1
|
Kieronska-Rudek A, Ascencao K, Chlopicki S, Szabo C. Increased hydrogen sulfide turnover serves a cytoprotective role during the development of replicative senescence. Biochem Pharmacol 2024; 230:116595. [PMID: 39454733 DOI: 10.1016/j.bcp.2024.116595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/15/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
The mammalian gasotransmitter hydrogen sulfide (H2S) is produced by enzymes such as cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE), 3-mercaptopyruvate sulfurtransferase (3-MST). Prior studies suggest that H2S may have cytoprotective and anti-aging effects. This project explores the regulation and role of endogenous H2S in a murine model of replicative senescence. H2S and polysulfide levels in RAW 264.7 murine macrophages (control cells: passage 5-10; senescent cells: passage 30-40) were measured using fluorescent probes. The expression of H2S-related enzymes and the activity of senescence marker beta-galactosidase (SA-β-Gal) were also analyzed. CBS, CSE, and 3-MST were inhibited using selective pharmacological inhibitors. Senescence led to a moderate upregulation of CBS and in a significant increase in CSE and 3-MST. H2S degradation enzymes were also elevated in senescence. Inhibition of H2S-producing enzymes reduced H2S levels but increased polysulfides. Inhibition of H2S production during senescence suppressed cell proliferation, and elevated SA-β-Gal and p21 levels. Comparing young and old mice spleens revealed downregulation of CBS and ETHE1 and upregulation of rhodanese and SUOX in older mice. The results demonstrate that increased reactive sulfur turnover occurs in senescent macrophages and that reactive sulfur species support cell proliferation and regulate cellular senescence.
Collapse
Affiliation(s)
- Anna Kieronska-Rudek
- Chair of Pharmacology, Department of Science and Medicine, University of Fribourg, Fribourg, Switzerland; Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Cracow, Poland
| | - Kelly Ascencao
- Chair of Pharmacology, Department of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Stefan Chlopicki
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Cracow, Poland; Jagiellonian University Medical College, Chair of Pharmacology, Faculty of Medicine, Cracow, Poland
| | - Csaba Szabo
- Chair of Pharmacology, Department of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
2
|
Olson KR, Takata T, Clear KJ, Gao Y, Ma Z, Pfaff E, Mouli K, Kent TA, Jones P, Fukuto J, Wu G, Straub KD. The SOD1 Inhibitor, LCS-1, Oxidizes H2S to Reactive Sulfur Species, Directly and Indirectly, through Conversion of SOD1 to an Oxidase. Antioxidants (Basel) 2024; 13:991. [PMID: 39199236 PMCID: PMC11351665 DOI: 10.3390/antiox13080991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/30/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
LCS-1, a putative selective inhibitor of SOD1, is a substituted pyridazinone with rudimentary similarity to quinones and naphthoquinones. As quinones catalytically oxidize H2S to biologically active reactive sulfur species (RSS), we hypothesized LCS-1 might have similar attributes. Here, we examine LCS-1 reactions with H2S and SOD1 using thiol-specific fluorophores, liquid chromatography-mass spectrometry, electron paramagnetic resonance (EPR), UV-vis spectrometry, and oxygen consumption. We show that LCS-1 catalytically oxidizes H2S in buffer solutions to form RSS, namely per- and polyhydrosulfides (H2Sn, n = 2-6). These reactions consume oxygen and produce hydrogen peroxide, but they do not have an EPR signature, nor do they affect the UV-vis spectrum. Surprisingly, LCS-1 synergizes with SOD1, but not SOD2, to oxidize H2S to H2S3-6. LCS-1 forms monothiol adducts with H2S, glutathione (GSH), and cysteine (Cys), but not with oxidized glutathione or cystine; both thiol adducts inhibit LCS-1-SOD1 synergism. We propose that LCS-1 forms an adduct with SOD1 that disrupts the intramolecular Cys57-Cys146 disulfide bond and transforms SOD1 from a dismutase to an oxidase. This would increase cellular ROS and polysulfides, the latter potentially affecting cellular signaling and/or cytoprotection.
Collapse
Affiliation(s)
- Kenneth R. Olson
- Department of Physiology, Indiana University School of Medicine South Bend, South Bend, IN 46617, USA; (T.T.); (Y.G.); (Z.M.); (E.P.)
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Tsuyoshi Takata
- Department of Physiology, Indiana University School of Medicine South Bend, South Bend, IN 46617, USA; (T.T.); (Y.G.); (Z.M.); (E.P.)
| | - Kasey J. Clear
- Department of Chemistry and Biochemistry, Indiana University South Bend, South Bend, IN 46615, USA;
| | - Yan Gao
- Department of Physiology, Indiana University School of Medicine South Bend, South Bend, IN 46617, USA; (T.T.); (Y.G.); (Z.M.); (E.P.)
| | - Zhilin Ma
- Department of Physiology, Indiana University School of Medicine South Bend, South Bend, IN 46617, USA; (T.T.); (Y.G.); (Z.M.); (E.P.)
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Ella Pfaff
- Department of Physiology, Indiana University School of Medicine South Bend, South Bend, IN 46617, USA; (T.T.); (Y.G.); (Z.M.); (E.P.)
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Karthik Mouli
- Institute of Biosciences and Technology, Texas A&M Health Sciences Center-Houston Campus, Houston, TX 77030, USA; (K.M.); (T.A.K.)
| | - Thomas A. Kent
- Institute of Biosciences and Technology, Texas A&M Health Sciences Center-Houston Campus, Houston, TX 77030, USA; (K.M.); (T.A.K.)
| | - Prentiss Jones
- Toxicology Department, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI 49007, USA;
| | - Jon Fukuto
- Department of Chemistry, Sonoma State University, Rohnert Park, CA 94928, USA;
| | - Gang Wu
- Department of Internal Medicine, McGovern Medical School, University of Texas, Houston, TX 77030, USA;
| | - Karl D. Straub
- Central Arkansas Veteran’s Healthcare System, Little Rock, AR 72205, USA;
- Departments of Medicine and Biochemistry, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| |
Collapse
|
3
|
Olson KR, Clear KJ, Takata T, Gao Y, Ma Z, Pfaff E, Travlos A, Luu J, Wilson K, Joseph Z, Kyle I, Kasko SM, Jones Jr P, Fukuto J, Xian M, Wu G, Straub KD. Reaction Mechanisms of H 2S Oxidation by Naphthoquinones. Antioxidants (Basel) 2024; 13:619. [PMID: 38790724 PMCID: PMC11117753 DOI: 10.3390/antiox13050619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
1,4-naphthoquinones (NQs) catalytically oxidize H2S to per- and polysufides and sulfoxides, reduce oxygen to superoxide and hydrogen peroxide, and can form NQ-SH adducts through Michael addition. Here, we measured oxygen consumption and used sulfur-specific fluorophores, liquid chromatography tandem mass spectrometry (LC-MS/MS), and UV-Vis spectrometry to examine H2S oxidation by NQs with various substituent groups. In general, the order of H2S oxidization was DCNQ ~ juglone > 1,4-NQ > plumbagin >DMNQ ~ 2-MNQ > menadione, although this order varied somewhat depending on the experimental conditions. DMNQ does not form adducts with GSH or cysteine (Cys), yet it readily oxidizes H2S to polysulfides and sulfoxides. This suggests that H2S oxidation occurs at the carbonyl moiety and not at the quinoid 2 or 3 carbons, although the latter cannot be ruled out. We found little evidence from oxygen consumption studies or LC-MS/MS that NQs directly oxidize H2S2-4, and we propose that apparent reactions of NQs with inorganic polysulfides are due to H2S impurities in the polysulfides or an equilibrium between H2S and H2Sn. Collectively, NQ oxidation of H2S forms a variety of products that include hydropersulfides, hydropolysulfides, sulfenylpolysulfides, sulfite, and thiosulfate, and some of these reactions may proceed until an insoluble S8 colloid is formed.
Collapse
Affiliation(s)
- Kenneth R. Olson
- Department of Physiology, Indiana University School of Medicine—South Bend Center, South Bend, IN 46617, USA; (T.T.); (Y.G.); (Z.M.); (E.P.); (A.T.); (J.L.); (K.W.); (Z.J.); (I.K.); (S.M.K.)
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Kasey J. Clear
- Department of Chemistry and Biochemistry, Indiana University South Bend, South Bend, IN 46615, USA;
| | - Tsuyoshi Takata
- Department of Physiology, Indiana University School of Medicine—South Bend Center, South Bend, IN 46617, USA; (T.T.); (Y.G.); (Z.M.); (E.P.); (A.T.); (J.L.); (K.W.); (Z.J.); (I.K.); (S.M.K.)
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Yan Gao
- Department of Physiology, Indiana University School of Medicine—South Bend Center, South Bend, IN 46617, USA; (T.T.); (Y.G.); (Z.M.); (E.P.); (A.T.); (J.L.); (K.W.); (Z.J.); (I.K.); (S.M.K.)
| | - Zhilin Ma
- Department of Physiology, Indiana University School of Medicine—South Bend Center, South Bend, IN 46617, USA; (T.T.); (Y.G.); (Z.M.); (E.P.); (A.T.); (J.L.); (K.W.); (Z.J.); (I.K.); (S.M.K.)
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Ella Pfaff
- Department of Physiology, Indiana University School of Medicine—South Bend Center, South Bend, IN 46617, USA; (T.T.); (Y.G.); (Z.M.); (E.P.); (A.T.); (J.L.); (K.W.); (Z.J.); (I.K.); (S.M.K.)
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Anthony Travlos
- Department of Physiology, Indiana University School of Medicine—South Bend Center, South Bend, IN 46617, USA; (T.T.); (Y.G.); (Z.M.); (E.P.); (A.T.); (J.L.); (K.W.); (Z.J.); (I.K.); (S.M.K.)
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jennifer Luu
- Department of Physiology, Indiana University School of Medicine—South Bend Center, South Bend, IN 46617, USA; (T.T.); (Y.G.); (Z.M.); (E.P.); (A.T.); (J.L.); (K.W.); (Z.J.); (I.K.); (S.M.K.)
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Katherine Wilson
- Department of Physiology, Indiana University School of Medicine—South Bend Center, South Bend, IN 46617, USA; (T.T.); (Y.G.); (Z.M.); (E.P.); (A.T.); (J.L.); (K.W.); (Z.J.); (I.K.); (S.M.K.)
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Zachary Joseph
- Department of Physiology, Indiana University School of Medicine—South Bend Center, South Bend, IN 46617, USA; (T.T.); (Y.G.); (Z.M.); (E.P.); (A.T.); (J.L.); (K.W.); (Z.J.); (I.K.); (S.M.K.)
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Ian Kyle
- Department of Physiology, Indiana University School of Medicine—South Bend Center, South Bend, IN 46617, USA; (T.T.); (Y.G.); (Z.M.); (E.P.); (A.T.); (J.L.); (K.W.); (Z.J.); (I.K.); (S.M.K.)
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Stephen M. Kasko
- Department of Physiology, Indiana University School of Medicine—South Bend Center, South Bend, IN 46617, USA; (T.T.); (Y.G.); (Z.M.); (E.P.); (A.T.); (J.L.); (K.W.); (Z.J.); (I.K.); (S.M.K.)
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Prentiss Jones Jr
- Toxicology Department, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI 49007, USA;
| | - Jon Fukuto
- Department of Chemistry, Sonoma State University, Rohnert Park, CA 94928, USA;
| | - Ming Xian
- Department of Chemistry, Brown University, Providence, RI 02912, USA;
| | - Gang Wu
- Department of Internal Medicine, University of Texas-McGovern Medical School, Houston, TX 77030, USA;
| | - Karl D. Straub
- Central Arkansas Veteran’s Healthcare System, Little Rock, AR 72205, USA;
- Departments of Medicine and Biochemistry, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| |
Collapse
|
4
|
Derry PJ, Liopo AV, Mouli K, McHugh EA, Vo ATT, McKelvey A, Suva LJ, Wu G, Gao Y, Olson KR, Tour JM, Kent TA. Oxidation of Hydrogen Sulfide to Polysulfide and Thiosulfate by a Carbon Nanozyme: Therapeutic Implications with an Emphasis on Down Syndrome. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211241. [PMID: 37272655 PMCID: PMC10696138 DOI: 10.1002/adma.202211241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/20/2023] [Indexed: 06/06/2023]
Abstract
Hydrogen sulfide (H2 S) is a noxious, potentially poisonous, but necessary gas produced from sulfur metabolism in humans. In Down Syndrome (DS), the production of H2 S is elevated and associated with degraded mitochondrial function. Therefore, removing H2 S from the body as a stable oxide could be an approach to reducing the deleterious effects of H2 S in DS. In this report we describe the catalytic oxidation of hydrogen sulfide (H2 S) to polysulfides (HS2+n - ) and thiosulfate (S2 O3 2- ) by poly(ethylene glycol) hydrophilic carbon clusters (PEG-HCCs) and poly(ethylene glycol) oxidized activated charcoal (PEG-OACs), examples of oxidized carbon nanozymes (OCNs). We show that OCNs oxidize H2 S to polysulfides and S2 O3 2- in a dose-dependent manner. The reaction is dependent on O2 and the presence of quinone groups on the OCNs. In DS donor lymphocytes we found that OCNs increased polysulfide production, proliferation, and afforded protection against additional toxic levels of H2 S compared to untreated DS lymphocytes. Finally, in Dp16 and Ts65DN murine models of DS, we found that OCNs restored osteoclast differentiation. This new action suggests potential facile translation into the clinic for conditions involving excess H2 S exemplified by DS.
Collapse
Affiliation(s)
- Paul J Derry
- Center for Genomic and Precision Medicine, Department of Translational Medical Science, Institute of Bioscience and Technology, Texas A&M Health Science Center, 2121 W. Holcombe Boulevard, Houston, Texas, USA
- EnMed, School of Engineering Medicine, Texas A&M University, 1020 W. Holcombe Boulevard, Houston, Texas, USA
| | - Anton V Liopo
- Center for Genomic and Precision Medicine, Department of Translational Medical Science, Institute of Bioscience and Technology, Texas A&M Health Science Center, 2121 W. Holcombe Boulevard, Houston, Texas, USA
- Department of Chemistry, Rice University, Houston, 77005, Texas, USA
| | - Karthik Mouli
- Center for Genomic and Precision Medicine, Department of Translational Medical Science, Institute of Bioscience and Technology, Texas A&M Health Science Center, 2121 W. Holcombe Boulevard, Houston, Texas, USA
| | - Emily A McHugh
- Department of Chemistry, Rice University, Houston, 77005, Texas, USA
- Smalley-Curl Institute, Rice University, Houston, 77005, Texas, USA
| | - Anh T T Vo
- Center for Genomic and Precision Medicine, Department of Translational Medical Science, Institute of Bioscience and Technology, Texas A&M Health Science Center, 2121 W. Holcombe Boulevard, Houston, Texas, USA
| | - Ann McKelvey
- Center for Inflammation and Infectious Disease, Department of Translational Medical Science, Institute of Bioscience and Technology, Texas A&M Health Science Center, 2121 W. Holcombe Boulevard, Houston, 77030, Texas, USA
| | - Larry J Suva
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, 77843, Texas, USA
| | - Gang Wu
- Division of Hematology, Internal Medicine, John P. and Kathrine G. McGovern Medical School at UTHealth Houston, Houston, 77005, Texas, USA
| | - Yan Gao
- Indiana University School of Medicine-South Bend, South Bend, 46617, Indiana, USA
| | - Kenneth R Olson
- Indiana University School of Medicine-South Bend, South Bend, 46617, Indiana, USA
| | - James M Tour
- Department of Chemistry, Rice University, Houston, 77005, Texas, USA
- Smalley-Curl Institute, Rice University, Houston, 77005, Texas, USA
- Welch Institute for Advanced Materials, Rice University, Houston, 77005, Texas, USA
- The NanoCarbon Center, Rice University, Houston, 77005, Texas, USA
| | - Thomas A Kent
- Center for Genomic and Precision Medicine, Department of Translational Medical Science, Institute of Bioscience and Technology, Texas A&M Health Science Center, 2121 W. Holcombe Boulevard, Houston, Texas, USA
- Department of Chemistry, Rice University, Houston, 77005, Texas, USA
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital and Research Institute, 6560 Fannin Street, Houston, 77030, Texas, USA
| |
Collapse
|
5
|
Solanki K, Bezsonov E, Orekhov A, Parihar SP, Vaja S, White FA, Obukhov AG, Baig MS. Effect of reactive oxygen, nitrogen, and sulfur species on signaling pathways in atherosclerosis. Vascul Pharmacol 2024; 154:107282. [PMID: 38325566 DOI: 10.1016/j.vph.2024.107282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 02/04/2024] [Indexed: 02/09/2024]
Abstract
Atherosclerosis is a chronic inflammatory disease in which fats, lipids, cholesterol, calcium, proliferating smooth muscle cells, and immune cells accumulate in the intima of the large arteries, forming atherosclerotic plaques. A complex interplay of various vascular and immune cells takes place during the initiation and progression of atherosclerosis. Multiple reports indicate that tight control of reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species (RSS) production is critical for maintaining vascular health. Unrestricted ROS and RNS generation may lead to activation of various inflammatory signaling pathways, facilitating atherosclerosis. Given these deleterious consequences, it is important to understand how ROS and RNS affect the signaling processes involved in atherogenesis. Conversely, RSS appears to exhibit an atheroprotective potential and can alleviate the deleterious effects of ROS and RNS. Herein, we review the literature describing the effects of ROS, RNS, and RSS on vascular smooth muscle cells, endothelial cells, and macrophages and focus on how changes in their production affect the initiation and progression of atherosclerosis. This review also discusses the contribution of ROS, RNS, and RSS in mediating various post-translational modifications, such as oxidation, nitrosylation, and sulfation, of the molecules involved in inflammatory signaling.
Collapse
Affiliation(s)
- Kundan Solanki
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Simrol, Indore, India
| | - Evgeny Bezsonov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia; Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russia; Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; The Cell Physiology and Pathology Laboratory, Turgenev State University of Orel, Orel, Russia
| | - Alexander Orekhov
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia
| | - Suraj P Parihar
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Department of Biochemistry, Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Shivani Vaja
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Simrol, Indore, India
| | - Fletcher A White
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Alexander G Obukhov
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Mirza S Baig
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Simrol, Indore, India.
| |
Collapse
|
6
|
Harvey F, Aromokunola B, Montaut S, Yang G. The Antioxidant Properties of Glucosinolates in Cardiac Cells Are Independent of H 2S Signaling. Int J Mol Sci 2024; 25:696. [PMID: 38255773 PMCID: PMC10815443 DOI: 10.3390/ijms25020696] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
The organic sulfur-containing compounds glucosinolates (GSLs) and the novel gasotransmitter H2S are known to have cardioprotective effects. This study investigated the antioxidant effects and H2S-releasing potential of three GSLs ((3E)-4-(methylsulfanyl)but-3-enyl GSL or glucoraphasatin, 4-hydroxybenzyl GSL or glucosinalbin, and (RS)-6-(methylsulfinyl)hexyl GSL or glucohesperin) in rat cardiac cells. It was found that all three GSLs had no effect on cardiac cell viability but were able to protect against H2O2-induced oxidative stress and cell death. NaHS, a H2S donor, also protected the cells from H2O2-stimulated oxidative stress and cell death. The GSLs alone or mixed with cysteine, N-acetylcysteine, glutathione, H2O2, iron and pyridoxal-5'-phosphate, or mouse liver lysates did not induce H2S release. The addition of GSLs also did not alter endogenous H2S levels in cardiac cells. H2O2 significantly induced cysteine oxidation in the cystathionine gamma-lyase (CSE) protein and inhibited the H2S production rate. In conclusion, this study found that the three tested GSLs protect cardiomyocytes from oxidative stress and cell death but independently of H2S signaling.
Collapse
Affiliation(s)
- Félix Harvey
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (F.H.); (B.A.)
- Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, ON P3E 2C6, Canada
| | - Boluwaji Aromokunola
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (F.H.); (B.A.)
- Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, ON P3E 2C6, Canada
| | - Sabine Montaut
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (F.H.); (B.A.)
| | - Guangdong Yang
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (F.H.); (B.A.)
- Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
7
|
Liu H, Yu H, Gao R, Ge F, Zhao R, Lu X, Wang T, Liu H, Yang C, Xia Y, Xun L. A Zero-Valent Sulfur Transporter Helps Podophyllotoxin Uptake into Bacterial Cells in the Presence of CTAB. Antioxidants (Basel) 2023; 13:27. [PMID: 38247452 PMCID: PMC10812762 DOI: 10.3390/antiox13010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
Podophyllotoxin (PTOX) is naturally produced by the plant Podophyllum species. Some of its derivatives are anticancer drugs, which are produced mainly by using chemical semi-synthesis methods. Recombinant bacteria have great potential in large-scale production of the derivatives of PTOX. In addition to introducing the correct enzymes, the transportation of PTOX into the cells is an important factor, which limits its modification in the bacteria. Here, we improved the cellular uptake of PTOX into Escherichia coli with the help of the zero-valent sulfur transporter YedE1E2 in the presence of cetyltrimethylammonium bromide (CTAB). CTAB promoted the uptake of PTOX, but induced the production of reactive oxygen species. A protein complex (YedE1E2) of YedE1 and YedE2 enabled E. coli cells to resist CTAB by reducing reactive oxygen species, and YedE1E2 was a hypothetical transporter. Further investigation showed that YedE1E2 facilitated the uptake of extracellular zero-valent sulfur across the cytoplasmic membrane and the formation of glutathione persulfide (GSSH) inside the cells. The increased GSSH minimized oxidative stress. Our results indicate that YedE1E2 is a zero-valent sulfur transporter and it also facilitates CTAB-assisted uptake of PTOX by recombinant bacteria.
Collapse
Affiliation(s)
- Honglei Liu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (H.L.); (H.Y.); (R.G.); (F.G.); (R.Z.); (X.L.); (T.W.); (H.L.); (C.Y.)
| | - Huiyuan Yu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (H.L.); (H.Y.); (R.G.); (F.G.); (R.Z.); (X.L.); (T.W.); (H.L.); (C.Y.)
| | - Rui Gao
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (H.L.); (H.Y.); (R.G.); (F.G.); (R.Z.); (X.L.); (T.W.); (H.L.); (C.Y.)
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Fulin Ge
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (H.L.); (H.Y.); (R.G.); (F.G.); (R.Z.); (X.L.); (T.W.); (H.L.); (C.Y.)
| | - Rui Zhao
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (H.L.); (H.Y.); (R.G.); (F.G.); (R.Z.); (X.L.); (T.W.); (H.L.); (C.Y.)
| | - Xia Lu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (H.L.); (H.Y.); (R.G.); (F.G.); (R.Z.); (X.L.); (T.W.); (H.L.); (C.Y.)
| | - Tianqi Wang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (H.L.); (H.Y.); (R.G.); (F.G.); (R.Z.); (X.L.); (T.W.); (H.L.); (C.Y.)
| | - Huaiwei Liu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (H.L.); (H.Y.); (R.G.); (F.G.); (R.Z.); (X.L.); (T.W.); (H.L.); (C.Y.)
| | - Chunyu Yang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (H.L.); (H.Y.); (R.G.); (F.G.); (R.Z.); (X.L.); (T.W.); (H.L.); (C.Y.)
| | - Yongzhen Xia
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (H.L.); (H.Y.); (R.G.); (F.G.); (R.Z.); (X.L.); (T.W.); (H.L.); (C.Y.)
| | - Luying Xun
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (H.L.); (H.Y.); (R.G.); (F.G.); (R.Z.); (X.L.); (T.W.); (H.L.); (C.Y.)
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| |
Collapse
|
8
|
Park H, Yoon SJ, Nam YS, Lee JY, Lee Y, Kim JY, Lee KB. Novel H 2S sensing mechanism derived from the formation of oligomeric sulfide capping the surface of gold nanourchins. RSC Adv 2023; 13:33028-33037. [PMID: 38025876 PMCID: PMC10631460 DOI: 10.1039/d3ra05527b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
A gold nanourchin (AuNU) probe with a novel sensing mechanism for monitoring H2S was developed as a feasible colorimetric sensor. In this study, AuNUs that are selectively responsive to H2S were fabricated in the presence of trisodium citrate and 1,4-hydroquinone using a seed-mediated approach. Upon exposure of the AuNU solution to H2S, the hydrosulfide ions (HS-) in the solution are converted into oligomeric sulfides by 1,4-hydroquinone used as a reducing agent during the synthesis of AuNUs. The oligomeric sulfides formed in the AuNU solution upon the addition of H2S were found to coat the surface of the AuNUs, introducing a blue shift in absorption accompanied by a color change in the solution from sky blue to light green. This colorimetric alteration by the capping of oligomeric sulfides on the surface of AuNUs is unique compared to well-known color change mechanisms, such as aggregation, etching, or growth of nanoparticles. The novel H2S sensing mechanism of the AuNUs was characterized using UV-Vis spectroscopy, high-resolution transmission microscopy, X-ray photoelectron spectroscopy, surface-enhanced Raman spectroscopy, secondary ion mass spectroscopy, liquid chromatography-tandem mass spectrometry, and atom probe tomography. H2S was reliably monitored with two calibration curves comprising two sections with different slopes according to the low (0.3-15 μM) and high (15.0-300 μM) concentration range using the optimized AuNU probe, and a detection limit of 0.29 μM was obtained in tap water.
Collapse
Affiliation(s)
- Hana Park
- Climate and Environmental Research Institute, Korea Institute of Science & Technology Hwarang-ro 14-gil 5 Seongbuk-gu Seoul 02792 Republic of Korea
| | - Su-Jin Yoon
- Climate and Environmental Research Institute, Korea Institute of Science & Technology Hwarang-ro 14-gil 5 Seongbuk-gu Seoul 02792 Republic of Korea
- Department of Energy and Environment Technology, KIST School, University of Science and Technology Seoul 02792 Republic of Korea
| | - Yun-Sik Nam
- Advanced Analysis and Data Center, Korea Institute of Science and Technology Hwarangno 14-gil 5 Seongbuk-gu Seoul 02792 Republic of Korea
| | - Ji Yeong Lee
- Advanced Analysis and Data Center, Korea Institute of Science and Technology Hwarangno 14-gil 5 Seongbuk-gu Seoul 02792 Republic of Korea
| | - Yeonhee Lee
- Advanced Analysis and Data Center, Korea Institute of Science and Technology Hwarangno 14-gil 5 Seongbuk-gu Seoul 02792 Republic of Korea
| | - Jin Young Kim
- Climate and Environmental Research Institute, Korea Institute of Science & Technology Hwarang-ro 14-gil 5 Seongbuk-gu Seoul 02792 Republic of Korea
- Department of Energy and Environment Technology, KIST School, University of Science and Technology Seoul 02792 Republic of Korea
| | - Kang-Bong Lee
- Climate and Environmental Research Institute, Korea Institute of Science & Technology Hwarang-ro 14-gil 5 Seongbuk-gu Seoul 02792 Republic of Korea
- Department of Energy and Environment Technology, KIST School, University of Science and Technology Seoul 02792 Republic of Korea
| |
Collapse
|
9
|
Iciek M, Bilska-Wilkosz A, Kozdrowicki M, Górny M. Reactive Sulfur Species in Human Diseases. Antioxid Redox Signal 2023; 39:1000-1023. [PMID: 37440317 DOI: 10.1089/ars.2023.0261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Significance: Reactive sulfur species (RSS) have been recently recognized as redox molecules no less important than reactive oxygen species or reactive nitrogen species. They possess regulatory and protective properties and are involved in various metabolic processes, thereby contributing to the maintenance of human health. It has been documented that many disorders, including neurological, cardiovascular, and respiratory diseases, diabetes mellitus (DM), and cancer, are related to the disruption of RSS homeostasis. Recent Advances: There is still a growing interest in the role of RSS in human diseases. Since a decrease in hydrogen sulfide or other RSS has been reported in many disorders, safe and efficient RSS donors have been developed and tested under in vitro conditions or on animal models. Critical Issues: Cardiovascular diseases and DM are currently the most common chronic diseases worldwide due to stressful and unhealthy lifestyles. In addition, because of high prevalence and aging of the population, neurological disorders including Parkinson's disease and Alzheimer's disease as well as respiratory diseases are a formidable challenge for health care systems. From this point of view, the knowledge of the role of RSS in these disorders and RSS modulation options are important and could be useful in therapeutic strategies. Future Directions: Improvement and standardization of analytical methods used for RSS estimation are crucial for the use of RSS as diagnostic biomarkers. Finding good, safe RSS donors applicable for therapeutic purposes could be useful as primary or adjunctive therapy in many common diseases. Antioxid. Redox Signal. 39, 1000-1023.
Collapse
Affiliation(s)
- Małgorzata Iciek
- Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Anna Bilska-Wilkosz
- Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Michał Kozdrowicki
- Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Magdalena Górny
- Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
10
|
Olson KR, Clear KJ, Gao Y, Ma Z, Cieplik NM, Fiume AR, Gaziano DJ, Kasko SM, Luu J, Pfaff E, Travlos A, Velander C, Wilson KJ, Edwards ED, Straub KD, Wu G. Redox and Nucleophilic Reactions of Naphthoquinones with Small Thiols and Their Effects on Oxidization of H 2S to Inorganic and Organic Hydropolysulfides and Thiosulfate. Int J Mol Sci 2023; 24:ijms24087516. [PMID: 37108682 PMCID: PMC10138938 DOI: 10.3390/ijms24087516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Naphthoquinone (1,4-NQ) and its derivatives (NQs, juglone, plumbagin, 2-methoxy-1,4-NQ, and menadione) have a variety of therapeutic applications, many of which are attributed to redox cycling and the production of reactive oxygen species (ROS). We previously demonstrated that NQs also oxidize hydrogen sulfide (H2S) to reactive sulfur species (RSS), potentially conveying identical benefits. Here we use RSS-specific fluorophores, mass spectroscopy, EPR and UV-Vis spectrometry, and oxygen-sensitive optodes to examine the effects of thiols and thiol-NQ adducts on H2S-NQ reactions. In the presence of glutathione (GSH) and cysteine (Cys), 1,4-NQ oxidizes H2S to both inorganic and organic hydroper-/hydropolysulfides (R2Sn, R=H, Cys, GSH; n = 2-4) and organic sulfoxides (GSnOH, n = 1, 2). These reactions reduce NQs and consume oxygen via a semiquinone intermediate. NQs are also reduced as they form adducts with GSH, Cys, protein thiols, and amines. Thiol, but not amine, adducts may increase or decrease H2S oxidation in reactions that are both NQ- and thiol-specific. Amine adducts also inhibit the formation of thiol adducts. These results suggest that NQs may react with endogenous thiols, including GSH, Cys, and protein Cys, and that these adducts may affect both thiol reactions as well as RSS production from H2S.
Collapse
Affiliation(s)
- Kenneth R Olson
- Indiana University School of Medicine-South Bend, South Bend, IN 46617, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Kasey J Clear
- Department of Chemistry and Biochemistry, Indiana University South Bend, South Bend, IN 46615, USA
| | - Yan Gao
- Indiana University School of Medicine-South Bend, South Bend, IN 46617, USA
| | - Zhilin Ma
- Indiana University School of Medicine-South Bend, South Bend, IN 46617, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Nathaniel M Cieplik
- Indiana University School of Medicine-South Bend, South Bend, IN 46617, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Alyssa R Fiume
- Indiana University School of Medicine-South Bend, South Bend, IN 46617, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Dominic J Gaziano
- Indiana University School of Medicine-South Bend, South Bend, IN 46617, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Stephen M Kasko
- Indiana University School of Medicine-South Bend, South Bend, IN 46617, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jennifer Luu
- Indiana University School of Medicine-South Bend, South Bend, IN 46617, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Ella Pfaff
- Indiana University School of Medicine-South Bend, South Bend, IN 46617, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Anthony Travlos
- Indiana University School of Medicine-South Bend, South Bend, IN 46617, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Cecilia Velander
- Indiana University School of Medicine-South Bend, South Bend, IN 46617, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Katherine J Wilson
- Indiana University School of Medicine-South Bend, South Bend, IN 46617, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Elizabeth D Edwards
- Department of Chemistry and Biochemistry, Indiana University South Bend, South Bend, IN 46615, USA
| | - Karl D Straub
- Central Arkansas Veteran's Healthcare System, Little Rock, AR 72205, USA
- Departments of Medicine and Biochemistry, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Gang Wu
- Department of Internal Medicine, The University of Texas-McGovern Medical School, Houston, TX 77030, USA
| |
Collapse
|
11
|
Santos SS, Rodrigues LDOCP, Martins V, Petrosino M, Zuhra K, Ascenção K, Anand A, Abdel-Kader RM, Gad MZ, Bourquin C, Szabo C. Role of Cystathionine β-Synthase and 3-Mercaptopyruvate Sulfurtransferase in the Regulation of Proliferation, Migration, and Bioenergetics of Murine Breast Cancer Cells. Antioxidants (Basel) 2023; 12:antiox12030647. [PMID: 36978895 PMCID: PMC10045476 DOI: 10.3390/antiox12030647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Cystathionine β-synthase (CBS), CSE (cystathionine γ-lyase) and 3-mercaptopyruvate sulfurtransferase (3-MST) have emerged as three significant sources of hydrogen sulfide (H2S) in various forms of mammalian cancer. Here, we investigated the functional role of CBS’ and 3-MST’s catalytic activity in the murine breast cancer cell line EO771. The CBS/CSE inhibitor aminooxyacetic acid (AOAA) and the 3-MST inhibitor 2-[(4-hydroxy-6-methylpyrimidin-2-yl)sulfanyl]-1-(naphthalen-1-yl)ethan-1-one (HMPSNE) were used to assess the role of endogenous H2S in the modulation of breast cancer cell proliferation, migration, bioenergetics and viability in vitro. Methods included measurements of cell viability (MTT and LDH assays), cell proliferation and in vitro wound healing (IncuCyte) and cellular bioenergetics (Seahorse extracellular flux analysis). CBS and 3-MST, as well as expression were detected by Western blotting; H2S production was measured by the fluorescent dye AzMC. The results show that EO771 cells express CBS, CSE and 3-MST protein, as well as several enzymes involved in H2S degradation (SQR, TST, and ETHE1). Pharmacological inhibition of CBS or 3-MST inhibited H2S production, suppressed cellular bioenergetics and attenuated cell proliferation. Cell migration was only inhibited by the 3-MST inhibitor, but not the CBS/CSE inhibitor. Inhibition of CBS/CSE of 3-MST did not significantly affect basal cell viability; inhibition of 3-MST (but not of CBS/CSE) slightly enhanced the cytotoxic effects of oxidative stress (hydrogen peroxide challenge). From these findings, we conclude that endogenous H2S, generated by 3-MST and to a lower degree by CBS/CSE, significantly contributes to the maintenance of bioenergetics, proliferation and migration in murine breast cancer cells and may also exert a minor role as a cytoprotectant.
Collapse
Affiliation(s)
- Sidneia Sousa Santos
- Department of Medicine, Division of Infectious Diseases, Escola Paulista de Medicina, Federal University of São Paulo (EPM/UNIFESP), São Paulo 04023, Brazil
- Chair of Pharmacology, Section of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - Larissa de Oliveira Cavalcanti Peres Rodrigues
- Department of Medicine, Division of Infectious Diseases, Escola Paulista de Medicina, Federal University of São Paulo (EPM/UNIFESP), São Paulo 04023, Brazil
- Chair of Pharmacology, Section of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - Vanessa Martins
- Chair of Pharmacology, Section of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - Maria Petrosino
- Chair of Pharmacology, Section of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - Karim Zuhra
- Chair of Pharmacology, Section of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - Kelly Ascenção
- Chair of Pharmacology, Section of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - Abhishek Anand
- Chair of Pharmacology, Section of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - Reham Mahmoud Abdel-Kader
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11511, Egypt
| | - Mohamed Z. Gad
- Department of Biochemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11511, Egypt
| | - Carole Bourquin
- School of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Csaba Szabo
- Chair of Pharmacology, Section of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
- Correspondence:
| |
Collapse
|
12
|
Shieh M, Xu S, Lederberg OL, Xian M. Detection of sulfane sulfur species in biological systems. Redox Biol 2022; 57:102502. [PMID: 36252340 PMCID: PMC9579362 DOI: 10.1016/j.redox.2022.102502] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/21/2022] [Accepted: 10/06/2022] [Indexed: 11/09/2022] Open
Abstract
Sulfane sulfur species such as hydropersulfides (RSSH), polysulfides (RSnR), and hydrogen polysulfides (H2Sn) are critically involved in sulfur-mediated redox signaling, but their detailed mechanisms of action need further clarification. Therefore, there is a need to develop selective and sensitive sulfane sulfur detection methods to gauge a better understanding of their functions. This review summarizes current detection methods that include cyanolysis, chemical derivatization and mass spectrometry, proteomic analysis, fluorescent probes, and resonance synchronous/Raman spectroscopic methods. The design principles, advantages, applications, and limitations of each method are discussed, along with suggested directions for future research on these methods. The development of robust detection methods for sulfane sulfur species will help to elucidate their mechanisms and functions in biological systems.
Collapse
Affiliation(s)
- Meg Shieh
- Department of Chemistry, Brown University, Providence, RI, 02912, USA
| | - Shi Xu
- Department of Chemistry, Brown University, Providence, RI, 02912, USA
| | - Oren L Lederberg
- Department of Chemistry, Brown University, Providence, RI, 02912, USA
| | - Ming Xian
- Department of Chemistry, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
13
|
Naphthoquinones Oxidize H 2S to Polysulfides and Thiosulfate, Implications for Therapeutic Applications. Int J Mol Sci 2022; 23:ijms232113293. [PMID: 36362080 PMCID: PMC9657496 DOI: 10.3390/ijms232113293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/14/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
1,4-Napththoquinones (NQs) are clinically relevant therapeutics that affect cell function through production of reactive oxygen species (ROS) and formation of adducts with regulatory protein thiols. Reactive sulfur species (RSS) are chemically and biologically similar to ROS and here we examine RSS production by NQ oxidation of hydrogen sulfide (H2S) using RSS-specific fluorophores, liquid chromatography-mass spectrometry, UV-Vis absorption spectrometry, oxygen-sensitive optodes, thiosulfate-specific nanoparticles, HPLC-monobromobimane derivatization, and ion chromatographic assays. We show that NQs, catalytically oxidize H2S to per- and polysulfides (H2Sn, n = 2−6), thiosulfate, sulfite and sulfate in reactions that consume oxygen and are accelerated by superoxide dismutase (SOD) and inhibited by catalase. The approximate efficacy of NQs (in decreasing order) is, 1,4-NQ ≈ juglone ≈ plumbagin > 2-methoxy-1,4-NQ ≈ menadione >> phylloquinone ≈ anthraquinone ≈ menaquinone ≈ lawsone. We propose that the most probable reactions are an initial two-electron oxidation of H2S to S0 and reduction of NQ to NQH2. S0 may react with H2S or elongate H2Sn in variety of reactions. Reoxidation of NQH2 likely involves a semiquinone radical (NQ·−) intermediate via several mechanisms involving oxygen and comproportionation to produce NQ and superoxide. Dismutation of the latter forms hydrogen peroxide which then further oxidizes RSS to sulfoxides. These findings provide the chemical background for novel sulfur-based approaches to naphthoquinone-directed therapies.
Collapse
|
14
|
Jiang S, Chen Y. The role of sulfur compounds in chronic obstructive pulmonary disease. Front Mol Biosci 2022; 9:928287. [PMID: 36339716 PMCID: PMC9626809 DOI: 10.3389/fmolb.2022.928287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/03/2022] [Indexed: 11/19/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common respiratory disease that brings about great social and economic burden, with oxidative stress and inflammation affecting the whole disease progress. Sulfur compounds such as hydrogen sulfide (H2S), thiols, and persulfides/polysulfides have intrinsic antioxidant and anti-inflammatory ability, which is engaged in the pathophysiological process of COPD. Hydrogen sulfide mainly exhibits its function by S-sulfidation of the cysteine residue of the targeted proteins. It also interacts with nitric oxide and acts as a potential biomarker for the COPD phenotype. Thiols’ redox buffer such as the glutathione redox couple is a major non-enzymatic redox buffer reflecting the oxidative stress in the organism. The disturbance of redox buffers was often detected in patients with COPD, and redressing the balance could delay COPD exacerbation. Sulfane sulfur refers to a divalent sulfur atom bonded with another sulfur atom. Among them, persulfides and polysulfides have an evolutionarily conserved modification with antiaging effects. Sulfur compounds and their relative signaling pathways are also associated with the development of comorbidities in COPD. Synthetic compounds which can release H2S and persulfides in the organism have gradually been developed. Naturally extracted sulfur compounds with pharmacological effects also aroused great interest. This study discussed the biological functions and mechanisms of sulfur compounds in regulating COPD and its comorbidities.
Collapse
|
15
|
Lee KW, Chen H, Wan Y, Zhang Z, Huang Z, Li S, Lee CS. Innovative probes with aggregation-induced emission characteristics for sensing gaseous signaling molecules. Biomaterials 2022; 289:121753. [DOI: 10.1016/j.biomaterials.2022.121753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/08/2022] [Accepted: 08/17/2022] [Indexed: 11/28/2022]
|
16
|
Shieh M, Ni X, Xu S, Lindahl SP, Yang M, Matsunaga T, Flaumenhaft R, Akaike T, Xian M. Shining a light on SSP4: A comprehensive analysis and biological applications for the detection of sulfane sulfurs. Redox Biol 2022; 56:102433. [PMID: 35987086 PMCID: PMC9411671 DOI: 10.1016/j.redox.2022.102433] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/29/2022] Open
Abstract
Fluorescent probes are useful tools for the detection of sulfane sulfurs in biological systems. In this work, we report the development of SSP4, a widely used probe generated in our laboratory. We describe its evolution, preparation, and physical/chemical properties. Fluorescence analyses of SSP4 determined its high selectivity and sensitivity to sulfane sulfurs, even with the interfering presence of other species, such as amino acids and metal ions. Protocols for using SSP4 in a relatively quick and simple manner for the detection of persulfidated proteins, including papain, BSA, and GAPDH were developed. The method was then applied to human protein disulfide isomerase (PDI), leading to the discovery that persulfidation can occur at PDI's non-active site cysteines, and that PDI reductase activity is affected by sulfane sulfur treatment. Protocols for using SSP4 for the bioimaging of exogenous and endogenous sulfane sulfurs in different -cell lines were also established. These results should guide further applications of SSP4.
Collapse
Affiliation(s)
- Meg Shieh
- Department of Chemistry, Brown University, Providence, RI, 02912, USA
| | - Xiang Ni
- Department of Chemistry, Brown University, Providence, RI, 02912, USA
| | - Shi Xu
- Department of Chemistry, Brown University, Providence, RI, 02912, USA
| | - Stephen P Lindahl
- Department of Chemistry, Brown University, Providence, RI, 02912, USA
| | - Moua Yang
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02115, USA
| | - Tetsuro Matsunaga
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02115, USA
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Ming Xian
- Department of Chemistry, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
17
|
Macabrey D, Longchamp A, MacArthur MR, Lambelet M, Urfer S, Deglise S, Allagnat F. Sodium thiosulfate acts as a hydrogen sulfide mimetic to prevent intimal hyperplasia via inhibition of tubulin polymerisation. EBioMedicine 2022; 78:103954. [PMID: 35334307 PMCID: PMC8941337 DOI: 10.1016/j.ebiom.2022.103954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 11/06/2022] Open
Abstract
Background Intimal hyperplasia (IH) remains a major limitation in the long-term success of any type of revascularisation. IH is due to vascular smooth muscle cell (VSMC) dedifferentiation, proliferation and migration. The gasotransmitter Hydrogen Sulfide (H2S), mainly produced in blood vessels by the enzyme cystathionine- γ-lyase (CSE), inhibits IH in pre-clinical models. However, there is currently no H2S donor available to treat patients. Here we used sodium thiosulfate (STS), a clinically-approved source of sulfur, to limit IH. Methods Low density lipoprotein receptor deleted (LDLR−/−), WT or Cse-deleted (Cse−/−) male mice randomly treated with 4 g/L STS in the water bottle were submitted to focal carotid artery stenosis to induce IH. Human vein segments were maintained in culture for 7 days to induce IH. Further in vitro studies were conducted in primary human vascular smooth muscle cells (VSMCs). Findings STS inhibited IH in WT mice, as well as in LDLR−/− and Cse−/− mice, and in human vein segments. STS inhibited cell proliferation in the carotid artery wall and in human vein segments. STS increased polysulfides in vivo and protein persulfidation in vitro, which correlated with microtubule depolymerisation, cell cycle arrest and reduced VSMC migration and proliferation. Interpretation STS, a drug used for the treatment of cyanide poisoning and calciphylaxis, protects against IH in a mouse model of arterial restenosis and in human vein segments. STS acts as an H2S donor to limit VSMC migration and proliferation via microtubule depolymerisation. Funding This work was supported by the Swiss National Science Foundation (grant FN-310030_176158 to FA and SD and PZ00P3-185927 to AL); the Novartis Foundation to FA; and the Union des Sociétés Suisses des Maladies Vasculaires to SD, and the Fondation pour la recherche en chirurgie vasculaire et thoracique.
Collapse
|
18
|
Kelly SS, Ni X, Yuen V, Radford MN, Xian M. C-Nitrosothioformamide: A Donor Template for Dual Release of HNO and H2S. Chembiochem 2022; 23:e202200101. [PMID: 35344248 DOI: 10.1002/cbic.202200101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/25/2022] [Indexed: 11/09/2022]
Abstract
C-Nitrosothioformamide was demonstrated to be a donor template for dual release of HNO and COS triggered by a retro-Diels-Alder reaction. COS is an H2S precursor in the presence of carbonic anhydrase. This process produces HNO and H2S in a slow but steady manner. As such, the direct reaction between HNO and H2S under this situation appears to be minor. This may provide a useful tool to study the synergistic effects of HNO and H2S.
Collapse
Affiliation(s)
- Shane S Kelly
- Washington State University, Chemistry, UNITED STATES
| | - Xiang Ni
- Brown University, Chemistry, UNITED STATES
| | | | | | - Ming Xian
- Brown University, Department of Chemistry, 324 Brook Street, 02912, Providence, UNITED STATES
| |
Collapse
|
19
|
Olson KR, Clear KJ, Derry PJ, Gao Y, Ma Z, Wu G, Kent TA, Straub KD. Coenzyme Q 10 and related quinones oxidize H 2S to polysulfides and thiosulfate. Free Radic Biol Med 2022; 182:119-131. [PMID: 35202787 DOI: 10.1016/j.freeradbiomed.2022.02.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/03/2022] [Accepted: 02/18/2022] [Indexed: 12/11/2022]
Abstract
In the canonical pathway for mitochondrial H2S oxidation electrons are transferred from sulfide:quinone oxidoreductase (SQR) to complex III via ubiquinone (CoQ10). We previously observed that a number of quinones directly oxidize H2S and we hypothesize that CoQ10 may have similar properties. Here we examine H2S oxidation by CoQ10 and more hydrophilic, truncated forms, CoQ1 and CoQ0, in buffer using H2S and polysulfide fluorophores (AzMC and SSP4), silver nanoparticles to measure thiosulfate (H2S2O3), mass spectrometry to identify polysulfides and O2-sensitive optodes to measure O2 consumption. We show that all three quinones concentration-dependently catalyze the oxidization of H2S to polysulfides and thiosulfate in buffer with the potency CoQ0>CoQ1>CoQ10 and that CoQ0 specifically oxidizes H2S to per-polysulfides, H2S2,3,4. These reactions consume and require oxygen and are augmented by addition of SOD suggesting that the quinones, not superoxide, oxidize H2S. Related quinones, MitoQ, menadione and idebenone, oxidize H2S in similar reactions. Exogenous CoQ0 decreases cellular H2S and increases polysulfides and thiosulfate production and this is also O2-dependent, suggesting that the quinone has similar effects on sulfur metabolism in cells. Collectively, these results suggest an additional endogenous mechanism for H2S metabolism and a potential therapeutic approach in H2S-related metabolic disorders.
Collapse
Affiliation(s)
- Kenneth R Olson
- Indiana University School of Medicine - South Bend Center, South Bend, IN, 46617, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.
| | - Kasey J Clear
- Department of Chemistry and Biochemistry, Indiana University South Bend, South Bend, IN, 46615, USA
| | - Paul J Derry
- Department of Internal Medicine, University of Texas - McGovern Medical School at Houston, Houston, TX, 77030, USA
| | - Yan Gao
- Indiana University School of Medicine - South Bend Center, South Bend, IN, 46617, USA
| | - Zhilin Ma
- Indiana University School of Medicine - South Bend Center, South Bend, IN, 46617, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Gang Wu
- Department of Internal Medicine, University of Texas - McGovern Medical School at Houston, Houston, TX, 77030, USA
| | - Thomas A Kent
- Center for Genomics and Precision Medicine, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, 77030, USA; Department of Chemistry, Rice University, Houston, TX, 77005, United States; Stanley H. Appel Department of Neurology, Houston Methodist Hospital and Research Institute, 6560 Fannin Street, Houston, TX, 77030, United States
| | - Karl D Straub
- Central Arkansas Veteran's Healthcare System, Little Rock, AR, 72205, USA; Departments of Medicine and Biochemistry, University of Arkansas for Medical Sciences, Little Rock, AR, 72202, USA
| |
Collapse
|
20
|
Jiang X, MacArthur MR, Treviño-Villarreal JH, Kip P, Ozaki CK, Mitchell SJ, Mitchell JR. Intracellular H 2S production is an autophagy-dependent adaptive response to DNA damage. Cell Chem Biol 2021; 28:1669-1678.e5. [PMID: 34166610 PMCID: PMC8665944 DOI: 10.1016/j.chembiol.2021.05.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/08/2021] [Accepted: 05/26/2021] [Indexed: 12/21/2022]
Abstract
Hydrogen sulfide (H2S) is a gasotransmitter with broad physiological activities, including protecting cells against stress, but little is known about the regulation of cellular H2S homeostasis. We have performed a high-content small-molecule screen and identified genotoxic agents, including cancer chemotherapy drugs, as activators of intracellular H2S levels. DNA damage-induced H2S in vitro and in vivo. Mechanistically, DNA damage elevated autophagy and upregulated H2S-generating enzyme CGL; chemical or genetic disruption of autophagy or CGL impaired H2S induction. Importantly, exogenous H2S partially rescued autophagy-deficient cells from genotoxic stress. Furthermore, stressors that are not primarily genotoxic (growth factor depletion and mitochondrial uncoupler FCCP) increased intracellular H2S in an autophagy-dependent manner. Our findings highlight the role of autophagy in H2S production and suggest that H2S generation may be a common adaptive response to DNA damage and other stressors.
Collapse
Affiliation(s)
- Xiaofeng Jiang
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| | - Michael R MacArthur
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | | | - Peter Kip
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Surgery and the Heart and Vascular Center, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Einthoven Laboratory for Experimental Vascular Medicine and Department of Surgery, Leiden University Medical Center, 2333 CC Leiden, the Netherlands
| | - C Keith Ozaki
- Department of Surgery and the Heart and Vascular Center, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Sarah J Mitchell
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland.
| | - James R Mitchell
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
21
|
The pathway of sulfide oxidation to octasulfur globules in the cytoplasm of aerobic bacteria. Appl Environ Microbiol 2021; 88:e0194121. [PMID: 34878813 DOI: 10.1128/aem.01941-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sulfur-oxidizing bacteria can oxidize hydrogen sulfide (H2S) to produce sulfur globules. Although the process is common, the pathway is unclear. In recombinant Escherichia coli and wild-type Corynebacterium vitaeruminis DSM20294 with SQR but no enzymes to oxidize zero valence sulfur, SQR oxidized H2S into short-chain inorganic polysulfide (H2Sn, n≥2) and organic polysulfide (RSnH, n≥2), which reacted with each other to form long-chain GSnH (n≥2) and H2Sn before producing octasulfur (S8), the main component of elemental sulfur. GSnH also reacted with GSH to form GSnG (n≥2) and H2S; H2S was again oxidized by SQR. After GSH was depleted, SQR simply oxidized H2S to H2Sn, which spontaneously generated S8. S8 aggregated into sulfur globules in the cytoplasm. The results highlight the process of sulfide oxidation to S8 globules in the bacterial cytoplasm and demonstrate the potential of using heterotrophic bacteria with SQR to convert toxic H2S into relatively benign S8 globules. IMPORTANCE Our results support a process of H2S oxidation to produce octasulfur globules via SQR catalysis and spontaneous reactions in the bacterial cytoplasm. Since the process is an important event in geochemical cycling, a better understanding facilitates further studies and provides theoretical support for using heterotrophic bacteria with SQR to oxidize toxic H2S into sulfur globules for recovery.
Collapse
|
22
|
Xuan G, Lv C, Xu H, Li K, Liu H, Xia Y, Xun L. Sulfane Sulfur Regulates LasR-Mediated Quorum Sensing and Virulence in Pseudomonas aeruginosa PAO1. Antioxidants (Basel) 2021; 10:antiox10091498. [PMID: 34573130 PMCID: PMC8469610 DOI: 10.3390/antiox10091498] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/10/2021] [Accepted: 09/18/2021] [Indexed: 12/18/2022] Open
Abstract
Sulfane sulfur, such as inorganic and organic polysulfide (HSn- and RSn-, n > 2), is a common cellular component, produced either from hydrogen sulfide oxidation or cysteine metabolism. In Pseudomonas aeruginosa PAO1, LasR is a quorum sensing master regulator. After binding its autoinducer, LasR binds to its target DNA to activate the transcription of a suite of genes, including virulence factors. Herein, we report that the production of hydrogen sulfide and sulfane sulfur were positively correlated in P. aeruginosa PAO1, and sulfane sulfur was able to modify LasR, which generated Cys188 persulfide and trisulfide and produced a pentasulfur link between Cys201 and Cys203. The modifications did not affect LasR binding to its target DNA site, but made it several-fold more effective than unmodified LasR in activating transcription in both in vitro and in vivo assays. On the contrary, H2O2 inactivates LasR via producing a disulfide bond between Cys201 and Cys203. P. aeruginosa PAO1 had a high cellular sulfane sulfur and high LasR activity in the mid log phase and early stationary phase, but a low sulfane sulfur and low LasR activity in the declination phase. Thus, sulfane sulfur is a new signaling factor in the bacterium, adding another level of control over LasR-mediated quorum sensing and turning down the activity in old cells.
Collapse
Affiliation(s)
- Guanhua Xuan
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (G.X.); (C.L.); (H.X.); (K.L.); (H.L.)
| | - Chuanjuan Lv
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (G.X.); (C.L.); (H.X.); (K.L.); (H.L.)
| | - Huangwei Xu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (G.X.); (C.L.); (H.X.); (K.L.); (H.L.)
| | - Kai Li
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (G.X.); (C.L.); (H.X.); (K.L.); (H.L.)
| | - Huaiwei Liu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (G.X.); (C.L.); (H.X.); (K.L.); (H.L.)
| | - Yongzhen Xia
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (G.X.); (C.L.); (H.X.); (K.L.); (H.L.)
- Correspondence: (Y.X.); (L.X.); Tel.: +86-532-5863-1572 (Y.X.); +1-509-335-2787 (L.X.)
| | - Luying Xun
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (G.X.); (C.L.); (H.X.); (K.L.); (H.L.)
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
- Correspondence: (Y.X.); (L.X.); Tel.: +86-532-5863-1572 (Y.X.); +1-509-335-2787 (L.X.)
| |
Collapse
|
23
|
Pacitti D, Scotton CJ, Kumar V, Khan H, Wark PAB, Torregrossa R, Hansbro PM, Whiteman M. Gasping for Sulfide: A Critical Appraisal of Hydrogen Sulfide in Lung Disease and Accelerated Aging. Antioxid Redox Signal 2021; 35:551-579. [PMID: 33736455 DOI: 10.1089/ars.2021.0039] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hydrogen sulfide (H2S) is a gaseous signaling molecule involved in a plethora of physiological and pathological processes. It is primarily synthesized by cystathionine-β-synthase, cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase as a metabolite of the transsulfuration pathway. H2S has been shown to exert beneficial roles in lung disease acting as an anti-inflammatory and antiviral and to ameliorate cell metabolism and protect from oxidative stress. H2S interacts with transcription factors, ion channels, and a multitude of proteins via post-translational modifications through S-persulfidation ("sulfhydration"). Perturbation of endogenous H2S synthesis and/or levels have been implicated in the development of accelerated lung aging and diseases, including asthma, chronic obstructive pulmonary disease, and fibrosis. Furthermore, evidence indicates that persulfidation is decreased with aging. Here, we review the use of H2S as a biomarker of lung pathologies and discuss the potential of using H2S-generating molecules and synthesis inhibitors to treat respiratory diseases. Furthermore, we provide a critical appraisal of methods of detection used to quantify H2S concentration in biological samples and discuss the challenges of characterizing physiological and pathological levels. Considerations and caveats of using H2S delivery molecules, the choice of generating molecules, and concentrations are also reviewed. Antioxid. Redox Signal. 35, 551-579.
Collapse
Affiliation(s)
- Dario Pacitti
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Chris J Scotton
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Vinod Kumar
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - Haroon Khan
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - Peter A B Wark
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - Roberta Torregrossa
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - Philip M Hansbro
- Faculty of Science, Centre for Inflammation, Centenary Institute, University of Technology Sydney, Sydney, Australia
| | - Matthew Whiteman
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
24
|
Dillon KM, Matson JB. A Review of Chemical Tools for Studying Small Molecule Persulfides: Detection and Delivery. ACS Chem Biol 2021; 16:1128-1141. [PMID: 34114796 DOI: 10.1021/acschembio.1c00255] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hydrogen sulfide (H2S) has gained significant attention as a potent bioregulator in the redox metabolome, but it is just one of many reactive sulfur species (RSS). Recently, small molecule persulfides (structure RSSH) have emerged as RSS of particular interest due to their enhanced antioxidant abilities compared to H2S and their ability to directly convert protein thiols into protein persulfides, suggesting that persulfides may have distinct physiological functions from H2S. However, persulfides exhibit instability and cross-reactivity that hampers the elucidation of their precise biological roles. As such, chemists have designed chemical tools and techniques to facilitate the study of persulfides under various conditions. These molecules and methods include persulfide trapping reagents and sensors, as well as compounds that degrade in response to various triggers to release persulfides, termed persulfide donors. There now exist a variety of persulfide donor classes, some of which possess tissue-targeting capabilities designed to mimic localized endogenous production of RSS. This Review briefly covers the physicochemical properties of persulfides, the endogenous production of small molecule persulfides, and their reactions with protein thiols and other reactive species. These introductory sections are followed by a discussion of chemical tools used in persulfide chemical biology, with critical analysis of recent advancements in the field and commentary on potential directions for future research.
Collapse
Affiliation(s)
- Kearsley M. Dillon
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - John B. Matson
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
25
|
On-tissue polysulfide visualization by surface-enhanced Raman spectroscopy benefits patients with ovarian cancer to predict post-operative chemosensitivity. Redox Biol 2021; 41:101926. [PMID: 33752108 PMCID: PMC8010883 DOI: 10.1016/j.redox.2021.101926] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 12/14/2022] Open
Abstract
Chemosensitivity to cisplatin derivatives varies among individual patients with intractable malignancies including ovarian cancer, while how to unlock the resistance remain unknown. Ovarian cancer tissues were collected the debulking surgery in discovery- (n = 135) and validation- (n = 47) cohorts, to be analyzed with high-throughput automated immunohistochemistry which identified cystathionine γ-lyase (CSE) as an independent marker distinguishing non-responders from responders to post-operative platinum-based chemotherapy. We aimed to identify CSE-derived metabolites responsible for chemoresistant mechanisms: gold-nanoparticle (AuN)-based surface-enhanced Raman spectroscopy (SERS) was used to enhance electromagnetic fields which enabled to visualize multiple sulfur-containing metabolites through detecting scattering light from Au-S vibration two-dimensionally. Clear cell carcinoma (CCC) who turned out less sensitive to cisplatin than serous adenocarcinoma was classified into two groups by the intensities of SERS intensities at 480 cm-1; patients with greater intensities displayed the shorter overall survival after the debulking surgery. The SERS signals were eliminated by topically applied monobromobimane that breaks sulfane-sulfur bonds of polysulfides to result in formation of sulfodibimane which was detected at 580 cm-1, manifesting the presence of polysulfides in cancer tissues. CCC-derived cancer cell lines in culture were resistant against cisplatin, but treatment with ambroxol, an expectorant degrading polysulfides, renders the cells CDDP-susceptible. Co-administration of ambroxol with cisplatin significantly suppressed growth of cancer xenografts in nude mice. Furthermore, polysulfides, but neither glutathione nor hypotaurine, attenuated cisplatin-induced disturbance of DNA supercoiling. Polysulfide detection by on-tissue SERS thus enables to predict prognosis of cisplatin-based chemotherapy. The current findings suggest polysulfide degradation as a stratagem unlocking cisplatin chemoresistance.
Collapse
|
26
|
Olson KR, Gao Y, Briggs A, Devireddy M, Iovino NA, Licursi M, Skora NC, Whelan J, Villa BP, Straub KD. 'Antioxidant' berries, anthocyanins, resveratrol and rosmarinic acid oxidize hydrogen sulfide to polysulfides and thiosulfate: A novel mechanism underlying their biological actions. Free Radic Biol Med 2021; 165:67-78. [PMID: 33508425 DOI: 10.1016/j.freeradbiomed.2021.01.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/03/2021] [Accepted: 01/17/2021] [Indexed: 12/12/2022]
Abstract
Nutraceutical polyphenol catechins in green tea oxidize H2S to polysulfides (PS) in buffer and in cells thereby conveying their cytoprotective effects. Here we measure H2S oxidation in buffer and HEK293 cells by over-the-counter nutraceuticals, blueberry, bilberry and cranberry, and by polyphenols, cyanadin (Cya), quercetin (Que), rosmarinic acid (RA) and resveratrol (Res). H2S and PS were measured with specific fluorophores, AzMc and SSP4 respectively, and thiosulfate (TS) production was measured in buffer using silver nanoparticles (AgNPs). All compounds increased polysulfide production from H2S in buffer and increased polysufides in cells. Decreasing oxygen from 100% to 21% and 0% progressively decreased PS production by Que and RA in buffer and Que decreased PS production in cells incubated in 5% O2 compared to 21% O2. Que, RA and Res, but not Cya, increased TS production from H2S in 21% O2 but not in 0% O2. Superoxide dismutase did not affect PS production from H2S by Que or TS production from H2S by Que, RA or Res, whereas catalase inhibited TS production by all three polyphenols. Conversely, these polyphenols only slightly reduce a mixed polysulfide (K2Sn) or thiosulfate to H2S in 0% O2. Collectively, our results suggest that polyphenols are autoxidized to a semiquinone radical and that this, in turn, oxidizes H2S to a thiyl radical from which polysulfides and thiosulfate derived. They also suggest that this is catalyzed by a semiquinone radical and it is independent of either superoxide or hydrogen peroxide concomitantly produced during polyphenol autoxidation. The polysulfides produced in these reactions are potent antioxidants and also initiate a variety of downstream cytoprotective effector mechanisms. It is also possible that H2S can be regenerated from the thiosulfate produced in these reactions by other cellular reductants and reused in subsequent reactions.
Collapse
Affiliation(s)
- Kenneth R Olson
- Indiana University School of Medicine - South Bend Center, South Bend, IN, 46617, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.
| | - Yan Gao
- Indiana University School of Medicine - South Bend Center, South Bend, IN, 46617, USA
| | - Austin Briggs
- Indiana University School of Medicine - South Bend Center, South Bend, IN, 46617, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Monesh Devireddy
- Indiana University School of Medicine - South Bend Center, South Bend, IN, 46617, USA
| | - Nicholas A Iovino
- Indiana University School of Medicine - South Bend Center, South Bend, IN, 46617, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Matthew Licursi
- Indiana University School of Medicine - South Bend Center, South Bend, IN, 46617, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Nicole C Skora
- Indiana University School of Medicine - South Bend Center, South Bend, IN, 46617, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Jenna Whelan
- Indiana University School of Medicine - South Bend Center, South Bend, IN, 46617, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Brian P Villa
- Indiana University School of Medicine - South Bend Center, South Bend, IN, 46617, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Karl D Straub
- Central Arkansas Veteran's Healthcare System, Little Rock, AR, 72205, USA; Departments of Medicine and Biochemistry, University of Arkansas for Medical Sciences, Little Rock, AR, 72202, USA
| |
Collapse
|
27
|
Oxidation of Hydrogen Sulfide by Quinones: How Polyphenols Initiate Their Cytoprotective Effects. Int J Mol Sci 2021; 22:ijms22020961. [PMID: 33478045 PMCID: PMC7835830 DOI: 10.3390/ijms22020961] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/15/2022] Open
Abstract
We have shown that autoxidized polyphenolic nutraceuticals oxidize H2S to polysulfides and thiosulfate and this may convey their cytoprotective effects. Polyphenol reactivity is largely attributed to the B ring, which is usually a form of hydroxyquinone (HQ). Here, we examine the effects of HQs on sulfur metabolism using H2S- and polysulfide-specific fluorophores (AzMC and SSP4, respectively) and thiosulfate sensitive silver nanoparticles (AgNP). In buffer, 1,4-dihydroxybenzene (1,4-DB), 1,4-benzoquinone (1,4-BQ), pyrogallol (PG) and gallic acid (GA) oxidized H2S to polysulfides and thiosulfate, whereas 1,2-DB, 1,3-DB, 1,2-dihydroxy,3,4-benzoquinone and shikimic acid did not. In addition, 1,4-DB, 1,4-BQ, PG and GA also increased polysulfide production in HEK293 cells. In buffer, H2S oxidation by 1,4-DB was oxygen-dependent, partially inhibited by tempol and trolox, and absorbance spectra were consistent with redox cycling between HQ autoxidation and H2S-mediated reduction. Neither 1,2-DB, 1,3-DB, 1,4-DB nor 1,4-BQ reduced polysulfides to H2S in either 21% or 0% oxygen. Epinephrine and norepinephrine also oxidized H2S to polysulfides and thiosulfate; dopamine and tyrosine were ineffective. Polyphenones were also examined, but only 2,5-dihydroxy- and 2,3,4-trihydroxybenzophenones oxidized H2S. These results show that H2S is readily oxidized by specific hydroxyquinones and quinones, most likely through the formation of a semiquinone radical intermediate derived from either reaction of oxygen with the reduced quinones, or from direct reaction between H2S and quinones. We propose that polysulfide production by these reactions contributes to the health-promoting benefits of polyphenolic nutraceuticals.
Collapse
|
28
|
Bibli SI, Hu J, Looso M, Weigert A, Ratiu C, Wittig J, Drekolia MK, Tombor L, Randriamboavonjy V, Leisegang MS, Goymann P, Delgado Lagos F, Fisslthaler B, Zukunft S, Kyselova A, Justo AFO, Heidler J, Tsilimigras D, Brandes RP, Dimmeler S, Papapetropoulos A, Knapp S, Offermanns S, Wittig I, Nishimura SL, Sigala F, Fleming I. Mapping the Endothelial Cell S-Sulfhydrome Highlights the Crucial Role of Integrin Sulfhydration in Vascular Function. Circulation 2020; 143:935-948. [PMID: 33307764 DOI: 10.1161/circulationaha.120.051877] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND In vascular endothelial cells, cysteine metabolism by the cystathionine γ lyase (CSE), generates hydrogen sulfide-related sulfane sulfur compounds (H2Sn), that exert their biological actions via cysteine S-sulfhydration of target proteins. This study set out to map the "S-sulfhydrome" (ie, the spectrum of proteins targeted by H2Sn) in human endothelial cells. METHODS Liquid chromatography with tandem mass spectrometry was used to identify S-sulfhydrated cysteines in endothelial cell proteins and β3 integrin intraprotein disulfide bond rearrangement. Functional studies included endothelial cell adhesion, shear stress-induced cell alignment, blood pressure measurements, and flow-induced vasodilatation in endothelial cell-specific CSE knockout mice and in a small collective of patients with endothelial dysfunction. RESULTS Three paired sample sets were compared: (1) native human endothelial cells isolated from plaque-free mesenteric arteries (CSE activity high) and plaque-containing carotid arteries (CSE activity low); (2) cultured human endothelial cells kept under static conditions or exposed to fluid shear stress to decrease CSE expression; and (3) cultured endothelial cells exposed to shear stress to decrease CSE expression and treated with solvent or the slow-releasing H2Sn donor, SG1002. The endothelial cell "S-sulfhydrome" consisted of 3446 individual cysteine residues in 1591 proteins. The most altered family of proteins were the integrins and focusing on β3 integrin in detail we found that S-sulfhydration affected intraprotein disulfide bond formation and was required for the maintenance of an extended-open conformation of the β leg. β3 integrin S-sulfhydration was required for endothelial cell mechanotransduction in vitro as well as flow-induced dilatation in murine mesenteric arteries. In cultured cells, the loss of S-sulfhydration impaired interactions between β3 integrin and Gα13 (guanine nucleotide-binding protein subunit α 13), resulting in the constitutive activation of RhoA (ras homolog family member A) and impaired flow-induced endothelial cell realignment. In humans with atherosclerosis, endothelial function correlated with low H2Sn generation, impaired flow-induced dilatation, and failure to detect β3 integrin S-sulfhydration, all of which were rescued after the administration of an H2Sn supplement. CONCLUSIONS Vascular disease is associated with marked changes in the S-sulfhydration of endothelial cell proteins involved in mediating responses to flow. Short-term H2Sn supplementation improved vascular reactivity in humans highlighting the potential of interfering with this pathway to treat vascular disease.
Collapse
Affiliation(s)
- Sofia-Iris Bibli
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Jiong Hu
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Mario Looso
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.).,Bioinformatics Core Unit (M.L., P.G.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Germany (A.W.)
| | - Corina Ratiu
- Centre for Molecular Medicine, Institute for Cardiovascular Physiology (C.R., M.S.L., R.P.B.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Janina Wittig
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Maria Kyriaki Drekolia
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany
| | - Lukas Tombor
- Institute for Cardiovascular Regeneration (L.T., S.D.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Voahanginirina Randriamboavonjy
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Matthias S Leisegang
- Centre for Molecular Medicine, Institute for Cardiovascular Physiology (C.R., M.S.L., R.P.B.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Philipp Goymann
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.).,Bioinformatics Core Unit (M.L., P.G.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Fredy Delgado Lagos
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Beate Fisslthaler
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Sven Zukunft
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Anastasia Kyselova
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Alberto Fernando Oliveira Justo
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Juliana Heidler
- Functional Proteomics (J.Heidler., I.W.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Diamantis Tsilimigras
- First Propedeutic Department of Surgery, Vascular Surgery Division (D.T., F.S.), National and Kapodistrian University of Athens Medical School, Greece
| | - Ralf P Brandes
- Centre for Molecular Medicine, Institute for Cardiovascular Physiology (C.R., M.S.L., R.P.B.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration (L.T., S.D.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy (A.P.), National and Kapodistrian University of Athens Medical School, Greece.,Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece (A.P.)
| | - Stefan Knapp
- Institute for Pharmaceutical Chemistry and Buchmann Institute for Molecular Life Sciences (S.K.), Goethe University, Frankfurt am Main, Germany
| | - Stefan Offermanns
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.).,Department of Pharmacology (S.O.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ilka Wittig
- Functional Proteomics (J.Heidler., I.W.), Goethe University, Frankfurt am Main, Germany
| | | | - Fragiska Sigala
- First Propedeutic Department of Surgery, Vascular Surgery Division (D.T., F.S.), National and Kapodistrian University of Athens Medical School, Greece
| | - Ingrid Fleming
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| |
Collapse
|
29
|
Sun HJ, Xiong SP, Cao X, Cao L, Zhu MY, Wu ZY, Bian JS. Polysulfide-mediated sulfhydration of SIRT1 prevents diabetic nephropathy by suppressing phosphorylation and acetylation of p65 NF-κB and STAT3. Redox Biol 2020; 38:101813. [PMID: 33279869 PMCID: PMC7718489 DOI: 10.1016/j.redox.2020.101813] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/10/2020] [Accepted: 11/21/2020] [Indexed: 12/12/2022] Open
Abstract
Diabetic kidney disease is known as a major cause of chronic kidney disease and end stage renal disease. Polysulfides, a class of chemical agents with a chain of sulfur atoms, are found to confer renal protective effects in acute kidney injury. However, whether a polysulfide donor, sodium tetrasulfide (Na2S4), confers protective effects against diabetic nephropathy remains unclear. Our results showed that Na2S4 treatment ameliorated renal dysfunctional and histological damage in diabetic kidneys through inhibiting the overproduction of inflammation cytokine and reactive oxygen species (ROS), as well as attenuating renal fibrosis and renal cell apoptosis. Additionally, the upregulated phosphorylation and acetylation levels of p65 nuclear factor κB (p65 NF-κB) and signal transducer and activator of transcription 3 (STAT3) in diabetic nephropathy were abrogated by Na2S4 in a sirtuin-1 (SIRT1)-dependent manner. In renal tubular epithelial cells, Na2S4 directly sulfhydrated SIRT1 at two conserved CXXC domains (Cys371/374; Cys395/398), then induced dephosphorylation and deacetylation of its targeted proteins including p65 NF-κB and STAT3, thereby reducing high glucose (HG)-caused oxidative stress, cell apoptosis, inflammation response and epithelial-to-mesenchymal transition (EMT) progression. Most importantly, inactivation of SIRT1 by a specific inhibitor EX-527, small interfering RNA (siRNA), a de-sulfhydration reagent dithiothreitol (DTT), or mutation of Cys371/374 and Cys395/398 sites at SIRT1 abolished the protective effects of Na2S4 on diabetic kidney insulting. These results reveal that polysulfides may attenuate diabetic renal lesions via inactivation of p65 NF-κB and STAT3 phosphorylation/acetylation through sulfhydrating SIRT1.
Collapse
Affiliation(s)
- Hai-Jian Sun
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Si-Ping Xiong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Xu Cao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Lei Cao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Meng-Yuan Zhu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Zhi-Yuan Wu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Jin-Song Bian
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, 215000, China.
| |
Collapse
|
30
|
Zhang X, Chen M, Ni X, Wang Y, Zheng X, Zhang H, Xu S, Yang CT. Metabolic Reprogramming of Sulfur in Hepatocellular Carcinoma and Sulfane Sulfur-Triggered Anti-Cancer Strategy. Front Pharmacol 2020; 11:571143. [PMID: 33101029 PMCID: PMC7556288 DOI: 10.3389/fphar.2020.571143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/01/2020] [Indexed: 01/07/2023] Open
Abstract
Metabolic reprogramming is a cancer hallmark. Although the reprogramming of central carbon has been well documented, the role of sulfur metabolism has been largely overlooked. Additionally, the effects of sulfur are sometimes contradictory in tumorigenesis. In this study, we aimed to investigate the gene expression profile in hepatocellular carcinoma (HCC) and the effects of reactive sulfur species (RSS) on HCC tumor cells. Furthermore, the cell imaging technology was applied to discover some potential anti-cancer compounds. Gene Set Enrichment Analysis (GSEA) of Gene Expression Omnibus (GEO) dataset (GSE102083) revealed that sulfur amino acid-related metabolism and vitamin B6 binding activity in HCC tissues were downregulated. Calculation of the interaction network identified nine hub genes, among which eight were validated by differential expression and survival analysis in the TCGA_LIHC cohort, and two (CSE and CBS) had the highest enrichment degree. The metabolomics analysis suggested that the hub genes were associated with RSS metabolism including H2S, H2S2, cystine, cysteine, homocysteine, cystathionine, and methionine. The cell viability assay demonstrated that H2S2 had significant anti-cancer effects in HCC SNU398 tumor cells. The cell imaging assay showed that treatment with H2S2 remarkably increased intracellular sulfane sulfur content. On this basis, the anti-cancer activity of some other sulfane sulfur compounds, such as DATS and DADS, was further verified. Lastly, according to the fact that HCC tumor cells preferentially take in cystine due to high expression of SLC7A11 (a cystine/glutamate transporter), persulfided cysteine precursor (PSCP) was tested for its sulfane sulfur release capability and found to selectively inhibit HCC tumor cell viability. Collectively, this study uncovered sulfur metabolism in HCC was reprogrammed, and provided a potential therapeutic strategy for HCC by donating sulfane sulfur.
Collapse
Affiliation(s)
- Ximing Zhang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Mianrong Chen
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Xiang Ni
- Department of Chemistry, Brown University, Providence, RI, United States
| | - Yingying Wang
- Department of Chemistry, Washington State University, Pullman, WA, United States
| | - Xue Zheng
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Hui Zhang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Shi Xu
- Department of Chemistry, Brown University, Providence, RI, United States
| | - Chun-Tao Yang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
31
|
Walsh BJC, Giedroc DP. H 2S and reactive sulfur signaling at the host-bacterial pathogen interface. J Biol Chem 2020; 295:13150-13168. [PMID: 32699012 PMCID: PMC7504917 DOI: 10.1074/jbc.rev120.011304] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/22/2020] [Indexed: 12/13/2022] Open
Abstract
Bacterial pathogens that cause invasive disease in the vertebrate host must adapt to host efforts to cripple their viability. Major host insults are reactive oxygen and reactive nitrogen species as well as cellular stress induced by antibiotics. Hydrogen sulfide (H2S) is emerging as an important player in cytoprotection against these stressors, which may well be attributed to downstream more oxidized sulfur species termed reactive sulfur species (RSS). In this review, we summarize recent work that suggests that H2S/RSS impacts bacterial survival in infected cells and animals. We discuss the mechanisms of biogenesis and clearance of RSS in the context of a bacterial H2S/RSS homeostasis model and the bacterial transcriptional regulatory proteins that act as "sensors" of cellular RSS that maintain H2S/RSS homeostasis. In addition, we cover fluorescence imaging- and MS-based approaches used to detect and quantify RSS in bacterial cells. Last, we discuss proteome persulfidation (S-sulfuration) as a potential mediator of H2S/RSS signaling in bacteria in the context of the writer-reader-eraser paradigm, and progress toward ascribing regulatory significance to this widespread post-translational modification.
Collapse
Affiliation(s)
- Brenna J C Walsh
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA; Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, USA.
| |
Collapse
|
32
|
Olson KR, Briggs A, Devireddy M, Iovino NA, Skora NC, Whelan J, Villa BP, Yuan X, Mannam V, Howard S, Gao Y, Minnion M, Feelisch M. Green tea polyphenolic antioxidants oxidize hydrogen sulfide to thiosulfate and polysulfides: A possible new mechanism underpinning their biological action. Redox Biol 2020; 37:101731. [PMID: 33002760 PMCID: PMC7527747 DOI: 10.1016/j.redox.2020.101731] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/11/2020] [Accepted: 09/12/2020] [Indexed: 12/13/2022] Open
Abstract
Matcha and green tea catechins such as (−)-epicatechin (EC), (−)-epigallocatechin (EGC) and (−)-epigallocatechin gallate (EGCG) have long been studied for their antioxidant and health-promoting effects. Using specific fluorophores for H2S (AzMC) and polysulfides (SSP4) as well as IC-MS and UPLC-MS/MS-based techniques we here show that popular Japanese and Chinese green teas and select catechins all catalytically oxidize hydrogen sulfide (H2S) to polysulfides with the potency of EGC > EGCG >> EG. This reaction is accompanied by the formation of sulfite, thiosulfate and sulfate, consumes oxygen and is partially inhibited by the superoxide scavenger, tempol, and superoxide dismutase but not mannitol, trolox, DMPO, or the iron chelator, desferrioxamine. We propose that the reaction proceeds via a one-electron autoxidation process during which one of the OH-groups of the catechin B-ring is autooxidized to a semiquinone radical and oxygen is reduced to superoxide, either of which can then oxidize HS− to thiyl radicals (HS•) which react to form hydrogen persulfide (H2S2). H2S oxidation reduces the B-ring back to the hydroquinone for recycling while the superoxide is reduced to hydrogen peroxide (H2O2). Matcha and catechins also concentration-dependently and rapidly produce polysulfides in HEK293 cells with the potency order EGCG > EGC > EG, an EGCG threshold of ~300 nM, and an EC50 of ~3 μM, suggesting green tea also acts as powerful pro-oxidant in vivo. The resultant polysulfides formed are not only potent antioxidants, but elicit a cascade of secondary cytoprotective effects, and we propose that many of the health benefits of green tea are mediated through these reactions. Remarkably, all green tea leaves constitutively contain small amounts of H2S2.
Collapse
Affiliation(s)
- Kenneth R Olson
- Indiana University School of Medicine - South Bend, South Bend, IN, 46617, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.
| | - Austin Briggs
- Indiana University School of Medicine - South Bend, South Bend, IN, 46617, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Monesh Devireddy
- Indiana University School of Medicine - South Bend, South Bend, IN, 46617, USA
| | - Nicholas A Iovino
- Indiana University School of Medicine - South Bend, South Bend, IN, 46617, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Nicole C Skora
- Indiana University School of Medicine - South Bend, South Bend, IN, 46617, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Jenna Whelan
- Indiana University School of Medicine - South Bend, South Bend, IN, 46617, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Brian P Villa
- Indiana University School of Medicine - South Bend, South Bend, IN, 46617, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Xiaotong Yuan
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Varun Mannam
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Scott Howard
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Yan Gao
- Indiana University School of Medicine - South Bend, South Bend, IN, 46617, USA
| | - Magdalena Minnion
- NIHR Southampton Biomedical Research Center, University of Southampton, Southampton, General Hospital, Southampton, SO16 6YD, UK; Clinical & Experimental Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, SO16 6YD, UK
| | - Martin Feelisch
- NIHR Southampton Biomedical Research Center, University of Southampton, Southampton, General Hospital, Southampton, SO16 6YD, UK; Clinical & Experimental Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, SO16 6YD, UK.
| |
Collapse
|
33
|
Xuan G, Lü C, Xu H, Chen Z, Li K, Liu H, Liu H, Xia Y, Xun L. Sulfane Sulfur is an intrinsic signal activating MexR-regulated antibiotic resistance in Pseudomonas aeruginosa. Mol Microbiol 2020; 114:1038-1048. [PMID: 32875640 DOI: 10.1111/mmi.14593] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/11/2020] [Accepted: 08/17/2020] [Indexed: 01/13/2023]
Abstract
Pseudomonas aeruginosa PAO1, an opportunistic human pathogen, deploys several strategies to resist antibiotics. It uses multidrug efflux pumps, including the MexAB-OprM pump, for antibiotic resistance, and it also produces hydrogen sulfide (H2 S) that provides some defense against antibiotics. MexR functions as a transcriptional repressor of the mexAB-oprM operon. MexR responds to oxidative stresses caused by antibiotic exposure, and it also displays a growth phase-dependent derepression of the mexAB-oprM operon. However, the intrinsic inducer has not been identified. Here, we report that P. aeruginosa PAO1 produced sulfane sulfur, including glutathione persulfide and inorganic polysulfide, produced from either H2 S oxidation or from L-cysteine metabolism. Sulfane sulfur directly reacted with MexR, forming di- and trisulfide cross-links between two Cys residues, to derepress the mexAB-oprM operon. Levels of cellular sulfane sulfur and mexAB-oprM expression varied during growth, and both reached the maximum during the stationary phase of growth. Thus, self-produced H2 S and sulfane sulfur may facilitate antibiotic resistance via inducing the expression of antibiotic resistance genes.
Collapse
Affiliation(s)
- Guanhua Xuan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Chuanjuan Lü
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Huangwei Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Zhigang Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Kai Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Honglei Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Huaiwei Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Yongzhen Xia
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Luying Xun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China.,School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
34
|
Kolluru GK, Shen X, Kevil CG. Reactive Sulfur Species: A New Redox Player in Cardiovascular Pathophysiology. Arterioscler Thromb Vasc Biol 2020; 40:874-884. [PMID: 32131614 PMCID: PMC7098439 DOI: 10.1161/atvbaha.120.314084] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Hydrogen sulfide has emerged as an important gaseous signaling molecule and a regulator of critical biological processes. However, the physiological significance of hydrogen sulfide metabolites such as persulfides, polysulfides, and other reactive sulfur species (RSS) has only recently been appreciated. Emerging evidence suggests that these RSS molecules may have similar or divergent regulatory roles compared with hydrogen sulfide in various biological activities. However, the chemical nature of persulfides and polysulfides is complex and remains poorly understood within cardiovascular and other pathophysiological conditions. Recent reports suggest that RSS can be produced endogenously, with different forms having unique chemical properties and biological implications involving diverse cellular responses such as protein biosynthesis, cell-cell barrier functions, and mitochondrial bioenergetics. Enzymes of the transsulfuration pathway, CBS (cystathionine beta-synthase) and CSE (cystathionine gamma-lyase), may also produce RSS metabolites besides hydrogen sulfide. Moreover, CARSs (cysteinyl-tRNA synthetase) are also able to generate protein persulfides via cysteine persulfide (CysSSH) incorporation into nascently formed polypeptides suggesting a new biologically relevant amino acid. This brief review discusses the biochemical nature and potential roles of RSS, associated oxidative stress redox signaling, and future research opportunities in cardiovascular disease.
Collapse
Affiliation(s)
- Gopi K Kolluru
- From the Department of Pathology and Translational Pathobiology, Shreveport, LA
| | - Xinggui Shen
- From the Department of Pathology and Translational Pathobiology, Shreveport, LA
| | - Christopher G Kevil
- From the Department of Pathology and Translational Pathobiology, Shreveport, LA
| |
Collapse
|
35
|
Olson KR, Gao Y, DeLeon ER, Markel TA, Drucker N, Boone D, Whiteman M, Steiger AK, Pluth MD, Tessier CR, Stahelin RV. Extended hypoxia-mediated H 2 S production provides for long-term oxygen sensing. Acta Physiol (Oxf) 2020; 228:e13368. [PMID: 31442361 DOI: 10.1111/apha.13368] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/16/2019] [Accepted: 08/18/2019] [Indexed: 12/23/2022]
Abstract
AIM Numerous studies have shown that H2 S serves as an acute oxygen sensor in a variety of cells. We hypothesize that H2 S also serves in extended oxygen sensing. METHODS Here, we compare the effects of extended exposure (24-48 hours) to varying O2 tensions on H2 S and polysulphide metabolism in human embryonic kidney (HEK 293), human adenocarcinomic alveolar basal epithelial (A549), human colon cancer (HTC116), bovine pulmonary artery smooth muscle, human umbilical-derived mesenchymal stromal (stem) cells and porcine tracheal epithelium (PTE) using sulphur-specific fluorophores and fluorometry or confocal microscopy. RESULTS All cells continuously produced H2 S in 21% O2 and H2 S production was increased at lower O2 tensions. Decreasing O2 from 21% to 10%, 5% and 1% O2 progressively increased H2 S production in HEK293 cells and this was partially inhibited by a combination of inhibitors of H2 S biosynthesis, aminooxyacetate, propargyl glycine and compound 3. Mitochondria appeared to be the source of much of this increase in HEK 293 cells. H2 S production in all other cells and PTE increased when O2 was lowered from 21% to 5% except for HTC116 cells where 1% O2 was necessary to increase H2 S, presumably reflecting the hypoxic environment in vivo. Polysulphides (H2 Sn , where n = 2-7), the key signalling metabolite of H2 S also appeared to increase in many cells although this was often masked by high endogenous polysulphide concentrations. CONCLUSION These results show that cellular H2 S is increased during extended hypoxia and they suggest this is a continuously active O2 -sensing mechanism in a variety of cells.
Collapse
Affiliation(s)
- Kenneth R. Olson
- Indiana University School of Medicine‐South Bend South Bend Indiana
| | - Yan Gao
- Indiana University School of Medicine‐South Bend South Bend Indiana
| | - Eric R. DeLeon
- Indiana University School of Medicine‐South Bend South Bend Indiana
- Department of Biological Sciences University of Notre Dame Notre Dame Indiana
| | - Troy A. Markel
- Indiana University School of Medicine Riley Hospital for Children at IU Health Indianapolis Indiana
| | - Natalie Drucker
- Indiana University School of Medicine Riley Hospital for Children at IU Health Indianapolis Indiana
| | - David Boone
- Indiana University School of Medicine‐South Bend South Bend Indiana
| | | | - Andrea K. Steiger
- Department of Chemistry and Biochemistry University of Oregon Eugene Oregon
| | - Michael D. Pluth
- Department of Chemistry and Biochemistry University of Oregon Eugene Oregon
| | | | - Robert V. Stahelin
- Department of Medicinal Chemistry and Molecular Pharmacology Purdue University West Lafayette Indiana
| |
Collapse
|
36
|
Liu D, Zhang J, Lü C, Xia Y, Liu H, Jiao N, Xun L, Liu J. Synechococcus sp. Strain PCC7002 Uses Sulfide:Quinone Oxidoreductase To Detoxify Exogenous Sulfide and To Convert Endogenous Sulfide to Cellular Sulfane Sulfur. mBio 2020; 11:e03420-19. [PMID: 32098824 PMCID: PMC7042703 DOI: 10.1128/mbio.03420-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 01/17/2020] [Indexed: 12/19/2022] Open
Abstract
Eutrophication and deoxygenation possibly occur in coastal waters due to excessive nutrients from agricultural and aquacultural activities, leading to sulfide accumulation. Cyanobacteria, as photosynthetic prokaryotes, play significant roles in carbon fixation in the ocean. Although some cyanobacteria can use sulfide as the electron donor for photosynthesis under anaerobic conditions, little is known on how they interact with sulfide under aerobic conditions. In this study, we report that Synechococcus sp. strain PCC7002 (PCC7002), harboring an sqr gene encoding sulfide:quinone oxidoreductase (SQR), oxidized self-produced sulfide to S0, present as persulfide and polysulfide in the cell. The Δsqr mutant contained less cellular S0 and had increased expression of key genes involved in photosynthesis, but it was less competitive than the wild type in cocultures. Further, PCC7002 with SQR and persulfide dioxygenase (PDO) oxidized exogenous sulfide to tolerate high sulfide levels. Thus, SQR offers some benefits to cyanobacteria even under aerobic conditions, explaining the common presence of SQR in cyanobacteria.IMPORTANCE Cyanobacteria are a major force for primary production via oxygenic photosynthesis in the ocean. A marine cyanobacterium, PCC7002, is actively involved in sulfide metabolism. It uses SQR to detoxify exogenous sulfide, enabling it to survive better than its Δsqr mutant in sulfide-rich environments. PCC7002 also uses SQR to oxidize endogenously generated sulfide to S0, which is required for the proper expression of key genes involved in photosynthesis. Thus, SQR has at least two physiological functions in PCC7002. The observation provides a new perspective for the interplays of C and S cycles.
Collapse
Affiliation(s)
- Daixi Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Joint Lab for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Qingdao, China
| | - Jiajie Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
- Joint Lab for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Qingdao, China
| | - Chuanjuan Lü
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yongzhen Xia
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Huaiwei Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Nianzhi Jiao
- Joint Lab for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Qingdao, China
- Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
| | - Luying Xun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| | - Jihua Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
- Joint Lab for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Qingdao, China
- Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
| |
Collapse
|
37
|
Olson KR, Gao Y, Steiger AK, Pluth MD, Tessier CR, Markel TA, Boone D, Stahelin RV, Batinic-Haberle I, Straubg KD. Effects of Manganese Porphyrins on Cellular Sulfur Metabolism. Molecules 2020; 25:molecules25040980. [PMID: 32098303 PMCID: PMC7070779 DOI: 10.3390/molecules25040980] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/12/2020] [Accepted: 02/19/2020] [Indexed: 12/18/2022] Open
Abstract
Manganese porphyrins (MnPs), MnTE-2-PyP5+, MnTnHex-2-PyP5+ and MnTnBuOE-2-PyP5+, are superoxide dismutase (SOD) mimetics and form a redox cycle between O2 and reductants, including ascorbic acid, ultimately producing hydrogen peroxide (H2O2). We previously found that MnPs oxidize hydrogen sulfide (H2S) to polysulfides (PS; H2Sn, n = 2–6) in buffer. Here, we examine the effects of MnPs for 24 h on H2S metabolism and PS production in HEK293, A549, HT29 and bone marrow derived stem cells (BMDSC) using H2S (AzMC, MeRho-AZ) and PS (SSP4) fluorophores. All MnPs decreased intracellular H2S production and increased intracellular PS. H2S metabolism and PS production were unaffected by cellular O2 (5% versus 21% O2), H2O2 or ascorbic acid. We observed with confocal microscopy that mitochondria are a major site of H2S production in HEK293 cells and that MnPs decrease mitochondrial H2S production and increase PS in what appeared to be nucleoli and cytosolic fibrillary elements. This supports a role for MnPs in the metabolism of H2S to PS, the latter serving as both short- and long-term antioxidants, and suggests that some of the biological effects of MnPs may be attributable to sulfur metabolism.
Collapse
Affiliation(s)
- Kenneth R. Olson
- Indiana University School of Medicine-South Bend Center, South Bend, IN 46617, USA; (Y.G.); (C.R.T.); (D.B.)
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
- Correspondence: ; Tel.: +1 (574) 631-7560
| | - Yan Gao
- Indiana University School of Medicine-South Bend Center, South Bend, IN 46617, USA; (Y.G.); (C.R.T.); (D.B.)
| | - Andrea K. Steiger
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA; (A.K.S.); (M.D.P.)
| | - Michael D. Pluth
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA; (A.K.S.); (M.D.P.)
| | - Charles R. Tessier
- Indiana University School of Medicine-South Bend Center, South Bend, IN 46617, USA; (Y.G.); (C.R.T.); (D.B.)
| | - Troy A. Markel
- Indiana University School of Medicine, Riley Hospital for Children at IU Health, 705 Riley Hospital Dr, RI 2500, Indianapolis, IN 46202, USA;
| | - David Boone
- Indiana University School of Medicine-South Bend Center, South Bend, IN 46617, USA; (Y.G.); (C.R.T.); (D.B.)
| | - Robert V. Stahelin
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA;
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, School of Medicine, Duke University, Durham, NC 27710, USA;
| | - Karl D. Straubg
- Central Arkansas Veteran’s Healthcare System, Little Rock, AR 72205, USA;
- Departments of Medicine and Biochemistry, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| |
Collapse
|
38
|
Xu S, Wang Y, Parent Z, Xian M. Diacyl disulfides as the precursors for hydrogen persulfide (H 2S 2). Bioorg Med Chem Lett 2020; 30:126903. [PMID: 31901381 PMCID: PMC7000109 DOI: 10.1016/j.bmcl.2019.126903] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/03/2019] [Accepted: 12/09/2019] [Indexed: 11/16/2022]
Abstract
While hydrogen polysulfides (H2Sn, n ≥ 2) are believed to play regulatory roles in biology, their fundamental chemistry and reactivity are still poorly understood. Compounds that can produce H2Sn are useful tools. In this work we found that H2S2 could be effectively produced from diacyl disulfide precursors, triggered by certain nucleophiles, in both aqueous solutions and organic solvents. This method was used to explore redox reactions of H2S2, such as scavenging 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) and reduction of tetrazines.
Collapse
Affiliation(s)
- Shi Xu
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Yingying Wang
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Zoel Parent
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Ming Xian
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States.
| |
Collapse
|
39
|
Peleli M, Bibli SI, Li Z, Chatzianastasiou A, Varela A, Katsouda A, Zukunft S, Bucci M, Vellecco V, Davos CH, Nagahara N, Cirino G, Fleming I, Lefer DJ, Papapetropoulos A. Cardiovascular phenotype of mice lacking 3-mercaptopyruvate sulfurtransferase. Biochem Pharmacol 2020; 176:113833. [PMID: 32027885 DOI: 10.1016/j.bcp.2020.113833] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/30/2020] [Indexed: 12/16/2022]
Abstract
RATIONALE Hydrogen sulfide (H2S) is a physiological mediator that regulates cardiovascular homeostasis. Three major enzymes contribute to the generation of endogenously produced H2S, namely cystathionine γ-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). Although the biological roles of CSE and CBS have been extensively investigated in the cardiovascular system, very little is known about that of 3-MST. In the present study we determined the importance of 3-MST in the heart and blood vessels, using a genetic model with a global 3-MST deletion. RESULTS 3-MST is the most abundant transcript in the mouse heart, compared to CSE and CBS. 3-MST was mainly localized in smooth muscle cells and cardiomyocytes, where it was present in both the mitochondria and the cytosol. Levels of serum and cardiac H2S species were not altered in adult young (2-3 months old) 3-MST-/- mice compared to WT animals. No significant changes in the expression of CSE and CBS were observed. Additionally, 3-MST-/- mice had normal left ventricular structure and function, blood pressure and vascular reactivity. Interestingly, genetic ablation of 3-MST protected mice against myocardial ischemia reperfusion injury, and abolished the protection offered by ischemic pre- and post-conditioning. 3-MST-/- mice showed lower expression levels of thiosulfate sulfurtransferase, lower levels of cellular antioxidants and elevated basal levels of cardiac reactive oxygen species. In parallel, 3-MST-/- mice showed no significant alterations in endothelial NO synthase or downstream targets. Finally, in a separate cohort of older 3-MST-/- mice (18 months old), a hypertensive phenotype associated with cardiac hypertrophy and NO insufficiency was observed. CONCLUSIONS Overall, genetic ablation of 3-MST impacts on the mouse cardiovascular system in an age-dependent manner. Loss of 3-MST exerts a cardioprotective role in young adult mice, while with aging it predisposes them to hypertension and cardiac hypertrophy.
Collapse
Affiliation(s)
- Maria Peleli
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece; Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Sofia-Iris Bibli
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, German Centre for Cardiovascular Research (DZHK) Partner Site Rhein-Main, Frankfurt am Main, Germany
| | - Zhen Li
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Athanasia Chatzianastasiou
- "George P. Livanos and Marianthi Simou" Laboratories, First Department of Pulmonary and Critical Care Medicine, Evangelismos Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Aimilia Varela
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| | - Antonia Katsouda
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| | - Sven Zukunft
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, German Centre for Cardiovascular Research (DZHK) Partner Site Rhein-Main, Frankfurt am Main, Germany
| | - Mariarosaria Bucci
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Valentina Vellecco
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Constantinos H Davos
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| | | | - Giuseppe Cirino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, German Centre for Cardiovascular Research (DZHK) Partner Site Rhein-Main, Frankfurt am Main, Germany
| | - David J Lefer
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Andreas Papapetropoulos
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece; Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece.
| |
Collapse
|
40
|
Vellecco V, Martelli A, Bibli IS, Vallifuoco M, Manzo OL, Panza E, Citi V, Calderone V, de Dominicis G, Cozzolino C, Basso EM, Mariniello M, Fleming I, Mancini A, Bucci M, Cirino G. Anomalous K v 7 channel activity in human malignant hyperthermia syndrome unmasks a key role for H 2 S and persulfidation in skeletal muscle. Br J Pharmacol 2020; 177:810-823. [PMID: 31051045 PMCID: PMC7024712 DOI: 10.1111/bph.14700] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/05/2019] [Accepted: 04/16/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Human malignant hyperthermia (MH) syndrome is induced by volatile anaesthetics and involves increased levels of cystathionine β-synthase (CBS)-derived H2 S within skeletal muscle. This increase contributes to skeletal muscle hypercontractility. Kv 7 channels, expressed in skeletal muscle, may be a molecular target for H2 S. Here, we have investigated the role of Kv 7 channels in MH. EXPERIMENTAL APPROACH Skeletal muscle biopsies were obtained from MH-susceptible (MHS) and MH-negative (MHN) patients. Immunohistochemistry, RT-PCR, Western blot, and in vitro contracture test (IVCT) were carried out. Development and characterization of primary human skeletal muscle cells (PHSKMC) and evaluation of cell membrane potential were also performed. The persulfidation state of Kv 7 channels and polysulfide levels were measured. KEY RESULTS Kv 7 channels were similarly expressed in MHN and MHS biopsies. The IVCT revealed an anomalous contractility of MHS biopsies following exposure to the Kv 7 channel opener retigabine. Incubation of negative biopsies with NaHS, prior to retigabine addition, led to an MHS-like positive response. MHS-derived PHSKMC challenged with retigabine showed a paradoxical depolarizing effect, compared with the canonical hyperpolarizing effect. CBS expression and activity were increased in MHS biopsies, resulting in a major polysulfide bioavailability. Persulfidation of Kv 7.4 channels was significantly higher in MHS than in MHN biopsies. CONCLUSIONS AND IMPLICATIONS In skeletal muscle of MHS patients, CBS-derived H2 S induced persulfidation of Kv 7 channels. This post-translational modification switches the hyperpolarizing activity into depolarizing. This mechanism can contribute to the pathological skeletal muscle hypercontractility typical of MH syndrome. LINKED ARTICLES This article is part of a themed section on Hydrogen Sulfide in Biology & Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.4/issuetoc.
Collapse
Affiliation(s)
- Valentina Vellecco
- Department of Pharmacy, School of MedicineUniversity of Naples Federico IINaplesItaly
| | | | - Iris Sofia Bibli
- Institute for Vascular Signalling, Centre for Molecular MedicineGoethe University Frankfurt am MainFrankfurt am MainGermany
- German Center of Cardiovascular Research (DZHK), partner site RheinMainFrankfurt am MainGermany
| | | | - Onorina L. Manzo
- Department of Pharmacy, School of MedicineUniversity of Naples Federico IINaplesItaly
| | - Elisabetta Panza
- Department of Pharmacy, School of MedicineUniversity of Naples Federico IINaplesItaly
| | | | | | | | | | | | | | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular MedicineGoethe University Frankfurt am MainFrankfurt am MainGermany
- German Center of Cardiovascular Research (DZHK), partner site RheinMainFrankfurt am MainGermany
| | | | - Mariarosaria Bucci
- Department of Pharmacy, School of MedicineUniversity of Naples Federico IINaplesItaly
| | - Giuseppe Cirino
- Department of Pharmacy, School of MedicineUniversity of Naples Federico IINaplesItaly
| |
Collapse
|
41
|
Liang L, Li W, Zheng J, Li R, Chen H, Yuan Z. A new lysosome-targetable fluorescent probe for detection of endogenous hydrogen polysulfides in living cells and inflamed mouse model. Biomater Sci 2020; 8:224-231. [PMID: 31674627 DOI: 10.1039/c9bm01616c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen polysulfides (H2Sn, n > 1) belong to sulfane sulfur in the reactive sulfur species (RSS) family and play significant roles in maintaining biological homeostasis in organisms. The detection of H2Sn in living systems is essential, but further understanding of its "intact" function in living cells has been limited, owing to the lack of appropriate analytical tools. In this work, a new fluorescent probe PP-PS was designed for the detection of endogenous H2Sn. The probe has a large Stokes shift (178 nm), low detection limit (1 nM), and short response time (1 minute). Besides, PP-PS was successfully applied in the imaging of endogenous H2Sn in lysosomes of living cancer cells, xenograft mouse tumor tissues, and LPS-induced mouse inflammation tissues. These results revealed that the probe PP-PS could act as a new fluorescence imaging tool to study the function of intracellular hydropolysulfides.
Collapse
Affiliation(s)
- Li Liang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing 210009, China.
| | - Weiqing Li
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing 210009, China.
| | - Jinrong Zheng
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing 210009, China.
| | - Ruixi Li
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing 210009, China.
| | - Haiyan Chen
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing 210009, China.
| | - Zhenwei Yuan
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing 210009, China.
| |
Collapse
|
42
|
Bibli SI, Hu J, Leisegang MS, Wittig J, Zukunft S, Kapasakalidi A, Fisslthaler B, Tsilimigras D, Zografos G, Filis K, Brandes RP, Papapetropoulos A, Sigala F, Fleming I. Shear stress regulates cystathionine γ lyase expression to preserve endothelial redox balance and reduce membrane lipid peroxidation. Redox Biol 2020; 28:101379. [PMID: 31759247 PMCID: PMC6880097 DOI: 10.1016/j.redox.2019.101379] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/30/2019] [Accepted: 11/10/2019] [Indexed: 02/06/2023] Open
Abstract
Cystathionine γ lyase (CSE) is the major source of hydrogen sulfide-derived species (H2Sn) in endothelial cells and plays an important role in protecting against atherosclerosis. Here we investigated the molecular mechanisms underlying the regulation of CSE expression in endothelial cells by fluid shear stress/flow. Fluid shear stress decreased CSE expression in human and murine endothelial cells and was negatively correlated with the transcription factor Krüppel-like factor (KLF) 2. CSE was identified as a direct target of the KLF2-regulated microRNA, miR-27b and high expression of CSE in native human plaque-derived endothelial cells, was also inversely correlated with KLF2 and miR-27b levels. One consequence of decreased CSE expression was the loss of Prx6 sulfhydration (on Cys47), which resulted in Prx6 hyperoxidation, decamerization and inhibition, as well as a concomitant increase in endothelial cell reactive oxygen species and lipid membrane peroxidation. H2Sn supplementation in vitro was able to reverse the redox state of Prx6. Statin therapy, which is known to activate KLF2, also decreased CSE expression but increased CSE activity by preventing its phosphorylation on Ser377. As a result, the sulfhydration of Prx6 was partially restored in samples from plaque containing arteries from statin-treated donors. Taken together, the regulation of CSE expression by shear stress/disturbed flow is dependent on KLF2 and miR-27b. Moreover, in murine and human arteries CSE acts to maintain endothelial redox balance at least partly by targeting Prx6 to prevent its decamerization and inhibition of its peroxidase activity.
Collapse
Key Words
- (3′utr), 3′untranslated region
- (cse), cystathionine γ lyase
- (dhe), dihydroethidium
- (dppp), diphenyl-1-pyrenylphosphine
- (enos), endothelial nitric oxide synthase
- (h2sn), h2s-related sulfane sulfur compounds
- (h2s), hydrogen sulfide
- (h2o2), hydrogen peroxide
- (il-1β), interleukin-1β
- (klf2), krüppel-like factor 2
- (lc-ms/ms), liquid chromatography - tandem mass spectrometry
- (no), nitric oxide
- (prx), peroxiredoxin
- (ros), reactive oxygen species
- (sirna), small interfering rna
- (o2•-), superoxide anion
- (tbars), thiobarbituric acid reactive substances
Collapse
Affiliation(s)
- Sofia-Iris Bibli
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany
| | - Jiong Hu
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany
| | - Matthias S Leisegang
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany; Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main, Germany
| | - Janina Wittig
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany
| | - Sven Zukunft
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany
| | - Andrea Kapasakalidi
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Beate Fisslthaler
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany
| | - Diamantis Tsilimigras
- First Propedeutic Department of Surgery, Vascular Surgery Division, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Georgios Zografos
- First Propedeutic Department of Surgery, Vascular Surgery Division, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Konstantinos Filis
- First Propedeutic Department of Surgery, Vascular Surgery Division, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Ralf P Brandes
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany; Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main, Germany
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens Medical School, Athens, Greece; Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Soranou Ephessiou 4, Athens, 11527, Greece
| | - Fragiska Sigala
- First Propedeutic Department of Surgery, Vascular Surgery Division, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece.
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany.
| |
Collapse
|
43
|
Olson KR, Briggs A, Devireddy M, Xian M, Gao Y. Are the beneficial effects of 'antioxidant' lipoic acid mediated through metabolism of reactive sulfur species? Free Radic Biol Med 2020; 146:139-149. [PMID: 31676393 DOI: 10.1016/j.freeradbiomed.2019.10.410] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/08/2019] [Accepted: 10/21/2019] [Indexed: 12/28/2022]
Abstract
The health benefits of lipoic acid (LA) are generally attributed to mitigating the harmful effects of reactive oxygen species (ROS). ROS are chemically similar to reactive sulfur species (RSS) and signal through identical mechanisms. Here we examined the effects of LA on RSS in HEK293 cells using H2S and polysulfide (PS) specific fluorophores, AzMC and SSP4. We show that LA concentration-dependently increased both H2S and PS. Physioxia (5% O2) augmented the effects of LA on H2S production but decreased PS production. Thiosulfate, a known substrate for reduced LA, and an intermediate in the catabolism of H2S enhanced the effects of LA on H2S and PS production. Inhibiting peroxiredoxins with conoidin A and gluraredoxins with tiopronin augmented the effects of LA on PS and H2S, respectively while decreasing glutathione with buthionine-sulfoximine (BSO) or diethyl maleate (DEM) decreased the stimulatory effect of LA on H2S production but augmented LA's effect on PS. Aminooxyacetate (AOA) and propargylglycine (PPG), inhibitors of H2S production from cysteine partially inhibited LA augmentation of H2S production and further decreased the LA effect when applied concurrently with BSO and DEM. The selective and cell-permeable H2S scavenger, SS20, inhibited the effects of LA on cellular H2S. Estimates of single-cell H2S production suggest that 0.1-0.2% of O2 consumption is used to metabolize H2S and these requirements may increase to 1-2% with 1 mM LA. Collectively, these results suggest that LA rescues H2S from irreversible oxidation and that the effects of LA on RSS directly confer antioxidant, anti-inflammatory and cytoprotective responses. They also suggest that TS may be an effective supplement to increase the efficacy of LA in clinical settings.
Collapse
Affiliation(s)
- Kenneth R Olson
- Indiana University School of Medicine, South Bend Center, South Bend, IN, 46617, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.
| | - Austin Briggs
- Indiana University School of Medicine, South Bend Center, South Bend, IN, 46617, USA
| | - Monesh Devireddy
- Indiana University School of Medicine, South Bend Center, South Bend, IN, 46617, USA
| | - Ming Xian
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Yan Gao
- Indiana University School of Medicine, South Bend Center, South Bend, IN, 46617, USA
| |
Collapse
|
44
|
Ran M, Wang T, Shao M, Chen Z, Liu H, Xia Y, Xun L. Sensitive Method for Reliable Quantification of Sulfane Sulfur in Biological Samples. Anal Chem 2019; 91:11981-11986. [PMID: 31436086 DOI: 10.1021/acs.analchem.9b02875] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sulfane sulfur has been recognized as a common cellular component, participating in regulating enzyme activities and signaling pathways. However, the quantification of total sulfane sulfur in biological samples is still a challenge. Here, we developed a method to address the need. All tested sulfane sulfur reacted with sulfite and quantitatively converted to thiosulfate when heated at 95 °C in a solution of pH 9.5 for 10 min. The assay condition was also sufficient to convert total sulfane sulfur in biological samples to thiosulfate for further derivatization and quantification. We applied the method to detect sulfane sulfur contents at different growth phases of bacteria, yeast, mammalian cells, and zebrafish. Total sulfane sulfur contents in all of them increased in the early stage, kept at a steady state for a period, and declined sharply in the late stage of the growth. Sulfane sulfur contents varied in different species. For Escherichia coli, growth media also affected the sulfane sulfur contents. Total sulfane sulfur contents from different organs of mouse and shrimp were also detected, varying from 1 to 10 nmol/(mg of protein). Thus, the new method is suitable for the quantification of total sulfane sulfur in biological samples.
Collapse
Affiliation(s)
- Mingxue Ran
- State Key Laboratory of Microbial Technology , Shandong University , Qingdao 266237 , People's Republic of China.,Institute of Marine Science and Technology , Shandong University , Qingdao 266237 , People's Republic of China
| | - Tianqi Wang
- State Key Laboratory of Microbial Technology , Shandong University , Qingdao 266237 , People's Republic of China
| | - Ming Shao
- School of Life Science , Shandong University , Qingdao 266237 , People's Republic of China
| | - Zhigang Chen
- State Key Laboratory of Microbial Technology , Shandong University , Qingdao 266237 , People's Republic of China
| | - Huaiwei Liu
- State Key Laboratory of Microbial Technology , Shandong University , Qingdao 266237 , People's Republic of China
| | - Yongzhen Xia
- State Key Laboratory of Microbial Technology , Shandong University , Qingdao 266237 , People's Republic of China
| | - Luying Xun
- State Key Laboratory of Microbial Technology , Shandong University , Qingdao 266237 , People's Republic of China.,School of Molecular Biosciences , Washington State University , Pullman , Washington 99164-7520 , United States
| |
Collapse
|
45
|
Nelp MT, Zheng V, Davis KM, Stiefel KJE, Groves JT. Potent Activation of Indoleamine 2,3-Dioxygenase by Polysulfides. J Am Chem Soc 2019; 141:15288-15300. [PMID: 31436417 DOI: 10.1021/jacs.9b07338] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Indoleamine 2,3-dioxygenase (IDO1) is a heme enzyme that catalyzes the oxygenation of the indole ring of tryptophan to afford N-formylkynurenine. This activity significantly suppresses the immune response, mediating inflammation and autoimmune reactions. These consequential effects are regulated through redox changes in the heme cofactor of IDO1, which autoxidizes to the inactive ferric state during turnover. This change in redox status increases the lability of the heme cofactor leading to further suppression of activity. The cell can thus regulate IDO1 activity through the supply of heme and reducing agents. We show here that polysulfides bind to inactive ferric IDO1 and reduce it to the oxygen-binding ferrous state, thus activating IDO1 to maximal turnover even at low, physiologically significant concentrations. The on-rate for hydrogen disulfide binding to ferric IDO1 was found to be >106 M-1 s-1 at pH 7 using stopped-flow spectrometry. Fe K-edge XANES and EPR spectroscopy indicated initial formation of a low-spin ferric sulfur-bound species followed by reduction to the ferrous state. The μM affinity of polysulfides for IDO1 implicates these polysulfides as important signaling factors in immune regulation through the kynurenine pathway. Tryptophan significantly enhanced the relatively lower-affinity binding of hydrogen sulfide to IDO1, inspiring the use of the small molecule 3-mercaptoindole (3MI), which selectively binds to and activates ferric IDO1. 3MI sustains turnover by catalytically transferring reducing equivalents from glutathione to IDO1, representing a novel strategy of upregulating innate immunosuppression for treatment of autoimmune disorders. Reactive sulfur species are thus likely unrecognized immune-mediators with potential as therapeutic agents through these interactions with IDO1.
Collapse
Affiliation(s)
- Micah T Nelp
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| | - Vincent Zheng
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| | - Katherine M Davis
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| | - Katherine J E Stiefel
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| | - John T Groves
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| |
Collapse
|
46
|
Overproduction of H 2S, generated by CBS, inhibits mitochondrial Complex IV and suppresses oxidative phosphorylation in Down syndrome. Proc Natl Acad Sci U S A 2019; 116:18769-18771. [PMID: 31481613 PMCID: PMC6754544 DOI: 10.1073/pnas.1911895116] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Down syndrome (DS) is associated with significant perturbances in mitochondrial function. Here we tested the hypothesis that the suppression of mitochondrial electron transport in DS cells is due to high expression of cystathionine-β-synthase (CBS) and subsequent overproduction of the gaseous transmitter hydrogen sulfide (H2S). Fibroblasts from DS individuals showed higher CBS expression than control cells; CBS localization was both cytosolic and mitochondrial. DS cells produced significantly more H2S and polysulfide and exhibited a profound suppression of mitochondrial electron transport, oxygen consumption, and ATP generation. DS cells also exhibited slower proliferation rates. In DS cells, pharmacological inhibition of CBS activity with aminooxyacetate or siRNA-mediated silencing of CBS normalized cellular H2S levels, restored Complex IV activity, improved mitochondrial electron transport and ATP synthesis, and restored cell proliferation. Thus, CBS-derived H2S is responsible for the suppression of mitochondrial function in DS cells. When H2S overproduction is corrected, the tonic suppression of Complex IV is lifted, and mitochondrial electron transport is restored. CBS inhibition offers a potential approach for the pharmacological correction of DS-associated mitochondrial dysfunction.
Collapse
|
47
|
Cuevasanta E, Reyes AM, Zeida A, Mastrogiovanni M, De Armas MI, Radi R, Alvarez B, Trujillo M. Kinetics of formation and reactivity of the persulfide in the one-cysteine peroxiredoxin from Mycobacterium tuberculosis. J Biol Chem 2019; 294:13593-13605. [PMID: 31311857 DOI: 10.1074/jbc.ra119.008883] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/12/2019] [Indexed: 12/20/2022] Open
Abstract
Hydrogen sulfide (H2S) participates in prokaryotic metabolism and is associated with several physiological functions in mammals. H2S reacts with oxidized thiol derivatives (i.e. disulfides and sulfenic acids) and thereby forms persulfides, which are plausible transducers of the H2S-mediated signaling effects. The one-cysteine peroxiredoxin alkyl hydroperoxide reductase E from Mycobacterium tuberculosis (MtAhpE-SH) reacts fast with hydroperoxides, forming a stable sulfenic acid (MtAhpE-SOH), which we chose here as a model to study the interactions between H2S and peroxiredoxins (Prx). MtAhpE-SOH reacted with H2S, forming a persulfide (MtAhpE-SSH) detectable by mass spectrometry. The rate constant for this reaction was (1.4 ± 0.2) × 103 m-1 s-1 (pH 7.4, 25 °C), six times higher than that reported for the reaction with the main low-molecular-weight thiol in M. tuberculosis, mycothiol. H2S was able to complete the catalytic cycle of MtAhpE and, according to kinetic considerations, it could represent an alternative substrate in M. tuberculosis. MtAhpE-SSH reacted 43 times faster than did MtAhpE-SH with the unspecific electrophile 4,4'-dithiodipyridine, a disulfide that exhibits no preferential reactivity with peroxidatic cysteines, but MtAhpE-SSH was less reactive toward specific Prx substrates such as hydrogen peroxide and peroxynitrite. According to molecular dynamics simulations, this loss of specific reactivity could be explained by alterations in the MtAhpE active site. MtAhpE-SSH could transfer its sulfane sulfur to a low-molecular-weight thiol, a process likely facilitated by the low pKa of the leaving thiol MtAhpE-SH, highlighting the possibility that Prx participates in transpersulfidation. The findings of our study contribute to the understanding of persulfide formation and reactivity.
Collapse
Affiliation(s)
- Ernesto Cuevasanta
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay .,Unidad de Bioquímica Analítica, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.,Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Aníbal M Reyes
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay .,Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Ari Zeida
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay.,Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Mauricio Mastrogiovanni
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay.,Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - María Inés De Armas
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay.,Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay.,Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Beatriz Alvarez
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.,Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Madia Trujillo
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay.,Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
48
|
Rajendran S, Shen X, Glawe J, Kolluru GK, Kevil CG. Nitric Oxide and Hydrogen Sulfide Regulation of Ischemic Vascular Growth and Remodeling. Compr Physiol 2019; 9:1213-1247. [PMID: 31187898 DOI: 10.1002/cphy.c180026] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ischemic vascular remodeling occurs in response to stenosis or arterial occlusion leading to a change in blood flow and tissue perfusion. Altered blood flow elicits a cascade of molecular and cellular physiological responses leading to vascular remodeling of the macro- and micro-circulation. Although cellular mechanisms of vascular remodeling such as arteriogenesis and angiogenesis have been studied, therapeutic approaches in these areas have had limited success due to the complexity and heterogeneous constellation of molecular signaling events regulating these processes. Understanding central molecular players of vascular remodeling should lead to a deeper understanding of this response and aid in the development of novel therapeutic strategies. Hydrogen sulfide (H2 S) and nitric oxide (NO) are gaseous signaling molecules that are critically involved in regulating fundamental biochemical and molecular responses necessary for vascular growth and remodeling. This review examines how NO and H2 S regulate pathophysiological mechanisms of angiogenesis and arteriogenesis, along with important chemical and experimental considerations revealed thus far. The importance of NO and H2 S bioavailability, their synthesis enzymes and cofactors, and genetic variations associated with cardiovascular risk factors suggest that they serve as pivotal regulators of vascular remodeling responses. © 2019 American Physiological Society. Compr Physiol 9:1213-1247, 2019.
Collapse
Affiliation(s)
| | - Xinggui Shen
- Departments of Pathology, LSU Health Sciences Center, Shreveport
| | - John Glawe
- Departments of Pathology, LSU Health Sciences Center, Shreveport
| | - Gopi K Kolluru
- Departments of Pathology, LSU Health Sciences Center, Shreveport
| | - Christopher G Kevil
- Departments of Pathology, LSU Health Sciences Center, Shreveport.,Departments of Cellular Biology and Anatomy, LSU Health Sciences Center, Shreveport.,Departments of Molecular and Cellular Physiology, LSU Health Sciences Center, Shreveport
| |
Collapse
|
49
|
Vigorito C, Anishchenko E, Mele L, Capolongo G, Trepiccione F, Zacchia M, Lombari P, Capasso R, Ingrosso D, Perna AF. Uremic Toxin Lanthionine Interferes with the Transsulfuration Pathway, Angiogenetic Signaling and Increases Intracellular Calcium. Int J Mol Sci 2019; 20:E2269. [PMID: 31071929 PMCID: PMC6539355 DOI: 10.3390/ijms20092269] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 01/08/2023] Open
Abstract
(1) The beneficial effects of hydrogen sulfide (H2S) on the cardiovascular and nervous system have recently been re-evaluated. It has been shown that lanthionine, a side product of H2S biosynthesis, previously used as a marker for H2S production, is dramatically increased in circulation in uremia, while H2S release is impaired. Thus, lanthionine could be classified as a novel uremic toxin. Our research was aimed at defining the mechanism(s) for lanthionine toxicity. (2) The effect of lanthionine on H2S release was tested by a novel lead acetate strip test (LAST) in EA.hy926 cell cultures. Effects of glutathione, as a redox agent, were assayed. Levels of sulfane sulfur were evaluated using the SSP4 probe and flow cytometry. Protein content and glutathionylation were analyzed by Western Blotting and immunoprecipitation, respectively. Gene expression and miRNA levels were assessed by qPCR. (3) We demonstrated that, in endothelial cells, lanthionine hampers H2S release; reduces protein content and glutathionylation of transsulfuration enzyme cystathionine-β-synthase; modifies the expression of miR-200c and miR-423; lowers expression of vascular endothelial growth factor VEGF; increases Ca2+ levels. (4) Lanthionine-induced alterations in cell cultures, which involve both sulfur amino acid metabolism and calcium homeostasis, are consistent with uremic dysfunctional characteristics and further support the uremic toxin role of this amino acid.
Collapse
Affiliation(s)
- Carmela Vigorito
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli," 80131 Naples, Italy.
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli," 80138 Naples, Italy.
| | - Evgeniya Anishchenko
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli," 80131 Naples, Italy.
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli," 80138 Naples, Italy.
| | - Luigi Mele
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," 80138 Naples, Italy.
| | - Giovanna Capolongo
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli," 80131 Naples, Italy.
| | - Francesco Trepiccione
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli," 80131 Naples, Italy.
- Biogem A. C. S. R. L. Contrada Camporeale, 83031 Ariano Irpino AV, Italy.
| | - Miriam Zacchia
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli," 80131 Naples, Italy.
| | - Patrizia Lombari
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli," 80131 Naples, Italy.
| | - Rosanna Capasso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli," 80138 Naples, Italy.
| | - Diego Ingrosso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli," 80138 Naples, Italy.
| | - Alessandra F Perna
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli," 80131 Naples, Italy.
| |
Collapse
|
50
|
Olson KR, Gao Y. Effects of inhibiting antioxidant pathways on cellular hydrogen sulfide and polysulfide metabolism. Free Radic Biol Med 2019; 135:1-14. [PMID: 30790656 DOI: 10.1016/j.freeradbiomed.2019.02.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/12/2019] [Accepted: 02/12/2019] [Indexed: 12/18/2022]
Abstract
Elaborate antioxidant pathways have evolved to minimize the threat of excessive reactive oxygen species (ROS) and to regulate ROS as signaling entities. ROS are chemically and functionally similar to reactive sulfur species (RSS) and both ROS and RSS have been shown to be metabolized by the antioxidant enzymes, superoxide dismutase and catalase. Here we use fluorophores to examine the effects of a variety of inhibitors of antioxidant pathways on metabolism of two important RSS, hydrogen sulfide (H2S with AzMC) and polysulfides (H2Sn, where n = 2-7, with SSP4) in HEK293 cells. Cells were exposed to inhibitors for up to 5 days in normoxia (21% O2) and hypoxia (5% O2), conditions also known to affect ROS production. Decreasing intracellular glutathione (GSH) with l-buthionine-sulfoximine (BSO) or diethyl maleate (DEM) decreased H2S production for 5 days but did not affect H2Sn. The glutathione reductase inhibitor, auranofin, initially decreased H2S and H2Sn but after two days H2Sn increased over controls. Inhibition of peroxiredoxins with conoidin A decreased H2S and increased H2Sn, whereas the glutathione peroxidase inhibitor, tiopronin, increased H2S. Aminoadipic acid, an inhibitor of cystine uptake did not affect either H2S or H2Sn. In buffer, the glutathione reductase and thioredoxin reductase inhibitor, 2-AAPA, the glutathione peroxidase mimetic, ebselen, and tiopronin variously reacted directly with AzMC and SSP4, reacted with H2S and H2S2, or optically interfered with AzMC or SSP4 fluorescence. Collectively these results show that antioxidant inhibitors, generally known for their ability to increase cellular ROS, have various effects on cellular RSS. These findings suggest that the inhibitors may affect cellular sulfur metabolism pathways that are not related to ROS production and in some instances they may directly affect RSS or the methods used to measure them. They also illustrate the importance of carefully evaluating RSS metabolism when biologically or pharmacologically attempting to manipulate ROS.
Collapse
Affiliation(s)
- Kenneth R Olson
- Indiana University School of Medicine - South Bend, South Bend, IN, 46617, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.
| | - Yan Gao
- Indiana University School of Medicine - South Bend, South Bend, IN, 46617, USA
| |
Collapse
|