1
|
Zhang Q, Ran T, Li S, Han L, Chen S, Lin G, Wu H, Wu H, Feng S, Chen J, Zhang Q, Zhao X. Catalpol ameliorates liver fibrosis via inhibiting aerobic glycolysis by EphA2/FAK/Src signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156047. [PMID: 39321687 DOI: 10.1016/j.phymed.2024.156047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND Hepatic fibrosis is a pathological process in a variety of acute or chronic liver injuries. Catalpol (CAT), an iridoid glycoside found in Rehmannia glutinosa, has several pharmacological properties, including anti-inflammatory, antidiabetic and anti-fibrotic effects. Nevertheless, there is currently no report on whether CAT regulates the aerobic glycolysis of hepatic stellate cells (HSCs) to inhibit liver fibrosis. OBJECTIVE This study aimed to investigate the protective effects of CAT on hepatic fibrosis and elucidate its underlying mechanisms. METHODS To explore whether CAT improved liver fibrosis in vivo and in vitro, hepatic fibrosis was induced to mice by intraperitoneally injecting carbon tetrachloride (CCl4). Additionally, LX-2 cells were stimulated with transforming growth factor-β (TGF-β) to simulate fibrosis in vitro. Serum markers of liver injury were examined by using an automatic biochemical analyzer. Histopathological staining, Immunofluorescence (IF) staining, Western blot (WB) analysis, co-immunoprecipitation (Co-IP), drug affinity responsive target stability (DARTS), cellular thermal shift assay (CETSA), etc. were employed to identify the targeting between CAT and EphA2 and detect the expression of aerobic glycolysis related proteins, fiber markers and signaling pathways that are responsible for CAT's anti-fibrotic effects of CAT. RESULTS Results showed that CAT significantly inhibited hepatic injury, fibrogenesis and inflammation in mice treated with CCl4. This was demonstrated by the enhancement of fibrosis markers, liver function indices, and histopathology. In addition, CAT significantly inhibited the activation of HSCs in TGF-β-induced LX-2 cells, as indicated by decreased proliferation, migration, and expression of collagen I and a-SMA. The study results also suggested that CAT may exert anti-fibrotic effects by inhibiting glycolysis in activated HSCs and in CCl4-treated mice. Mechanistically, CAT directly targets Ephrin type-A receptor 2 (EphA2) to reduce binding with focal adhesion kinases (FAK) and significantly inhibits the FAK/Src pathway. In addition, the pharmacological inhibition of EphA2 cannot further increase the therapeutic effects of CAT on liver fibrosis in vivo and in vitro. CONCLUSION The study findings generally demonstrated that CAT presented a novel therapeutic method to treat hepatic fibrosis; this method which inhibits the aerobic glycolysis of activated HSCs through the EphA2/FAK/Src signaling pathway.
Collapse
Affiliation(s)
- Qingxiu Zhang
- Department of Infectious Disease, The Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China.
| | - Tao Ran
- Department of Infectious Disease, The Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China.
| | - Shiliang Li
- Department of Vascular Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China.
| | - Lu Han
- Department of Infectious Disease, The Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China.
| | - Shaojie Chen
- Guizhou Medical University, Guiyang 550000, China.
| | - Guoyuan Lin
- Department of Infectious Disease, The Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China.
| | - Huayue Wu
- Department of Infectious Disease, The Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China.
| | - Huan Wu
- Department of Infectious Disease, The Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China.
| | - Shu Feng
- Department of Infectious Disease, The Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China.
| | - Jiyu Chen
- Clinical Trials Center, The Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China.
| | - Qian Zhang
- Department of Nephrology, The Guizhou provincial people's Hospital, Guiyang 550000, China.
| | - Xueke Zhao
- Department of Infectious Disease, The Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China.
| |
Collapse
|
2
|
Viollet B, Guigas B. Fueling metabolic adaptation: lysosomal AMPK ignites glutaminolysis. Cell Res 2024; 34:822-823. [PMID: 39402400 PMCID: PMC11615240 DOI: 10.1038/s41422-024-01040-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024] Open
Affiliation(s)
- Benoit Viollet
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, France.
| | - Bruno Guigas
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
3
|
Ham S, Choi BH, Kwak MK. NRF2 signaling and amino acid metabolism in cancer. Free Radic Res 2024; 58:648-661. [PMID: 39540796 DOI: 10.1080/10715762.2024.2423690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/02/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024]
Abstract
Alterations in amino acid metabolism have emerged as a critical component in cancer biology, influencing various aspects of tumor initiation, progression, and metastasis. This review explores how amino acids, beyond their role as protein building blocks, are essential for redox balance, cell proliferation, metastasis, signaling/epigenetic regulation, and tumor microenvironment modulation in cancer. We particularly focus on the intricate relationship between amino acid metabolism and nuclear factor erythroid 2-related factor 2 (NRF2) signaling, a master regulator of oxidative stress response that frequently hyperactivated in cancer. Increasing evidence indicates that NRF2 is a key player in amino acid metabolism, orchestrating metabolism of cysteine, glutamine, and serine/glycine to promote cancer cell survival and growth. This comprehensive analysis provides insights into potential therapeutic strategies targeting the NRF2-amino acid metabolism axis, offering new avenues for cancer treatment that address multiple aspects of tumor biology.
Collapse
Affiliation(s)
- Suji Ham
- Department of Pharmacology, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| | - Bo-Hyun Choi
- Department of Pharmacology, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| | - Mi-Kyoung Kwak
- College of Pharmacy, The Catholic University of Korea, Bucheon, Republic of Korea
| |
Collapse
|
4
|
Eltayeb K, Alfieri R, Fumarola C, Bonelli M, Galetti M, Cavazzoni A, Digiacomo G, Galvani F, Vacondio F, Lodola A, Mor M, Minari R, Tiseo M, La Monica S, Giorgio Petronini P. Targeting metabolic adaptive responses induced by glucose starvation inhibits cell proliferation and enhances cell death in osimertinib-resistant non-small cell lung cancer (NSCLC) cell lines. Biochem Pharmacol 2024; 228:116161. [PMID: 38522556 DOI: 10.1016/j.bcp.2024.116161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/12/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Osimertinib, a tyrosine kinase inhibitor targeting mutant EGFR, has received approval for initial treatment in patients with Non-Small Cell Lung Cancer (NSCLC). While effective in both first- and second-line treatments, patients eventually develop acquired resistance. Metabolic reprogramming represents a strategy through which cancer cells may resist and adapt to the selective pressure exerted by the drug. In the current study, we investigated the metabolic adaptations associated with osimertinib-resistance in NSCLC cells under low glucose culture conditions. We demonstrated that, unlike osimertinib-sensitive cells, osimertinib-resistant cells were able to survive under low glucose conditions by increasing the rate of glucose and glutamine uptake and by shifting towards mitochondrial metabolism. Inhibiting glucose/pyruvate contribution to mitochondrial respiration, glutamine deamination to glutamate, and oxidative phosphorylation decreased the proliferation and survival abilities of osimertinib-resistant cells to glucose starvation. Our findings underscore the remarkable adaptability of osimertinib-resistant NSCLC cells in a low glucose environment and highlight the pivotal role of mitochondrial metabolism in mediating this adaptation. Targeting the metabolic adaptive responses triggered by glucose shortage emerges as a promising strategy, effectively inhibiting cell proliferation and promoting cell death in osimertinib-resistant cells.
Collapse
Affiliation(s)
- Kamal Eltayeb
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Roberta Alfieri
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Claudia Fumarola
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Mara Bonelli
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Maricla Galetti
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL-Italian Workers' Compensation Authority, Monte Porzio Catone, 00078 Rome, Italy
| | - Andrea Cavazzoni
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Graziana Digiacomo
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Francesca Galvani
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Federica Vacondio
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Alessio Lodola
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Marco Mor
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Roberta Minari
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Marcello Tiseo
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Silvia La Monica
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | | |
Collapse
|
5
|
Tang Q, Wu S, Zhao B, Li Z, Zhou Q, Yu Y, Yang X, Wang R, Wang X, Wu W, Wang S. Reprogramming of glucose metabolism: The hallmark of malignant transformation and target for advanced diagnostics and treatments. Biomed Pharmacother 2024; 178:117257. [PMID: 39137648 DOI: 10.1016/j.biopha.2024.117257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
Reprogramming of cancer metabolism has become increasingly concerned over the last decade, particularly the reprogramming of glucose metabolism, also known as the "Warburg effect". The reprogramming of glucose metabolism is considered a novel hallmark of human cancers. A growing number of studies have shown that reprogramming of glucose metabolism can regulate many biological processes of cancers, including carcinogenesis, progression, metastasis, and drug resistance. In this review, we summarize the major biological functions, clinical significance, potential targets and signaling pathways of glucose metabolic reprogramming in human cancers. Moreover, the applications of natural products and small molecule inhibitors targeting glucose metabolic reprogramming are analyzed, some clinical agents targeting glucose metabolic reprogramming and trial statuses are summarized, as well as the pros and cons of targeting glucose metabolic reprogramming for cancer therapy are analyzed. Overall, the reprogramming of glucose metabolism plays an important role in the prediction, prevention, diagnosis and treatment of human cancers. Glucose metabolic reprogramming-related targets have great potential to serve as biomarkers for improving individual outcomes and prognosis in cancer patients. The clinical innovations related to targeting the reprogramming of glucose metabolism will be a hotspot for cancer therapy research in the future. We suggest that more high-quality clinical trials with more abundant drug formulations and toxicology experiments would be beneficial for the development and clinical application of drugs targeting reprogramming of glucose metabolism.This review will provide the researchers with the broader perspective and comprehensive understanding about the important significance of glucose metabolic reprogramming in human cancers.
Collapse
Affiliation(s)
- Qing Tang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine; State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; The Second Clinical Medical College, The Second Affiliated Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, 510120, P. R. China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China.
| | - Siqi Wu
- The First Clinical School of Guangzhou University of Chinese Medicine;Department of Oncology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine,Guangzhou 510000, China; Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan 528400, China
| | - Baiming Zhao
- The Second Clinical Medical College, The Second Affiliated Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Zhanyang Li
- School of Biosciences and Biopharmaceutics, Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Qichun Zhou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine; State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; The Second Clinical Medical College, The Second Affiliated Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, 510120, P. R. China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China
| | - Yaya Yu
- The Second Clinical Medical College, The Second Affiliated Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China
| | - Xiaobing Yang
- The Second Clinical Medical College, The Second Affiliated Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China
| | - Rui Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine; State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; The Second Clinical Medical College, The Second Affiliated Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, 510120, P. R. China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China
| | - Xi Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine; State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; The Second Clinical Medical College, The Second Affiliated Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, 510120, P. R. China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China
| | - Wanyin Wu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine; State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; The Second Clinical Medical College, The Second Affiliated Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, 510120, P. R. China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China.
| | - Sumei Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine; State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; The Second Clinical Medical College, The Second Affiliated Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, 510120, P. R. China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China.
| |
Collapse
|
6
|
Peppicelli S, Kersikla T, Menegazzi G, Andreucci E, Ruzzolini J, Nediani C, Bianchini F, Calorini L. The critical role of glutamine and fatty acids in the metabolic reprogramming of anoikis-resistant melanoma cells. Front Pharmacol 2024; 15:1422281. [PMID: 39175551 PMCID: PMC11338773 DOI: 10.3389/fphar.2024.1422281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024] Open
Abstract
Introduction: Circulating tumor cells (CTCs) represent the sub-population of cells shed into the vasculature and able to survive in the bloodstream, adhere to target vascular endothelial cells, and re-growth into the distant organ. CTCs have been found in the blood of most solid tumor-bearing patients and are used as a diagnostic marker. Although a complex genotypic and phenotypic signature characterizes CTCs, the ability to survive in suspension constitutes the most critical property, known as resistance to anoikis, e.g., the ability to resist apoptosis resulting from a loss of substrate adhesion. Here, we selected melanoma cells resistant to anoikis, and we studied their metabolic reprogramming, with the aim of identifying new metabolic targets of CTCs. Methods: Subpopulations of melanoma cells expressing a high anoikis-resistant phenotype were selected by three consecutive rocking exposures in suspension and studied for their phenotypic and metabolic characteristics. Moreover, we tested the efficacy of different metabolic inhibitors targeting glycolysis (2DG), LDHA (LDHA-in-3), the mitochondrial electron transport chain complex I (rotenone), glutaminase (BPTES), fatty acid transporter (SSO), fatty acid synthase (denifanstat), CPT1 (etomoxir), to inhibit cell survival and colony formation ability after 24 h of rocking condition. Results: Anoikis-resistant cells displayed higher ability to grow in suspension on agarose-covered dishes respect to control cells, and higher cell viability and colony formation capability after a further step in rocking condition. They showed also an epithelial-to-mesenchymal transition associated with high invasiveness and a stemness-like phenotype. Anoikis-resistant melanoma cells in suspension showed a metabolic reprogramming from a characteristic glycolytic metabolism toward a more oxidative metabolism based on the use of glutamine and fatty acids, while re-adhesion on the dishes reversed the metabolism to glycolysis. The treatment with metabolic inhibitors highlighted the effectiveness of rotenone, BPTES, SSO, and etomoxir in reducing the viability and the colony formation ability of cells capable of surviving in suspension, confirming the dependence of their metabolism on oxidative phosphorylation, using glutamine and fatty acids as the most important fuels. Discussion: This finding opens up new therapeutic strategies based on metabolic inhibitors of glutaminase and fatty acid oxidation for the treatment of CTCs and melanoma metastases.
Collapse
Affiliation(s)
- S. Peppicelli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | | | | | | | | | | | - F. Bianchini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | | |
Collapse
|
7
|
Solyanik G, Kolesnik D, Prokhorova I, Yurchenko O, Pyaskovskaya O. Mitochondrial dysfunction significantly contributes to the sensitivity of tumor cells to anoikis and their metastatic potential. Heliyon 2024; 10:e32626. [PMID: 38994085 PMCID: PMC11237942 DOI: 10.1016/j.heliyon.2024.e32626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 07/13/2024] Open
Abstract
It is well-known that the survival of metastatic cells during their dissemination plays an important role in metastasis. However, does this mean that the final result of the metastatic cascade (the volume of metastatic damage to distant organs and tissues) depends on, or at least correlates with, the degree of resistance to anoikis (distinctive hallmarks of metastatic cells)? This question remains open.The aim of the work was to study in vitro the changes in the survival rates, proliferative activity, oxidative stress, and glycolysis intensity during three days of anchorage-dependent and anchorage-independent growth of two Lewis lung carcinoma cell lines (LLC and LLC/R9) and compare these changes with the status of mitochondria and metastatic potential of the cells in vivo. Methods The number and volume of lung metastases were estimated for each cell line after intramuscular inoculation of the cells in C57Bl/6 mice. For the in vitro study, the cells were seeded on Petri dishes pretreated with poly-HEMA or untreated dishes and then allowed to grow for 3 days. Cell viability, cell cycle progression, the level of reactive oxygen species (ROS), glucose consumption and lactate production rates were investigated daily in both growth conditions. An electron microscopy study of intracellular structures was carried out. Results The study showed (as far as we know for the first time) a correlation between the metastatic potential of cells (determined in vivo) and their sensitivity to anoikis (assessed in vitro). The transition of LLC/R9 cells with an inherently defective mitochondrial system to the conditions of anchorage-independent growth was characterized by a decrease in survival, a slowdown in growth rates, an increase in both glucose consumption rate and intracellular ROS levels and manyfold lower metastatic potential, compared to highly metastatic LLC cells with the normal mitochondrial system.
Collapse
Affiliation(s)
- G.I. Solyanik
- Laboratory of Molecular and Cellular Mechanisms of Metastasis, RE Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, The National Academy of Sciences of Ukraine, Kyiv, 03022, Ukraine
| | - D.L. Kolesnik
- Laboratory of Molecular and Cellular Mechanisms of Metastasis, RE Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, The National Academy of Sciences of Ukraine, Kyiv, 03022, Ukraine
| | - I.V. Prokhorova
- Laboratory of Molecular and Cellular Mechanisms of Metastasis, RE Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, The National Academy of Sciences of Ukraine, Kyiv, 03022, Ukraine
| | - O.V. Yurchenko
- Laboratory of Molecular and Cellular Mechanisms of Metastasis, RE Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, The National Academy of Sciences of Ukraine, Kyiv, 03022, Ukraine
| | - O.N. Pyaskovskaya
- Laboratory of Molecular and Cellular Mechanisms of Metastasis, RE Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, The National Academy of Sciences of Ukraine, Kyiv, 03022, Ukraine
| |
Collapse
|
8
|
De los Santos-Jiménez J, Campos-Sandoval JA, Alonso FJ, Márquez J, Matés JM. GLS and GLS2 Glutaminase Isoenzymes in the Antioxidant System of Cancer Cells. Antioxidants (Basel) 2024; 13:745. [PMID: 38929183 PMCID: PMC11200642 DOI: 10.3390/antiox13060745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
A pathway frequently altered in cancer is glutaminolysis, whereby glutaminase (GA) catalyzes the main step as follows: the deamidation of glutamine to form glutamate and ammonium. There are two types of GA isozymes, named GLS and GLS2, which differ considerably in their expression patterns and can even perform opposing roles in cancer. GLS correlates with tumor growth and proliferation, while GLS2 can function as a context-dependent tumor suppressor. However, both isoenzymes have been described as essential molecules handling oxidant stress because of their involvement in glutathione production. We reviewed the literature to highlight the critical roles of GLS and GLS2 in restraining ROS and regulating both cellular signaling and metabolic stress due to their function as indirect antioxidant enzymes, as well as by modulating both reductive carboxylation and ferroptosis. Blocking GA activity appears to be a potential strategy in the dual activation of ferroptosis and inhibition of cancer cell growth in a ROS-mediated mechanism.
Collapse
Affiliation(s)
- Juan De los Santos-Jiménez
- Canceromics Lab, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Málaga, Spain; (J.D.l.S.-J.); (J.A.C.-S.); (F.J.A.); (J.M.)
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma BIONAND), Universidad de Málaga, 29590 Málaga, Spain
| | - José A. Campos-Sandoval
- Canceromics Lab, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Málaga, Spain; (J.D.l.S.-J.); (J.A.C.-S.); (F.J.A.); (J.M.)
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma BIONAND), Universidad de Málaga, 29590 Málaga, Spain
| | - Francisco J. Alonso
- Canceromics Lab, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Málaga, Spain; (J.D.l.S.-J.); (J.A.C.-S.); (F.J.A.); (J.M.)
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma BIONAND), Universidad de Málaga, 29590 Málaga, Spain
| | - Javier Márquez
- Canceromics Lab, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Málaga, Spain; (J.D.l.S.-J.); (J.A.C.-S.); (F.J.A.); (J.M.)
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma BIONAND), Universidad de Málaga, 29590 Málaga, Spain
| | - José M. Matés
- Canceromics Lab, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Málaga, Spain; (J.D.l.S.-J.); (J.A.C.-S.); (F.J.A.); (J.M.)
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma BIONAND), Universidad de Málaga, 29590 Málaga, Spain
| |
Collapse
|
9
|
Lee DK, Oh J, Park HW, Gee HY. Anchorage Dependence and Cancer Metastasis. J Korean Med Sci 2024; 39:e156. [PMID: 38769921 PMCID: PMC11106561 DOI: 10.3346/jkms.2024.39.e156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 04/19/2024] [Indexed: 05/22/2024] Open
Abstract
The process of cancer metastasis is dependent on the cancer cells' capacity to detach from the primary tumor, endure in a suspended state, and establish colonies in other locations. Anchorage dependence, which refers to the cells' reliance on attachment to the extracellular matrix (ECM), is a critical determinant of cellular shape, dynamics, behavior, and, ultimately, cell fate in nonmalignant and cancer cells. Anchorage-independent growth is a characteristic feature of cells resistant to anoikis, a programmed cell death process triggered by detachment from the ECM. This ability to grow and survive without attachment to a substrate is a crucial stage in the progression of metastasis. The recently discovered phenomenon named "adherent-to-suspension transition (AST)" alters the requirement for anchoring and enhances survival in a suspended state. AST is controlled by four transcription factors (IKAROS family zinc finger 1, nuclear factor erythroid 2, BTG anti-proliferation factor 2, and interferon regulatory factor 8) and can detach cells without undergoing the typical epithelial-mesenchymal transition. Notably, AST factors are highly expressed in circulating tumor cells compared to their attached counterparts, indicating their crucial role in the spread of cancer. Crucially, the suppression of AST substantially reduces metastasis while sparing primary tumors. These findings open up possibilities for developing targeted therapies that inhibit metastasis and emphasize the importance of AST, leading to a fundamental change in our comprehension of how cancer spreads.
Collapse
Affiliation(s)
- Dong Ki Lee
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea
- Woo Choo Lee Institute for Precision Drug Development, Seoul, Korea
| | - Jongwook Oh
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea
- Woo Choo Lee Institute for Precision Drug Development, Seoul, Korea
| | - Hyun Woo Park
- Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul, Korea.
| | - Heon Yung Gee
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea
- Woo Choo Lee Institute for Precision Drug Development, Seoul, Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
10
|
Rainero E. Overcoming Nutrient Stress: Integrin αvβ3-Driven Metabolic Adaptation Supports Tumor Initiation. Cancer Res 2024; 84:1543-1545. [PMID: 38745495 DOI: 10.1158/0008-5472.can-24-0453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 05/16/2024]
Abstract
Nutrient stress accompanies several stages of tumor progression, including metastasis formation. Metabolic reprogramming is a hallmark of cancer, and it has been associated with stress tolerance and anchorage-independent cell survival. Adaptive responses are required to support cancer cell survival under these conditions. In this issue of Cancer Research, Nam and colleagues showed that the extracellular matrix (ECM) receptor integrin β3 was upregulated in lung cancer cells in response to nutrient starvation, resulting in increased cell survival that was independent from ECM binding. Delving into the molecular mechanisms responsible for this, the authors found that integrin β3 promoted glutamine metabolism and oxidative phosphorylation (OXPHOS) by activating a Src/AMPK/PGC1α signaling pathway. Importantly, in vivo experiments confirmed that OXPHOS inhibition suppressed tumor initiation in an orthotopic model of lung cancer, while β3 knockout completely abrogated tumor initiation. These observations indicate that targeting signaling pathways downstream of αvβ3 could represent a promising therapeutic avenue to prevent lung cancer progression and metastasis. See related article by Nam et al., p. 1630.
Collapse
Affiliation(s)
- Elena Rainero
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
11
|
Lewis K, La Selva R, Maldonado E, Annis MG, Najyb O, Cepeda Cañedo E, Totten S, Hébert S, Sabourin V, Mirabelli C, Ciccolini E, Lehuédé C, Choinière L, Russo M, Avizonis D, Park M, St-Pierre J, Kleinman CL, Siegel PM, Ursini-Siegel J. p66ShcA promotes malignant breast cancer phenotypes by alleviating energetic and oxidative stress. Redox Biol 2024; 70:103028. [PMID: 38211442 PMCID: PMC10821068 DOI: 10.1016/j.redox.2024.103028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024] Open
Abstract
Significant efforts have focused on identifying targetable genetic drivers that support the growth of solid tumors and/or increase metastatic ability. During tumor development and progression to metastatic disease, physiological and pharmacological selective pressures influence parallel adaptive strategies within cancer cell sub-populations. Such adaptations allow cancer cells to withstand these stressful microenvironments. This Darwinian model of stress adaptation often prevents durable clinical responses and influences the emergence of aggressive cancers with increased metastatic fitness. However, the mechanisms contributing to such adaptive stress responses are poorly understood. We now demonstrate that the p66ShcA redox protein, itself a ROS inducer, is essential for survival in response to physiological stressors, including anchorage independence and nutrient deprivation, in the context of poor outcome breast cancers. Mechanistically, we show that p66ShcA promotes both glucose and glutamine metabolic reprogramming in breast cancer cells, to increase their capacity to engage catabolic metabolism and support glutathione synthesis. In doing so, chronic p66ShcA exposure contributes to adaptive stress responses, providing breast cancer cells with sufficient ATP and redox balance needed to withstand such transient stressed states. Our studies demonstrate that p66ShcA functionally contributes to the maintenance of aggressive phenotypes and the emergence of metastatic disease by forcing breast tumors to adapt to chronic and moderately elevated levels of oxidative stress.
Collapse
Affiliation(s)
- Kyle Lewis
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada; Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Rachel La Selva
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada; Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Elias Maldonado
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada; Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Matthew G Annis
- Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Ouafa Najyb
- Department of Biochemistry, McGill University, Montreal, QC, Canada; Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Eduardo Cepeda Cañedo
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada; Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Stephanie Totten
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada; Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Steven Hébert
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| | - Valérie Sabourin
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| | - Caitlynn Mirabelli
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada; Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Emma Ciccolini
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada; Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Camille Lehuédé
- Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Luc Choinière
- Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Mariana Russo
- Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Daina Avizonis
- Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Morag Park
- Department of Biochemistry, McGill University, Montreal, QC, Canada; Division of Experimental Medicine, McGill University, Montreal, QC, Canada; Goodman Cancer Institute, McGill University, Montreal, QC, Canada; Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada
| | - Julie St-Pierre
- Department of Biochemistry, Microbiology and Immunology and Ottawa Institute of Systems Biology, University of Ottawa, ON, Canada
| | - Claudia L Kleinman
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada; Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Peter M Siegel
- Department of Biochemistry, McGill University, Montreal, QC, Canada; Division of Experimental Medicine, McGill University, Montreal, QC, Canada; Goodman Cancer Institute, McGill University, Montreal, QC, Canada; Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada
| | - Josie Ursini-Siegel
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada; Department of Biochemistry, McGill University, Montreal, QC, Canada; Division of Experimental Medicine, McGill University, Montreal, QC, Canada; Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
12
|
Chen P, Ye C, Huang Y, Xu B, Wu T, Dong Y, Jin Y, Zhao L, Hu C, Mao J, Wu R. Glutaminolysis regulates endometrial fibrosis in intrauterine adhesion via modulating mitochondrial function. Biol Res 2024; 57:13. [PMID: 38561846 PMCID: PMC10983700 DOI: 10.1186/s40659-024-00492-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Endometrial fibrosis, a significant characteristic of intrauterine adhesion (IUA), is caused by the excessive differentiation and activation of endometrial stromal cells (ESCs). Glutaminolysis is the metabolic process of glutamine (Gln), which has been implicated in multiple types of organ fibrosis. So far, little is known about whether glutaminolysis plays a role in endometrial fibrosis. METHODS The activation model of ESCs was constructed by TGF-β1, followed by RNA-sequencing analysis. Changes in glutaminase1 (GLS1) expression at RNA and protein levels in activated ESCs were verified experimentally. Human IUA samples were collected to verify GLS1 expression in endometrial fibrosis. GLS1 inhibitor and glutamine deprivation were applied to ESCs models to investigate the biological functions and mechanisms of glutaminolysis in ESCs activation. The IUA mice model was established to explore the effect of glutaminolysis inhibition on endometrial fibrosis. RESULTS We found that GLS1 expression was significantly increased in activated ESCs models and fibrotic endometrium. Glutaminolysis inhibition by GLS1 inhibitor bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl) ethyl sulfide (BPTES or glutamine deprivation treatment suppressed the expression of two fibrotic markers, α-SMA and collagen I, as well as the mitochondrial function and mTORC1 signaling in ESCs. Furthermore, inhibition of the mTORC1 signaling pathway by rapamycin suppressed ESCs activation. In IUA mice models, BPTES treatment significantly ameliorated endometrial fibrosis and improved pregnancy outcomes. CONCLUSION Glutaminolysis and glutaminolysis-associated mTOR signaling play a role in the activation of ESCs and the pathogenesis of endometrial fibrosis through regulating mitochondrial function. Glutaminolysis inhibition suppresses the activation of ESCs, which might be a novel therapeutic strategy for IUA.
Collapse
Affiliation(s)
- Pei Chen
- Department of Obstetrics and Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, China
| | - Chaoshuang Ye
- Department of Obstetrics and Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, China
| | - Yunke Huang
- Department of Obstetrics and Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, China
| | - Bingning Xu
- Department of Obstetrics and Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, China
| | - Tianyu Wu
- Department of Obstetrics and Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, China
| | - Yuanhang Dong
- Department of Obstetrics and Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, China
| | - Yang Jin
- Department of Obstetrics and Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, China
| | - Li Zhao
- Department of Obstetrics and Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, China
| | - Changchang Hu
- Department of Obstetrics and Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, China
| | - Jingxia Mao
- Department of Obstetrics and Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, China
| | - Ruijin Wu
- Department of Obstetrics and Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
13
|
Zhang Y, Ji X, Wang Y. ENO2 promotes anoikis resistance in anaplastic thyroid cancer by maintaining redox homeostasis. Gland Surg 2024; 13:209-224. [PMID: 38455357 PMCID: PMC10915417 DOI: 10.21037/gs-24-44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/15/2024] [Indexed: 03/09/2024]
Abstract
Background Anoikis presents a significant barrier in the metastasis of cancer. As the most aggressive type of thyroid cancer, anaplastic thyroid cancer (ATC) exhibits a high risk of metastasis and is characterized by high mortality. Therefore, investigating the molecular mechanisms of anoikis resistance in ATC is important for devising therapeutic targets in clinical research. Methods Differentially Expressed Genes were screened in ATC cells under attached and detached culture conditions with RNA-seq. Investigate the impact of enolase 2 (ENO2) on apoptosis and spheroid formation by gain and loss of function. Changes of reactive oxygen species (ROS), glutathione (GSH) and nicotinamide adenine dinucleotide phosphate (NADPH) were detected to assess redox balance. The transcriptional regulatory role of signal transducer and activator of transcription 1 (STAT1) on ENO2 was validated through Dual-Luciferase Reporter Gene Assay. Explore the impact of ENO2 expression on the formation of lung metastases in nude mice. Results We found that the glycolysis process was activated in detached ATC cells. Several genes in the glycolysis process, particularly ENO2, a member of the enolase superfamily was upregulated in ATC cells cultured in suspension. The upregulation of ENO2 enabled the maintenance of redox balance by supplying GSH and NADPH, thereby preventing cells from undergoing anoikis. In terms of mechanism, the expression of STAT1 was enhanced in anoikis resistance cells, which in turn positively regulated the expression of ENO2. In vivo, ENO2-suppressed ATC cells resulted in a significantly lower rate of lung colonization compared to control ATC cells. Conclusions Stable expression of ENO2 and the maintenance of redox balance played a pivotal role in facilitating anoikis resistance of ATC.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoyu Ji
- Department of Oncology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Alfaleh MA, Razeeth Shait Mohammed M, Hashem AM, Abujamel TS, Alhakamy NA, Imran Khan M. Extracellular matrix detached cancer cells resist oxidative stress by increasing histone demethylase KDM6 activity. Saudi J Biol Sci 2024; 31:103871. [PMID: 38107766 PMCID: PMC10724685 DOI: 10.1016/j.sjbs.2023.103871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/16/2023] [Accepted: 11/06/2023] [Indexed: 12/19/2023] Open
Abstract
Epithelial cancer cells rely on the extracellular matrix (ECM) attachment in order to spread to other organs. Detachment from the ECM is necessary for these cells to seed in other locations. When the attachment to the ECM is lost, cellular metabolism undergoes a significant shift from oxidative metabolism to glycolysis. Additionally, the cancer cells become more dependent on glutaminolysis to avoid a specific type of cell death known as anoikis, which is associated with ECM detachment. In our recent study, we observed increased expression of H3K27me3 demethylases, specifically KDM6A/B, in cancer cells that were resistant to anoikis. Since KDM6A/B is known to regulate cellular metabolism, we investigated the effects of suppressing KDM6A/B with GSK-J4 on the metabolic processes in these anoikis-resistant cancer cells. Our results from untargeted metabolomics revealed a profound impact of KDM6A/B inhibition on various metabolic pathways, including glycolysis, methyl histidine, spermine, and glutamate metabolism. Inhibition of KDM6A/B led to elevated reactive oxygen species (ROS) levels and depolarization of mitochondria, while reducing the levels of glutathione, an important antioxidant, by diminishing the intermediates of the glutamate pathway. Glutamate is crucial for maintaining a pool of reduced glutathione. Furthermore, we discovered that KDM6A/B regulates the key glycolytic genes expression like hexokinase, lactate dehydrogenase, and GLUT-1, which are essential for sustaining glycolysis in anoikis-resistant cancer cells. Overall, our findings demonstrated the critical role of KDM6A/B in maintaining glycolysis, glutamate metabolism, and glutathione levels. Inhibition of KDM6A/B disrupts these metabolic processes, leading to increased ROS levels and triggering cell death in anoikis-resistant cancer cells.
Collapse
Affiliation(s)
- Mohamed A. Alfaleh
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | | | - Anwar M Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Turki S Abujamel
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammad Imran Khan
- Research Center, King Faisal Specialist Hospital and Research Center, P.O. Box 40047, Jeddah 21499, Saudi Arabia
| |
Collapse
|
15
|
Wei Y, Geng S, Si Y, Yang Y, Chen Q, Huang S, Chen X, Xu W, Liu Y, Jiang J. The Interaction between Collagen 1 and High Mannose Type CD133 Up-Regulates Glutamine Transporter SLC1A5 to Promote the Tumorigenesis of Glioblastoma Stem Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306715. [PMID: 37997289 PMCID: PMC10797482 DOI: 10.1002/advs.202306715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Indexed: 11/25/2023]
Abstract
Targeting the niche components surrounding glioblastoma stem cells (GSCs) helps to develop more effective glioblastoma treatments. However, the mechanisms underlying the crosstalk between GSCs and microenvironment remain largely unknown. Clarifying the extracellular molecules binding to GSCs marker CD133 helps to elucidate the mechanism of the communication between GSCs and the microenvironment. Here, it is found that the extracellular domain of high mannose type CD133 physically interacts with Collagen 1 (COL1) in GSCs. COL1, mainly secreted by cancer-associated fibroblasts, is a niche component for GSCs. COL1 enhances the interaction between CD133 and p85 and activates Akt phosphorylation. Activation of Akt pathway increases transcription factor ATF4 protein level, subsequently enhances SLC1A5-dependent glutamine uptake and glutathione synthesis. The inhibition of CD133-COL1 interaction or down-regulation of SLC1A5 reduces COL1-accelerated GSCs self-renewal and tumorigenesis. Analysis of glioma samples reveals that the level of COL1 is correlated with histopathological grade of glioma and the expression of SLC1A5. Collectively, COL1, a niche component for GSCs, enhances the tumorigenesis of GSCs partially through CD133-Akt-SLC1A5 signaling axis, providing a new mechanism underlying the cross-talk between GSCs and extracellular matrix (ECM) microenvironment.
Collapse
Affiliation(s)
- Yuanyan Wei
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| | - Shuting Geng
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| | - Yu Si
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| | - Yuerong Yang
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| | - Qihang Chen
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| | - Sijing Huang
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| | - Xiaoning Chen
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| | - Wenlong Xu
- Division of NeurosurgeryZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Yinchao Liu
- Department of NeurosurgeryProvincial Hospital Affiliated to Shandong First Medical UniversityJinanShandong250021P. R. China
| | - Jianhai Jiang
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| |
Collapse
|
16
|
Battaglia AM, Sacco A, Vecchio E, Scicchitano S, Petriaggi L, Giorgio E, Bulotta S, Levi S, Faniello CM, Biamonte F, Costanzo F. Iron affects the sphere-forming ability of ovarian cancer cells in non-adherent culture conditions. Front Cell Dev Biol 2023; 11:1272667. [PMID: 38033861 PMCID: PMC10682100 DOI: 10.3389/fcell.2023.1272667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction: Detachment from the extracellular matrix (ECM) is the first step of the metastatic cascade. It is a regulated process involving interaction between tumor cells and tumor microenvironment (TME). Iron is a key micronutrient within the TME. Here, we explored the role of iron in the ability of ovarian cancer cells to successfully detach from the ECM. Methods: HEY and PEO1 ovarian cancer cells were grown in 3D conditions. To mimic an iron rich TME, culture media were supplemented with 100 μM Fe3+. Cell mortality was evaluated by cytofluorimetric assay. The invasive potential of tumor spheroids was performed in Matrigel and documented with images and time-lapses. Iron metabolism was assessed by analyzing the expression of CD71 and FtH1, and by quantifying the intracellular labile iron pool (LIP) through Calcein-AM cytofluorimetric assay. Ferroptosis was assessed by quantifying mitochondrial reactive oxygen species (ROS) and lipid peroxidation through MitoSOX and BODIPY-C11 cytofluorimetric assays, respectively. Ferroptosis markers GPX4 and VDAC2 were measured by Western blot. FtH1 knockdown was performed by using siRNA. Results: To generate spheroids, HEY and PEO1 cells prevent LIP accumulation by upregulating FtH1. 3D HEY moderately increases FtH1, and LIP is only slightly reduced. 3D PEO1upregulate FtH1 and LIP results significantly diminished. HEY tumor spheroids prevent iron import downregulating CD71, while PEO1 cells strongly enhance it. Intracellular ROS drop down during the 2D to 3D transition in both cell lines, but more significantly in PEO1 cells. Upon iron supplementation, PEO1 cells continue to enhance CD71 and FtH1 without accumulating the LIP and ROS and do not undergo ferroptosis. HEY, instead, accumulate LIP, undergo ferroptosis and attenuate their sphere-forming ability and invasiveness. FtH1 knockdown significantly reduces the generation of PEO1 tumor spheroids, although without sensitizing them to ferroptosis. Discussion: Iron metabolism reprogramming is a key event in the tumor spheroid generation of ovarian cancer cells. An iron-rich environment impairs the sphere-forming ability and causes cell death only in ferroptosis sensitive cells. A better understanding of ferroptosis sensitivity could be useful to develop effective treatments to kill ECM-detached ovarian cancer cells.
Collapse
Affiliation(s)
- Anna Martina Battaglia
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Alessandro Sacco
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Eleonora Vecchio
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Stefania Scicchitano
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Lavinia Petriaggi
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Emanuele Giorgio
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Stefania Bulotta
- Laboratory of Biochemistry and Biology, Department of Health Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Sonia Levi
- Vita-Salute San Raffaele University and San Raffaele Scientific Institute, Milan, Italy
| | - Concetta Maria Faniello
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Flavia Biamonte
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
- Department of Experimental and Clinical Medicine, Center of Interdepartmental Services (CIS), Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Francesco Costanzo
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
- Department of Experimental and Clinical Medicine, Center of Interdepartmental Services (CIS), Magna Graecia University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
17
|
Zhang W, Zhou H, Li H, Mou H, Yinwang E, Xue Y, Wang S, Zhang Y, Wang Z, Chen T, Sun H, Wang F, Zhang J, Chai X, Chen S, Li B, Zhang C, Gao J, Ye Z. Cancer cells reprogram to metastatic state through the acquisition of platelet mitochondria. Cell Rep 2023; 42:113147. [PMID: 37756158 DOI: 10.1016/j.celrep.2023.113147] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/30/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Metastasis is the major cause of cancer deaths, and cancer cells evolve to adapt to various tumor microenvironments, which hinders the treatment of tumor metastasis. Platelets play critical roles in tumor development, especially during metastasis. Here, we elucidate the role of platelet mitochondria in tumor metastasis. Cancer cells are reprogrammed to a metastatic state through the acquisition of platelet mitochondria via the PINK1/Parkin-Mfn2 pathway. Furthermore, platelet mitochondria regulate the GSH/GSSG ratio and reactive oxygen species (ROS) in cancer cells to promote lung metastasis of osteosarcoma. Impairing platelet mitochondrial function has proven to be an efficient approach to impair metastasis, providing a direction for osteosarcoma therapy. Our findings demonstrate mitochondrial transfer between platelets and cancer cells and suggest a role for platelet mitochondria in tumor metastasis.
Collapse
Affiliation(s)
- Wenkan Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hao Zhou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hengyuan Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Haochen Mou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Eloy Yinwang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yucheng Xue
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Shengdong Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yongxing Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zenan Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Tao Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hangxiang Sun
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Fangqian Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jiahao Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xupeng Chai
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Shixin Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Binghao Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Zhaoming Ye
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, People's Republic of China; Institute of Orthopedic Research, Zhejiang University, Hangzhou 310009, People's Republic of China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
18
|
Lama Tamang R, Kumar B, Patel SM, Thapa I, Ahmad A, Kumar V, Ahmad R, Becker DF, Bastola D(K, Dhawan P, Singh AB. Pyrroline-5-Carboxylate Reductase-2 Promotes Colorectal Carcinogenesis by Modulating Microtubule-Associated Serine/Threonine Kinase-like/Wnt/β-Catenin Signaling. Cells 2023; 12:1883. [PMID: 37508547 PMCID: PMC10377831 DOI: 10.3390/cells12141883] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Despite significant progress in clinical management, colorectal cancer (CRC) remains the third most common cause of cancer-related deaths. A positive association between PYCR2 (pyrroline-5-carboxylate reductase-2), a terminal enzyme of proline metabolism, and CRC aggressiveness was recently reported. However, how PYCR2 promotes colon carcinogenesis remains ill understood. METHODS A comprehensive analysis was performed using publicly available cancer databases and CRC patient cohorts. Proteomics and biochemical evaluations were performed along with genetic manipulations and in vivo tumor growth assays to gain a mechanistic understanding. RESULTS PYCR2 expression was significantly upregulated in CRC and associated with poor patient survival, specifically among PYCR isoforms (PYCR1, 2, and 3). The genetic inhibition of PYCR2 inhibited the tumorigenic abilities of CRC cells and in vivo tumor growth. Coinciding with these observations was a significant decrease in cellular proline content. PYCR2 overexpression promoted the tumorigenic abilities of CRC cells. Proteomics (LC-MS/MS) analysis further demonstrated that PYCR2 loss of expression in CRC cells inhibits survival and cell cycle pathways. A subsequent biochemical analysis supported the causal role of PYCR2 in regulating CRC cell survival and the cell cycle, potentially by regulating the expression of MASTL, a cell-cycle-regulating protein upregulated in CRC. Further studies revealed that PYCR2 regulates Wnt/β-catenin-signaling in manners dependent on the expression of MASTL and the cancer stem cell niche. CONCLUSIONS PYCR2 promotes MASTL/Wnt/β-catenin signaling that, in turn, promotes cancer stem cell populations and, thus, colon carcinogenesis. Taken together, our data highlight the significance of PYCR2 as a novel therapeutic target for effectively treating aggressive colon cancer.
Collapse
Affiliation(s)
- Raju Lama Tamang
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE 68198-6125, USA
| | - Balawant Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE 68198-6125, USA
| | - Sagar M. Patel
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Ishwor Thapa
- School of Interdisciplinary Informatics, College of Information Science & Technology, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Alshomrani Ahmad
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE 68198-6125, USA
| | - Vikas Kumar
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE 68198-6125, USA
| | - Rizwan Ahmad
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE 68198-6125, USA
| | - Donald F. Becker
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Dundy (Kiran) Bastola
- School of Interdisciplinary Informatics, College of Information Science & Technology, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE 68198-6125, USA
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105-1850, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-65870, USA
| | - Amar B. Singh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE 68198-6125, USA
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105-1850, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-65870, USA
| |
Collapse
|
19
|
Li L, Cheng SQ, Sun YQ, Yu JB, Huang XX, Dong YF, Ji J, Zhang XY, Hu G, Sun XL. Resolvin D1 reprograms energy metabolism to promote microglia to phagocytize neutrophils after ischemic stroke. Cell Rep 2023; 42:112617. [PMID: 37285269 DOI: 10.1016/j.celrep.2023.112617] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/27/2023] [Accepted: 05/23/2023] [Indexed: 06/09/2023] Open
Abstract
Neutrophil aggregation and clearance are important factors affecting neuroinflammatory injury during acute ischemic stroke. Emerging evidence suggests that energy metabolism is essential for microglial functions, especially microglial phagocytosis, which determines the degree of brain injury. Here, we demonstrate that Resolvin D1 (RvD1), a lipid mediator derived from docosahexaenic acid (DHA), promotes the phagocytosis of neutrophils by microglia, thereby reducing neutrophil accumulation in the brain and alleviating neuroinflammation in the ischemic brain. Further studies reveal that RvD1 reprograms energy metabolism from glycolysis to oxidative phosphorylation (OXPHOS), providing sufficient energy for microglial phagocytosis. Moreover, RvD1 enhances microglial glutamine uptake and stimulates glutaminolysis to support OXPHOS to boost ATP production depending on adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) activation. Overall, our results reveal that RvD1 reprograms energy metabolism to promote the microglial phagocytosis of neutrophils after ischemic stroke. These findings may guide perspectives for stroke therapy from modulating microglial immunometabolism.
Collapse
Affiliation(s)
- Lei Li
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Shu-Qi Cheng
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Yu-Qin Sun
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Jian-Bing Yu
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Xin-Xin Huang
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Yin-Feng Dong
- Nanjing University of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Juan Ji
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Xi-Yue Zhang
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Gang Hu
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Xiu-Lan Sun
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China; Nanjing University of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
20
|
Liu F, Wu Q, Dong Z, Liu K. Integrins in cancer: Emerging mechanisms and therapeutic opportunities. Pharmacol Ther 2023:108458. [PMID: 37245545 DOI: 10.1016/j.pharmthera.2023.108458] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/10/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Integrins are vital surface adhesion receptors that mediate the interactions between the extracellular matrix (ECM) and cells and are essential for cell migration and the maintenance of tissue homeostasis. Aberrant integrin activation promotes initial tumor formation, growth, and metastasis. Recently, many lines of evidence have indicated that integrins are highly expressed in numerous cancer types and have documented many functions of integrins in tumorigenesis. Thus, integrins have emerged as attractive targets for the development of cancer therapeutics. In this review, we discuss the underlying molecular mechanisms by which integrins contribute to most of the hallmarks of cancer. We focus on recent progress on integrin regulators, binding proteins, and downstream effectors. We highlight the role of integrins in the regulation of tumor metastasis, immune evasion, metabolic reprogramming, and other hallmarks of cancer. In addition, integrin-targeted immunotherapy and other integrin inhibitors that have been used in preclinical and clinical studies are summarized.
Collapse
Affiliation(s)
- Fangfang Liu
- Research Center of Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China
| | - Qiong Wu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China; Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Zigang Dong
- Research Center of Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China; Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan 450000, China; Tianjian Advanced Biomedical Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Kangdong Liu
- Research Center of Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China; Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan 450000, China; Tianjian Advanced Biomedical Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, China; Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan 450000, China.
| |
Collapse
|
21
|
Niu N, Ye J, Hu Z, Zhang J, Wang Y. Regulative Roles of Metabolic Plasticity Caused by Mitochondrial Oxidative Phosphorylation and Glycolysis on the Initiation and Progression of Tumorigenesis. Int J Mol Sci 2023; 24:ijms24087076. [PMID: 37108242 PMCID: PMC10139088 DOI: 10.3390/ijms24087076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
One important feature of tumour development is the regulatory role of metabolic plasticity in maintaining the balance of mitochondrial oxidative phosphorylation and glycolysis in cancer cells. In recent years, the transition and/or function of metabolic phenotypes between mitochondrial oxidative phosphorylation and glycolysis in tumour cells have been extensively studied. In this review, we aimed to elucidate the characteristics of metabolic plasticity (emphasizing their effects, such as immune escape, angiogenesis migration, invasiveness, heterogeneity, adhesion, and phenotypic properties of cancers, among others) on tumour progression, including the initiation and progression phases. Thus, this article provides an overall understanding of the influence of abnormal metabolic remodeling on malignant proliferation and pathophysiological changes in carcinoma.
Collapse
Affiliation(s)
- Nan Niu
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
- College of Physics and Optoelectronic Engineering, Canghai Campus of Shenzhen University, Shenzhen 518060, China
| | - Jinfeng Ye
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
| | - Zhangli Hu
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
| | - Junbin Zhang
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
| | - Yun Wang
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
22
|
Chen M, Lan H, Yao S, Jin K, Chen Y. Metabolic Interventions in Tumor Immunity: Focus on Dual Pathway Inhibitors. Cancers (Basel) 2023; 15:cancers15072043. [PMID: 37046703 PMCID: PMC10093048 DOI: 10.3390/cancers15072043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
The metabolism of tumors and immune cells in the tumor microenvironment (TME) can affect the fate of cancer and immune responses. Metabolic reprogramming can occur following the activation of metabolic-related signaling pathways, such as phosphoinositide 3-kinases (PI3Ks) and the mammalian target of rapamycin (mTOR). Moreover, various tumor-derived immunosuppressive metabolites following metabolic reprogramming also affect antitumor immune responses. Evidence shows that intervention in the metabolic pathways of tumors or immune cells can be an attractive and novel treatment option for cancer. For instance, administrating inhibitors of various signaling pathways, such as phosphoinositide 3-kinases (PI3Ks), can improve T cell-mediated antitumor immune responses. However, dual pathway inhibitors can significantly suppress tumor growth more than they inhibit each pathway separately. This review discusses the latest metabolic interventions by dual pathway inhibitors as well as the advantages and disadvantages of this therapeutic approach.
Collapse
Affiliation(s)
- Min Chen
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Huanrong Lan
- Department of Surgical Oncology, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China
| | - Shiya Yao
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Ketao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Yun Chen
- Department of Colorectal Surgery, Xinchang People's Hospital, Affiliated Xinchang Hospital, Wenzhou Medical University, Xinchang 312500, China
| |
Collapse
|
23
|
Yuan Z, Li Y, Zhang S, Wang X, Dou H, Yu X, Zhang Z, Yang S, Xiao M. Extracellular matrix remodeling in tumor progression and immune escape: from mechanisms to treatments. Mol Cancer 2023; 22:48. [PMID: 36906534 PMCID: PMC10007858 DOI: 10.1186/s12943-023-01744-8] [Citation(s) in RCA: 221] [Impact Index Per Article: 110.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/11/2023] [Indexed: 03/13/2023] Open
Abstract
The malignant tumor is a multi-etiological, systemic and complex disease characterized by uncontrolled cell proliferation and distant metastasis. Anticancer treatments including adjuvant therapies and targeted therapies are effective in eliminating cancer cells but in a limited number of patients. Increasing evidence suggests that the extracellular matrix (ECM) plays an important role in tumor development through changes in macromolecule components, degradation enzymes and stiffness. These variations are under the control of cellular components in tumor tissue via the aberrant activation of signaling pathways, the interaction of the ECM components to multiple surface receptors, and mechanical impact. Additionally, the ECM shaped by cancer regulates immune cells which results in an immune suppressive microenvironment and hinders the efficacy of immunotherapies. Thus, the ECM acts as a barrier to protect cancer from treatments and supports tumor progression. Nevertheless, the profound regulatory network of the ECM remodeling hampers the design of individualized antitumor treatment. Here, we elaborate on the composition of the malignant ECM, and discuss the specific mechanisms of the ECM remodeling. Precisely, we highlight the impact of the ECM remodeling on tumor development, including proliferation, anoikis, metastasis, angiogenesis, lymphangiogenesis, and immune escape. Finally, we emphasize ECM "normalization" as a potential strategy for anti-malignant treatment.
Collapse
Affiliation(s)
- Zhennan Yuan
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yingpu Li
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Sifan Zhang
- Department of Neurobiology, Harbin Medical University, Harbin, 150081, China
| | - Xueying Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - He Dou
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xi Yu
- Department of Gynecological Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Zhiren Zhang
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.,Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorder and Cancer Related Cardiovascular Diseases, Harbin, 150001, China
| | - Shanshan Yang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, 150000, China.
| | - Min Xiao
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
24
|
Paul S, Ghosh S, Kumar S. Tumor glycolysis, an essential sweet tooth of tumor cells. Semin Cancer Biol 2022; 86:1216-1230. [PMID: 36330953 DOI: 10.1016/j.semcancer.2022.09.007] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
Abstract
Cancer cells undergo metabolic alterations to meet the immense demand for energy, building blocks, and redox potential. Tumors show glucose-avid and lactate-secreting behavior even in the presence of oxygen, a process known as aerobic glycolysis. Glycolysis is the backbone of cancer cell metabolism, and cancer cells have evolved various mechanisms to enhance it. Glucose metabolism is intertwined with other metabolic pathways, making cancer metabolism diverse and heterogeneous, where glycolysis plays a central role. Oncogenic signaling accelerates the metabolic activities of glycolytic enzymes, mainly by enhancing their expression or by post-translational modifications. Aerobic glycolysis ferments glucose into lactate which supports tumor growth and metastasis by various mechanisms. Herein, we focused on tumor glycolysis, especially its interactions with the pentose phosphate pathway, glutamine metabolism, one-carbon metabolism, and mitochondrial oxidation. Further, we describe the role and regulation of key glycolytic enzymes in cancer. We summarize the role of lactate, an end product of glycolysis, in tumor growth, and the metabolic adaptations during metastasis. Lastly, we briefly discuss limitations and future directions to improve our understanding of glucose metabolism in cancer.
Collapse
Affiliation(s)
- Sumana Paul
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, 400076 Mumbai, India
| | - Saikat Ghosh
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Sushil Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, 400076 Mumbai, India.
| |
Collapse
|
25
|
Petsouki E, Cabrera SNS, Heiss EH. AMPK and NRF2: Interactive players in the same team for cellular homeostasis? Free Radic Biol Med 2022; 190:75-93. [PMID: 35918013 DOI: 10.1016/j.freeradbiomed.2022.07.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/11/2022] [Accepted: 07/19/2022] [Indexed: 11/27/2022]
Abstract
NRF2 (Nuclear factor E2 p45-related factor 2) is a stress responsive transcription factor lending cells resilience against oxidative, xenobiotic, and also nutrient or proteotoxic insults. AMPK (AMP-activated kinase), considered as prime regulator of cellular energy homeostasis, not only tunes metabolism to provide the cell at any time with sufficient ATP or building blocks, but also controls redox balance and inflammation. Due to observed overlapping cellular responses upon AMPK or NRF2 activation and common stressors impinging on both AMPK and NRF2 signaling, it is plausible to assume that AMPK and NRF2 signaling may interdepend and cooperate to readjust cellular homeostasis. After a short introduction of the two players this narrative review paints the current picture on how AMPK and NRF2 signaling might interact on the molecular level, and highlights their possible crosstalk in selected examples of pathophysiology or bioactivity of drugs and phytochemicals.
Collapse
Affiliation(s)
- Eleni Petsouki
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Faculty of Life Sciences, Althanstrasse 14, 1090 Vienna, Austria
| | - Shara Natalia Sosa Cabrera
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Faculty of Life Sciences, Althanstrasse 14, 1090 Vienna, Austria; Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences (VDS PhaNuSpo), University of Vienna, Austria
| | - Elke H Heiss
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Faculty of Life Sciences, Althanstrasse 14, 1090 Vienna, Austria.
| |
Collapse
|
26
|
Raeisi M, Zehtabi M, Velaei K, Fayyazpour P, Aghaei N, Mehdizadeh A. Anoikis in cancer: The role of lipid signaling. Cell Biol Int 2022; 46:1717-1728. [DOI: 10.1002/cbin.11896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 12/20/2022]
Affiliation(s)
- Mortaza Raeisi
- Hematology and Oncology Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Mojtaba Zehtabi
- Hematology and Oncology Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Kobra Velaei
- Department of Anatomical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Parisa Fayyazpour
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine Tabriz University of Medical Sciences Tabriz Iran
| | - Negar Aghaei
- Department of Psycology, Faculty of Medicine Tabriz University of Medical Sciences Tabriz Iran
- Imam Sajjad Hospital Tabriz Azad University Tabriz Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
27
|
Kiesel VA, Sheeley MP, Hicks EM, Andolino C, Donkin SS, Wendt MK, Hursting SD, Teegarden D. Hypoxia-Mediated ATF4 Induction Promotes Survival in Detached Conditions in Metastatic Murine Mammary Cancer Cells. Front Oncol 2022; 12:767479. [PMID: 35847893 PMCID: PMC9280133 DOI: 10.3389/fonc.2022.767479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 05/27/2022] [Indexed: 11/23/2022] Open
Abstract
Regions of hypoxia are common in solid tumors and drive changes in gene expression that increase risk of cancer metastasis. Tumor cells must respond to the stress of hypoxia by activating genes to modify cell metabolism and antioxidant response to improve survival. The goal of the current study was to determine the effect of hypoxia on cell metabolism and markers of oxidative stress in metastatic (metM-Wntlung) compared with nonmetastatic (M-Wnt) murine mammary cancer cell lines. We show that hypoxia induced a greater suppression of glutamine to glutamate conversion in metastatic cells (13% in metastatic cells compared to 7% in nonmetastatic cells). We also show that hypoxia increased expression of genes involved in antioxidant response in metastatic compared to nonmetastatic cells, including glutamate cysteine ligase catalytic and modifier subunits and malic enzyme 1. Interestingly, hypoxia increased the mRNA level of the transaminase glutamic pyruvic transaminase 2 (Gpt2, 7.7-fold) only in metM-Wntlung cells. The change in Gpt2 expression was accompanied by transcriptional (4.2-fold) and translational (6.5-fold) induction of the integrated stress response effector protein activating transcription factor 4 (ATF4). Genetic depletion ATF4 demonstrated importance of this molecule for survival of hypoxic metastatic cells in detached conditions. These findings indicate that more aggressive, metastatic cancer cells utilize hypoxia for metabolic reprogramming and induction of antioxidant defense, including activation of ATF4, for survival in detached conditions.
Collapse
Affiliation(s)
- Violet A. Kiesel
- Purdue University, Department of Nutrition Science, West Lafayette, IN, United States
| | - Madeline P. Sheeley
- Purdue University, Department of Nutrition Science, West Lafayette, IN, United States
| | - Emily M. Hicks
- Purdue University, Department of Nutrition Science, West Lafayette, IN, United States
| | - Chaylen Andolino
- Purdue University, Department of Nutrition Science, West Lafayette, IN, United States
| | - Shawn S. Donkin
- Purdue University, Department of Animal Science, West Lafayette, IN, United States
| | - Michael K. Wendt
- Purdue University, Department of Medicinal Chemistry and Molecular Pharmacology, West Lafayette, IN, United States
- Purdue University, Purdue University Center for Cancer Research, West Lafayette, IN, United States
| | - Stephen D. Hursting
- University of North Carolina at Chapel Hill, Department of Nutrition, Chapel Hill, NC, United States
- University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, United States
- University of North Carolina at Chapel Hill, Nutrition Research Institute, Kannapolis, NC, United States
| | - Dorothy Teegarden
- Purdue University, Department of Nutrition Science, West Lafayette, IN, United States
- Purdue University, Purdue University Center for Cancer Research, West Lafayette, IN, United States
| |
Collapse
|
28
|
MicroRNA-1224-5p Aggravates Sepsis-Related Acute Lung Injury in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9493710. [PMID: 35799888 PMCID: PMC9256451 DOI: 10.1155/2022/9493710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 06/06/2022] [Indexed: 12/22/2022]
Abstract
Oxidative stress and inflammation are implicated in the development of sepsis-related acute lung injury (ALI). MicroRNA-1224-5p (miR-1224-5p) plays critical roles in regulating inflammatory response and reactive oxygen species (ROS) production. The present study is aimed at investigating the role and underlying mechanisms of miR-1224-5p in sepsis-related ALI. Mice were intratracheally injected with lipopolysaccharide (LPS, 5 mg/kg) for 12 h to induce sepsis-related ALI. To manipulate miR-1224-5p level, mice were intravenously injected with the agomir, antagomir, or matched controls for 3 consecutive days. Murine peritoneal macrophages were stimulated with LPS (100 ng/mL) for 6 h to further validate the role of miR-1224-5p in vitro. To inhibit adenosine 5′-monophosphate-activated protein kinase alpha (AMPKα) or peroxisome proliferator activated receptor-gamma (PPAR-γ), compound C or GW9662 was used in vivo and in vitro. We found that miR-1224-5p levels in lungs were elevated by LPS injection, and that the miR-1224-5p antagomir significantly alleviated LPS-induced inflammation, oxidative stress, and ALI in mice. Conversely, the miR-1224-5p agomir aggravated inflammatory response, ROS generation, and pulmonary dysfunction in LPS-treated mice. In addition, the miR-1224-5p antagomir reduced, while the miR-1224-5p agomir aggravated LPS-induced inflammation and oxidative stress in murine peritoneal macrophages. Further findings revealed that miR-1224-5p is directly bound to the 3′-untranslated regions of PPAR-γ and subsequently suppressed PPAR-γ/AMPKα axis, thereby aggravating LPS-induced ALI in vivo and in vitro. We demonstrate for the first time that endogenous miR-1224-5p is a critical pathogenic factor for inflammation and oxidative damage during LPS-induced ALI through inactivating PPAR-γ/AMPKα axis. Targeting miR-1224-5p may help to develop novel approaches to treat sepsis-related ALI.
Collapse
|
29
|
Liu B, Li X, Wang D, Yu Y, Lu D, Chen L, Lv F, Li Y, Cheng L, Song Y, Xing Y. CEMIP promotes extracellular matrix-detached prostate cancer cells survival by inhibiting ferroptosis. Cancer Sci 2022; 113:2056-2070. [PMID: 35363929 PMCID: PMC9207355 DOI: 10.1111/cas.15356] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 11/28/2022] Open
Abstract
Cells detached from the extracellular matrix (ECM) can trigger different modes of cell death, and the survival of ECM‐detached cells is one of the prerequisites for the metastatic cascade. Ferroptosis, a form of iron‐dependent programmed cell death, has recently been found to be involved in matrix‐detached cancer cells. However, the molecular mechanisms by which ECM‐detached cells escape ferroptosis are not fully understood. Here, we observed that cell migration‐inducing protein (CEMIP) upregulation facilitates ferroptosis resistance during ECM detachment by promoting cystine uptake in prostate cancer (PCa) cells. Meanwhile, silencing CEMIP causes it to lose its ability to promote cystine uptake and inhibit ferroptosis. Mechanistically, the interaction of CEMIP with inositol 1,4,5‐trisphosphate receptor type 3 (ITPR3) modulates calcium ion (Ca2+) leakage from the endoplasmic reticulum, activating calcium/calmodulin‐dependent protein kinase II (CaMKII), which further facilitates nuclear factor erythroid 2‐related factor 2 (NRF2) phosphorylation and nuclear localization, leading to elevated transcription of solute carrier family 7 member 11 (SLC7A11), a glutamate/cystine antiporter, in PCa cells. Our findings delineate a novel role of CEMIP in ferroptosis resistance during ECM detachment and provide new insights into therapeutic strategies for metastatic PCa.
Collapse
Affiliation(s)
- Bing Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xuexiang Li
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Decai Wang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ying Yu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430061, China
| | - Dingheng Lu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Liang Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fang Lv
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yunxue Li
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lulin Cheng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yarong Song
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yifei Xing
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
30
|
Wang J, Hao S, Gu J, Rudd SG, Wang Y. The prognostic and clinicopathological significance of desmoglein 2 in human cancers: a systematic review and meta-analysis. PeerJ 2022; 10:e13141. [PMID: 35345582 PMCID: PMC8957267 DOI: 10.7717/peerj.13141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/28/2022] [Indexed: 02/05/2023] Open
Abstract
Objective The survival and clinicopathological significance of desmoglein 2 (DSG2) in various cancers is controversial. Thus, we performed this systematic review and meta-analysis to explore the preliminary prognostic value of DSG2. Methods Eligible studies were identified from databases including PubMed, the Cochrane Library, Embase, Web of Science and Scopus. Hand searches were also conducted in relevant bibliographies. We then extracted and pooled hazard ratio (HR) of overall survival (OS) and odds ratio (OR) of clinicopathological features. Results A total of 11 eligible studies containing 1,488 patients were included. Our results demonstrated that in non-small cell lung cancer (NSCLC), high DSG2 expression is associated with poor OS. However, in digestive system cancer and female reproductive system cancer, there were no statistically significant associations between OS and DSG2. Conclusions Based on the findings of this study, high DSG2 expression is associated with worse prognosis in patients with NSCLC, and thus DSG2 expression could be a biomarker for prognosis in NSCLC.
Collapse
Affiliation(s)
- Jiantao Wang
- State Key Laboratory of Biotherapy & Department of Lung Cancer Center and Department of Radiation Oncology, West China Hospital, Sichuan University, Chengdu, China,Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Siyuan Hao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Junjie Gu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sean G. Rudd
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Yan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
31
|
Untargeted Metabolomics Showed Accumulation of One-Carbon Metabolites to Facilitate DNA Methylation during Extracellular Matrix Detachment of Cancer Cells. Metabolites 2022; 12:metabo12030267. [PMID: 35323710 PMCID: PMC8951017 DOI: 10.3390/metabo12030267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
Tumor cells detached from the extracellular matrix (ECM) undergo anoikis resistance and metabolic reprogramming to facilitate cancer cell survival and promote metastasis. During ECM detachment, cancer cells utilize genomic methylation to regulate transcriptional events. One-carbon (1C) metabolism is a well-known contributor of SAM, a global substrate for methylation reactions, especially DNA methylation. DNA methylation-mediated repression of NK cell ligands MICA and MICB during ECM detachment has been overlooked. In the current work, we quantitated the impact of ECM detachment on one-carbon metabolites, expression of 1C regulatory pathway genes, and total methylation levels. Our results showed that ECM detachment promotes the accumulation of one-carbon metabolites and induces regulatory pathway genes and total DNA methylation. Furthermore, we measured the expression of well-known targets of DNA methylation in NK cell ligands in cancer cells, namely, MICA/B, during ECM detachment and observed low expression compared to ECM-attached cancer cells. Finally, we treated the ECM-detached cancer cells with vitamin C (a global methylation inhibitor) and observed a reduction in the promoter methylation of NK cell ligands, resulting in MICA/B re-expression. Treatment with vitamin C was also found to reduce global DNA methylation levels in ECM-detached cancer cells.
Collapse
|
32
|
Zhou F, Sun L, Shao Y, Zhang X, Li C. AMPK-mediated glutaminolysis maintains coelomocytes redox homeostasis in Vibrio splendidus-challenged Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2022; 122:170-180. [PMID: 35150828 DOI: 10.1016/j.fsi.2022.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Glutaminolysis has been proved to play an irreplaceable role in vertebrate immunity, including effects on cytokine production, bacterial killing, and redox homeostasis maintenance. Our previous metabolomics analysis indicated that glutaminolysis metabolic substrates glutamine (Gln) and metabolites glutamate (Glu) were significantly lower in Skin ulceration syndrome (SUS)-diseased Apostichopus japonicus. To further delineate the role of glutaminolysis, we assayed the levels of Gln and Glu. We found that their contents in coelomocytes were decreased, accompanied by an increase in glutathione (GSH) in pathogen-challenged Apostichopus japonicus. Consistently, the mRNA transcripts of three key genes in glutaminolysis (AjASCT2, AjGOT, and AjGCS) were significantly induced. Moreover, the increased MDA and NADPH/NADP + levels in response to pathogen infection indicated that oxidative stress occurs during the immune response. The metabolic regulator AMPKβ could regulate glutaminolysis in vertebrates by inducing cells to take up extracellular Gln. To explore the underlying regulatory mechanism behind glutaminolysis that occurred in coelomocytes, the full-length cDNA of AMPKβ was identified from A. japonicus (designated as AjAMPKβ). AjAMPKβ expression was significantly induced in the coelomocytes after pathogen challenge, which was consistent with the expression of key genes of glutaminolysis. A functional assay indicated that AjAMPKβ silencing by siRNA transfection could increase the levels of Gln and Glu and depress the production of GSH. Moreover, the expression of glutaminolysis-related genes was significantly inhibited, and the reduction of redox homeostasis indexes (MDA and NADPH/NADP+) was also observed. Contrastingly, AjAMPKβ overexpression promoted redox homeostasis balance. Intracellular ROS is mostly responsible for breaking redox homeostasis and leading to oxidative stress, contributing to cell fate changes in immune cells. Exogenous Gln and GSH treatments could significantly reduce ROS level while the AjAMPKβ silencing induced the level of ROS and accelerated the necrosis rate. All these results collectively revealed that AjAMPKβ could modulate cellular redox homeostasis by affecting the glutaminolysis in A. japonicus.
Collapse
Affiliation(s)
- Fangyuan Zhou
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; Yantai Marine Economic Research Institute, Yantai, 264034, PR China
| | - Lianlian Sun
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; State-Province Joint Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, 315211, China.
| | - Yina Shao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; State-Province Joint Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, 315211, China
| | - Xiumei Zhang
- Yantai Marine Economic Research Institute, Yantai, 264034, PR China
| | - Chenghua Li
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China; Yantai Marine Economic Research Institute, Yantai, 264034, PR China.
| |
Collapse
|
33
|
Comparison of Lysis and Detachment Sample Preparation Methods for Cultured Triple-Negative Breast Cancer Cells Using UHPLC–HRMS-Based Metabolomics. Metabolites 2022; 12:metabo12020168. [PMID: 35208242 PMCID: PMC8879193 DOI: 10.3390/metabo12020168] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
Dysregulation of cellular metabolism is now a well-recognized hallmark of cancer. Studies investigating the metabolic features of cancer cells have shed new light onto processes in cancer cell biology and have identified many potential novel treatment options. The advancement of mass spectrometry-based metabolomics has improved the ability to monitor multiple metabolic pathways simultaneously in various experimental settings. However, questions still remain as to how certain steps in the metabolite extraction process affect the metabolic profiles of cancer cells. Here, we use ultra-high-performance liquid chromatography–high-resolution mass spectrometry (UHPLC–HRMS) untargeted metabolomics to investigate the effects of different detachment and lysis methods on the types and abundances of metabolites extracted from MDA-MB-231 cells through the use of in-house standards libraries and pathway analysis software. Results indicate that detachment methods (trypsinization vs. scraping) had the greatest effect on metabolic profiles whereas lysis methods (homogenizer beads vs. freeze–thaw cycling) had a lesser, though still significant, effect. No singular method was clearly superior over others, with certain metabolite classes giving higher abundances or lower variation for each detachment–lysis combination. These results indicate the importance of carefully selecting sample preparation methods for cell-based metabolomics to optimize the extraction performance for certain compound classes.
Collapse
|
34
|
Adapted suspension tumor cells rewire metabolic pathways for anchorage-independent survival through AKT activation. Exp Cell Res 2022; 411:113005. [PMID: 34979107 DOI: 10.1016/j.yexcr.2021.113005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 11/22/2022]
Abstract
Metastatic spread of cancer cells is the main cause of cancer-related death. As cancer cells adapt themselves in a suspended state in the blood stream before penetration and regrowth at distal tissues, understanding their survival strategy in an anchorage-independent condition is important to develop appropriate therapeutics. We have previously generated adapted suspension cells (ASCs) from parental adherent cancer cells to study the characteristics of circulating tumor cells. In this study, we explored metabolic rewiring in MDA-MB-468 ASCs to adapt to suspension growth conditions through extracellular flux analyses and various metabolic assays. We also determined the relationship between AKT activation and metabolic rewiring in ASCs using the AKT inhibitor, MK2206. ASCs reprogramed metabolism to enhance glycolysis and basal oxygen consumption rate. RNA-sequencing analysis revealed the upregulation in the genes related to glycolysis, tricarboxylic acid cycle, and oxidative phosphorylation. The changes in the metabolic program led to a remarkable dependency of ASCs on carbohydrates as an energy source for proliferation as compared to parental adherent cells (ADs). AKT activation was observed in ASCs and those generated from pancreatic and other breast cancer cells, and AKT activation inhibition in ASCs decreased glycolysis and oxygen consumption. AKT activation is an important strategy for obtaining energy through the enhancement of glycolysis in ASCs. The regulation of AKT activity and/or glycolysis may provide a strong therapeutic strategy to prevent the metastatic spread of cancer cells.
Collapse
|
35
|
Shida Y, Endo H, Owada S, Inagaki Y, Sumiyoshi H, Kamiya A, Eto T, Tatemichi M. Branched-chain amino acids govern the high learning ability phenotype in Tokai high avoider (THA) rats. Sci Rep 2021; 11:23104. [PMID: 34845278 PMCID: PMC8630195 DOI: 10.1038/s41598-021-02591-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/19/2021] [Indexed: 11/09/2022] Open
Abstract
To fully understand the mechanisms governing learning and memory, animal models with minor interindividual variability and higher cognitive function are required. THA rats established by crossing those with high learning capacity exhibit excellent learning and memory abilities, but the factors underlying their phenotype are completely unknown. In the current study, we compare the hippocampi of parental strain Wistar rats to those of THA rats via metabolomic analysis in order to identify molecules specific to the THA rat hippocampus. Higher branched-chain amino acid (BCAA) levels and enhanced activation of BCAA metabolism-associated enzymes were observed in THA rats, suggesting that acetyl-CoA and acetylcholine are synthesized through BCAA catabolism. THA rats maintained high blood BCAA levels via uptake of BCAAs in the small intestine and suppression of BCAA catabolism in the liver. Feeding THA rats with a BCAA-reduced diet decreased acetylcholine levels and learning ability, thus, maintaining high BCAA levels while their proper metabolism in the hippocampus is the mechanisms underlying the high learning ability in THA rats. Identifying appropriate BCAA nutritional supplements and activation methods may thus hold potential for the prevention and amelioration of higher brain dysfunction, including learning disabilities and dementia.
Collapse
Affiliation(s)
- Yukari Shida
- Center for Molecular Prevention and Environmental Medicine, Department of Preventive Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Hitoshi Endo
- Center for Molecular Prevention and Environmental Medicine, Department of Preventive Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.
| | - Satoshi Owada
- Center for Molecular Prevention and Environmental Medicine, Department of Preventive Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Yutaka Inagaki
- Center for Matrix Biology and Medicine, Department of Innovative Medical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Hideaki Sumiyoshi
- Center for Matrix Biology and Medicine, Department of Innovative Medical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Akihide Kamiya
- Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Tomoo Eto
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan
| | - Masayuki Tatemichi
- Center for Molecular Prevention and Environmental Medicine, Department of Preventive Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| |
Collapse
|
36
|
Farrakhova D, Romanishkin I, Maklygina Y, Bezdetnaya L, Loschenov V. Analysis of Fluorescence Decay Kinetics of Indocyanine Green Monomers and Aggregates in Brain Tumor Model In Vivo. NANOMATERIALS 2021; 11:nano11123185. [PMID: 34947534 PMCID: PMC8709123 DOI: 10.3390/nano11123185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/26/2022]
Abstract
Spectroscopic approach with fluorescence time resolution allows one to determine the state of a brain tumor and its microenvironment via changes in the fluorescent dye's fluorescence lifetime. Indocyanine green (ICG) is an acknowledged infra-red fluorescent dye that self-assembles into stable aggregate forms (ICG NPs). ICG NPs aggregates have a tendency to accumulate in the tumor with a maximum accumulation at 24 h after systemic administration, enabling extended intraoperative diagnostic. Fluorescence lifetime analysis of ICG and ICG NPs demonstrates different values for ICG monomers and H-aggregates, indicating promising suitability for fluorescent diagnostics of brain tumors due to their affinity to tumor cells and stability in biological tissue.
Collapse
Affiliation(s)
- Dina Farrakhova
- Prokhorov General Physics Institute of the Russian Academy of Science, 119991 Moscow, Russia; (I.R.); (Y.M.); (V.L.)
- Correspondence: ; Tel.: +7-968-587-52-75
| | - Igor Romanishkin
- Prokhorov General Physics Institute of the Russian Academy of Science, 119991 Moscow, Russia; (I.R.); (Y.M.); (V.L.)
| | - Yuliya Maklygina
- Prokhorov General Physics Institute of the Russian Academy of Science, 119991 Moscow, Russia; (I.R.); (Y.M.); (V.L.)
| | - Lina Bezdetnaya
- Centre de Recherche en Automatique de Nancy, CNRS, Université de Lorraine, 54519 Vandoeuvre-lès-Nancy, France;
- Institut de Cancérologie de Lorraine, 54519 Vandoeuvre-lès-Nancy, France
| | - Victor Loschenov
- Prokhorov General Physics Institute of the Russian Academy of Science, 119991 Moscow, Russia; (I.R.); (Y.M.); (V.L.)
- Institute of Engineering Physics for Biomedicine, National Research Nuclear University MEPhI, 115409 Moscow, Russia
| |
Collapse
|