1
|
Liu L, Wen T, Xiao Y, Chen H, Yang S, Shen X. Sea buckthorn extract mitigates chronic obstructive pulmonary disease by suppression of ferroptosis via scavenging ROS and blocking p53/MAPK pathways. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118726. [PMID: 39181279 DOI: 10.1016/j.jep.2024.118726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/11/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sea buckthorn (Hippophae rhamnoides), a traditional Tibetan medicinal herb, exhibits protective effects against cardiovascular and respiratory diseases. Although Sea buckthorn extract (SBE) has been confirmed to alleviate airway inflammation in mice, its therapeutic effect and underlying mechanism on chronic obstructive pulmonary disease (COPD) requires further clarification. AIM OF THE STUDY To elucidate the alleviative effect and molecular mechanism of SBE on lipopolysaccharides (LPS)/porcine pancreatic elastase (PPE)-induced COPD by blocking ferroptosis. METHODS The anti-ferroptotic effects of SBE were evaluated in human BEAS-2B bronchial epithelial cells using CCK8, RT-qPCR, western blotting, and transmission electron microscopy. Transwell was employed to detect chemotaxis of neutrophils. COPD model was induced by intranasally administration of LPS/PPE in mice and measured by alterations of histopathology, inflammation, and ferroptosis. RNA-sequencing, western blotting, antioxidant examination, flow cytometry, DARTS, CETSA, and molecular docking were then used to investigate its anti-ferroptotic mechanisms. RESULTS In vitro, SBE not only suppressed erastin- or RSL3-induced ferroptosis by suppressing lipid peroxides (LPOs) production and glutathione (GSH) depletion, but also suppressed ferroptosis-induced chemotactic migration of neutrophils via reducing mRNA expression of chemokines. In vivo, SBE ameliorated LPS/PPE-induced COPD phenotypes, and inhibited the generation of LPOs, cytokines, and chemokines. RNA-sequencing showed that p53 pathway and mitogen-activated protein kinases (MAPK) pathway were implicated in SBE-mediated anti-ferroptotic action. SBE repressed erastin- or LPS/PPE-induced overactivation of p53 and MAPK pathway, thereby decreasing expression of diamine acetyltransferase 1 (SAT1) and arachidonate 15-lipoxygenase (ALOX15), and increasing expression of glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11). Mechanistically, erastin-induced elevation of reactive oxygen species (ROS) was reduced by SBE through directly scavenging free radicals, thereby contributing to its inhibition of p53 and MAPK pathways. CETSA, DARTS, and molecular docking further showed that ROS-generating enzyme nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4) may be the target of SBE. Overexpression of NOX4 partially impaired the anti-ferroptotic activity of SBE. CONCLUSION Our results demonstrated that SBE mitigated COPD by suppressing p53 and MAPK pro-ferroptosis pathways via directly scavenging ROS and blocking NOX4. These findings also supported the clinical application of Sea buckthorn in COPD therapy.
Collapse
Affiliation(s)
- Lu Liu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tian Wen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Xiao
- Department of Pathology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongqing Chen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shan Yang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofei Shen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
2
|
Misiukiewicz-Stępień P, Zajusz-Zubek E, Górska K, Krenke R, Paplińska-Goryca M. The different response of PM 2.5 stimulated nasal epithelial spheroids in control, asthma and COPD groups. Respir Res 2025; 26:8. [PMID: 39780154 PMCID: PMC11714913 DOI: 10.1186/s12931-025-03097-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/01/2025] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Pathobiology of asthma and chronic obstructive pulmonary disease (COPD) is associated with changes among respiratory epithelium structure and function. Increased levels of PM2.5 from urban particulate matter (UPM) are correlated with enlarged rate of asthma and COPD morbidity as well as acute disease exacerbation. It has been suggested that pre-existing pulmonary obstructive diseases predispose epithelium for different biological response than in healthy airways. The aim of this study was to assess the impact of PM2.5 on the biological response of healthy as well as asthma and COPD respiratory epithelium using 3D/spheroid culture model. METHODS The spheroids from 5 healthy controls, 8 asthma patients, and 8 COPD patients were exposed to 100 µg/ml of PM2.5 for 24 h. RESULTS The common pattern for healthy asthma and COPD epithelium inflammatory response to PM2.5 stimulation include the increase in IL-1β, IL-6, IL-8 mRNA expression, and secretion of IL-6. Asthmatic spheroids produced higher amount of TNF-α and IL-8, whereas COPD spheroids expressed increased mRNA level of MUC5AC and decreased level of MMP7. PM2.5 treatment induced changes in AHR and TLR4 expression on secretory epithelium in COPD. CONCLUSION The response of airway epithelium to air pollution is different in healthy people than in obstructive lung disease patients. The impairment of airway epithelium in asthma and COPD changes their response to toxic environmental stimuli. This physiological dysfunction might be associated with diseases exacerbation of obstructive lung diseases.
Collapse
Affiliation(s)
- Paulina Misiukiewicz-Stępień
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Banacha 1a, Warsaw, 02-097, Poland
| | - Elwira Zajusz-Zubek
- Faculty of Energy and Environmental Engineering, Department of Air Protection, Silesian University of Technology, Gliwice, Poland
| | - Katarzyna Górska
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Banacha 1a, Warsaw, 02-097, Poland
| | - Rafał Krenke
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Banacha 1a, Warsaw, 02-097, Poland
| | - Magdalena Paplińska-Goryca
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Banacha 1a, Warsaw, 02-097, Poland.
| |
Collapse
|
3
|
Kalailingam P, Ngan SC, Iyappan R, Nehchiri A, Mohd-Kahliab KH, Lee BST, Sharma B, Machan R, Bo ST, Chambers ES, Fajardo VA, Macpherson REK, Liu J, Klentrou P, Tsiani EL, Lim KL, Su IH, Gao YG, Richar AM, Kalaria RN, Chen CP, Balion C, de Kleijn D, McCarthy NE, Sze SK. Immunotherapeutic targeting of aging-associated isoDGR motif in chronic lung inflammation. Aging Cell 2025:e14425. [PMID: 39757428 DOI: 10.1111/acel.14425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/18/2024] [Accepted: 11/04/2024] [Indexed: 01/07/2025] Open
Abstract
Accumulation of damaged biomolecules in body tissues is the primary cause of aging and age-related chronic diseases. Since this damage often occurs spontaneously, it has traditionally been regarded as untreatable, with typical therapeutic strategies targeting genes or enzymes being ineffective in this domain. In this report, we demonstrate that an antibody targeting the isoDGR damage motif in lung tissue can guide immune clearance of harmful damaged proteins in vivo, effectively reducing age-linked lung inflammation. We observed age-dependent accumulation of the isoDGR motif in human lung tissues, as well as an 8-fold increase in isoDGR-damaged proteins in lung fibrotic tissues compared with healthy tissue. This increase was accompanied by marked infiltration of CD68+/CD11b + macrophages, consistent with a role for isoDGR in promoting chronic inflammation. We therefore assessed isoDGR function in mice that were either naturally aged or lacked the isoDGR repair enzyme. IsoDGR-protein accumulation in mouse lung tissue was strongly correlated with chronic inflammation, pulmonary edema, and hypoxemia. This accumulation also induced mitochondrial and ribosomal dysfunction, in addition to features of cellular senescence, thereby contributing to progressive lung damage over time. Importantly, treatment with anti-isoDGR antibody was able to reduce these molecular features of disease and significantly reduced lung pathology in vivo.
Collapse
Affiliation(s)
- Pazhanichamy Kalailingam
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - SoFong Cam Ngan
- Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Ranjith Iyappan
- Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Afra Nehchiri
- Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, Canada
| | | | | | - Bhargy Sharma
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Radek Machan
- SCELSE, Nanyang Technological University, Singapore, Singapore
| | - Sint Thida Bo
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Emma S Chambers
- Centre for Immunobiology, the Blizard Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Val A Fajardo
- Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, Canada
| | | | - Jian Liu
- Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Panagiota Klentrou
- Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, Canada
| | | | - Kah Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - I Hsin Su
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yong-Gui Gao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - A Mark Richar
- Cardiovascular Research Institute, National University Health System, Singapore, Singapore
| | - Raj N Kalaria
- Institute of Neuroscience, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Christopher P Chen
- Memory, Aging and Cognition Centre, National University Health System, Singapore, Singapore
| | - Cynthia Balion
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | - Neil E McCarthy
- Centre for Immunobiology, the Blizard Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, Canada
| |
Collapse
|
4
|
Yin C, Tian Y, Yan A, Wang H, Lu F, Li X, Li X, Han S, Miao R, Chen H, Li D, Hou H, Hu Q. Mitigating inflammation and fibrosis: the therapeutic potential of quercetin liposomes in COPD. Front Pharmacol 2024; 15:1503283. [PMID: 39741632 PMCID: PMC11685140 DOI: 10.3389/fphar.2024.1503283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/30/2024] [Indexed: 01/03/2025] Open
Abstract
Introduction Chronic obstructive pulmonary disease (COPD) is a disease with severe therapeutic obstacles and high worldwide death rate. COPD progresses predominantly through inflammatory response followed by fibrotic destruction. Quercetin (Que), recognized for its anti-inflammatory effects, presents significant promise as a therapeutic candidate for COPD therapy. However, poor water solubility and low bioavailability of Que hinder its further clinical application. Liposomes are renowned for their unique structure and function, which provided an efficient approach for the delivery of Que in various drug delivery systems. This study was aim to prepare a novel Que liposome (Que-lipo) and administrated via intratracheal (i.t.) with cigarette smoke induced COPD mice. The underlying therapeutic mechanisms against lung damage of Que-lipo were explored. Methods Que-lipo were prepared based on thin film dispersion method and administrated via intratracheal administration. The cigarette smoke induced COPD mice were established and a comprehensive approach was employed to explore the inflammation, pulmonary function and histopathology of lung after i.t. administration of Que-lipo, including enzyme-linked immunosorbent assay, histopathology and immunohistochemistry, reverse transcription-quantitative polymerase chain reaction. Results and discussion Que-lipo not only improved the solubility and biocompatibility of Que but also demonstrated effective cellular uptake in vitro. The inflammation, pulmonary function and pathological condition of lung were improved after i.t. administration of Que-lipo. Que-lipo also regulated the expression of key apoptosis-associated proteins such as Bcl-2 and caspase-3/7, leading to significant inhibition of apoptotic activity in COPD. Furthermore, Que-lipo markedly enhanced its ability to alleviate lung inflammation and fibrosis symptoms by modulating inflammation-related factors and fibrosis signaling molecules. The potential mechanisms of Que-lipo in treating COPD were elucidated, including the suppression of the NLRP3/IL-1β inflammasome pathway and the TGF-β1-related fibrosis signaling pathway.
Collapse
Affiliation(s)
- Changfeng Yin
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, China
- Beijing Life Science Academy, Beijing, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
| | - Yushan Tian
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, China
- Beijing Life Science Academy, Beijing, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
| | - An Yan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Hongjuan Wang
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, China
- Beijing Life Science Academy, Beijing, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
| | - Fengjun Lu
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
| | - Xianmei Li
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
| | - Xiao Li
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, China
- Beijing Life Science Academy, Beijing, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
| | - Shulei Han
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, China
- Beijing Life Science Academy, Beijing, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
| | - Ruijuan Miao
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
| | - Huan Chen
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, China
- Beijing Life Science Academy, Beijing, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
| | - Di Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Hongwei Hou
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, China
- Beijing Life Science Academy, Beijing, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
| | - Qingyuan Hu
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, China
- Beijing Life Science Academy, Beijing, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
| |
Collapse
|
5
|
Behrouz S, Mohammadi M, Sarir H, Boskabady MH. The effects of camel milk in systemic inflammation and oxidative stress of cigarette smoke-induced chronic obstructive pulmonary disease model in rat. Front Vet Sci 2024; 11:1464432. [PMID: 39735585 PMCID: PMC11673985 DOI: 10.3389/fvets.2024.1464432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/29/2024] [Indexed: 12/31/2024] Open
Abstract
Background The effects of camel milk in inflammation and systemic oxidative stress of cigarette smoke (CS)-induced chronic obstructive pulmonary disease (COPD) associated with small airway inflammation in rats were investigated. Methods 35 male Wistar rats were randomly divided into five groups: (a) control, (b) CS-exposed rats, c and (d) CS-exposed rats treated with the 4 and 8 mL/kg camel milk, and (e) CS-exposed rats treated with 1 mg/kg dexamethasone. Results Total and differential WBC counts, serum level of TNF-α and malondialdehyde (MDA) level in serum and homogenized tissues of the heart, kidney, liver, and testicle were significantly increased, but catalase (CAT), superoxide dismutase (SOD) and thiol levels were significantly decreased in CS-exposed rats (p < 0.01 to p < 0.001). Treatment with dexamethasone and both doses of camel milk improved all measured variables compared to the COPD group (p < 0.05 to p < 0.001). The improvements of most variables in the treated group with high dose of camel milk were higher than the effect of dexamethasone (p < 0.05 to p < 0.001). These findings suggest that camel milk has a therapeutic potential for treating systemic oxidative stress and inflammatory induced by CS. Conclusion Therefore, camel milk might be effective in attenuating the effects of CS-induced systemic inflammation and oxidative stress.
Collapse
Affiliation(s)
- Sepide Behrouz
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand, Iran
| | - Mahla Mohammadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Sarir
- Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Scioscia G, Baraldi F, Bigoni T, Papi A, Vatrella A, Micheletto C, Foschino Barbaro MP. The precision medicine strategy to treat COPD pulmonary traits in clinical practice: The role of N-acetylcysteine. Respir Med 2024; 235:107865. [PMID: 39549856 DOI: 10.1016/j.rmed.2024.107865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/29/2024] [Accepted: 11/14/2024] [Indexed: 11/18/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive lung condition and a leading cause of physical decline and death. COPD prevalence is expected to increase steadily in the coming years, and as a result, the healthcare and social burden of this condition will intensify. In this scenario, a patient-centric approach, the treatable trait (TT) strategy, based on the identification of traits that are clinically relevant, identifiable, monitorable and treatable, has emerged. The TT strategy, which considers behavioral/risk factors, as well as pulmonary and extrapulmonary traits, has shown to be a promising strategy in COPD management. This work reviews the TT strategy in COPD, giving special attention to the most relevant pulmonary traits, such as frequent productive cough, chronic bronchitis, type 2 inflammation, neutrophilic inflammation, lung hyperinflation, bronchiectasis, exacerbations and non-reversible airflow limitation. N-acetylcysteine (NAC), a widely used mucolytic agent, might be a major player in this strategy. Indeed, through a thorough review of the literature, it has been possible to highlight that, besides being essential in the treatment of frequent productive cough, NAC could bring benefits in case of airflow limitations, airways inflammation, exacerbations and bronchiectasis. A clinical case in which the TT strategy was able to reduce symptoms and improve lung function and quality of life, minimizing unnecessary medication and side effects, is also presented. The identification of TTs and their proper treatment through personalized medicine remarkably ameliorates COPD management. Of note, the mucolytic, antioxidant, and anti-inflammatory activities of NAC might have beneficial effects on several TTs.
Collapse
Affiliation(s)
- Giulia Scioscia
- Department of Medical and Surgical Sciences University of Foggia, Respiratory Medicine, Policlinico of Foggia, 71122, Foggia, Italy.
| | - Federico Baraldi
- Department of Translational Medicine, Section of Respiratory Medicine, University of Ferrara, Ferrara, Italy
| | - Tommaso Bigoni
- Department of Translational Medicine, Section of Respiratory Medicine, University of Ferrara, Ferrara, Italy
| | - Alberto Papi
- Department of Translational Medicine, Section of Respiratory Medicine, University of Ferrara, Ferrara, Italy
| | - Alessandro Vatrella
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | | | | |
Collapse
|
7
|
Wang X, Liu C, Liang R, Zhou Y, Kong X, Wang W, Wang H, Zhao L, Niu W, Yi C, Jiang F. Elucidating the beneficial impact of exercise on chronic obstructive pulmonary disease and its comorbidities: Integrating proteomic and immunological insights. Br J Pharmacol 2024; 181:5133-5150. [PMID: 39317434 DOI: 10.1111/bph.17328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/02/2024] [Accepted: 07/26/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND AND PURPOSE Physical activity is an effective therapeutic protocol for treating chronic obstructive pulmonary disease (COPD). However, the mechanisms underlying the benefits of physical activity in COPD are not fully elucidated. EXPERIMENTAL APPROACH In a mouse model of COPD, analysis of biological markers and lung proteomics identified the molecular pathways through which exercise ameliorates COPD. KEY RESULTS Exercise improved pulmonary function, emphysema, small airway disease, pulmonary inflammation, glucose metabolic dysregulation, and insulin resistance in COPD mice. Proteomic analysis revealed 430 differentially expressed proteins (DEPs) between the COPD and COPD + Exercise (COPD + Ex) groups. GO analysis indicated that the enriched pathways were predominantly related to the immune response, inflammatory processes, insulin secretion, and glucose metabolic processes. GO analysis revealed IL-33 as a crucial target for the exercise-related amelioration of COPD. KEGG analysis showed that DEPs were significantly enriched in primary immunodeficiency, the intestinal immune network for IgA production, and the NF-κB signalling pathway. Exercise inhibited NF-κB activation by suppressing the CD14/TLR4/MyD88 and TNF-α/TNF-R1/TRAF2/5 pathways in COPD mice. Exercise inhibited expression of BCR, IgM, IgD, IgG, IgE, and IgA by suppressing B-cell receptor signalling. Exercise attenuated glucose metabolic dysregulation and insulin resistance through the suppression of proinflammatory mediators, including MHC I, MHC II, TNF-α, IFN-γ, and IL-1β, while concurrently increasing insulin expression. The qRT-PCR results were consistent with the proteomic results. CONCLUSION AND IMPLICATIONS In a mouse model, exercise improved COPD and its metabolic comorbidities through immune system regulation and inflammation suppression, offering insights into potential therapeutic targets.
Collapse
Affiliation(s)
- Xishuai Wang
- School of Physical Education and Sports Science, Qufu Normal University, Qufu, Shandong, China
- College of Education for the Future, Beijing Normal University, Zhuhai, China
- Department of Animal Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cong Liu
- College of Education for the Future, Beijing Normal University, Zhuhai, China
| | - Ruining Liang
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yuehui Zhou
- School of Physical Education and Sports Science, Qufu Normal University, Qufu, Shandong, China
| | - Xiliang Kong
- School of Physical Education and Sports Science, Qufu Normal University, Qufu, Shandong, China
| | - Weichao Wang
- Graduate School of Sports Coaching, Kyungil University, Gyeongsan-si, Gyeongsangbuk-do, South Korea
| | - Hongwei Wang
- College of Physical Education, Northwest Normal University, Lanzhou, Gansu, China
| | - Lunan Zhao
- School of Physical Education and Sports Science, Qufu Normal University, Qufu, Shandong, China
| | - Weina Niu
- Basic Department, Qilu Institute of Technology, Qufu, Shandong, China
| | - Chao Yi
- School of Physical Education and Sports Science, Qufu Normal University, Qufu, Shandong, China
| | - Fugao Jiang
- School of Physical Education and Sports Science, Qufu Normal University, Qufu, Shandong, China
| |
Collapse
|
8
|
Li W, Li Y, Wang Q, Liu R, Lu J, Lu W, Qin S. Therapeutic effect of phycocyanin on chronic obstructive pulmonary disease in mice. J Adv Res 2024; 66:285-301. [PMID: 38211884 PMCID: PMC11675062 DOI: 10.1016/j.jare.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/13/2024] Open
Abstract
INTRODUCTION The prevention and treatment of chronic obstructive pulmonary disease (COPD) is closely tied to antioxidation and anti-inflammation. Phycocyanin (PC) has numerous pharmacological effects, such as antioxidation and anti-inflammation. However, it remains unclear whether PC can play a therapeutic role in COPD. OBJECTIVE As inflammation and oxidative stress can aggravate COPD, this study is to explore the effect of PC on COPD mice and its mechanisms. METHODS The COPD mice model was established by exposing them to lipopolysaccharide (LPS) and cigarette smoke (CS); PC was administrated in a concentration of 50 mg/kg for 30 days. On the last day, lung function was measured, and bronchoalveolar lavage fluid (BALF) was obtained and classified for cells. Lung tissue pathological change was analyzed, and organ indices statistics were measured. Based on molecular docking, the mechanism was explored with Western blotting, immunohistochemical, and immunofluorescence in vivo and in vitro. RESULTS PC significantly ameliorated the pulmonary function of COPD mice and reduced inflammation of the lung (p < 0.05), and hematoxylin and eosin (H&E) staining showed PC depressed lung inflammatory cell accumulation and emphysema. Periodic acid Schiff (PAS) and Masson staining revealed that PC retarded goblet cells metaplasia and collagen deposition (p < 0.05). In addition, in vivo PC regulated Heme oxygenase 1 (HO-1) (p < 0.05) and NAD(P)H dehydrogenase quinone 1 (NQO1) level (p < 0.01) in the lung, as well as NOX2 level in pulmonary macrophages. Molecular docking results indicate that phycocyanobilin (PCB) in PC had a good binding site in Keap1 and NOX2 proteins; the phycocyanobilin-bound phycocyanin peptide (PCB-PC-peptide) was obtained for further studies. In vitro, PCB-PC-peptide could depress the phospho-NF-E2-related factor 2 (p-Nrf2) and NQO1 protein expression in RAW264.7 cells induced by cigarette smoke extract (CSE) (p < 0.05). CONCLUSION PC exerts beneficial effects on COPD via anti-inflammatory and antioxidative stress, which may be achieved through PCB.
Collapse
Affiliation(s)
- Wenjun Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Shandong University of Traditional Chinese Medicine, Ji'nan 250355, China
| | - Yuanyuan Li
- Guangzhou Medical University, Guangzhou 510030, China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institue of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510031, China
| | - Qi Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Shandong University of Traditional Chinese Medicine, Ji'nan 250355, China
| | - Runze Liu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Jianing Lu
- Guangzhou Medical University, Guangzhou 510030, China
| | - Wenju Lu
- Guangzhou Medical University, Guangzhou 510030, China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institue of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510031, China.
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Shandong University of Traditional Chinese Medicine, Ji'nan 250355, China.
| |
Collapse
|
9
|
Cui Y, Du X, Li Y, Wang D, Lv Z, Yuan H, Chen Y, Liu J, Sun Y, Wang W. Imbalanced and Unchecked: The Role of Metal Dyshomeostasis in Driving COPD Progression. COPD 2024; 21:2322605. [PMID: 38591165 DOI: 10.1080/15412555.2024.2322605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/19/2024] [Indexed: 04/10/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic respiratory condition characterized by persistent inflammation and oxidative stress, which ultimately leads to progressive restriction of airflow. Extensive research findings have cogently suggested that the dysregulation of essential transition metal ions, notably iron, copper, and zinc, stands as a critical nexus in the perpetuation of inflammatory processes and oxidative damage within the lungs of COPD patients. Unraveling the intricate interplay between metal homeostasis, oxidative stress, and inflammatory signaling is of paramount importance in unraveling the intricacies of COPD pathogenesis. This comprehensive review aims to examine the current literature on the sources, regulation, and mechanisms by which metal dyshomeostasis contributes to COPD progression. We specifically focus on iron, copper, and zinc, given their well-characterized roles in orchestrating cytokine production, immune cell function, antioxidant depletion, and matrix remodeling. Despite the limited number of clinical trials investigating metal modulation in COPD, the advent of emerging methodologies tailored to monitor metal fluxes and gauge responses to chelation and supplementation hold great promise in unlocking the potential of metal-based interventions. We conclude that targeted restoration of metal homeostasis represents a promising frontier for ameliorating pathological processes driving COPD progression.
Collapse
Affiliation(s)
- Ye Cui
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Xinqian Du
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Yunqi Li
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Dan Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Zhe Lv
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Huihui Yuan
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Yan Chen
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Jie Liu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Ying Sun
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Wei Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
10
|
Wu K, Luan G, Hu J, Zhu Z, Kong Z, Yin S. Astragaloside IV Reduces Lung Epithelial Cell Pyroptosis via TXNIP-NLRP3-GSDMD pathway. Cell Biochem Biophys 2024; 82:3695-3702. [PMID: 39096465 DOI: 10.1007/s12013-024-01457-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/05/2024]
Abstract
This study aimed to investigate the detrimental impact of cigarettes on lung cells and the potential effects of astragaloside IV on lung epithelial cell oxidative stress and pyroptosis. The research utilized cigarette smoke extract (CSE) to stimulate lung epithelial cells BEAS-2B, assessed cytotoxicity using the CCK-8 method, and measured changes in reactive oxygen species (ROS) and mitochondrial membrane potential with a probe method. Additionally, Seahorse XF24 was employed to analyze the impact of CSE on mitochondria in lung epithelial cells. Furthermore, LPS and cigarette combination-treated mice were created, alveolar damage was evaluated using HE staining, and changes in the key protein GSDMD of pyroptosis were detected using western blot (WB). The study also utilized the CCK-8 method to assess the potential toxic effects of astragaloside IV on lung epithelial cells, and the probe method to monitor changes in ROS and mitochondrial membrane potential. WB analysis was conducted to observe protein alterations in the TXNIP/NLRP3/GSDMD pathway. CSE concentration-dependently reduced cell activity, increased cellular ROS levels, and decreased mitochondrial membrane potential. CSE also decreases basal respiratory capacity, respiratory reserve capacity, and ATP production levels in cells. In LPS and cigarette combination-treated mice, cigarette smoke caused the alveolar septum to break and alveoli to enlarge, while increasing the expression of pyroptosis-related protein GSDMD. Astragaloside IV did not show significant cytotoxic effects within 48 h of treatment and could reduce CSE-induced ROS levels while increasing mitochondrial membrane potential. WB results indicated that astragaloside IV reduced the activation of the TXNIP/NLRP3/GSDMD signaling pathway in lung epithelial cells exposed to CSE. Our study demonstrates that CSE induces oxidative stress and impairs mitochondrial function in pulmonary epithelial cells, while astragaloside IV can potentially reverse these effects by inhibiting the TXNIP-NLRP3-GSDMD signaling pathway, thereby mitigating CSE-induced pulmonary disease and epithelial cell pyroptosis.
Collapse
Affiliation(s)
- Kaiyue Wu
- Central Laboratory, Shanghai Sixth People's Hospital, Shanghai, 201306, China
| | - Guangxin Luan
- Central Laboratory, Shanghai Sixth People's Hospital, Shanghai, 201306, China
| | - Jianying Hu
- Department of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital, Shanghai, 201306, China
| | - Zhen Zhu
- Department of Respiratory and Critical Care Medicine, Shanghai Sixth People's Hospital, Shanghai, 201306, China
| | - Zhibin Kong
- Department of Respiratory and Critical Care Medicine, Shanghai Sixth People's Hospital, Shanghai, 201306, China.
| | - Shaojun Yin
- Department of Respiratory and Critical Care Medicine, Shanghai Sixth People's Hospital, Shanghai, 201306, China.
| |
Collapse
|
11
|
Vahedi Fard M, Mohammadhasani K, Dehnavi Z, Khorasanchi Z. Chronic Obstructive Pulmonary Disease: The Role of Healthy and Unhealthy Dietary Patterns-A Comprehensive Review. Food Sci Nutr 2024; 12:9875-9892. [PMID: 39723104 PMCID: PMC11666972 DOI: 10.1002/fsn3.4519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/16/2024] [Accepted: 09/21/2024] [Indexed: 12/28/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive and irreversible disease affecting many people worldwide. Recent evidence suggests that diet and lifestyle play a vital role in COPD progression. We aimed to provide a comprehensive review of the effect of healthy and unhealthy dietary patterns on preventing and treating COPD. For this reason, Scopus, EMBASE, Web of Science, and PubMed were searched. Based on our findings, it appears that adhering to a healthy dietary pattern rich in vegetables, legumes, fruit, nuts, and whole grains may have advantageous impacts on preventing and treating COPD while following an unhealthy dietary pattern rich in red and processed meat, saturated fats, sweets, and sugary drinks affect COPD negatively. Adhering to Mediterranean, dietary approaches to stop hypertension (DASH), Prudent, Ketogenic, and High-protein diet may be related to a lower risk of COPD and improved pulmonary function. Conversely, Western and Ramadan Intermittent Fasting diets may elevate the prevalence of COPD. Proposing a nutritious diet that enhances pulmonary function could potentially be an effective approach to preventing and managing COPD. A comprehensive knowledge of the relationship between dietary factors and COPD can provide healthcare professionals with properly supported approaches to advise patients and empower individuals to make informed lifestyle decisions that are beneficial to improve their pulmonary health.
Collapse
Affiliation(s)
- Mohammad Vahedi Fard
- Department of Nutrition, Food Sciences and Clinical Biochemistry, School of Medicine, Social Determinants of Health Research CenterGonabad University of Medical SciencesGonabadIran
| | - Kimia Mohammadhasani
- Department of Nutrition, Food Sciences and Clinical Biochemistry, School of Medicine, Social Determinants of Health Research CenterGonabad University of Medical SciencesGonabadIran
| | - Zahra Dehnavi
- Department of Nutritional Sciences, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Zahra Khorasanchi
- Department of Nutritional Sciences, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
12
|
Fekete M, Lehoczki A, Csípő T, Fazekas-Pongor V, Szappanos Á, Major D, Mózes N, Dósa N, Varga JT. The Role of Trace Elements in COPD: Pathogenetic Mechanisms and Therapeutic Potential of Zinc, Iron, Magnesium, Selenium, Manganese, Copper, and Calcium. Nutrients 2024; 16:4118. [PMID: 39683514 DOI: 10.3390/nu16234118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a progressive, inflammatory airway disorder characterized by a gradual decline in lung function and increased oxidative stress. Both oxidative stress and inflammation are central to its pathophysiology, with trace elements such as zinc, copper, iron, manganese, magnesium, selenium, and calcium playing key roles in various cellular processes. OBJECTIVE This article reviews the role of trace elements in COPD, focusing on their involvement in disease pathogenesis and their therapeutic potential. Specifically, we examine the effects of zinc, copper, iron, magnesium, manganese, selenium, and calcium in COPD. METHODS We performed a comprehensive narrative review of the literature across databases including PubMed, Web of Science, Cochrane Library, and Google Scholar, identifying studies that explore the therapeutic effects of trace elements in COPD. The studies included in the review consisted of cohort analyses, randomized controlled trials, and clinical investigations. RESULTS Zinc, copper, iron, magnesium, manganese, selenium, and calcium are critical to both the pathophysiology and management of COPD. These trace elements contribute to the regulation of inflammation, the modulation of oxidative stress, and the maintenance of lung function. Zinc and copper, for instance, reduce oxidative stress and modulate immune responses, while iron is essential for oxygen transport. Magnesium, manganese, selenium, and calcium are vital for muscle function, respiratory performance, reducing inflammation, and improving pulmonary function. CONCLUSIONS The minerals zinc, copper, iron, magnesium, manganese, selenium, and calcium may contribute to beneficial effects as part of the standard therapeutic management of COPD. Maintaining optimal levels of these trace elements may support the regulation of inflammatory processes, a reduction in oxidative stress, and an improvement in the pulmonary function. However, further clinical research is necessary to confirm their efficacy and establish safe dosage recommendations in COPD treatment.
Collapse
Affiliation(s)
- Mónika Fekete
- Institute of Preventive Medicine and Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary
- Health Sciences Program, Doctoral College, Semmelweis University, 1085 Budapest, Hungary
| | - Andrea Lehoczki
- Institute of Preventive Medicine and Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary
- Health Sciences Program, Doctoral College, Semmelweis University, 1085 Budapest, Hungary
| | - Tamás Csípő
- Institute of Preventive Medicine and Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary
- Health Sciences Program, Doctoral College, Semmelweis University, 1085 Budapest, Hungary
| | - Vince Fazekas-Pongor
- Institute of Preventive Medicine and Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary
- Health Sciences Program, Doctoral College, Semmelweis University, 1085 Budapest, Hungary
| | - Ágnes Szappanos
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
- Department of Rheumatology and Clinical Immunology, Semmelweis University, 1088 Budapest, Hungary
| | - Dávid Major
- Institute of Preventive Medicine and Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary
| | - Noémi Mózes
- Institute of Preventive Medicine and Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary
| | - Norbert Dósa
- Institute of Preventive Medicine and Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary
| | - János Tamás Varga
- Department of Pulmonology, Semmelweis University, 1083 Budapest, Hungary
| |
Collapse
|
13
|
Zhuang X, Shi W, Shen T, Cheng X, Wan Q, Fan M, Hu D. Research Updates and Advances on Flavonoids Derived from Dandelion and Their Antioxidant Activities. Antioxidants (Basel) 2024; 13:1449. [PMID: 39765778 PMCID: PMC11672681 DOI: 10.3390/antiox13121449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
As a common medicinal and edible plant, dandelion plays a crucial and significant role in the fields of traditional Chinese medicines, functional foods, healthcare products, daily chemicals, and feed additives, which are closely related to its rich chemical constituents and remarkable biological activities. Modern studies have demonstrated that dandelion contains all kinds of bioactive constituents, including flavonoids, amino acids, fatty acids, organic acids, phenolic acids, coumarins, lignans, polysaccharides, phytosterols, terpenes, glycoproteins, oligosaccharides, alkaloids, etc. Meanwhile, dandelion has been proven to possess antioxidant, antibacterial, anti-inflammatory, antitumor, antivirus, hypoglycemic, and hypolipidemic properties, as well as the ability to regulate hormone levels and protect some visceral organs. Among them, flavonoids derived from dandelion and their antioxidant activities have received considerable attention. This study reviews dandelion flavonoids and their in vitro and in vivo antioxidant activities by consulting and organizing relevant domestic and international works of literature to provide a scientific and theoretical basis for further research, development, and utilization of dandelion.
Collapse
Affiliation(s)
- Xiaocui Zhuang
- School of Chemical Biology and Environment, Yuxi Normal University, Yuxi 653100, China; (X.Z.); (W.S.); (T.S.); (X.C.); (Q.W.)
| | - Wei Shi
- School of Chemical Biology and Environment, Yuxi Normal University, Yuxi 653100, China; (X.Z.); (W.S.); (T.S.); (X.C.); (Q.W.)
| | - Tao Shen
- School of Chemical Biology and Environment, Yuxi Normal University, Yuxi 653100, China; (X.Z.); (W.S.); (T.S.); (X.C.); (Q.W.)
| | - Xiaoyang Cheng
- School of Chemical Biology and Environment, Yuxi Normal University, Yuxi 653100, China; (X.Z.); (W.S.); (T.S.); (X.C.); (Q.W.)
| | - Qilin Wan
- School of Chemical Biology and Environment, Yuxi Normal University, Yuxi 653100, China; (X.Z.); (W.S.); (T.S.); (X.C.); (Q.W.)
| | - Minxia Fan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China;
| | - Dongbao Hu
- School of Chemical Biology and Environment, Yuxi Normal University, Yuxi 653100, China; (X.Z.); (W.S.); (T.S.); (X.C.); (Q.W.)
| |
Collapse
|
14
|
Shi Y, Pu S, Zhang C, Xu K, Guo X, Gao W. Association between dietary niacin intake and chronic obstructive pulmonary disease among American middle-aged and older individuals: A cross-section study. PLoS One 2024; 19:e0312838. [PMID: 39570951 PMCID: PMC11581289 DOI: 10.1371/journal.pone.0312838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/15/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND The attention towards the relationship between chronic obstructive pulmonary disease (COPD) and dietary intake is escalating. However, the effects of dietary niacin on COPD in middle and older individuals remains unclear. This study aimed to illuminate the connection between dietary niacin intake and COPD. METHODS This cross-sectional study analyzed 7,170 participants from the National Health and Nutrition Examination Survey (NHANES) spanning the years 2013 to 2018. Participants were categorized into four groups based on quartiles of dietary niacin intake. To examine the association between covariates, dietary niacin intake, and COPD, we employed univariate analysis and multivariate logistic regression equations. Additionally, restricted cubic splines were utilized to assess linearity. Furthermore, we conducted stratified and interaction analyses to evaluate the stability of the relationship in diverse subgroups. RESULTS Among the 7,170 participants, 11.6% (834/7170) were diagnosed with COPD. The multivariable adjusted odds ratios (ORs) and 95% confidence intervals (CIs) for COPD were 0.96 (95% CI: 0.77-1.19, p = 0.706), 0.78 (95% CI: 0.62-0.99, p = 0.038), and 0.76 (95% CI: 0.57-1.00, p = 0.047), respectively, when comparing the second, third, and fourth quartiles of niacin intake levels to the lowest quartile (p for trend = 0.017). An inverse association was observed between the occurrence of COPD and dietary niacin intake (nonlinear: p = 0.347). Stratified analyses revealed no significant differences or interactions. CONCLUSION Our findings suggest a potential link between increased dietary niacin intake and a decreased prevalence of COPD.
Collapse
Affiliation(s)
- Yushan Shi
- Department of Laboratory Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong, China
| | - Shuangshuang Pu
- Department of Laboratory Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong, China
| | - Chunlai Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong, China
| | - Kanghong Xu
- Department of Laboratory Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong, China
| | - Xuxiao Guo
- Department of Laboratory Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong, China
| | - Wei Gao
- Department of Laboratory Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong, China
| |
Collapse
|
15
|
Wang T, Liu M, Li X, Zhang S, Gu H, Wei X, Wang X, Xu Z, Shen T. Naturally-derived modulators of the Nrf2 pathway and their roles in the intervention of diseases. Free Radic Biol Med 2024; 225:560-580. [PMID: 39368519 DOI: 10.1016/j.freeradbiomed.2024.09.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024]
Abstract
Cumulative evidence has verified that persistent oxidative stress is involved in the development of various chronic diseases, including pulmonary, neurodegenerative, kidney, cardiovascular, and liver diseases, as well as cancers. Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a pivotal role in regulating cellular oxidative stress and inflammatory reactions, making it a focal point for disease prevention and treatment strategies. Natural products are essential resources for discovering leading molecules for new drug research and development. In this review, we comprehensively outlined the progression of the knowledge on the Nrf2 pathway, Nrf2 activators in clinical trials, the naturally-derived Nrf2 modulators (particularly from 2014-present), as well as their effects on the pathogenesis of chronic diseases.
Collapse
Affiliation(s)
- Tian Wang
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Mingjie Liu
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Xinyu Li
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Sen Zhang
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Haoran Gu
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Xuan Wei
- Shandong Center for Food and Drug Evaluation and Inspection, Jinan, Shandong, PR China
| | - Xiaoning Wang
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Zhenpeng Xu
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China.
| | - Tao Shen
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China.
| |
Collapse
|
16
|
Chen G, Jin Y, Chu C, Zheng Y, Yang C, Chen Y, Zhu X. A cross-tissue transcriptome-wide association study reveals GRK4 as a novel susceptibility gene for COPD. Sci Rep 2024; 14:28438. [PMID: 39558015 PMCID: PMC11574126 DOI: 10.1038/s41598-024-80122-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a prevalent respiratory disorder with environmental factors being the primary risk determinants. However, genetic factors also substantially contribute to the susceptibility and progression of COPD. Although genome-wide association studies (GWAS) have identified several loci associated with COPD susceptibility, the specific pathogenic genes underlying these loci, along with their biological functions and roles within regulatory networks, remain unclear. This lack of clarity constrains our ability to achieve a deeper understanding of the genetic basis of COPD. This study leveraged the FinnGen R11 genetic dataset, comprising 21,617 cases and 372,627 controls, along with GTEx V8 eQTLs data to conduct a cross-tissue transcriptome-wide association study (TWAS). Initially, we performed a cross-tissue TWAS analysis using the Unified Test for Molecular Signatures (UTMOST), followed by validation of the UTMOST findings in single tissues using the Functional Summary-based Imputation (FUSION) method and conditional and joint (COJO) analyses of the identified genes. Subsequently, candidate susceptibility genes were screened using Multi-marker Analysis of Genomic Annotation (MAGMA). The causal relationship between these candidate genes and COPD was further evaluated through summary data-based Mendelian randomization (SMR), colocalization analysis, and Mendelian randomization (MR). Additionally, the identified results were validated against the COPD dataset in the GWAS Catalog (GCST90399694). GeneMANIA was employed to further explore the functional significance of these susceptibility genes. In the cross-tissue TWAS analysis (UTMOST), we identified 17 susceptibility genes associated with COPD. Among these, a novel susceptibility gene, G protein-coupled receptor kinase 4 (GRK4), was validated through single-tissue TWAS (FUSION) and MAGMA analyses, with further confirmation via SMR, MR, and colocalization analyses. Moreover, GRK4 was validated in an independent dataset. This study identifies GRK4 as a potential novel susceptibility gene for COPD, which may influence disease risk by exacerbating inflammatory responses. The findings address gaps in previous single-tissue GWAS studies, revealing consistent expression and potential function of GRK4 across different tissues. However, considering the study's limitations, further investigation and validation of GRK4's role in COPD are warranted.
Collapse
Affiliation(s)
- Guanglei Chen
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| | - Yaxian Jin
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, Guizhou, China
| | - Cancan Chu
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| | - Yuhao Zheng
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| | - Changfu Yang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| | - Yunzhi Chen
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| | - Xing Zhu
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
17
|
Gao J, Dong M, Tian W, Xia J, Qian Y, Jiang Z, Chen Z, Shen Y. The role of CISD1 reduction in macrophages in promoting COPD development through M1 polarization and mitochondrial dysfunction. Eur J Med Res 2024; 29:541. [PMID: 39533441 PMCID: PMC11559132 DOI: 10.1186/s40001-024-02146-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The mitochondrial dysfunction and oxidative stress imbalance caused by macrophage polarization play a role in the progression of COPD, with CDGSH iron-sulfur domain-containing protein 1 (CISD1) playing a key role. This study revealed the role and mechanism of CISD1 in smoke-induced macrophages. METHODS Using a pure cigarette smoke exposure-induced COPD mouse model, stimulation of Raw264.7 macrophages with cigarette smoke extract mimics the COPD environment. Knocking down CISD1 expression in macrophages and combining it with high-throughput sequencing to obtain subsequent differentially expressed genes and pathways. Macrophage polarization tendency under different treatments was determined using flow cytometry. Meanwhile, Mitosox, JC-1, DCFH-DA fluorescence intensity was measured to detect mitochondrial function and cellular oxidative stress levels. Western Blot technique was employed to validate autophagy (mitochondrial autophagy) pathway-related proteins. In addition, Elisa technique was used to measure inflammatory factors (IL-6, TNF-a) in the cell supernatant after co-culturing macrophages (Raw264.7) with epithelial cells (MLE12). RESULTS CISD1 is underexpressed in peripheral blood monocytes of COPD patients. Under in vitro conditions, we verified that cigarette smoke (smoke extract) indeed inhibits CISD1 expression in macrophages. Subsequently, we found that macrophages with knocked-down CISD1 tend to polarize towards M1 phenotype, and exhibit signs of mitochondrial dysfunction and oxidative stress imbalance. In addition, we observed significant activation of the autophagy pathway in CISD1-inhibited macrophages, with upregulation of LC3A/B and downregulation of p62 protein, as well as increased expression of mitochondrial autophagy-related proteins (PINK1, PARKN). Furthermore, co-culturing CISD1-knockdown macrophages (Raw264.7) with epithelial cells (MLE12) resulted in upregulation of inflammatory factors in the supernatant. CONCLUSIONS Smoke-induced reduction of CISD1 in macrophages promotes M1 polarization and mitochondrial dysfunction by activating the autophagy pathway, thereby promoting the occurrence and development of COPD.
Collapse
Affiliation(s)
- Jiameng Gao
- Department of Respiratory and Critical Care Medicine, Shanghai Pudong Hospital, 2800 Gongwei Rd, Shanghai, 201399, China
- Department of Respiratory and Critical Care Medicine of Zhongshan Hospital, Shanghai Institute of Respiratory Disease, Fudan University, Shanghai, People's Republic of China
| | - Meiyuan Dong
- Department of Respiratory and Critical Care Medicine, Shanghai Pudong Hospital, 2800 Gongwei Rd, Shanghai, 201399, China
| | - Weibin Tian
- Department of Respiratory and Critical Care Medicine, Shanghai Pudong Hospital, 2800 Gongwei Rd, Shanghai, 201399, China
| | - Junyi Xia
- Department of Respiratory and Critical Care Medicine, Shanghai Pudong Hospital, 2800 Gongwei Rd, Shanghai, 201399, China
| | - Yuhao Qian
- Department of Respiratory and Critical Care Medicine of Zhongshan Hospital, Shanghai Institute of Respiratory Disease, Fudan University, Shanghai, People's Republic of China
| | - Zhilong Jiang
- Department of Respiratory and Critical Care Medicine of Zhongshan Hospital, Shanghai Institute of Respiratory Disease, Fudan University, Shanghai, People's Republic of China
| | - Zhihong Chen
- Department of Respiratory and Critical Care Medicine of Zhongshan Hospital, Shanghai Institute of Respiratory Disease, Fudan University, Shanghai, People's Republic of China.
| | - Yao Shen
- Department of Respiratory and Critical Care Medicine, Shanghai Pudong Hospital, 2800 Gongwei Rd, Shanghai, 201399, China.
| |
Collapse
|
18
|
Wang S, Jiang R, Zhang L, Cai Y, Zhou C, Wu L. Relationships between oxidative balance score and asthma, COPD, with asthma-COPD overlap in American adults: findings from NHANES 2013-2018. J Asthma 2024:1-9. [PMID: 39453786 DOI: 10.1080/02770903.2024.2422419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 10/27/2024]
Abstract
BACKGROUND Oxidative stress plays a crucial role in the development of multiple chronic respiratory diseases. Oxidative Balance Score (OBS) composing of 16 dietary factors and 4 lifestyle factors has been developed to evaluate the effect of oxidants/antioxidants produced by dietary intake and lifestyle habits on the overall oxidative balance. However, the relationships between OBS with asthma, COPD, and asthma-COPD overlap (ACO) are still unclear. METHODS A total of 10,942 adults aged 20 years and older from the 2013-2018 National Health and Nutrition Examination Survey were included in the analyses. ANOVA and chi-square tests were used to compare characteristics between different OBS subgroups. Multiple multivariate logistic regression was used to analyze the associations between OBS and asthma, COPD, and ACO.RCS curves were used to describe the dose-response effect of the associations. Subgroup analyses and interaction effects were employed to reflect the stability of the associations. RESULTS In the fully adjusted models, OBS was found to be negatively associated with asthma, COPD, and ACO. OBS at Q2, Q3, and Q4 (OR: 0.66, 95% CI: 0.46-0.97) were negatively associated with the risk of asthma. OBS at Q2 and Q4 were negatively associated with the risk of COPD. OBS at Q2 and Q4 were negatively associated with the risk of ACO. The RCS curves reflected the negative dose-response trend of association. Moreover, the associations were stable in various subgroups. CONCLUSION The negative associations between OBS and asthma, COPD, and ACO were found in American adults, providing evidence for dietary and lifestyle prevention.
Collapse
Affiliation(s)
- Shidong Wang
- Department of Respiratory medicine, Shaoxing Second Hospital, Zhejiang, China
| | - Runxin Jiang
- Department of Medicine, Hangzhou Medical College, Zhejiang, China
| | - Lin Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Cangnan Hospital of Wenzhou Medical University, Cangnan, Zhejiang, China
| | - Yuelin Cai
- Department of Respiratory and Critical Care Medicine, The Affiliated Cangnan Hospital of Wenzhou Medical University, Cangnan, Zhejiang, China
| | - Changsheng Zhou
- Department of Respiratory and Critical Care Medicine, The Affiliated Cangnan Hospital of Wenzhou Medical University, Cangnan, Zhejiang, China
| | - Liang Wu
- Department of Respiratory and Critical Care Medicine, The Affiliated Cangnan Hospital of Wenzhou Medical University, Cangnan, Zhejiang, China
| |
Collapse
|
19
|
D'Amato A, Altomare A, Gilardoni E, Baron G, Carini M, Melloni E, Padoani G, Vailati S, Caponetti G, Aldini G. A quantitative proteomic approach to evaluate the efficacy of carnosine in a murine model of chronic obstructive pulmonary disease (COPD). Redox Biol 2024; 77:103374. [PMID: 39393288 DOI: 10.1016/j.redox.2024.103374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/13/2024] Open
Abstract
The aim of the work was to study a dose-dependent effect of inhaled carnosine (10, 50 or 100 mg/kg/day) in mice exposed to cigarette smoke as a model of chronic obstructive pulmonary disease (COPD). A dose-dependent loading of the dipeptide in lung tissue and bronchoalveolar lavage (BAL) was firstly demonstrated by LC-ESI-MS analysis. Cigarette smoke exposure induced a significant lung inflammation and oxidative stress in mice which was dose-dependently reduced by carnosine. Inflammation was firstly evaluated by measuring the cytokines content in the BAL. All the measured cytokines were found significantly higher in the smoke group in respect to control, although the data are affected by a significant variability. Carnosine was found effective only at the highest dose tested and significantly only for keratinocyte-derived cytokine (KC). Due to the high variability of cytokines, a quantitative proteomic approach to better understand the functional effect of carnosine and its molecular mechanisms was used. Proteomic data clearly indicate that smoke exposure had a great impact on lung tissue with 692 proteins differentially expressed above a threshold of 1.5-fold. Protein network analysis identified the activation of some pathways characteristic of COPD, including inflammatory response, fibrosis, induction of immune system by infiltration and migration of leukocyte pathways, altered pathway of calcium metabolism and oxidative stress. Carnosine at the tested dose of 100 mg/kg was found effective in reverting all the pathways evoked by smoke. Only a partial reverse of the dysregulated proteins was evident at low- and mid-tested doses, although, for some specific proteins, indicating an overall dose-dependent effect. Regarding the molecular mechanisms involved, we found that carnosine upregulated some key enzymes related to Nrf2 activation and in particular glutathione peroxidase, reductase, transferase, SOD, thioredoxins, and carbonyl reductase. Such mechanism would explain the antioxidant and anti-inflammatory effects of the dipeptide.
Collapse
Affiliation(s)
- Alfonsina D'Amato
- Department of Pharmaceutical Sciences (DISFARM), Università Degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - Alessandra Altomare
- Department of Pharmaceutical Sciences (DISFARM), Università Degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - Ettore Gilardoni
- Department of Pharmaceutical Sciences (DISFARM), Università Degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - Giovanna Baron
- Department of Pharmaceutical Sciences (DISFARM), Università Degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - Marina Carini
- Department of Pharmaceutical Sciences (DISFARM), Università Degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - Elsa Melloni
- Zambon S.p.A., Via Lillo del Duca 11, 20091, Bresso, Italy
| | - Gloria Padoani
- Zambon S.p.A., Via Lillo del Duca 11, 20091, Bresso, Italy
| | - Silvia Vailati
- Zambon S.p.A., Via Lillo del Duca 11, 20091, Bresso, Italy
| | | | - Giancarlo Aldini
- Department of Pharmaceutical Sciences (DISFARM), Università Degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy.
| |
Collapse
|
20
|
Taniguchi N, Ohkawa Y, Kuribara T, Abe J, Harada Y, Takahashi M. Roles of Glyco-Redox in Epithelial Mesenchymal Transition and Mesenchymal Epithelial Transition, Cancer, and Various Diseases. Antioxid Redox Signal 2024; 41:910-926. [PMID: 39345141 DOI: 10.1089/ars.2024.0774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Significance: Reduction-oxidation (redox) regulation is an important biological phenomenon that provides a balance between antioxidants and the generation of reactive oxygen species and reactive nitrogen species under pathophysiological conditions. Structural and functional changes in glycans are also important as post-translational modifications of proteins. The integration of glycobiology and redox biology, called glyco-redox has provided new insights into the mechanisms of epithelial-mesenchymal transition (EMT)/mesenchymal-epithelial transition (MET), cancer, and various diseases including Alzheimer's disease, chronic obstructive lung disease, type 2 diabetes, interstitial pneumonitis, and ulcerative colitis. Recent Advances: Glycans are biosynthesized by specific glycosyltransferases and each glycosyltransferase is either directly or indirectly regulated by oxidative stress and redox regulation. A typical example of glyco-redox is the role of N-glycan referred to as core fucose in superoxide dismutase 3. This glycan was found to be involved in the growth inhibition of cancer cell lines. Critical Issues: The significance of glyco-redox in EMT/MET, cancer, and various diseases was found in major N-glycan branching glycosyltransferases β1,4N-acetylglucosaminyltransferase III, β1,4N-acetylglucosaminyltransferase IV, β1,6N-acetylglucosaminyltransferase V, β1,4-acetylglucosaminyltransfearfse VI, β1,6-acetylglucosaminyltransferase IX, α-1,6 fucosyltransferase, and β-galactoside α-2,6-sialyltransferase 1. Herein, we summarize previous reports on target proteins and how this relates to oxidative stress. We also discuss the products of these processes and their significance to cancer and various diseases. Future Direction: A clear-cut understanding of the significance of glyco-redox in relation to prevention, diagnosis, and therapeutics is required. These studies will open a new road toward glycobiology and redox biology. Antioxid. Redox Signal. 41, 910-926.
Collapse
Affiliation(s)
- Naoyuki Taniguchi
- Department of Glyco-Oncology and Medical Biochemistry, Research Center, Osaka International Cancer Institute, Osaka, Japan
| | - Yuki Ohkawa
- Department of Glyco-Oncology and Medical Biochemistry, Research Center, Osaka International Cancer Institute, Osaka, Japan
| | - Taiki Kuribara
- Department of Glyco-Oncology and Medical Biochemistry, Research Center, Osaka International Cancer Institute, Osaka, Japan
| | - Junpei Abe
- Department of Glyco-Oncology and Medical Biochemistry, Research Center, Osaka International Cancer Institute, Osaka, Japan
| | - Yoichiro Harada
- Department of Glyco-Oncology and Medical Biochemistry, Research Center, Osaka International Cancer Institute, Osaka, Japan
| | - Motoko Takahashi
- Department of Biochemistry, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
21
|
Zhang D, Sun T, Bao J, Fu J. Implications of DNA damage in chronic lung disease. Front Cell Dev Biol 2024; 12:1436767. [PMID: 39544366 PMCID: PMC11560874 DOI: 10.3389/fcell.2024.1436767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024] Open
Abstract
DNA plays an indispensable role in ensuring the perpetuation of life and safeguarding the genetic stability of living organisms. The emergence of diseases linked to a wide spectrum of responses to DNA damage has garnered increasing attention within the scientific community. There is growing evidence that patterns of DNA damage response in the lungs are associated with the onset, progression, and treatment of chronic lung diseases such as chronic obstructive pulmonary disease (COPD), asthma, and bronchopulmonary dysplasia (BPD). Currently, some studies have analyzed the mechanisms by which environmental factors induce lung DNA damage. In this article, we summarize inducible factors of lung DNA damage, current indicators, and methods for diagnosing DNA damage in chronic lung diseases and explore repair mechanisms after DNA damage including nonhomologous end-joining and homology-directed repair end joining pathways. Additionally, drug treatments that may reduce DNA damage or promote repair after it occurs in the lungs are briefly described. In general, more accurate assessment of the degree of lung DNA damage caused by various factors is needed to further elucidate the mechanism of lung DNA damage and repair after damage, so as to search for potential therapeutic targets.
Collapse
Affiliation(s)
| | | | | | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
22
|
Tian M, Li F, Pei H, Liu X, Nie H. The role of the cGAS-STING pathway in chronic pulmonary inflammatory diseases. Front Med (Lausanne) 2024; 11:1436091. [PMID: 39540037 PMCID: PMC11557406 DOI: 10.3389/fmed.2024.1436091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/06/2024] [Indexed: 11/16/2024] Open
Abstract
The innate immune system plays a vital role in the inflammatory process, serving as a crucial mechanism for the body to respond to infection, cellular stress, and tissue damage. The cGAS-STING signaling pathway is pivotal in the onset and progression of various autoimmune diseases and chronic inflammation. By recognizing cytoplasmic DNA, this pathway initiates and regulates inflammation and antiviral responses within the innate immune system. Consequently, the regulation of the cGAS-STING pathway has become a prominent area of interest in the treatment of many diseases. Chronic inflammatory lung diseases, such as chronic obstructive pulmonary disease (COPD), asthma, and pulmonary fibrosis, are characterized by persistent or recurrent lung inflammation and tissue damage, leading to diminished respiratory function. This paper explores the mechanism of action of the cGAS-STING signaling pathway in these diseases, examines the development of STING inhibitors and nanomaterial applications, and discusses the potential clinical application prospects of targeting the cGAS-STING pathway in chronic inflammatory lung diseases.
Collapse
Affiliation(s)
- Mengxiang Tian
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Fengyuan Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Haiping Pei
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoling Liu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongyun Nie
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing, China
| |
Collapse
|
23
|
Ying M, Yang Y, Huo Q, Sun J, Hong X, Yang F, Fang Y, Lu L, Mao T, Xiao P, Tao G. Nrf-2/HO-1 activation protects against oxidative stress and inflammation induced by metal welding fume UFPs in 16HBE cells. Sci Rep 2024; 14:24057. [PMID: 39402078 PMCID: PMC11473639 DOI: 10.1038/s41598-024-74599-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/27/2024] [Indexed: 10/17/2024] Open
Abstract
As one of the main occupational hazards, welding fumes can cause oxidative damage and induce series of diseases, such as COPD or asthma. To clarify the effects of the metal fume ultrafine particulates (MF-UFPs) of welding fumes on oxidative damage, UFPs were collected by melt inert gas (MIG) and manual metal arc (MMA) welding, and the composition was confirmed. Human bronchial epithelial 16HBE cells were treated with 0-1000 µg/cm2 MF-UFPs to analyse the cytotoxicity, oxidative stress and cytokines. The protein and mRNA expression of Keap1-Nrf-2/antioxidant response elements (AREs) signalling pathway components were also analysed. After 4 h of treatment, the cell viability decreased 25% after 33.85 and 32.81 µg/cm2 MIG/MMA-UFPs treated. The intracellular ATP concentrations were also decreased significantly, while LDH leakage was increased. The decreased mitochondrial membrane potential and increased ROS suggested the occurrence of oxidative damage, and the results of proteome profiling arrays also showed a significant increase in IL-6 and IL-8. The expression of AREs which related to antioxidant and anti-inflammatory were also increased. These results indicate that the MF-UFPs can cause oxidative stress in 16HBE cells and activate the Nrf-2/ARE signalling pathway to against oxidative damage.
Collapse
Affiliation(s)
- Mengchao Ying
- Shanghai Municipal Center for Disease Control & Prevention, Shanghai, 200336, China
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai, 200233, China
| | - Yun Yang
- Shanghai Municipal Center for Disease Control & Prevention, Shanghai, 200336, China
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai, 200233, China
| | - Qian Huo
- Shanghai Municipal Center for Disease Control & Prevention, Shanghai, 200336, China
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai, 200233, China
| | - Jingqiu Sun
- Shanghai Municipal Center for Disease Control & Prevention, Shanghai, 200336, China
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai, 200233, China
| | - Xinyu Hong
- Shanghai Municipal Center for Disease Control & Prevention, Shanghai, 200336, China
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai, 200233, China
| | - Feng Yang
- Shanghai Municipal Center for Disease Control & Prevention, Shanghai, 200336, China
| | - Yamin Fang
- Shanghai Municipal Center for Disease Control & Prevention, Shanghai, 200336, China
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai, 200233, China
| | - Lingyi Lu
- Xuhui District Center for Disease Control and Prevention, Shanghai, 200237, China
| | - Tingfeng Mao
- Xuhui District Center for Disease Control and Prevention, Shanghai, 200237, China
| | - Ping Xiao
- Shanghai Municipal Center for Disease Control & Prevention, Shanghai, 200336, China.
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai, 200233, China.
| | - Gonghua Tao
- Shanghai Municipal Center for Disease Control & Prevention, Shanghai, 200336, China.
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai, 200233, China.
| |
Collapse
|
24
|
Pimentel VD, Acha BT, Gomes GF, Macedo de Sousa Cardoso JL, Sena da Costa CL, Carvalho Batista NJ, Rufino Arcanjo DD, Alves WDS, de Assis Oliveira F. Anti-inflammatory effect of Anadenanthera colubrina var. cebil (Griseb.) Altschul in experimental elastase-induced pulmonary emphysema in rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118216. [PMID: 38642622 DOI: 10.1016/j.jep.2024.118216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 04/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Medicinal plants have shown promise in the search for new treatments of pulmonary emphysema. Anadenanthera colubrina, a species native to the Caatinga biome in northeastern Brazil, is widely recognized and traditionally employed in the treatment of pulmonary diseases. Many studies corroborate popular knowledge about the medicinal applications of A. colubrina, which has demonstrated a remarkable variety of pharmacological properties, however, its anti-inflammatory and antioxidant properties are highlighted. AIM OF THE STUDY The objective of this study was to investigate the anti-inflammatory potential of the crude hydroethanolic extract of A. colubrina var. cebil (Griseb.) Altschul on pulmonary emphysema in rats as well as to determine its potential genotoxic and cytotoxic effects using the micronucleus assay. MATERIALS AND METHODS The stem bark of the plant was collected in Pimenteiras-PI and sample was extracted by maceration using 70% ethanol. A portion of the extract underwent phytochemical analyses using TLC and HPLC. In this study, 8-week-old, male Wistar rats weighing approximately ±200 g was utilized following approval by local ethics committee for animal experimentation (No. 718/2022). Pulmonary emphysema was induced through orotracheal instillation of elastase, and treatment with A. colubrina extract or dexamethasone (positive control) concomitantly during induction. Twenty-eight days after the initiation of the protocol, plasma was used for cytokine measurement. Bronchoalveolar lavage (BAL) was used for leukocyte count. After euthanasia, lung samples were processed for histological analysis and quantification of oxidative stress markers. The micronucleus test was performed by evaluating the number of polychromatic erythrocytes (PCE) with micronuclei (MNPCE) to verify potential genotoxic effects of A. colubrina. A differential count of PCE and normochromatic erythrocytes (NCE) was performed to verify the potential cytotoxicity of the extract. Parametric data were subjected to normality analysis and subsequently to analysis of variance and Tukey or Dunnett post-test, non-parametric data were treated using the Kruskal-Wallis test with Dunn's post-test for unpaired samples. P value < 0.05 were considered significant. RESULTS The A. colubrina extract did not show a significant increase in the number of MNPCE (p > 0.05), demonstrating low genotoxicity. No changes were observed in the PCE/NCE ratio of treated animals, compared with the vehicle, suggesting low cytotoxic potential of the extract. A significant reduction (p < 0.05) in neutrophilic inflammation was observed in the lungs of rats treated with the extract, evidenced by presence of these cells in both the tissue and BAL. The extract also demonstrated pulmonary antioxidant activity, with a significant decrease (p < 0.05) in myeloperoxidase, malondialdehyde, and nitrite levels. TNFα, IL-1β, and IL-6 levels, as well as alveolar damage, were significantly reduced in animals treated with A. colubrina extract. Phytochemical analyses identified the presence of phenolic compounds and hydrolysable tannins in the A. colubrina extract. CONCLUSIONS The findings of this study highlights the safety of the hydroethanolic extract of Anadenanthera colubrina, and demonstrates its potential as a therapeutic approach in the treatment of emphysema. The observed properties of this medicinal plant provide an optimistic outlook in the development of therapies for the treatment of pulmonary emphysema.
Collapse
Affiliation(s)
- Vinicius Duarte Pimentel
- Laboratory of Inflammation Pharmacology (LAFIN), Medicinal Plants Research Center, Federal University of Piauí, Teresina, Piauí, Brazil.
| | - Boris Timah Acha
- Laboratory of Functional and Molecular Studies in Physiopharmacology (LAFMOL), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Gabriel Felicio Gomes
- Laboratory of Inflammation Pharmacology (LAFIN), Medicinal Plants Research Center, Federal University of Piauí, Teresina, Piauí, Brazil
| | - João Luiz Macedo de Sousa Cardoso
- Laboratory of Inflammation Pharmacology (LAFIN), Medicinal Plants Research Center, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Charllyton Luis Sena da Costa
- Laboratory of Inflammation Pharmacology (LAFIN), Medicinal Plants Research Center, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Nelson Jorge Carvalho Batista
- Laboratory of Inflammation Pharmacology (LAFIN), Medicinal Plants Research Center, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Daniel Dias Rufino Arcanjo
- Laboratory of Functional and Molecular Studies in Physiopharmacology (LAFMOL), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Wellington Dos Santos Alves
- Laboratory of Natural Products and Bioprospection (LabPNBio), State University of Piauí, Teresina, Piauí, Brazil
| | - Francisco de Assis Oliveira
- Laboratory of Inflammation Pharmacology (LAFIN), Medicinal Plants Research Center, Federal University of Piauí, Teresina, Piauí, Brazil
| |
Collapse
|
25
|
Wang W, Zhou K, Wang L, Qin Q, Liu H, Qin L, Yang M, Yuan L, Liu C. Aging in chronic lung disease: Will anti-aging therapy be the key to the cure? Eur J Pharmacol 2024; 980:176846. [PMID: 39067566 DOI: 10.1016/j.ejphar.2024.176846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Chronic lung disease is the third leading cause of death globally, imposing huge burden of death, disability and healthcare costs. However, traditional pharmacotherapy has relatively limited effects in improving the cure rate and reducing the mortality of chronic lung disease. Thus, new treatments are urgently needed for the prevention and treatment of chronic lung disease. It is particularly noteworthy that, multiple aging-related phenotypes were involved in the occurrence and development of chronic lung disease, such as blocked proliferation, telomere attrition, mitochondrial dysfunction, epigenetic alterations, altered nutrient perception, stem cell exhaustion, chronic inflammation, etc. Consequently, senescent cells induce a series of pathological changes in the lung, such as immune dysfunction, airway remodeling, oxidative stress and regenerative dysfunction, which is a critical issue that needs special attention in chronic lung diseases. Therefore, anti-aging interventions may bring new insights into the treatment of chronic lung diseases. In this review, we elaborate the involvement of aging in chronic lung disease and further discuss the application and prospects of anti-aging therapy.
Collapse
Affiliation(s)
- Weijie Wang
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China; National Experimental Teaching Demonstration Center for Medical Function, China
| | - Kai Zhou
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China; National Experimental Teaching Demonstration Center for Medical Function, China
| | - Leyuan Wang
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China; National Experimental Teaching Demonstration Center for Medical Function, China
| | - Qiuyan Qin
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China; National Experimental Teaching Demonstration Center for Medical Function, China
| | - Huijun Liu
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China; National Experimental Teaching Demonstration Center for Medical Function, China
| | - Ling Qin
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China
| | - Ming Yang
- Centre for Asthma and Respiratory Disease, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Lin Yuan
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China; National Experimental Teaching Demonstration Center for Medical Function, China.
| | - Chi Liu
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China; Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China; National Experimental Teaching Demonstration Center for Medical Function, China.
| |
Collapse
|
26
|
Zheng Y, Liu W, Zhu X, Xu M, Lin B, Bai Y. Associations of dietary inflammation index and composite dietary antioxidant index with preserved ratio impaired spirometry in US adults and the mediating roles of triglyceride-glucose index: NHANES 2007-2012. Redox Biol 2024; 76:103334. [PMID: 39217849 PMCID: PMC11402638 DOI: 10.1016/j.redox.2024.103334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Previous studies have shown that inflammatory and antioxidant dietary patterns can modify the risk of COPD, yet few studies have examined the association of these diets with its early signs (PRISm), and the potential role of metabolic disorders remains to be elucidated. METHODS Data from 9529 individuals who participated in the 2007-2012 National Health and Nutrition Examination Survey (NHANES) were analyzed. The Dietary Inflammation Index (DII) and the Dietary Antioxidant Composite Index (CDAI) were assessed using 24-h dietary recall, multiple metabolic indicators were calculated according to biochemical markers, and lung function parameters defined PRISm cases. Individual and joint effects of DII and CDAI were evaluated by generalized linear models and binary logistic regression models, and mediation effects of metabolic indicators were further explored by causal mediation analysis. RESULTS Increased DII was associated with decreased lung function (FEV1: β = -18.82, FVC: β = -29.2; OR = 1.04) and increased metabolic indicators (β = 0.316, 0.036, 0.916, 0.033, and 0.145 on MAP, UA, TC, TyG, and MS, respectively). Contrary to this, CDAI were positively and negatively associated with lung function (FEV1: β = 3.42; FVC: β = 4.91; PRISm: OR = 0.99) and metabolic indicators (β < 0), respectively. Joint effects of DII and CDAI indicated the minimal hazard effects of DII on TyG (β = -0.11), FEV1 (β = 72.62), FVC (β = 122.27), and PRISm (OR = 0.79) in subjects with high CDAI when compared with those with low CDAI (low DII + high CDAI vs. high DII + low CDAI). Furthermore, TyG mediated 13.74 %, 8.29 %, and 21.70 % of DII- and 37.30 %, 20.90 %, and 12.32 % of CDAI-FEV1, -FVC, and -PRISm associations, respectively. CONCLUSIONS These findings indicated that CDAI can attenuate the adverse effects of DII on metabolic disorders and lung function decline, which provides new insight for diet modification in preventing early lung dysfunction.
Collapse
Affiliation(s)
- Yuyu Zheng
- School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Wanlu Liu
- School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Xinyu Zhu
- School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Mengya Xu
- School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Baihao Lin
- School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Yansen Bai
- School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China.
| |
Collapse
|
27
|
Cao F, Wang R, Wang L, Li YZ, Wei YF, Zheng G, Nan YX, Sun MH, Liu FH, Xu HL, Zou BJ, Li XY, Qin X, Huang DH, Chen RJ, Gao S, Meng X, Gong TT, Wu QJ. Plant-based diet indices and their interaction with ambient air pollution on the ovarian cancer survival: A prospective cohort study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116894. [PMID: 39154500 DOI: 10.1016/j.ecoenv.2024.116894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/15/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Ambient air pollution might serve as a prognostic factor for ovarian cancer (OC) survival, yet the relationships between plant-based diet indices (PDIs) and OC survival remain unclear. We aimed to investigate the associations of comprehensive air pollution and PDIs with OC survival and explored the effects of air pollution-diet interactions. METHODS The present study encompassed 658 patients diagnosed with OC. The overall plant-based diet index (PDI), the healthful PDI (hPDI), and the unhealthful PDI (uPDI) were evaluated by a self-reported validated food frequency questionnaire. In addition, an air pollution score (APS) was formulated by summing the concentrations of particulate matter with a diameter of 2.5 microns or less, ozone, and nitrogen dioxide. Cox proportional hazard models were applied to calculate hazard ratios (HRs) and 95 % confidence intervals (CIs). The potential interactions of APS with PDIs in relation to overall survival (OS) were assessed on both multiplicative and additive scales. RESULTS Throughout a median follow-up of 37.60 (interquartile: 24.77-50.70) months, 123 deaths were confirmed. Comparing to the lowest tertiles, highest uPDI was associated with lower OS of OC (HR = 2.06, 95 % CI = 1.30, 3.28; P-trend < 0.01), whereas no significant associations were found between either overall PDI or hPDI and OC survival. Higher APS (HR for per interquartile range = 1.27, 95 % CI = 1.01, 1.60) was significantly associated with worse OC survival, and the association was exacerbated by adherence to uPDI. Notably, an additive interaction was identified between combined air pollution and uPDI (P < 0.005 for high APS and high uPDI). We also found that adherence to overall PDI aggravated associations of air pollution with OC survival (P-interaction = 0.006). CONCLUSIONS Joint exposure to various ambient air pollutants was significantly associated with lower survival among patients with OC, particularly for those who predominantly consumed unhealthy plant-based foods.
Collapse
Affiliation(s)
- Fan Cao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ran Wang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lan Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Zi Li
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Fan Wei
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Gang Zheng
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Xin Nan
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ming-Hui Sun
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fang-Hua Liu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - He-Li Xu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bing-Jie Zou
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiao-Ying Li
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xue Qin
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Dong-Hui Huang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ren-Jie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Song Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xia Meng
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China.
| | - Ting-Ting Gong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Qi-Jun Wu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China; Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China; NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
| |
Collapse
|
28
|
Ji Z, Zhang C, Feng P, Zhao J. Rutaecarpine Protects Against Cigarette Smoke-Induced Chronic Obstructive Pulmonary Disease (COPD) in Rats. Appl Biochem Biotechnol 2024; 196:7089-7103. [PMID: 38483764 DOI: 10.1007/s12010-024-04896-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 11/21/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic lung inflammatory disease that causes restricted airflow and breathing difficulties. In this work, we attempted to explore the salutary effects of rutaecarpine on COPD-induced rats. Healthy Wistar rats were employed in this study and exposed to cigarette smoke to initiate COPD. The rutaecarpine was given to the rats at 20 and 30 mg/kg dosages, respectively, for 12 weeks. Body weight gain, food uptake, and food efficiency were assessed after treatment completion. The grip strength test was performed to assess muscle strength. The C-reactive protein (CRP), leptin, inflammatory cytokines, and oxidative stress markers were assessed using the corresponding assay kits. The inflammatory cells on the bronchoalveolar lavage fluid (BALF) were counted using Wright-Giemsa staining. The respiratory functions of the experimental rats were measured. The histopathological analysis was done on the lung tissues. The rutaecarpine treatment effectively increased body weight gain, food uptake, and food efficiency in the COPD rats. The levels of leptin were increased, and CRP was reduced by the rutaecarpine. The rutaecarpine regulated the respiratory functions and reduced the inflammatory cell counts and pro-inflammatory markers in the COPD rats. The levels of antioxidants were increased by the rutaecarpine treatment in the COPD rats. The findings of the lung histopathological study also demonstrated the therapeutic effects of rutaecarpine. Overall, the findings of the current study witness the salutary role of rutaecarpine against cigarette smoke-induced COPD in rats. Therefore, it was clear that rutaecarpine could be a promising salutary candidate to treat COPD.
Collapse
Affiliation(s)
- Zexuan Ji
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, No. 12, Changqing Road, Qiaoxi District, Zhangjiakou, 075000, China.
| | - Changhong Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, No. 12, Changqing Road, Qiaoxi District, Zhangjiakou, 075000, China
| | - Ping Feng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, No. 12, Changqing Road, Qiaoxi District, Zhangjiakou, 075000, China
| | - Jianqing Zhao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, No. 12, Changqing Road, Qiaoxi District, Zhangjiakou, 075000, China
| |
Collapse
|
29
|
Zhang M, Wang J, Liu R, Wang Q, Qin S, Chen Y, Li W. The role of Keap1-Nrf2 signaling pathway in the treatment of respiratory diseases and the research progress on targeted drugs. Heliyon 2024; 10:e37326. [PMID: 39309822 PMCID: PMC11414506 DOI: 10.1016/j.heliyon.2024.e37326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/30/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
Lungs are exposed to external oxidants from the environment as in harmful particles and smog, causing oxidative stress in the lungs and consequently respiratory ailment. The NF-E2-related factor 2 (Nrf2) is the one with transcriptional regulatory function, while its related protein Kelch-like ECH-associated protein 1 (Keap1) inhibits Nrf2 activity. Together, they form the Keap1-Nrf2 pathway, which regulates the body's defense against oxidative stress. This pathway has been shown to maintain cellular homeostasis during oxidative stressing, inflammation, oncogenesis, and apoptosis by coordinating the expression of cytoprotective genes and making it a potential therapeutic target for respiratory diseases. This paper summarizes this point in detail in Chapter 2. In addition, this article summarizes the current drug development and clinical research progress related to the Keap1-Nrf2 signaling pathway, with a focus on the potential of Nrf2 agonists in treating respiratory diseases. Overall, the article reviews the regulatory mechanisms of the Keap1-Nrf2 signaling pathway in respiratory diseases and the progress of targeted drug research, aiming to provide new insights for treatment.
Collapse
Affiliation(s)
- Mengyang Zhang
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Jing Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Runze Liu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Qi Wang
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Song Qin
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Yuqin Chen
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, La Jolla, 92093, USA
| | - Wenjun Li
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| |
Collapse
|
30
|
Cai SY, Liu A, Xie WX, Zhang XQ, Su B, Mao Y, Weng DG, Chen ZY. Esketamine mitigates mechanical ventilation-induced lung injury in chronic obstructive pulmonary disease rats via inhibition of the MAPK/NF-κB signaling pathway and reduction of oxidative stress. Int Immunopharmacol 2024; 139:112725. [PMID: 39059100 DOI: 10.1016/j.intimp.2024.112725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/01/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
PURPOSE To investigate esketamine's impact on inflammation and oxidative stress in ventilated chronic obstructive pulmonary disease (COPD) rats, examining its regulatory mechanisms. METHODS Rats were divided into four groups: control group (Con), COPD model group (M), COPD model with saline treatment group (M+S), and COPD model with esketamine treatment group (M+K), with 12 rats in each group. After two months, all rats underwent anesthesia and mechanical ventilation. Group M+K received 5 mg/kg esketamine intravenously, while Group M+S received the same volume of saline. Lung tissues were collected for analysis two hours later, including airway peak pressure, wet-to-dry(W/D) ratio, lung permeability index(LPI), hematoxylin and eosin(H&E) staining, and transmission electron microscopy(TEM). Tumor necrosis factor-alpha(TNF-α), interleukin-6(IL-6), interleukin-8(IL-8), and interleukin-10(IL-10) levels were determined by enzyme-linked immunosorbent assay(ELISA); phosphorylated Nuclear Factor Kappa B(p-NF-κB), mitogen-activated protein kinase 14(p38), phosphorylated p38 (p-p38), c-Jun N-terminal kinase(JNK), and phosphorylated JNK (p-JNK) expressions by Western blotting and immunohistochemistry; and malondialdehyde(MDA), myeloperoxidase(MPO), and superoxide dismutase(SOD) levels were also measured by corresponding biochemical assays. RESULTS Lung specimens from groups M, M+S, and M+K manifested hallmark histopathological features of COPD. Compared with group Con, group M displayed increased peak airway pressure, W/D ratio, and LPI. In group M+K, compared with group M, esketamine significantly reduced the W/D ratio, LPI, and concentrations of pro-inflammatory cytokines TNF-α, IL-6, and IL-8 while concurrently elevating IL-10 levels. Furthermore, the treatment attenuated the activation of the NF-κB and MAPK pathways, indicated by decreased levels of p-NF-κB, p-p38, and p-JNK.Additionally, compared to group M, group M+K showed decreased MDA and MPO levels and increased SOD levels in lung tissue. CONCLUSION Esketamine attenuates mechanical ventilation-induced lung injury in COPD rat models by inhibiting the MAPK/NF-κB signaling pathway and reducing oxidative stress.
Collapse
Affiliation(s)
- San-Ying Cai
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China; Department of Anesthesiology, Mindong Hospital Affiliated to Fujian Medical University, Fuan 355000, Fujian, China
| | - Ang Liu
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China; Department of Anesthesiology, Heze Municipal Hospital, Heze 274000, China
| | - Wen-Xi Xie
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Xiao-Qi Zhang
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Bin Su
- Department of Anesthesiology, Heze Municipal Hospital, Heze 274000, China
| | - Yu Mao
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Di-Gui Weng
- Department of Anesthesiology, Mindong Hospital Affiliated to Fujian Medical University, Fuan 355000, Fujian, China.
| | - Zhi-Yuan Chen
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China.
| |
Collapse
|
31
|
Qi Y, Yan Y, Tang D, Han J, Zhu X, Cui M, Wu H, Tao Y, Fan F. Inflammatory and Immune Mechanisms in COPD: Current Status and Therapeutic Prospects. J Inflamm Res 2024; 17:6603-6618. [PMID: 39318994 PMCID: PMC11421452 DOI: 10.2147/jir.s478568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) currently ranks among the top three causes of mortality worldwide, presenting as a prevalent and complex respiratory ailment. Ongoing research has underscored the pivotal role of immune function in the onset and progression of COPD. The immune response in COPD patients exhibits abnormalities, characterized by diminished anti-infection capacity due to immune senescence, heightened activation of neutrophils and macrophages, T cell infiltration, and aberrant B cell activity, collectively contributing to airway inflammation and lung injury in COPD. Objective This review aimed to explore the pivotal role of the immune system in COPD and its therapeutic potential. Methods We conducted a review of immunity and COPD published within the past decade in the Web of Science and PubMed databases, sorting through and summarizing relevant literature. Results This article examines the pivotal roles of the immune system in COPD. Understanding the specific functions and interactions of these immune cells could facilitate the development of novel therapeutic strategies and interventions aimed at controlling inflammation, enhancing immune function, and mitigating the impact of respiratory infections in COPD patients.
Collapse
Affiliation(s)
- Yanan Qi
- School of Pharmacy, Bengbu Medical University, Bengbu, People’s Republic of China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, People’s Republic of China
| | - Yuanyuan Yan
- School of Pharmacy, Bengbu Medical University, Bengbu, People’s Republic of China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, People’s Republic of China
| | - Dawei Tang
- School of Pharmacy, Bengbu Medical University, Bengbu, People’s Republic of China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, People’s Republic of China
| | - Jingjing Han
- School of Pharmacy, Bengbu Medical University, Bengbu, People’s Republic of China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, People’s Republic of China
| | - Xinyi Zhu
- School of Pharmacy, Bengbu Medical University, Bengbu, People’s Republic of China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, People’s Republic of China
| | - Mengting Cui
- School of Pharmacy, Bengbu Medical University, Bengbu, People’s Republic of China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, People’s Republic of China
| | - Hongyan Wu
- Institute of Biomedical Technology, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, 224005, People’s Republic of China
| | - Yu Tao
- School of Pharmacy, Bengbu Medical University, Bengbu, People’s Republic of China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, People’s Republic of China
| | - Fangtian Fan
- School of Pharmacy, Bengbu Medical University, Bengbu, People’s Republic of China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, People’s Republic of China
| |
Collapse
|
32
|
Liu YY, Dou GJ, Xiao YC, Chen XY, Wei LX, Zhou WB. Therapeutic potential of Cordyceps sinensis targeting oxidative stress and inflammatory response in the treatment of COPD rats: insights from metabolomics analysis. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024:1-18. [PMID: 39287960 DOI: 10.1080/10286020.2024.2403611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/08/2024] [Accepted: 09/08/2024] [Indexed: 09/19/2024]
Abstract
This study aimed to investigate the effects of wild Cordyceps sinensis on chronic obstructive pulmonary disease (COPD) rats through metabolomics approach, combined with biochemical parameters evaluations. Consequently, C. sinensis exhibited regulatory effects on the lung's metabolic profiles in COPD rats. Treatment with C. sinensis potentially modulated glycerophospholipid metabolism, glutathione metabolism, and tryptophan metabolism, thereby alleviating oxidative stress (by decreasing MDA and GSSG, while increasing SOD and GSH) and inflammatory response (by inhibiting TNF-α, IL-8, and MMP-9) in COPD rats while improving lung tissue damage.
Collapse
Affiliation(s)
- Ying-Ying Liu
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, China
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gai-Jie Dou
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, China
- College of Tibetan Medicine, Qinghai University, Xining 810016, China
| | - Yuan-Can Xiao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, China
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China
| | - Xiao-Yi Chen
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo 315032, China
| | - Li-Xin Wei
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, China
| | - Wen-Bin Zhou
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, China
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China
| |
Collapse
|
33
|
Ye P, Liu H, Qin Y, Li Z, Huang Z, Bu X, Peng Q, Duan N, Wang W, Wang X. SS-31 mitigates oxidative stress and restores mitochondrial function in cigarette smoke-damaged oral epithelial cells via PINK1-mediated mitophagy. Chem Biol Interact 2024; 400:111166. [PMID: 39069114 DOI: 10.1016/j.cbi.2024.111166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/12/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Smoking is a well-established risk factor for several oral diseases, including oral cancer, oral leukoplakia and periodontitis, primarily related to reactive oxygen species (ROS). SS-31, a mitochondria-targeting tetrapeptide, has exhibited demonstrable efficacy in medical conditions by attenuating mitochondrial ROS production. However, its potential in the treatment of oral diseases remains underexplored. The aim of this study was to investigate the therapeutic potential of SS-31 in mitigating smoking-induced oral epithelial injury. Through in vitro experiments, our results indicate that SS-31 plays a protective role against cigarette smoke extract (CSE) by reducing oxidative stress, attenuating inflammatory response, and restoring mitochondrial function. Furthermore, we found that mitophagy, regulated by PINK1 (PTEN-induced putative kinase 1)/Parkin (Parkin RBR E3 ubiquitin-protein ligase), was critical for the protective role of SS-31. Our findings offer valuable insights into SS-31's therapeutic potential in mitigating CSE-induced oxidative stress, inflammatory response, and mitochondrial dysfunction in oral epithelial cells. This study provides novel intervention targets for smoking-related oral diseases.
Collapse
Affiliation(s)
- Pei Ye
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
| | - Hong Liu
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
| | - Yao Qin
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
| | - Zhiyuan Li
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
| | - Zhuwei Huang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
| | - Xiangwen Bu
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
| | - Qiao Peng
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
| | - Ning Duan
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
| | - Wenmei Wang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Xiang Wang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China.
| |
Collapse
|
34
|
Liu T, Li Y, Hu N. Aucubin Alleviates Chronic Obstructive Pulmonary Disease by Activating Nrf2/HO-1 Signaling Pathway. Cell Biochem Biophys 2024; 82:2439-2454. [PMID: 38967902 DOI: 10.1007/s12013-024-01354-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a common chronic respiratory disease with high death rates. Aucubin is an iridoid glycoside extracted from Eucommia ulmoides with antioxidative and anti-inflammatory properties in human diseases. This study aimed to investigate its specific function in mouse and cell models of COPD. METHODS The COPD mouse model was established by exposing mice to a long-term cigarette smoke (CS). The number of inflammatory cells and the contents of inflammatory factors tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), and IL-8 in bronchoalveolar lavage fluid (BALF) of CS-exposed mice were measured. The levels of superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA), and myeloperoxidase (MPO) in the lung tissues were estimated. Masson staining and hematoxylin-eosin (H&E) staining were utilized to evaluate pulmonary fibrosis and emphysema in CS-treated mice. Cell apoptosis in the lung tissues was estimated by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay. Western blot was applied to quantify protein levels of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and apoptotic markers. COPD cell model was established by exposing mouse lung epithelial cells (MLE12) with cigarette smoke extract to further verify the properties of aucubin in vitro. RESULTS Aucubin reduced the number of inflammatory cells and decreased the contents of TNF-α, IL-6, and IL-8 in BALF of CS-treated mice. The oxidative stress, lung emphysema, fibrosis, and lung cell apoptosis induced by CS exposure were ameliorated by aucubin administration. Aucubin activated the Nrf2/HO-1 signaling pathway in vitro and in vivo. Pretreatment with ML385, a specific Nrf2 inhibitor, antagonized the protective effects of aucubin on inflammation, oxidative stress, fibrosis, and cell apoptosis in COPD. CONCLUSION Aucubin alleviates inflammation, oxidative stress, apoptosis, and pulmonary fibrosis in COPD mice and CSE-treated MLE12 cells by activating the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Ting Liu
- Department of International Medical Center, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Yang Li
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Nan Hu
- Department of Rheumatology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
35
|
Jiang J, Zheng Z, Chen S, Liu J, Jia J, Huang Y, Liu Q, Cheung CY, Sin DD, Yang T, Wang C. Hypoxia inducible factor (HIF) 3α prevents COPD by inhibiting alveolar epithelial cell ferroptosis via the HIF-3α-GPx4 axis. Theranostics 2024; 14:5512-5527. [PMID: 39310101 PMCID: PMC11413794 DOI: 10.7150/thno.99237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/10/2024] [Indexed: 09/25/2024] Open
Abstract
Rationale: COPD patients are largely asymptomatic until the late stages when prognosis is generally poor. In this study, we shifted the focus to pre-COPD and smoking stages, and found enrichment of hypoxia inducible factor (HIF)-3α is in pre-COPD samples. Smoking induced regional tissue hypoxia and emphysema have been found in COPD patients. However, the mechanisms underlying hypoxia especially HIF-3α and COPD have not been investigated. Methods: We performed bulk-RNA sequencing on 36 peripheral lung tissue specimens from non-smokers, smokers, pre-COPD and COPD patients, and using "Mfuzz" algorithm to analysis the dataset dynamically. GSE171541 and EpCAM co-localization analyses were used to explore HIF-3α localization. Further, SftpcCreert2/+R26LSL-Hif3a knock-in mice and small molecular inhibitors in vitro were used to explore the involvement of HIF-3α in the pathophysiology of COPD. Results: Reactive oxygen species (ROS) and hypoxia were enriched in pre-COPD samples, and HIF-3α was downregulated in alveolar epithelial cells in COPD. In vitro experiments using lentivirus transfection, bulk-RNA seq, and RSL3 showed that the activation of the HIF-3α-GPx4 axis inhibited alveolar epithelial cell ferroptosis when treated with cigarettes smoking extracts (CSE). Further results from SftpcCreert2/+R26LSL-Hif3a knock-in mice demonstrated overexpression of HIF-3α inhibited alveolar epithelial cells ferroptosis and prevented the decline of lung function. Conclusion: Hypoxia and oxidation-related damage begins years before the onset of COPD symptoms, suggesting the imbalance and impairment of intracellular homeostatic system. The activation of the HIF-3α-GPx4 axis is a promising treatment target. By leveraging this comprehensive analysis method, more potential targets could be found and enhancing our understanding of the pathogenesis.
Collapse
Affiliation(s)
- Junchao Jiang
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, CN
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, CN
- The University of British Columbia, Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, CA
| | - Zhoude Zheng
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, CN
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, CN
| | - Shengsong Chen
- First Affiliated Hospital of Nanchang University, Department of Pulmonary and Critical Care Medicine, Nanchang, Jiangxi, CN
| | - Jixiang Liu
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, CN
| | - Ju Jia
- Department of Infectious Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, CN
| | - Yuhang Huang
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, CN
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, CN
| | - Qing Liu
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, CN
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, CN
| | - Chung Y Cheung
- The University of British Columbia, Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, CA
| | - Don D Sin
- The University of British Columbia, Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, CA
- The University of British Columbia, Division of Respiratory Medicine, Department of Medicine, Vancouver, BC, CA
| | - Ting Yang
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, CN
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, CN
| | - Chen Wang
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, CN
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, CN
| |
Collapse
|
36
|
Ashique S, Mishra N, Mantry S, Garg A, Kumar N, Gupta M, Kar SK, Islam A, Mohanto S, Subramaniyan V. Crosstalk between ROS-inflammatory gene expression axis in the progression of lung disorders. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03392-1. [PMID: 39196392 DOI: 10.1007/s00210-024-03392-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024]
Abstract
A significant number of deaths and disabilities worldwide are brought on by inflammatory lung diseases. Many inflammatory lung disorders, including chronic respiratory emphysema, resistant asthma, resistance to steroids, and coronavirus-infected lung infections, have severe variants for which there are no viable treatments; as a result, new treatment alternatives are needed. Here, we emphasize how oxidative imbalance contributes to the emergence of provocative lung problems that are challenging to treat. Endogenic antioxidant systems are not enough to avert free radical-mediated damage due to the induced overproduction of ROS. Pro-inflammatory mediators are then produced due to intracellular signaling events, which can harm the tissue and worsen the inflammatory response. Overproduction of ROS causes oxidative stress, which causes lung damage and various disease conditions. Invasive microorganisms or hazardous substances that are inhaled repeatedly can cause an excessive amount of ROS to be produced. By starting signal transduction pathways, increased ROS generation during inflammation may cause recurrent DNA damage and apoptosis and activate proto-oncogenes. This review provides information about new targets for conducting research in related domains or target factors to prevent, control, or treat such inflammatory oxidative stress-induced inflammatory lung disorders.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutics, Bengal College of Pharmaceutical Sciences & Research, Durgapur, West Bengal, 713212, India.
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - Neeraj Mishra
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, MP, 474005, India
| | - Shubhrajit Mantry
- Department of Pharmaceutics, Department of Pharmacy, Sarala Birla University, Ranchi, Jharkhand, 835103, India
| | - Ashish Garg
- Department of Pharmaceutics, Guru Ramdas Khalsa Institute of Science and Technology (Pharmacy), Jabalpur, Madhya Pradesh, 483001, India
| | - Nitish Kumar
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology (Deemed to Be University), Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh, 201204, India
| | - Madhu Gupta
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, Delhi, 110017, India
| | - Sanjeeb Kumar Kar
- Department of Pharmaceutical Chemistry, Department of Pharmacy, Sarala Birla University, Ranchi, Jharkhand, 835103, India
| | - Anas Islam
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka, 575018, India.
| | - Vetriselvan Subramaniyan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
37
|
Almalki WH, Salman Almujri S. Oxidative stress and senescence in aging kidneys: the protective role of SIRT1. EXCLI JOURNAL 2024; 23:1030-1067. [PMID: 39391060 PMCID: PMC11464868 DOI: 10.17179/excli2024-7519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/07/2024] [Indexed: 10/12/2024]
Abstract
Aging leads to a gradual decline in kidney function, making the kidneys increasingly vulnerable to various diseases. Oxidative stress, together with cellular senescence, has been established as paramount in promoting the aging process of the kidney. Oxidative stress, defined as an imbalance between ROS formation and antioxidant defense mechanisms, has been implicated in the kidney's cellular injury, inflammation, and premature senescence. Concurrently, the accumulation of SCs in the kidney also exacerbates oxidative stress via the secretion of pro-inflammatory and tissue-damaging factors as the senescence-associated secretory phenotype (SASP). Recently, SIRT1, a nicotinamide adenine dinucleotide (NAD)-dependent deacetylase, has been pivotal in combating oxidative stress and cellular senescence in the aging kidney. SIRT1 acts as a potential antioxidant molecule through myriad pathways that influence diverse transcription factors and enzymes essential in maintaining redox homeostasis. SIRT1 promotes longevity and renal health by modulating the acetylation of cell cycle and senescence pathways. This review covers the complex relationship between oxidative stress and cellular senescence in the aging kidney, emphasizing the protective role of SIRT1. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Aseer, Saudi Arabia
| |
Collapse
|
38
|
Liu Y, Zhang L, Zhao J, Lu R, Shao X, Xu K, Li J, Tian Y. Effective-Component Compatibility of Bufei Yishen Formula III Suppresses Mitochondrial Oxidative Damage in COPD: Via Pkm2/Nrf2 Pathway. Int J Chron Obstruct Pulmon Dis 2024; 19:1905-1920. [PMID: 39206144 PMCID: PMC11352541 DOI: 10.2147/copd.s468825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Purpose The main objective of this study was to explore the mechanism of effective component compatibility of Bufei Yishen formula III (ECC-BYF III) in inhibiting mitochondrial oxidative stress in a rat model of chronic obstructive pulmonary disease (COPD). Methods A549 cells exposed to cigarette smoke extract (CSE) were used to establish a model of mitochondrial oxidative damage. The cells were treated with the plasmid encoding Pkm2 and the enzymes and proteins involved in oxidative stress and mitochondrial function were measured. A rat model of COPD was established using CS and bacteria. Two different treatments were established, ECC-BYF III (5.5 mg/kg/d) and N-acetylcysteine (54 mg/kg/day). Animals were tested for pulmonary function (Vt, PEF, FVC, FEV0.1s and Cdyn) after eight weeks of therapy and were sacrificed. Pulmonary H&E staining was performed, and the total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px), total antioxidant capacity (T-AOC), and malondialdehyde (MDA) content were measured. The mitochondrial function was also examined. Furthermore, the Pkm2/Nrf2 signaling pathway was evaluated. Results Overexpression of Pkm2 dramatically ameliorated the CS-induced mitochondrial oxidative damage. Further studies indicated that ECC-BYF III significantly improved mitochondrial function and inhibited oxidative stress in the lung tissues of COPD rats. Moreover, it can upregulate mitochondrial respiratory chain enzyme activity. ECC-BYF III also decreased the MDA content and increased T-SOD, GSH-Px, and T-AOC expression to facilitate oxidative homeostasis. Finally, our results indicated that the Pkm2/Nrf2 pathway is regulated by ECC-BYF III in A549 cells and lung tissue. Conclusion These results indicate that ECC-BYF III exerts a strong effective therapeutic effect against cigarette smoke combined with bacteria-induced COPD in rats by activating the Pkm2/Nrf2 signaling pathway and restoring mitochondrial oxidative stress. Although more in vivo animal model research is needed to confirm these findings, this study contributes new data to support the conventional usage of ECC-BYF III.
Collapse
Affiliation(s)
- Yang Liu
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province and Education Ministry of People’s Republic of China, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Lanxi Zhang
- School of Basic Medicine (Zhongjing School), Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Jie Zhao
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province and Education Ministry of People’s Republic of China, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Ruilong Lu
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province and Education Ministry of People’s Republic of China, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Xuejie Shao
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province and Education Ministry of People’s Republic of China, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Kexin Xu
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province and Education Ministry of People’s Republic of China, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Jiansheng Li
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province and Education Ministry of People’s Republic of China, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
- First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, People’s Republic of China
| | - Yange Tian
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province and Education Ministry of People’s Republic of China, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| |
Collapse
|
39
|
Lazzara V, Pinto P, Di Vincenzo S, Ferraro M, Catalano F, Provinzano P, Pace E, Bonsignore MR. In vitro evidence of antioxidant and anti-inflammatory effects of a new nutraceutical formulation explains benefits in a clinical setting of COPD patients. Front Pharmacol 2024; 15:1439835. [PMID: 39228520 PMCID: PMC11368797 DOI: 10.3389/fphar.2024.1439835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/09/2024] [Indexed: 09/05/2024] Open
Abstract
Background and Aim: Increased oxidative stress within the airways is associated to epithelial damage and amplification of inflammatory responses that in turn contribute to Chronic Obstructive Pulmonary Disease (COPD) progression. This study was aimed to identify whether a new formulation of N-acetylcisteine (NAC), carnitine, curcumin and B2 vitamin could counteract oxidative stress and downstream pro-inflammatory events promoted by cigarette smoke extract (CSE) exposure in primary bronchial epithelial cells (PBEC), both submerged/undifferentiated (S-PBEC) and cultured at the air-liquid interface (ALI-PBEC). Methods: PBEC were exposed to CSE with/without the new formulation or NAC alone and ROS production, IL-8 and IL-6 gene expression and protein release were evaluated. Results: CSE increased ROS, IL-8 and IL-6 gene expression and protein release and the new formulation counteracted these effects. NAC alone was not effective on IL-8 and IL-6 release. The effects of a similar nutraceutical formulation were evaluated in COPD patients treated for six months. The results showed that the treatment reduced the concentration of IL-8 in nasal wash and improved quality of life. Conclusion: The tested formulation, exerting antioxidant and anti-inflammatory effects, can preserve airway epithelial homeostasis and improve clinical symptoms in COPD.
Collapse
Affiliation(s)
- Valentina Lazzara
- Dipartimento Promozione della Salute Materno-Infantile di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro” (PROMISE), Università degli Studi di Palermo, Palermo, Italy
- Institute of Translational Pharmacology (IFT), National Research Council of Italy (CNR), Palermo, Italy
| | - Paola Pinto
- Dipartimento Promozione della Salute Materno-Infantile di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro” (PROMISE), Università degli Studi di Palermo, Palermo, Italy
- Institute of Translational Pharmacology (IFT), National Research Council of Italy (CNR), Palermo, Italy
- PhD National Program in One Health Approaches to Infectious Diseases and Life Science Research, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Serena Di Vincenzo
- Institute of Translational Pharmacology (IFT), National Research Council of Italy (CNR), Palermo, Italy
| | - Maria Ferraro
- Institute of Translational Pharmacology (IFT), National Research Council of Italy (CNR), Palermo, Italy
| | - Filippo Catalano
- Azienda Ospedaliera Ospedali Riuniti Villa Sofia Cervello, Palermo, Italy
| | - Pietro Provinzano
- Dipartimento Promozione della Salute Materno-Infantile di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro” (PROMISE), Università degli Studi di Palermo, Palermo, Italy
| | - Elisabetta Pace
- Institute of Translational Pharmacology (IFT), National Research Council of Italy (CNR), Palermo, Italy
| | - Maria Rosaria Bonsignore
- Dipartimento Promozione della Salute Materno-Infantile di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro” (PROMISE), Università degli Studi di Palermo, Palermo, Italy
- Institute of Translational Pharmacology (IFT), National Research Council of Italy (CNR), Palermo, Italy
- Azienda Ospedaliera Ospedali Riuniti Villa Sofia Cervello, Palermo, Italy
| |
Collapse
|
40
|
Xie B, Chen Q, Dai Z, Jiang C, Chen X. Progesterone (P4) ameliorates cigarette smoke-induced chronic obstructive pulmonary disease (COPD). Mol Med 2024; 30:123. [PMID: 39138434 PMCID: PMC11323532 DOI: 10.1186/s10020-024-00883-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 07/19/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory lung disease associated with high morbidity and mortality worldwide. Oxidative injury and mitochondrial dysfunction in the airway epithelium are major events in COPD progression. METHODS AND RESULTS The therapeutic effects of Progesterone (P4) were investigated in vivo and in vitro in this study. In vivo, in a cigarette smoke (CS) exposure-induced COPD mouse model, P4 treatment significantly ameliorated CS exposure-induced physiological and pathological characteristics, including inflammatory cell infiltration and oxidative injury, in a dose-dependent manner. The c-MYC/SIRT1/PGC-1α pathway is involved in the protective function of P4 against CS-induced COPD. In vitro, P4 co-treatment significantly ameliorated H2O2-induced oxidative injury and mitochondrial dysfunctions by promoting cell proliferation, increasing mitochondrial membrane potential, decreasing ROS levels and apoptosis, and increasing ATP content. Moreover, P4 co-treatment partially attenuated H2O2-caused inhibition in Nrf1, Tfam, Mfn1, PGR-B, c-MYC, SIRT1, and PGC-1α levels. In BEAS-2B and ASM cells, the c-MYC/SIRT1 axis regulated P4's protective effects against H2O2-induced oxidative injury and mitochondrial dysfunctions. CONCLUSION P4 activates the c-MYC/SIRT1 axis, ameliorating CS-induced COPD and protecting both airway epithelial cells and smooth muscle cells against H2O2-induced oxidative damage. PGC-1α and downstream mitochondrial signaling pathways might be involved.
Collapse
Affiliation(s)
- Bin Xie
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Departement of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qiong Chen
- Departement of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ziyu Dai
- Departement of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Chen Jiang
- Departement of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xi Chen
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
41
|
Xu J, Zeng Q, Li S, Su Q, Fan H. Inflammation mechanism and research progress of COPD. Front Immunol 2024; 15:1404615. [PMID: 39185405 PMCID: PMC11341368 DOI: 10.3389/fimmu.2024.1404615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common respiratory disease characterized by irreversible progressive airflow limitation, often manifested by persistent cough, sputum production and other respiratory symptoms that pose a serious threat to human health and affect the quality of life of patients. The disease is associated with chronic inflammation, which is associated with the onset and progression of COPD, but anti-inflammatory therapy is not first-line treatment. Inflammation has multiple manifestations and phenotypes, and this heterogeneity reveals different patterns of inflammation, making treatment difficult. This paper aims to explore the direction of more effective anti-inflammatory treatment by analyzing the nature of inflammation and the molecular mechanism of disease occurrence and development in COPD patients, and to provide new ideas for the treatment of COPD patients.
Collapse
Affiliation(s)
- Jiao Xu
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qingyue Zeng
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Shuangqing Li
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qiaoli Su
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Fan
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
42
|
YANG Q, YIN D, WANG H, GAO Y, WANG X, WU D, TONG J, WANG C, LI Z. Uncovering the action mechanism of Shenqi Tiaoshen formula in the treatment of chronic obstructive pulmonary disease through network pharmacology, molecular docking, and experimental verification. J TRADIT CHIN MED 2024; 44:770-783. [PMID: 39066538 PMCID: PMC11337265 DOI: 10.19852/j.cnki.jtcm.20240610.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/15/2023] [Indexed: 07/28/2024]
Abstract
OBJECTIVE To reveal the potential underlying mechanism of the Shenqi Tiaoshen formula (, SQTS) in the treatment of chronic obstructive pulmonary disease (COPD) by utilizing network pharmacology, molecular docking, and experimental verification. METHODS Multiple open-source databases and research related to Traditional Chinese Medicine or compounds were employed to screen active ingredients and corresponding potential targets of the SQTS. The protein-protein interaction network screened hub genes, the relevant molecular mechanism and gene regulation were initially identified through the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analysis, and molecular docking was used to confirm further the interaction of the main components bound to the core targets. In vivo experiments on the COPD combined Qi-deficiency syndrome rat model were performed to verify the intervention effects and predicted potential molecular mechanisms of the SQTS. RESULTS This study selected 156 active compounds and 326 candidate targets for treating COPD. Quercetin, Nobiletin, Kaempferol, Luteolin, Ginsenoside Rh2 and Formononetin were probably the main active compounds of SQTS in COPD treatment as they affected the most COPD-related targets, and interleukin-1 (IL-6), signal transducing activator of transcription 3 (STAT3), matrix metalloproteinase-9 (MMP9), vascular endothelial growth factor A (VEGFA), protein kinase B (AKT1), hypoxia-inducible factor-1α (HIF-1α), and forkhead box O3 (FoxO3) were identified as the hub genes associated with its therapeutic effect. KEGG analysis was mainly enriched in the signaling pathways closely related to inflammation, immunity and oxidative stress, such as HIF-1, tumor necrosis factor (TNF), phosphatidylinositol 3 kinase (PI3K)-AKT, FoxO, apoptosis, IL-17, and toll-like receptor. Molecular docking confirmed that the main active components shared a good affinity with the hub genes. In vivo experiments, the SQTS was found to improve the body weight, exhaustive swimming time, tail-hanging immobility time and struggle times, airway inflammation, lung functions, and inflammatory factors in the rat model of COPD. The up-regulation of p-PI3K, p-AKT, HIF-1α, FoxO3α, toll like receptor 4, VEGFA, Caspase 3, TNF-α, and IL-17 in COPD rats were down-regulated by SQTS, consistent with the network pharmacology results. CONCLUSIONS This study provides evidence that the SQTS plays a critical role in anti-inflammation via suppressing immune inflammation and oxidative stress related pathways, indicating that the SQTS is a candidate herbal drug for further investigation in treating COPD.
Collapse
Affiliation(s)
- Qinjun YANG
- 1 School of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230038, China
- 2 Anhui Province Key Laboratory of the Application and Transformation of Traditional Chinese Medicine in the Prevention and Treatment of Major Pulmonary Diseases, Hefei 230031, China
| | - Dandan YIN
- 3 Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Hui WANG
- 1 School of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Yating GAO
- 2 Anhui Province Key Laboratory of the Application and Transformation of Traditional Chinese Medicine in the Prevention and Treatment of Major Pulmonary Diseases, Hefei 230031, China
- 4 Institute of Traditional Chinese Medicine Respiratory Disease Prevention and Control, Anhui Academy of Traditional Chinese Medicine, Hefei 230031, China
- 5 Department of Respiratory, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China
| | - Xinheng WANG
- 1 School of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230038, China
- 2 Anhui Province Key Laboratory of the Application and Transformation of Traditional Chinese Medicine in the Prevention and Treatment of Major Pulmonary Diseases, Hefei 230031, China
| | - Di WU
- 1 School of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230038, China
- 2 Anhui Province Key Laboratory of the Application and Transformation of Traditional Chinese Medicine in the Prevention and Treatment of Major Pulmonary Diseases, Hefei 230031, China
| | - Jiabing TONG
- 2 Anhui Province Key Laboratory of the Application and Transformation of Traditional Chinese Medicine in the Prevention and Treatment of Major Pulmonary Diseases, Hefei 230031, China
- 4 Institute of Traditional Chinese Medicine Respiratory Disease Prevention and Control, Anhui Academy of Traditional Chinese Medicine, Hefei 230031, China
- 5 Department of Respiratory, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China
| | - Chuanbo WANG
- 6 Department of Chinese Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Zegeng LI
- 2 Anhui Province Key Laboratory of the Application and Transformation of Traditional Chinese Medicine in the Prevention and Treatment of Major Pulmonary Diseases, Hefei 230031, China
- 4 Institute of Traditional Chinese Medicine Respiratory Disease Prevention and Control, Anhui Academy of Traditional Chinese Medicine, Hefei 230031, China
- 5 Department of Respiratory, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China
| |
Collapse
|
43
|
Li L, Li Z, Peng Y, Fu Y, Zhang R, Wen J, Wang J. Bletilla striata polysaccharide alleviates chronic obstructive pulmonary disease via modulating gut microbiota and NR1H4 expression in mice. Microb Pathog 2024; 193:106767. [PMID: 38945459 DOI: 10.1016/j.micpath.2024.106767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
Bletilla striata polysaccharide (BSP) is the main component of Bletilla striata and has been revealed to enhance immune responses. Chronic obstructive pulmonary disease (COPD) results from the chronic inhalation of toxic particles and gases, which initiates innate and adaptive immune responses in the lungs. This study aimed to evaluate whether the effects of BSP on COPD were related to the abundance of gut microbiota and explored the underlying mechanism. COPD mice were induced with cigarette smoke and human bronchial epithelial cells (HBEC) were subjected to cigarette smoke extract (CSE) for in vitro studies. BSP alleviated the inflammatory response and the inflammatory cell infiltration in lung tissues and promoted the recovery of respiratory function in COPD mice. BSP mitigated CSE-induced HBEC injury by repressing inflammation and oxidative stress. 16s rRNA sequencing revealed that BSP increased the abundance of Bacteroides intestinalis. Bacteroides intestinalis colonization enhanced the therapeutic effect of BSP in COPD mice by upregulating NR1H4 and its encoded protein FXR. Reduction of NR1H4 impaired the therapeutic impact of BSP and Bacteroides intestinalis in COPD. These data demonstrate that BSP inhibits COPD by upregulating NR1H4 through Bacteroides intestinalis, which underpins the application of BSP as a therapeutic agent for COPD.
Collapse
Affiliation(s)
- Liang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hainan Medical University, Hainan Province Clinical Medical Center of Respiratory Diseases, Haikou, 570100, Hainan, PR China
| | - Zhaoguo Li
- Department of Respiratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, PR China
| | - Yuqiu Peng
- The First Clinical College, Hainan Medical University, Haikou, 571199, Hainan, PR China
| | - Yunli Fu
- The First Clinical College, Hainan Medical University, Haikou, 571199, Hainan, PR China
| | - Ranzhi Zhang
- The First Clinical College, Hainan Medical University, Haikou, 571199, Hainan, PR China
| | - Jiexiang Wen
- The First Clinical College, Hainan Medical University, Haikou, 571199, Hainan, PR China
| | - Jie Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hainan Medical University, Hainan Province Clinical Medical Center of Respiratory Diseases, Haikou, 570100, Hainan, PR China; The First Clinical College, Hainan Medical University, Haikou, 571199, Hainan, PR China.
| |
Collapse
|
44
|
Liang W, Yang H, Pan L, Wei S, Li Z, Zhang P, Li R, Wu Y, Liu M, Liu X. Ginkgo biloba Extract 50 (GBE50) Exerts Antifibrotic and Antioxidant Effects on Pulmonary Fibrosis in Mice by Regulating Nrf2 and TGF-β1/Smad Pathways. Appl Biochem Biotechnol 2024; 196:4807-4822. [PMID: 37971580 DOI: 10.1007/s12010-023-04755-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Pulmonary fibrosis (PF) is a progressive lung disorder with a poor prognosis. GBE50 is a new standardized Ginkgo biloba extract that has been widely used in cardiovascular diseases. However, the protective mechanism of GBE50 against PF remains to be elucidated. METHODS C57BL/6J mice were treated with bleomycin (Bleo) to induce PF in the presence or absence of GBE50. Protein content in bronchoalveolar lavage fluid (BALF) and wet weight/dry weight ratio were examined for analysis of pulmonary edema. Hematoxylin-eosin staining and Masson trichrome staining were used for histopathological observation of murine lung tissues. Ashcroft score was used for semi-quantitation of lung fibrosis degree. RT-qPCR was utilized for assessing mRNA levels of pro-fibrotic mediators in lung tissues. TUNEL staining was implemented for cell apoptosis assessment. The levels of oxidative stress- and inflammation-related markers were evaluated by corresponding commercial assay kits. Western blotting was used to evaluate levels of nuclear factor erythroid 2-related factor 2 (Nrf2) signaling- and transforming growth factor (TGF)-β1/SMAD signaling-related proteins. RESULTS GBE50 alleviated lung injury and severity of fibrosis, reduced collagen deposition and cell apoptosis in lung tissues, and suppressed inflammatory response and oxidative stress injury in Bleo-stimulated PF mice. GBE50 activated Nrf2 signaling pathway and inactivated TGF-β1/SMAD signaling pathway in the lungs of Bleo-induced PF mice. Inhibition of Nrf2 signaling reversed GBE50-mediated inactivation of TGF-β1/SMAD signaling and attenuation of inflammation and oxidative stress in Bleo-induced PF mice. CONCLUSION GBE50 protects against Bleo-induced PF in mice by mitigating fibrosis, inflammation and oxidative stress via Nrf2 and TGF-β1/SMAD signaling pathways.
Collapse
Affiliation(s)
- Wei Liang
- Department of Pulmonary and Critical Care Medicine, Ruikang Hospital Affiliated to Guangxi Traditional Chinese Medicine University, 10 Huadong Road, Nanning, 530000, Guangxi, China
| | - Hongmei Yang
- Department of Pulmonary and Critical Care Medicine, Ruikang Hospital Affiliated to Guangxi Traditional Chinese Medicine University, 10 Huadong Road, Nanning, 530000, Guangxi, China
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Ling Pan
- Department of Pulmonary and Critical Care Medicine, Ruikang Hospital Affiliated to Guangxi Traditional Chinese Medicine University, 10 Huadong Road, Nanning, 530000, Guangxi, China.
| | - Sizun Wei
- Department of Pulmonary and Critical Care Medicine, Ruikang Hospital Affiliated to Guangxi Traditional Chinese Medicine University, 10 Huadong Road, Nanning, 530000, Guangxi, China.
| | - Zhanhua Li
- Department of Pulmonary and Critical Care Medicine, Ruikang Hospital Affiliated to Guangxi Traditional Chinese Medicine University, 10 Huadong Road, Nanning, 530000, Guangxi, China
| | - Pengfei Zhang
- Department of Pulmonary and Critical Care Medicine, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, 545001, Guangxi, China
| | - Ruixiang Li
- Intensive Care Unit, Ruikang Hospital Affiliated to Guangxi Traditional Chinese Medicine University, Nanning530000, Guangxi, China
| | - Yangcong Wu
- Guangxi Traditional Chinese Medicine University, Nanning530000, Guangxi, China
| | - Maohua Liu
- Guangxi Traditional Chinese Medicine University, Nanning530000, Guangxi, China
| | - Xiaohong Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| |
Collapse
|
45
|
Hamblet C, Björhall K, Busch S, Gehrmann U, Öberg L, Kubisch-Dohmen R, Haas S, Aneja MK, Geiger J, Rudolph C, Hornberg E. Transcriptional Dynamics of NRF2 Overexpression and KEAP1-NRF2 Inhibitors in Human Cell Line and Primary Lung Cells. Antioxidants (Basel) 2024; 13:924. [PMID: 39199170 PMCID: PMC11351141 DOI: 10.3390/antiox13080924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
Oxidative stress in the human lung is caused by both internal (e.g., inflammation) and external stressors (smoking, pollution, and infection) to drive pathology in a number of lung diseases. Cellular damage caused by oxidative damage is reversed by several pathways, one of which is the antioxidant response. This response is regulated by the transcriptional factor NRF2, which has the ability to regulate the transcription of more than 250 genes. In disease, this balance is overwhelmed, and the cells are unable to return to homeostasis. Several pharmacological approaches aim to improve the antioxidant capacity by inhibiting the interaction of NRF2 with its key cytosolic inhibitor, KEAP1. Here, we evaluate an alternative approach by overexpressing NRF2 from chemically modified RNAs (cmRNAs). Our results demonstrate successful expression of functional NRF2 protein in human cell lines and primary cells. We establish a kinetic transcriptomic profile to compare antioxidant response gene expression after treatment of primary human bronchial epithelial cells with either KEAP1 inhibitors or cmRNAs. The key gene signature is then applied to primary human lung fibroblasts and alveolar macrophages to uncover transcriptional preferences in each cell system. This study provides a foundation for the understanding of NRF2 dynamics in the human lung and provides initial evidence of alternative ways for pharmacological interference.
Collapse
Affiliation(s)
- Corinne Hamblet
- Bioscience Chronic Obstructive Pulmonary Disease & Idiopathic Pulmonary Fibrosis, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, 431 83 Mölndal, Sweden
| | - Karin Björhall
- Bioscience Chronic Obstructive Pulmonary Disease & Idiopathic Pulmonary Fibrosis, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, 431 83 Mölndal, Sweden
| | - Susann Busch
- Respiratory & Immunology, Neuroscience, Vaccines and Immune Therapies Safety, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, 431 83 Mölndal, Sweden
| | - Ulf Gehrmann
- Translational Science and Experimental Medicine Research, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, 431 83 Mölndal, Sweden
| | - Lisa Öberg
- Translational Science and Experimental Medicine Research, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, 431 83 Mölndal, Sweden
| | | | | | | | | | | | - Ellinor Hornberg
- Projects and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, 431 83 Mölndal, Sweden
| |
Collapse
|
46
|
Li CL, Liu SF. Cellular and Molecular Biology of Mitochondria in Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2024; 25:7780. [PMID: 39063022 PMCID: PMC11276859 DOI: 10.3390/ijms25147780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive respiratory disorder characterized by enduring airflow limitation and chronic inflammation. Growing evidence highlights mitochondrial dysfunction as a critical factor in COPD development and progression. This review explores the cellular and molecular biology of mitochondria in COPD, focusing on structural and functional changes, including alterations in mitochondrial shape, behavior, and respiratory chain complexes. We discuss the impact on cellular signaling pathways, apoptosis, and cellular aging. Therapeutic strategies targeting mitochondrial dysfunction, such as antioxidants and mitochondrial biogenesis inducers, are examined for their potential to manage COPD. Additionally, we consider the role of mitochondrial biomarkers in diagnosis, evaluating disease progression, and monitoring treatment efficacy. Understanding the interplay between mitochondrial biology and COPD is crucial for developing targeted therapies to slow disease progression and improve patient outcomes. Despite advances, further research is needed to fully elucidate mitochondrial dysfunction mechanisms, discover new biomarkers, and develop targeted therapies, aiming for comprehensive disease management that preserves lung function and enhances the quality of life for COPD patients.
Collapse
Affiliation(s)
- Chin-Ling Li
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
| | - Shih-Feng Liu
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, #123, Ta-Pei Road, Niaosong District, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
47
|
Martin R, Nora M, Anna L, Olivia P, Leif B, Gunilla WT, Ellen T, Anna-Karin LC. Altered hypoxia-induced cellular responses and inflammatory profile in lung fibroblasts from COPD patients compared to control subjects. Respir Res 2024; 25:282. [PMID: 39014439 PMCID: PMC11253402 DOI: 10.1186/s12931-024-02907-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease characterized by chronic bronchitis, emphysema and vascular remodelling. The disease is associated with hypoxia, inflammation and oxidative stress. Lung fibroblasts are important cells in remodelling processes in COPD, as main producers of extracellular matrix proteins but also in synthesis of growth factors and inflammatory mediators. METHODS In this study we aimed to investigate if there are differences in how primary distal lung fibroblasts obtained from COPD patients and healthy subjects respond to hypoxia (1% O2) and pro-fibrotic stimuli with TGF-β1 (10 ng/mL). Genes and proteins associated with oxidative stress, endoplasmic reticulum stress, remodelling and inflammation were analysed with RT-qPCR and ELISA. RESULTS Hypoxia induced differences in expression of genes involved in oxidative stress (SOD3 and HIF-1α), ER stress (IRE1, PARK and ATF6), apoptosis (c-Jun and Bcl2) and remodelling (5HTR2B, Collagen7 and VEGFR2) in lung fibroblasts from COPD subjects compared to control subjects, where COPD fibroblasts were in general less responsive. The release of VEGF-C was increased after hypoxia, whereas TGF-β significantly reduced the VEGF response to hypoxia and the release of HGF. COPD fibroblasts had a higher release of IL-6, IL-8, MCP-1 and PGE2 compared to lung fibroblasts from control subjects. The release of inflammatory mediators was less affected by hypoxia, whereas TGFβ1 induced differences in inflammatory profile between fibroblasts from COPD and control subjects. CONCLUSION These results suggest that there is an alteration of gene regulation of various stress responses and remodelling associated mediator release that is related to COPD and hypoxia, where fibroblasts from COPD patients have a deficient response.
Collapse
Affiliation(s)
- Ryde Martin
- Lung Biology, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.
- Respiratory Medicine, Allergology and Palliative Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden.
| | - Marek Nora
- Lung Biology, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - Löfdahl Anna
- Lung Biology, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - Pekny Olivia
- Lung Biology, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - Bjermer Leif
- Respiratory Medicine, Allergology and Palliative Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Westergren-Thorsson Gunilla
- Lung Biology, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - Tufvesson Ellen
- Respiratory Medicine, Allergology and Palliative Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | | |
Collapse
|
48
|
Xu Y, Yan Z, Li K, Liu L, Xu L. Association between nutrition-related indicators with the risk of chronic obstructive pulmonary disease and all-cause mortality in the elderly population: evidence from NHANES. Front Nutr 2024; 11:1380791. [PMID: 39081677 PMCID: PMC11286481 DOI: 10.3389/fnut.2024.1380791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Background This study aims to use six nutrition-related indicators to assess the relationship between nutritional status and the risk of COPD as well as the all-cause mortality rate, and to determine the most reliable predictive indicators. Methods Data from the National Health and Nutrition Examination Survey (NHANES) spanning the years 2013 to 2018 were extracted. Nutritional status was evaluated using Controlling nutritional status (CONUT) score, Geriatric Nutritional Risk Index (GNRI), Advanced Lung Cancer Inflammation Index (ALI), Prognostic Nutritional Index (PNI), Triglycerides (TG) × Total Cholesterol (TC) × Body Weight (BW) Index (TCBI), and Albumin-to-Globulin Ratio (AGR) nutritional-related indicators. Multivariate weighted logistic and Cox regression models were employed to assess the correlation between the six nutritional-related indicators and the risk of COPD and as all-cause mortality. The restricted cubic spline tests were applied to explore potential nonlinear relationships, and ROC curves and C-index analyses were conducted to compare the predictive capabilities of different indicators. Stratified analysis and propensity score matching (PSM) to assess the robustness of the results. Results In this study, Lower ALI, lower GNRI, and higher CONUT scores were positively correlated with an increased risk of COPD (OR: 1.77, 95% CI: 1.10-2.84) (OR: 8.66, 95% CI: 2.95-25.5), and (OR: 5.11, 95% CI: 1.72-15.2), respectively. It was found that ALI and GNRI had a non-linear relationship with the risk of COPD. After propensity score matching (PSM), the associations between ALI, GNRI, CONUT scores, and COPD remained consistent. Lower ALI, PNI, and GNRI scores were positively associated with all-cause mortality in COPD patients (HR: 2.41, 95% CI: 1.10-5.27), (HR: 3.76, 95% CI: 1.89-7.48), and (HR: 4.55, 95% CI: 1.30-15.9), respectively, with GNRI displaying a non-linear relationship with all-cause mortality. ROC curve and C-index analyses indicated that ALI had the best predictive ability for both COPD risk and all-cause mortality. Conclusion ALI, GNRI, and CONUT scores are correlated with the risk of COPD, while ALI, PNI, and GNRI scores are associated with all-cause mortality in COPD patients. Compared to other nutritional scores, ALI may provide more effective predictive value for both risk and all-cause mortality.
Collapse
Affiliation(s)
- Yifeng Xu
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Zhaoqi Yan
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Keke Li
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Liangji Liu
- Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Lei Xu
- Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
49
|
Li K, Song Z, Yue Q, Wang Q, Li Y, Zhu Y, Chen H. Disease-specific transcriptional programs govern airway goblet cell metaplasia. Heliyon 2024; 10:e34105. [PMID: 39071568 PMCID: PMC11283004 DOI: 10.1016/j.heliyon.2024.e34105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/02/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024] Open
Abstract
Hypersecretion of airway mucus caused by goblet cell metaplasia is a characteristic of chronic pulmonary inflammatory diseases including asthma, cystic fibrosis (CF), and chronic obstructive pulmonary disease (COPD). Goblet cells originate from airway progenitor club cells. However, the molecular mechanisms and features of goblet cell metaplasia in lung disease are poorly understood. Herein, public single-cell RNA sequencing datasets of human lungs were reanalyzed to explore the transitional phase as club cells differentiate into goblet cells in asthma, CF, and COPD. We found that changes in club and goblet cells during pathogenesis and cellular transition were associated with signalling pathways related to immune response, oxidative stress, and apoptosis. Moreover, other key drivers of goblet cell specification appeared to be pathologically specific, with interleukin (IL)-13 and hypoxia inducible factor 1 (HIF-1)-induced genetic changes in asthma, cystic fibrosis transmembrane conductance regulator (CFTR) mutation being present in CF, and interactions with CD8+ T cells, mitophagy, and mitochondria-induced apoptosis in COPD. In conclusion, this study revealed the similarities and differences in goblet cell metaplasia in asthma, CF, and COPD at the transcriptome level, thereby providing insights into possible novel therapeutic approaches for these diseases.
Collapse
Affiliation(s)
- Kuan Li
- Department of Respiratory Medicine, Haihe Hospital, Tianjin University, 300350, Tianjin, China
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe Hospital, Tianjin University, 300350, Tianjin, China
- Tianjin Institute of Respiratory Diseases, 300350, Tianjin, China
| | - Zhaoyu Song
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe Hospital, Tianjin University, 300350, Tianjin, China
- Department of Clinical Lab, Tianjin First Central Hospital, 300192, Tianjin, China
| | - Qing Yue
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe Hospital, Tianjin University, 300350, Tianjin, China
| | - Qi Wang
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe Hospital, Tianjin University, 300350, Tianjin, China
| | - Yu Li
- Department of Respiratory Medicine, Haihe Hospital, Tianjin University, 300350, Tianjin, China
- Department of Tuberculosis, Haihe Clinical School, Tianjin Medical University, 300350, Tianjin, China
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe Hospital, Tianjin University, 300350, Tianjin, China
- Tianjin Institute of Respiratory Diseases, 300350, Tianjin, China
| | - Yu Zhu
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe Hospital, Tianjin University, 300350, Tianjin, China
- Department of Clinical Laboratory, Haihe Hospital, Tianjin University, 300350, Tianjin, China
| | - Huaiyong Chen
- Department of Respiratory Medicine, Haihe Hospital, Tianjin University, 300350, Tianjin, China
- Department of Tuberculosis, Haihe Clinical School, Tianjin Medical University, 300350, Tianjin, China
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe Hospital, Tianjin University, 300350, Tianjin, China
- Tianjin Institute of Respiratory Diseases, 300350, Tianjin, China
| |
Collapse
|
50
|
Peng Z, Zhang W, Hong H, Liu L. Effect of luteolin on oxidative stress and inflammation in the human osteoblast cell line hFOB1.19 in an inflammatory microenvironment. BMC Pharmacol Toxicol 2024; 25:40. [PMID: 38997762 PMCID: PMC11241847 DOI: 10.1186/s40360-024-00764-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/05/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Periapical lesions are characterized by periapical inflammation and damage to periapical tissues and eventually lead to bone resorption and even tooth loss. H2O2 is widely used in root canal therapy for patients with periapical inflammation. Luteolin possesses high anti-inflammatory, antioxidant, and anticancer potential. However, the underlying mechanism of the efficacy of H2O2 and luteolin on oxidative stress and inflammatory tissue has not been previously addressed. We aimed to investigate the anti-inflammatory and antioxidative effects of luteolin on H2O2-induced cellular oxidative inflammation. METHODS After human osteoblasts (hFOB1.19) were treated with lipopolysaccharide (LPS), luteolin, or H2O2, cell proliferation was analysed by using a cell counting kit-8 (CCK-8), cell apoptosis was measured by using flow cytometry, the production of reactive oxygen species (ROS) was evaluated by using an oxidation-sensitive probe DCFH-DA ROS assay kit, and the expression of genes and proteins was detected by using reverse transcription quantitative polymerase chain reaction (RT‒qPCR), Western blotting, and enzyme-linked immunosorbent assay (ELISA). RESULTS We demonstrated that inflammation is closely related to oxidative stress and that the oxidative stress level in the inflammatory environment is increased. Luteolin inhibited the H2O2-induced increase in the expression of interleukin-6 (IL-6), interleukin-8 (IL-8) and tumour necrosis factor α (TNF-α) and significantly repressed the H2O2-induced increase in ROS, as well as markedly strengthened superoxide dismutase (SOD) activity in hFOB1.19 cells. Moreover, we detected that luteolin may inhibit H2O2-induced hFOB1.19 cell injury by suppressing the NF-κB pathway. CONCLUSION We elucidated that luteolin protected human osteoblasts (hFOB1.19) from H2O2-induced cell injury and inhibited the production of proinflammatory cytokines by suppressing the NF-κB signalling pathway. Our findings provide a potential drug for treating H2O2-induced periodontitis and cell injury.
Collapse
Affiliation(s)
- Zhengjun Peng
- Operative Dentistry and Endodontics, Guanghua School of Stomatology, Guangdong Province Key Laboratory of Stomatology, Affiliated Stomatological Hospital, Sun Yat-Sen University, 56 Lingyuan Xi Rd, Guangzhou, 510055, Guangdong, China
| | - Wenyu Zhang
- Operative Dentistry and Endodontics, Guanghua School of Stomatology, Guangdong Province Key Laboratory of Stomatology, Affiliated Stomatological Hospital, Sun Yat-Sen University, 56 Lingyuan Xi Rd, Guangzhou, 510055, Guangdong, China
| | - Hong Hong
- Operative Dentistry and Endodontics, Guanghua School of Stomatology, Guangdong Province Key Laboratory of Stomatology, Affiliated Stomatological Hospital, Sun Yat-Sen University, 56 Lingyuan Xi Rd, Guangzhou, 510055, Guangdong, China
| | - Lu Liu
- Operative Dentistry and Endodontics, Guanghua School of Stomatology, Guangdong Province Key Laboratory of Stomatology, Affiliated Stomatological Hospital, Sun Yat-Sen University, 56 Lingyuan Xi Rd, Guangzhou, 510055, Guangdong, China.
| |
Collapse
|