or new polyp formation by chemoprevention strategies. Several epidemiological, clinical and preclinical studies to date have supported the chemopreventive potentials of several targeted drug classes including non-steroidal anti-inflammatory drugs (NSAIDs) (aspirin, naproxen, sulindac, celecoxib, and licofelone), statins and other natural agents—both individually, and in combinations. Most preclinical trials although were efficacious, only few agents entered clinical trials and have been proven to be potential chemopreventive agents for colon cancer. However, there are limitations for these agents that hinder their approval by the food and drug administration for chemoprevention use in high-risk individuals and in patients with early stages of CRC. In this review, we update the recent advancement in pre-clinical and clinical development of selected anti-inflammatory agents (aspirin, naproxen, sulindac, celecoxib, and licofelone) and their combinations for further development as novel colon cancer chemopreventive drugs. We provide further new perspectives from this old research, and insights into precision medicine strategies to overcome unwanted side-effects and overcoming strategies for colon cancer chemoprevention.
Collapse
|
36
|
Cross-talk between endogenous H 2S and NO accounts for vascular protective activity of the metal-nonoate Zn(PipNONO)Cl. Biochem Pharmacol 2018; 152:143-152. [PMID: 29588193 DOI: 10.1016/j.bcp.2018.03.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/22/2018] [Indexed: 02/08/2023]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) are now recognized as gaseous transmitters with many cardiovascular protective properties. The present study concerns the possibility that NO donors can also function through endogenous activation of NO and H2S pathways. Based on the previous characterization of a novel metal-nonoate, Ni(PipNONO)Cl, our aim was: 1) to study the effects of a zinc based compound, Zn(PipNONO)Cl, on vascular endothelial and smooth muscle cells, and 2) to assess the role and interplay between endogenous NO and H2S promoted by the nonoate. Zn(PipNONO)Cl completely reproduced the vasodilation elicited by Ni(PipNONO)Cl. In the presence of endothelium, preincubation with Zn(PipNONO)Cl sensitized the intima to acetylcholine-induced vasodilation. When tested on cultured endothelial cells, Zn(PipNONO)Cl prompted PI-3K/Akt- and MAPK/ERK1/2-mediated survival. Nitrite levels indicated fast NO release (due to the molecule) and delayed (1-6 h) NO production linked to PI-3K/Akt-dependent eNOS activation. In the same time frame (1-6 h), significant CSE-dependent H2S levels were detected in response to Zn(PipNONO)Cl. The mechanisms responsible for H2S increase seemed to depend on the NONO moiety/sGC/cGMP pathway and zinc-associated ROS production. Our results indicate that endogenous H2S and NO were produced after fast NO release from Zn(PipNONO)Cl, contributing to the vascular endothelium protective effect. The effect was partially reproduced on smooth muscle cells, where Zn(PipNONO)Cl inhibited cell proliferation and migration. In conclusion, vasorelaxant effects, with complementary activities on endothelium and smooth muscle cells, are elicited by the novel metal-nonoate Zn(PipNONO)Cl.
Collapse
|
37
|
Kashfi K. The dichotomous role of H 2S in cancer cell biology? Déjà vu all over again. Biochem Pharmacol 2018; 149:205-223. [PMID: 29397935 PMCID: PMC5866221 DOI: 10.1016/j.bcp.2018.01.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/17/2018] [Indexed: 02/09/2023]
Abstract
Nitric oxide (NO) a gaseous free radical is one of the ten smallest molecules found in nature, while hydrogen sulfide (H2S) is a gas that bears the pungent smell of rotten eggs. Both are toxic yet they are gasotransmitters of physiological relevance. There appears to be an uncanny resemblance between the general actions of these two gasotransmitters in health and disease. The role of NO and H2S in cancer has been quite perplexing, as both tumor promotion and inflammatory activities as well as anti-tumor and antiinflammatory properties have been described. These paradoxes have been explained for both gasotransmitters in terms of each having a dual or biphasic effect that is dependent on the local flux of each gas. In this review/commentary, I have discussed the major roles of NO and H2S in carcinogenesis, evaluating their dual nature, focusing on the enzymes that contribute to this paradox and evaluate the pros and cons of inhibiting or inducing each of these enzymes.
Collapse
Affiliation(s)
- Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, NY, USA.
| |
Collapse
|
38
|
MOHSIN NUA, AHMAD M. Hybrid organic molecules as antiinflammatory agents; a review of structural features and biological activity. Turk J Chem 2018. [DOI: 10.3906/kim-1706-58] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
39
|
Szabo C, Papapetropoulos A. International Union of Basic and Clinical Pharmacology. CII: Pharmacological Modulation of H 2S Levels: H 2S Donors and H 2S Biosynthesis Inhibitors. Pharmacol Rev 2017; 69:497-564. [PMID: 28978633 PMCID: PMC5629631 DOI: 10.1124/pr.117.014050] [Citation(s) in RCA: 278] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Over the last decade, hydrogen sulfide (H2S) has emerged as an important endogenous gasotransmitter in mammalian cells and tissues. Similar to the previously characterized gasotransmitters nitric oxide and carbon monoxide, H2S is produced by various enzymatic reactions and regulates a host of physiologic and pathophysiological processes in various cells and tissues. H2S levels are decreased in a number of conditions (e.g., diabetes mellitus, ischemia, and aging) and are increased in other states (e.g., inflammation, critical illness, and cancer). Over the last decades, multiple approaches have been identified for the therapeutic exploitation of H2S, either based on H2S donation or inhibition of H2S biosynthesis. H2S donation can be achieved through the inhalation of H2S gas and/or the parenteral or enteral administration of so-called fast-releasing H2S donors (salts of H2S such as NaHS and Na2S) or slow-releasing H2S donors (GYY4137 being the prototypical compound used in hundreds of studies in vitro and in vivo). Recent work also identifies various donors with regulated H2S release profiles, including oxidant-triggered donors, pH-dependent donors, esterase-activated donors, and organelle-targeted (e.g., mitochondrial) compounds. There are also approaches where existing, clinically approved drugs of various classes (e.g., nonsteroidal anti-inflammatories) are coupled with H2S-donating groups (the most advanced compound in clinical trials is ATB-346, an H2S-donating derivative of the non-steroidal anti-inflammatory compound naproxen). For pharmacological inhibition of H2S synthesis, there are now several small molecule compounds targeting each of the three H2S-producing enzymes cystathionine-β-synthase (CBS), cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase. Although many of these compounds have their limitations (potency, selectivity), these molecules, especially in combination with genetic approaches, can be instrumental for the delineation of the biologic processes involving endogenous H2S production. Moreover, some of these compounds (e.g., cell-permeable prodrugs of the CBS inhibitor aminooxyacetate, or benserazide, a potentially repurposable CBS inhibitor) may serve as starting points for future clinical translation. The present article overviews the currently known H2S donors and H2S biosynthesis inhibitors, delineates their mode of action, and offers examples for their biologic effects and potential therapeutic utility.
Collapse
Affiliation(s)
- Csaba Szabo
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, Texas (C.S.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece (A.P.); and Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Andreas Papapetropoulos
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, Texas (C.S.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece (A.P.); and Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| |
Collapse
|
40
|
Abstract
The increasing understanding of the role of nitric oxide (NO) in cancer biology has generated significant progress in the use of NO donor-based therapy to fight cancer. These advances strongly suggest the potential adoption of NO donor-based therapy in clinical practice, and this has been supported by several clinical studies in the past decade. In this review, we first highlight several types of important NO donors, including recently developed NO donors bearing a dinitroazetidine skeleton, represented by RRx-001, with potential utility in cancer therapy. Special emphasis is then given to the combination of NO donor(s) with other therapies to achieve synergy and to the hybridization of NO donor(s) with an anticancer drug/agent/fragment to enhance the activity or specificity or to reduce toxicity. In addition, we briefly describe inducible NO synthase gene therapy and nanotechnology, which have recently entered the field of NO donor therapy.
Collapse
Affiliation(s)
- Zhangjian Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University , Nanjing 210009, P. R. China
| | - Junjie Fu
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University , Nanjing 211166, P.R. China
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University , Nanjing 210009, P. R. China
| |
Collapse
|
41
|
Yang CT, Lai ZZ, Zheng ZH, Kang JM, Xian M, Wang RY, Shi K, Meng FH, Li X, Chen L, Zhang H. A novel pH-controlled hydrogen sulfide donor protects gastric mucosa from aspirin-induced injury. J Cell Mol Med 2017; 21:2441-2451. [PMID: 28387464 PMCID: PMC5618702 DOI: 10.1111/jcmm.13166] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/16/2017] [Indexed: 12/19/2022] Open
Abstract
Hydrogen sulphide (H2S) serves as a vital gastric mucosal defence under acid condition. Non‐steroidal anti‐inflammatory drugs (NSAIDs) are among widely prescribed medications with effects of antipyresis, analgesia and anti‐inflammation. However, their inappropriate use causes gastric lesions and endogenous H2S deficiency. In this work, we reported the roles of a novel pH‐controlled H2S donor (JK‐1) in NSAID‐related gastric lesions. We found that JK‐1 could release H2S under mild acidic pH and increase solution pH value. Intragastrical administration of aspirin (ASP), one of NSAIDs, to mice elicited significant gastric lesions, evidenced by mucosal festering and bleeding. It also led to infiltration of inflammatory cells and resultant releases of IL‐6 and TNF‐α, as well as oxidative injury including myeloperoxidase (MPO) induction and GSH depletion. In addition, the ASP administration statistically inhibited H2S generation in gastric mucosa, while up‐regulated cyclooxygenase (COX)‐2 and cystathionine gamma lyase (CSE) expression. Importantly, these adverse effects of ASP were prevented by the intragastrical pre‐administration of JK‐1. However, JK‐1 alone did not markedly alter the property of mouse stomachs. Furthermore, in vitro cellular experiments showed the exposure of gastric mucosal epithelial (GES‐1) cells to HClO, imitating MPO‐driven oxidative injury, decreased cell viability, increased apoptotic rate and damaged mitochondrial membrane potential, which were reversed by pre‐treatment with JK‐1. In conclusion, JK‐1 was proved to be an acid‐sensitive H2S donor and could attenuate ASP‐related gastric lesions through reconstruction of endogenous gastric defence. This work indicates the possible treatment of adverse effects of NSAIDs with pH‐controlled H2S donors in the future.
Collapse
Affiliation(s)
- Chun-Tao Yang
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zhen-Zhen Lai
- NanShan School of the First Clinical College, Guangzhou Medical University, Guangzhou, 510120, China
| | - Ze-Hang Zheng
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jian-Ming Kang
- Department of Chemistry, Washington State University, Pullman, WA, USA
| | - Ming Xian
- Department of Chemistry, Washington State University, Pullman, WA, USA
| | - Rui-Yu Wang
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Kun Shi
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Fu-Hui Meng
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xiang Li
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Li Chen
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Hui Zhang
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Quality Control Section of Academic Affairs, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
42
|
Elshaier YAMM, Shaaban MA, Abd El Hamid MK, Abdelrahman MH, Abou-Salim MA, Elgazwi SM, Halaweish F. Design and synthesis of pyrazolo[3,4-d]pyrimidines: Nitric oxide releasing compounds targeting hepatocellular carcinoma. Bioorg Med Chem 2017; 25:2956-2970. [PMID: 28487127 DOI: 10.1016/j.bmc.2017.03.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/26/2017] [Accepted: 03/03/2017] [Indexed: 02/07/2023]
Abstract
A new series of pyrazolo[3,4-d]pyrimidines tethered with nitric oxide (NO) producing functionality was designed and synthesized. Sulforhodamine B (SRB) protein assay revealed that NO releasing moiety in the synthesized compounds significantly decreased the cell growth more than the des-NO analogues. Compounds 7C and 7G possessing N-para-substituted phenyl group, released the highest NO concentration of 4.6% and 4.7% respectively. Anti-proliferative activity of synthesized compounds on HepG2 cell line identified compounds 7h, 7p, 14a and 14b as the most cytotoxic compounds in the series of IC50=3, 5, 3 and 5μM, respectively, compared to erlotinib as a reference drug (IC50=25μM). Flow cytometry studies revealed that 7h arrested the cells in G0/G1 phase of cell cycle while 7p arrested the cells in S phase. Moreover, docking study of the synthesized compounds on EGFR (PDB code: 1M17) and cytotoxicity study indicated that N-1 phenyl para substitution, pyrazole C-3 alkyl substitution and tethering the nitrate moiety through butyl group had a significant impact on the activity.
Collapse
Affiliation(s)
- Yaseen A M M Elshaier
- Al-Azhar University, Faculty of Pharmacy, Pharmaceutical Organic Chemistry Department, Assiut 71524, Egypt
| | - Mohamed A Shaaban
- Cairo University, Faculty of Pharmacy, Pharmaceutical Organic Chemistry Department, Cairo 11562, Egypt
| | - Mohammed K Abd El Hamid
- Cairo University, Faculty of Pharmacy, Pharmaceutical Organic Chemistry Department, Cairo 11562, Egypt
| | - Mostafa H Abdelrahman
- Al-Azhar University, Faculty of Pharmacy, Pharmaceutical Organic Chemistry Department, Assiut 71524, Egypt
| | - Mahrous A Abou-Salim
- Al-Azhar University, Faculty of Pharmacy, Pharmaceutical Organic Chemistry Department, Assiut 71524, Egypt; South Dakota State University, Faculty of Science, Chemistry Department, Brookings, SD 57007, USA
| | - Sara M Elgazwi
- South Dakota State University, Faculty of Science, Chemistry Department, Brookings, SD 57007, USA
| | - Fathi Halaweish
- South Dakota State University, Faculty of Science, Chemistry Department, Brookings, SD 57007, USA.
| |
Collapse
|
43
|
Grösch S, Niederberger E, Geisslinger G. Investigational drugs targeting the prostaglandin E2 signaling pathway for the treatment of inflammatory pain. Expert Opin Investig Drugs 2017; 26:51-61. [PMID: 27841017 DOI: 10.1080/13543784.2017.1260544] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAID) are the most commonly used drugs for the treatment of pain, inflammation and fever. Although they are effective for a huge number of users, their analgesic properties are not sufficient for several patients and the occurrence of side effects still constitutes a big challenge during long term therapy. Areas covered: This review gives an overview about the first and second generations of NSAIDs (COX1/2 non-selective, COX-2 selective), and their main side effects which gave still an urgent need for safer drugs and for the establishment of novel treatment strategies (improved safety, tolerability, patient convenience). The current developments of a possible third generation NSAID class comprise changes in the formulation of already approved drugs, combination therapies, dual cyclooxygenase-lipoxygenase inhibitors, NO- and H2S-releasing NSAIDs, prostaglandin synthase inhibitors and EP receptor modulators, respectively. Literature search has been done with PubMed NCBI. Expert opinion: Currently, there is no newly developed drug that is superior to the already approved selective and non-selective NSAIDs. Several novel approaches show promising analgesic efficacy but side effects are still an important problem. Solutions might be constituted by combination therapies allowing administration of lower drug doses or by individualized therapies targeting molecules apart from COX, respectively.
Collapse
Affiliation(s)
- Sabine Grösch
- a Pharmazentrum frankfurt/ZAFES , Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt , Frankfurt am Main , Germany
| | - Ellen Niederberger
- a Pharmazentrum frankfurt/ZAFES , Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt , Frankfurt am Main , Germany
| | - Gerd Geisslinger
- a Pharmazentrum frankfurt/ZAFES , Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt , Frankfurt am Main , Germany
- b Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Project Group for Translational Medicine & Pharmacology (TMP) , Frankfurt/Main , Germany
| |
Collapse
|
44
|
Pereira-Leite C, Nunes C, Jamal SK, Cuccovia IM, Reis S. Nonsteroidal Anti-Inflammatory Therapy: A Journey Toward Safety. Med Res Rev 2016; 37:802-859. [PMID: 28005273 DOI: 10.1002/med.21424] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/27/2016] [Accepted: 10/05/2016] [Indexed: 01/01/2023]
Abstract
The efficacy of nonsteroidal anti-inflammatory drugs (NSAIDs) against inflammation, pain, and fever has been supporting their worldwide use in the treatment of painful conditions and chronic inflammatory diseases until today. However, the long-term therapy with NSAIDs was soon associated with high incidences of adverse events in the gastrointestinal tract. Therefore, the search for novel drugs with improved safety has begun with COX-2 selective inhibitors (coxibs) being straightaway developed and commercialized. Nevertheless, the excitement has fast turned to disappointment when diverse coxibs were withdrawn from the market due to cardiovascular toxicity. Such events have once again triggered the emergence of different strategies to overcome NSAIDs toxicity. Here, an integrative review is provided to address the breakthroughs of two main approaches: (i) the association of NSAIDs with protective mediators and (ii) the design of novel compounds to target downstream and/or multiple enzymes of the arachidonic acid cascade. To date, just one phosphatidylcholine-associated NSAID has already been approved for commercialization. Nevertheless, the preclinical and clinical data obtained so far indicate that both strategies may improve the safety of nonsteroidal anti-inflammatory therapy.
Collapse
Affiliation(s)
- Catarina Pereira-Leite
- UCIBIO, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.,Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Cláudia Nunes
- UCIBIO, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Sarah K Jamal
- UCIBIO, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Iolanda M Cuccovia
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Salette Reis
- UCIBIO, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
45
|
S100A4 in Cancer Metastasis: Wnt Signaling-Driven Interventions for Metastasis Restriction. Cancers (Basel) 2016; 8:cancers8060059. [PMID: 27331819 PMCID: PMC4931624 DOI: 10.3390/cancers8060059] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 05/27/2016] [Accepted: 06/09/2016] [Indexed: 02/07/2023] Open
Abstract
The aberrant activity of Wnt signaling is an early step in the transformation of normal intestinal cells to malignant tissue, leading to more aggressive tumors, and eventually metastases. In colorectal cancer (CRC), metastasis accounts for about 90% of patient deaths, representing the most lethal event during the course of the disease and is directly linked to patient survival, critically limiting successful therapy. This review focuses on our studies of the metastasis-inducing gene S100A4, which we identified as transcriptional target of β-catenin. S100A4 increased migration and invasion in vitro and metastasis in mice. In patient CRC samples, high S100A4 levels predict metastasis and reduced patient survival. Our results link pathways important for tumor progression and metastasis: the Wnt signaling pathway and S100A4, which regulates motility and invasiveness. S100A4 suppression by interdicting Wnt signaling has potential for therapeutic intervention. As proof of principle, we applied S100A4 shRNA systemically and prevented metastasis in mice. Furthermore, we identified small molecule inhibitors from high-throughput screens of pharmacologically active compounds employing an S100A4 promoter-driven reporter. Best hits act, as least in part, via intervening in the Wnt pathway and restricted metastasis in mouse models. We currently translate our findings on restricting S100A4-driven metastasis into clinical practice. The repositioned FDA-approved drug niclosamide, targeting Wnt signaling, is being tested in a prospective phase II clinical trial for treatment of CRC patients. Our assay for circulating S100A4 transcripts in patient blood is used to monitor treatment success.
Collapse
|
46
|
Repositioning of drugs for intervention in tumor progression and metastasis: Old drugs for new targets. Drug Resist Updat 2016; 26:10-27. [PMID: 27180307 DOI: 10.1016/j.drup.2016.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 02/07/2023]
Abstract
The increasing unraveling of the molecular basis of cancer offers manifold novel options for intervention strategies. However, the discovery and development of new drugs for potential clinical applications is a tremendously time-consuming and costly process. Translating a novel lead candidate compound into an approved clinical drug takes often more than a decade, and the success rate is very low due to versatile efforts including defining its pharmacokinetics, pharmacodynamics, side effects as well as lack of sufficient efficacy. Thus, strategies are needed to minimize time and costs, while maximizing success rates. A very attractive strategy for novel cancer therapeutic options is the repositioning of already approved drugs. These medicines, approved for the treatment of non-malignant disorders, have already passed some early costs and time, have been tested in humans and are ready for clinical trials as anti-cancer drugs. Here we discuss the repositioning of nonsteroidal anti-inflammatory drugs (NSAID), statins, anti-psychotic drugs, anti-helminthic drugs and vitamin D as anti-tumor agents. We focus on their novel actions and potential for inhibition of cancer growth and metastasis by interfering with target molecules and pathways, which drive these malignant processes. Furthermore, important pre-clinical and clinical data are reviewed herein, which elucidate their therapeutic mechanisms which enable their repositioning for cancer therapy and disruption of metastasis.
Collapse
|
47
|
Chattopadhyay M, Kodela R, Duvalsaint PL, Kashfi K. Gastrointestinal safety, chemotherapeutic potential, and classic pharmacological profile of NOSH-naproxen (AVT-219) a dual NO- and H2S-releasing hybrid. Pharmacol Res Perspect 2016; 4:e00224. [PMID: 27069635 PMCID: PMC4804313 DOI: 10.1002/prp2.224] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 01/27/2016] [Accepted: 01/29/2016] [Indexed: 12/15/2022] Open
Abstract
Naproxen (NAP) is a potent nonsteroidal anti-inflammatory drug (NSAID) with a favorable cardiovascular profile. However, its long-term use may lead to serious gastrointestinal and renal side effects. NOSH- (nitric oxide and hydrogen sulfide) releasing naproxen (NOSH-NAP, AVT-219) belongs to a new class of anti-inflammatory agents designed to overcome these limitations. We compared the gastrointestinal safety, anti-inflammatory, analgesic, antipyretic, and antiplatelet properties of AVT-219 to that of NAP in preclinical animal models. We also evaluated its anticancer effects in 11 human cancer cell (HCC) lines of six different tissue origins and in a chemotherapeutic xenograft mouse model of colon cancer. AVT-219: (1) was orders of magnitude more potent than NAP in inhibiting the growth of cultured HCC; (2) was safe to the stomach, whereas NAP caused significant ulceration; (3) showed strong anti-inflammatory, analgesic, antipyretic, and antiplatelet properties comparable to NAP; and (4) NAP caused a significant rise in plasma tumor necrosis factor-alpha (TNFα), whereas in the AVT-219-treated rats this rise was significantly less. Mechanistically, AVT-219 was a strong antioxidant, inhibited cyclooxygenase (COX)-1 and -2, thus reducing prostaglandin (PG) E2. In xenografts, AVT-219 significantly reduced tumor growth and tumor mass with no sign of GI toxicity, whereas NAP-treated mice died due to GI bleeding. AVT-219 displayed considerable safety and potency in inhibiting HCC growth; was an effective analgesic, antipyretic, antiplatelet, and anti-inflammatory; and was significantly more efficacious than NAP in reducing the growth of established tumors in a xenograft mouse model.
Collapse
Affiliation(s)
- Mitali Chattopadhyay
- Department of Physiology, Pharmacology and Neuroscience Sophie Davis School of Biomedical Education City University of New York School of Medicine New York NY 10031
| | - Ravinder Kodela
- Department of Physiology, Pharmacology and Neuroscience Sophie Davis School of Biomedical Education City University of New York School of Medicine New York NY 10031
| | - Pascale L Duvalsaint
- Department of Physiology, Pharmacology and Neuroscience Sophie Davis School of Biomedical Education City University of New York School of Medicine New York NY 10031
| | - Khosrow Kashfi
- Department of Physiology, Pharmacology and Neuroscience Sophie Davis School of Biomedical Education City University of New York School of Medicine New York NY 10031; Avicenna Pharmaceuticals Inc.New York NY 10019
| |
Collapse
|
48
|
Affiliation(s)
- Jordi Muntané
- Department of General Surgery Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/IBiS/CSIC/Universidad de Sevilla, Av Manuel Siurot s/n, 41013 Sevilla, Spain.
| | - Benjamin Bonavida
- Department of Microbiology, Immunology, and Molecular Genetics David Geffen School of Medicine Jonsson Comprehensive Cancer Center University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|