1
|
Sheng J, Luo S, Zheng B, He K, Hu J. Codelivery of Gaseous Signaling Molecules for Biomedical Applications. Chempluschem 2024; 89:e202400080. [PMID: 38514396 DOI: 10.1002/cplu.202400080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 03/23/2024]
Abstract
Gaseous signaling molecules (GSMs) including nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) have presented excellent therapeutic efficacy such as anti-inflammatory, anti-microbial and anti-cancer effects and multiple biomedical applications in recent years. As the three most vital signaling molecules in human physiology, these three GSMs show so intertwined and orchestrated interactions that the synergy of multiple gases may demonstrate a more complex therapeutic potential than single gas delivery. Consequently, researchers have been devoted to developing codelivery systems of GSMs by synthesizing a single molecule as a dual donor to maximize the gaseous therapeutic efficacy. In this minireview, we summarize the recent developments of molecules or materials enabling codelivery of GSMs for biomedical applications. It appears that compared with the abundant cases of codelivery of NO and H2S, research on codelivery of CO and the other two GSMs separately remains to be explored.
Collapse
Affiliation(s)
- Jiahui Sheng
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Siyuan Luo
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Bin Zheng
- School of Chemistry and Pharmaceutical Engineering, Hefei Normal University, Hefei, Anhui, 230061, China
| | - Kewu He
- Imaging Center of the Third Affiliated Hospital of Anhui Medical University, Hefei, 230031, Anhui, China
| | - Jinming Hu
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China
| |
Collapse
|
2
|
Zaki WA, El-Sayed SM, Alswah M, El-Morsy A, Bayoumi AH, Mayhoub AS, Moustafa WH, Awaji AA, Roh EJ, Hassan AH, Mahmoud K. Design, Synthesis, In Vitro, and In Silico Studies of New N5-Substituted-pyrazolo[3,4- d]pyrimidinone Derivatives as Anticancer CDK2 Inhibitors. Pharmaceuticals (Basel) 2023; 16:1593. [PMID: 38004458 PMCID: PMC10674233 DOI: 10.3390/ph16111593] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
CDK2 is a key player in cell cycle processes. It has a crucial role in the progression of various cancers. Hepatocellular carcinoma (HCC) and colorectal cancer (CRC) are two common cancers that affect humans worldwide. The available therapeutic options suffer from many drawbacks including high toxicity and decreased specificity. Therefore, there is a need for more effective and safer therapeutic agents. A series of new pyrazolo[3,4-d]pyrimidine analogs was designed, synthesized, and evaluated as anticancer agents against the CRC and HCC cells, HCT116, and HepG2, respectively. Pyrazolo[3,4-d]pyrimidinone derivatives bearing N5-2-(4-halophenyl) acetamide substituents were identified as the most potent amongst evaluated compounds. Further evaluation of CDK2 kinase inhibition of two potential cytotoxic compounds 4a and 4b confirmed their CDK2 inhibitory activity. Compound 4a was more potent than the reference roscovitine regarding the CDK2 inhibitory activity (IC50 values: 0.21 and 0.25 µM, respectively). In silico molecular docking provided insights into the molecular interactions of compounds 4a and 4b with important amino acids within the ATP-binding site of CDK2 (Ile10, Leu83, and Leu134). Overall, compounds 4a and 4b were identified as interesting CDK2 inhibitors eliciting antiproliferative activity against the CRC and HCC cells, HCT116 and HepG2, respectively, for future further investigations and development.
Collapse
Affiliation(s)
- Waheed A. Zaki
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Selwan M. El-Sayed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed Alswah
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed El-Morsy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
- Pharmaceutical Chemistry Department, College of Pharmacy, The Islamic University, Najaf 54001, Iraq
| | - Ashraf H. Bayoumi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Abrahman S. Mayhoub
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
- Nanoscience Program, University of Science and Technology, Zewail City of Science and Technology, October Gardens, 6th of October, Giza 12578, Egypt
| | - Walaa H. Moustafa
- Microbiology and Immunology Department, Faculty of Pharmacy, Helwan University, Cairo 19448, Egypt
| | - Aeshah A. Awaji
- Department of Biology, Faculty of Science, University College of Taymaa, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Eun Joo Roh
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Ahmed H.E. Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Kazem Mahmoud
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Egypt
| |
Collapse
|
3
|
Lin H, Yu Y, Zhu L, Lai N, Zhang L, Guo Y, Lin X, Yang D, Ren N, Zhu Z, Dong Q. Implications of hydrogen sulfide in colorectal cancer: Mechanistic insights and diagnostic and therapeutic strategies. Redox Biol 2023; 59:102601. [PMID: 36630819 PMCID: PMC9841368 DOI: 10.1016/j.redox.2023.102601] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 01/09/2023] Open
Abstract
Hydrogen sulfide (H2S) is an important signaling molecule in colorectal cancer (CRC). It is produced in the colon by the catalytic synthesis of the colonocytes' enzymatic systems and the release of intestinal microbes, and is oxidatively metabolized in the colonocytes' mitochondria. Both endogenous H2S in colonic epithelial cells and exogenous H2S in intestinal lumen contribute to the onset and progression of CRC. The up-regulation of endogenous synthetases is thought to be the cause of the elevated H2S levels in CRC cells. Different diagnostic probes and combination therapies, as well as tumor treatment approaches through H2S modulation, have been developed in recent years and have become active area of investigation for the diagnosis and treatment of CRC. In this review, we focus on the specific mechanisms of H2S production and oxidative metabolism as well as the function of H2S in the occurrence, progression, diagnosis, and treatment of CRC. We also discuss the present challenges and provide insights into the future research of this burgeoning field.
Collapse
Affiliation(s)
- Hanchao Lin
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission, Minhang Hospital, Fudan University, China; Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, China
| | - Yixin Yu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, China
| | - Le Zhu
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, China
| | - Nannan Lai
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission, Minhang Hospital, Fudan University, China
| | - Luming Zhang
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission, Minhang Hospital, Fudan University, China
| | - Yu Guo
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, China
| | - Xinxin Lin
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission, Minhang Hospital, Fudan University, China
| | - Dongqin Yang
- Department of Digestive Diseases, Huashan Hospital, Fudan University, China.
| | - Ning Ren
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission, Minhang Hospital, Fudan University, China; Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, And Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, China.
| | - Zhiling Zhu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, China.
| | - Qiongzhu Dong
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission, Minhang Hospital, Fudan University, China.
| |
Collapse
|
4
|
Neuroprotective Treatments for Digestive Forms of Chagas Disease in Experimental Models: A Systematic Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9397290. [PMID: 36199427 PMCID: PMC9527410 DOI: 10.1155/2022/9397290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/12/2022] [Indexed: 12/09/2022]
Abstract
Chagas disease is an anthropozoonosis caused by the protozoan Trypanosoma cruzi and is characterized as a neglected disease. It is currently endemic in 21 countries on the Latin American continent, including Bolivia, Argentina, and Paraguay. Unfortunately, there are no optimally effective treatments that can reduce the damage caused in the digestive form of the disease, such as the neuronal destruction of the myenteric plexus of both the esophagus and the colon. Therefore, the objective of this systematic review was to report the possible pharmacological neuroprotective agents that were tested in murine models of the digestive form of Chagas disease. Inclusion criteria are in vivo experimental studies that used different murine models for digestive forms of Chagas disease related to pharmacological interventions with neuroprotective potential, without year and language restriction. On the other hand, the exclusion criteria were studies that did not approach murine models with the digestive form of the disease or did not use neuroprotective treatments, among others. The search in the PubMed, Web of Science, Embase, and LILACS databases was performed on September 4, 2021. In addition, a manual search was performed using the references of the included articles. The risk of bias assessment of the studies was performed based on the SYRCLE tool guidelines, and the data from the selected articles are presented in this review as a narrative description and in tables. Eight articles were included, 4 of which addressed treatment with acetylsalicylic acid, 3 with cyclophosphamide, and 1 with Lycopodium clavatum 13c. In view of the results of the studies, most of them show neuroprotective activity of the treatments, with the potential to reduce the number of damaged neurons, as well as positive changes in the structure of these cells. However, more studies are needed to understand the mechanisms triggered by each drug, as well as their safety and immunogenicity. Systematic review registration is as follows: PROSPERO database (CRD42022289746).
Collapse
|
5
|
Anticancer and Anti-Inflammatory Mechanisms of NOSH-Aspirin and Its Biological Effects. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4463294. [PMID: 36035295 PMCID: PMC9402325 DOI: 10.1155/2022/4463294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022]
Abstract
NOSH-Aspirin, which is generated from NO, H2S, and aspirin, affects a variety of essential pathophysiological processes, including anti-inflammatory, analgesic, antipyretic, antiplatelet, and anticancer properties. Although many people acknowledge the biological significance of NOSH-Aspirin and its therapeutic effects, the mechanism of action of NOSH-Aspirin and its regulation of tissue levels remains obscure. This is in part due to its chemical and physical features, which make processing and analysis difficult. This review focuses on the biological effects of NOSH-Aspirin and provides a comprehensive analysis to elucidate the mechanism underlying its disease-protective benefits.
Collapse
|
6
|
Song ZL, Zhao L, Ma T, Osama A, Shen T, He Y, Fang J. Progress and perspective on hydrogen sulfide donors and their biomedical applications. Med Res Rev 2022; 42:1930-1977. [PMID: 35657029 DOI: 10.1002/med.21913] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 12/22/2022]
Abstract
Following the discovery of nitric oxide (NO) and carbon monoxide (CO), hydrogen sulfide (H2 S) has been identified as the third gasotransmitter in humans. Increasing evidence have shown that H2 S is of preventive or therapeutic effects on diverse pathological complications. As a consequence, it is of great significance to develop suitable approaches of H2 S-based therapeutics for biomedical applications. H2 S-releasing agents (H2 S donors) play important roles in exploring and understanding the physiological functions of H2 S. More importantly, accumulating studies have validated the theranostic potential of H2 S donors in extensive repertoires of in vitro and in vivo disease models. Thus, it is imperative to summarize and update the literatures in this field. In this review, first, the background of H2 S on its chemical and biological aspects is concisely introduced. Second, the studies regarding the H2 S-releasing compounds are categorized and described, and accordingly, their H2 S-donating mechanisms, biological applications, and therapeutic values are also comprehensively delineated and discussed. Necessary comparisons between related H2 S donors are presented, and the drawbacks of many typical H2 S donors are analyzed and revealed. Finally, several critical challenges encountered in the development of multifunctional H2 S donors are discussed, and the direction of their future development as well as their biomedical applications is proposed. We expect that this review will reach extensive audiences across multiple disciplines and promote the innovation of H2 S biomedicine.
Collapse
Affiliation(s)
- Zi-Long Song
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China.,Botanical Agrochemicals Research & Development Center, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Lanning Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Tao Ma
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Alsiddig Osama
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Tong Shen
- Botanical Agrochemicals Research & Development Center, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Yilin He
- Botanical Agrochemicals Research & Development Center, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China.,School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, China
| |
Collapse
|
7
|
Antoniou C, Xenofontos R, Chatzimichail G, Christou A, Kashfi K, Fotopoulos V. Exploring the Potential of Nitric Oxide and Hydrogen Sulfide (NOSH)-Releasing Synthetic Compounds as Novel Priming Agents against Drought Stress in Medicago sativa Plants. Biomolecules 2020; 10:biom10010120. [PMID: 31936819 PMCID: PMC7023404 DOI: 10.3390/biom10010120] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/29/2019] [Accepted: 01/02/2020] [Indexed: 01/24/2023] Open
Abstract
Land plants are continuously exposed to multiple abiotic stress factors like drought, heat, and salinity. Nitric oxide (NO) and hydrogen sulfide (H2S) are two well-examined signaling molecules that act as priming agents, regulating the response of plants to stressful conditions. Several chemical donors exist that provide plants with NO and H2S separately. NOSH is a remarkable novel donor as it can donate NO and H2S simultaneously to plants, while NOSH-aspirin additionally provides the pharmaceutical molecule acetylsalicylic acid. The current study aimed to investigate the potential synergistic effect of these molecules in drought-stressed Medicago sativa L. plants by following a pharmacological approach. Plants were initially pre-treated with both donors (NOSH and NOSH-aspirin) via foliar spraying, and were then subsequently exposed to a moderate water deficit while NO and H2S inhibitors (cPTIO and HA, respectively) were also employed. Phenotypic and physiological data showed that pre-treatment with NOSH synthetic compounds induced acclimation to subsequent drought stress and improved the recovery following rewatering. This was accompanied by modified reactive-oxygen and nitrogen-species signaling and metabolism, as well as attenuation of cellular damage, as evidenced by altered lipid peroxidation and proline accumulation levels. Furthermore, real-time RT-qPCR analysis revealed the differential regulation of multiple defense-related transcripts, including antioxidant enzymes. Overall, the present study proposed a novel role for NOSH compounds as efficient plant priming agents against environmental constraints through the coordinated regulation of multiple defense components, thus opening new horizons in the field of chemical priming research toward the use of target-selected compounds for stress tolerance enhancement.
Collapse
Affiliation(s)
- Chrystalla Antoniou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603 Lemesos, Cyprus; (C.A.); (R.X.); (G.C.)
| | - Rafaella Xenofontos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603 Lemesos, Cyprus; (C.A.); (R.X.); (G.C.)
| | - Giannis Chatzimichail
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603 Lemesos, Cyprus; (C.A.); (R.X.); (G.C.)
| | - Anastasis Christou
- Agricultural Research Institute, Ministry of Agriculture, Rural Development and Natural Recourses, P.O. Box 22016, 1516 Nicosia, Cyprus;
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA;
- Graduate Program in Biology, City University of New York Graduate Center, New York, NY 10016, USA
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603 Lemesos, Cyprus; (C.A.); (R.X.); (G.C.)
- Correspondence: ; Tel.: +357-25-002418; Fax: +357-25-002632
| |
Collapse
|
8
|
Chen M, Pritchard C, Fortune D, Kodi P, Grados M. Hydrogen sulfide: a target to modulate oxidative stress and neuroplasticity for the treatment of pathological anxiety. Expert Rev Neurother 2019; 20:109-121. [DOI: 10.1080/14737175.2019.1668270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Mary Chen
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | - Diandra Fortune
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Priyadurga Kodi
- Department of Internal Medicine, Greater Baltimore Medical Center, Baltimore, MD, USA
| | - Marco Grados
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
9
|
Zhang L, Wang Y, Li Y, Li L, Xu S, Feng X, Liu S. Hydrogen Sulfide (H 2S)-Releasing Compounds: Therapeutic Potential in Cardiovascular Diseases. Front Pharmacol 2018; 9:1066. [PMID: 30298008 PMCID: PMC6160695 DOI: 10.3389/fphar.2018.01066] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/03/2018] [Indexed: 01/03/2023] Open
Abstract
Cardiovascular disease is the main cause of death worldwide, but its pathogenesis is not yet clear. Hydrogen sulfide (H2S) is considered to be the third most important endogenous gasotransmitter in the organism after carbon monoxide and nitric oxide. It can be synthesized in mammalian tissues and can freely cross the cell membrane and exert many biological effects in various systems including cardiovascular system. More and more recent studies have supported the protective effects of endogenous H2S and exogenous H2S-releasing compounds (such as NaHS, Na2S, and GYY4137) in cardiovascular diseases, such as cardiac hypertrophy, heart failure, ischemia/reperfusion injury, and atherosclerosis. Here, we provided an up-to-date overview of the mechanistic actions of H2S as well as the therapeutic potential of various classes of H2S donors in treating cardiovascular diseases.
Collapse
Affiliation(s)
- Lei Zhang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yanan Wang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yi Li
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lingli Li
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Suowen Xu
- Aab Cardiovascular Research Institute, University of Rochester, Rochester, NY, United States
| | - Xiaojun Feng
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Sheng Liu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
10
|
Dithiolethiones: a privileged pharmacophore for anticancer therapy and chemoprevention. Future Med Chem 2018; 10:1241-1260. [DOI: 10.4155/fmc-2017-0281] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dithiolethiones are five-membered sulfur-containing cyclic scaffolds that exhibit antioxidative, anti-inflammatory, antithrombic and chemotherapeutic activities. Dithiolethiones display the chemopreventive and cytoprotective effects by activating the antioxidant response element and mounting the transcription of cytoprotective phase II enzymatic machinery. In addition, several classes of dithiolethiones efficiently modulate the activities of proteins that play crucial roles in normal and cancer cells, including glutathione S-transferase, cyclooxygenases and master regulator NF-κB. The present paper summarizes synthetic aspects, pharmacological potentials and biological attributes of dithiolethiones and its derivatives. Additionally, this review concludes with a discussion on how the current state-of-the-art technologies may help in defining a structure–activity relationship of dithiolethiones, thereby facilitating the design and synthesis of potent drug candidates.
Collapse
|
11
|
Szabo C, Papapetropoulos A. International Union of Basic and Clinical Pharmacology. CII: Pharmacological Modulation of H 2S Levels: H 2S Donors and H 2S Biosynthesis Inhibitors. Pharmacol Rev 2017; 69:497-564. [PMID: 28978633 PMCID: PMC5629631 DOI: 10.1124/pr.117.014050] [Citation(s) in RCA: 278] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Over the last decade, hydrogen sulfide (H2S) has emerged as an important endogenous gasotransmitter in mammalian cells and tissues. Similar to the previously characterized gasotransmitters nitric oxide and carbon monoxide, H2S is produced by various enzymatic reactions and regulates a host of physiologic and pathophysiological processes in various cells and tissues. H2S levels are decreased in a number of conditions (e.g., diabetes mellitus, ischemia, and aging) and are increased in other states (e.g., inflammation, critical illness, and cancer). Over the last decades, multiple approaches have been identified for the therapeutic exploitation of H2S, either based on H2S donation or inhibition of H2S biosynthesis. H2S donation can be achieved through the inhalation of H2S gas and/or the parenteral or enteral administration of so-called fast-releasing H2S donors (salts of H2S such as NaHS and Na2S) or slow-releasing H2S donors (GYY4137 being the prototypical compound used in hundreds of studies in vitro and in vivo). Recent work also identifies various donors with regulated H2S release profiles, including oxidant-triggered donors, pH-dependent donors, esterase-activated donors, and organelle-targeted (e.g., mitochondrial) compounds. There are also approaches where existing, clinically approved drugs of various classes (e.g., nonsteroidal anti-inflammatories) are coupled with H2S-donating groups (the most advanced compound in clinical trials is ATB-346, an H2S-donating derivative of the non-steroidal anti-inflammatory compound naproxen). For pharmacological inhibition of H2S synthesis, there are now several small molecule compounds targeting each of the three H2S-producing enzymes cystathionine-β-synthase (CBS), cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase. Although many of these compounds have their limitations (potency, selectivity), these molecules, especially in combination with genetic approaches, can be instrumental for the delineation of the biologic processes involving endogenous H2S production. Moreover, some of these compounds (e.g., cell-permeable prodrugs of the CBS inhibitor aminooxyacetate, or benserazide, a potentially repurposable CBS inhibitor) may serve as starting points for future clinical translation. The present article overviews the currently known H2S donors and H2S biosynthesis inhibitors, delineates their mode of action, and offers examples for their biologic effects and potential therapeutic utility.
Collapse
Affiliation(s)
- Csaba Szabo
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, Texas (C.S.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece (A.P.); and Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Andreas Papapetropoulos
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, Texas (C.S.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece (A.P.); and Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| |
Collapse
|
12
|
Affiliation(s)
- Jordi Muntané
- Department of General Surgery Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/IBiS/CSIC/Universidad de Sevilla, Av Manuel Siurot s/n, 41013 Sevilla, Spain.
| | - Benjamin Bonavida
- Department of Microbiology, Immunology, and Molecular Genetics David Geffen School of Medicine Jonsson Comprehensive Cancer Center University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
13
|
Kodela R, Chattopadhyay M, Velázquez-Martínez CA, Kashfi K. NOSH-aspirin (NBS-1120), a novel nitric oxide- and hydrogen sulfide-releasing hybrid has enhanced chemo-preventive properties compared to aspirin, is gastrointestinal safe with all the classic therapeutic indications. Biochem Pharmacol 2015; 98:564-72. [PMID: 26394025 DOI: 10.1016/j.bcp.2015.09.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 09/17/2015] [Indexed: 12/21/2022]
Abstract
Aspirin is chemopreventive; however, side effects preclude its long-term use. NOSH-aspirin (NBS-1120), a novel hybrid that releases nitric oxide and hydrogen sulfide, was designed to be a safer alternative. Here we compare the gastrointestinal safety, anti-inflammatory, analgesic, anti-pyretic, anti-platelet, and chemopreventive properties of aspirin and NBS-1120 administered orally to rats at equimolar doses. Gastrointestinal safety: 6h post-administration, the number and size of hemorrhagic lesions in stomachs were counted; tissue samples were frozen for PGE2, SOD, and MDA determination. Anti-inflammatory: 1h after drug administration, the volume of carrageenan-induced rat paw edemas was measured for 5h. Anti-pyretic: fever was induced by LPS (ip) an hour before administration of the test drugs, core body temperature was measured hourly for 5h. Analgesic: time-dependent analgesic effects were evaluated by carrageenan-induced hyperalgesia. Antiplatelet: anti-aggregatory effects were studied on collagen-induced platelet aggregation of human platelet-rich plasma. Chemoprevention: nude mice were gavaged daily for 25 days with vehicle, aspirin or NBS-1120. After one week, each mouse was inoculated subcutaneously in the right flank with HT-29 human colon cancer cells. Both agents reduced PGE2 levels in stomach tissue; however, NBS-1120 did not cause any stomach ulcers, whereas aspirin caused significant bleeding. Lipid peroxidation induced by aspirin was higher than that exerted by NBS-1120. SOD activity was significantly inhibited by aspirin but increased by NBS-1120. Both agents showed similar anti-inflammatory, analgesic, anti-pyretic, and anti-platelet activities. Aspirin increased plasma TNFα more than NBS-1120-treated animals. NBS-1120 was better than aspirin as a chemopreventive agent; it dose-dependently inhibited tumor growth and tumor mass.
Collapse
Affiliation(s)
- Ravinder Kodela
- Department of Physiology, Pharmacology and Neuroscience, Sophie Davis School of Biomedical Education, City University of New York Medical School, New York, NY, United States
| | - Mitali Chattopadhyay
- Department of Physiology, Pharmacology and Neuroscience, Sophie Davis School of Biomedical Education, City University of New York Medical School, New York, NY, United States
| | | | - Khosrow Kashfi
- Department of Physiology, Pharmacology and Neuroscience, Sophie Davis School of Biomedical Education, City University of New York Medical School, New York, NY, United States; Avicenna Pharmaceuticals Inc., New York, NY, United States.
| |
Collapse
|