1
|
Wang T. Breaking the silence: Transforming aortic aneurysm screening to save lives. Trends Cardiovasc Med 2024:S1050-1738(24)00117-8. [PMID: 39746386 DOI: 10.1016/j.tcm.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Affiliation(s)
- Ting Wang
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352.
| |
Collapse
|
2
|
Zong NC, Huang K, Yang X, Cai H. Expand the success of routine screening to reduce aortic aneurysm mortality: progress interpretation and new fronts. Trends Cardiovasc Med 2024:S1050-1738(24)00111-7. [PMID: 39675687 DOI: 10.1016/j.tcm.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024]
Abstract
Aortic aneurysm is a leading cause of death across the world. Many victicms carry it without knowing. Ruputre of aortic aneurysms leads to devastating sudden death. This brings trauma to families and our society. Based upon sound results out of several cohort studies, US Preventative Services Task Force (USPST) crafted the 1st nationwide abdominal aorta aneurysm (AAA) screening program in 2005. It was renewed and expanded in each of the subsequent revisions in 2014 and 2019. UK and Sweden estalished their own programs as well. Since then, a significant decline in AAA prevalence and mortality has been observed. Two decades into the practice, the state of the art on diagonstics, surgical approaches, and pharmacological options have drastically changed. Patients previously ineligible for treatment or inconclusive on diagnostics now have valid options. The screening program is on the verge for a bold expansion. In this review, we summarize the chroncles leading to the inception of the screening programs, progress in interpretation after implementation including gains, gaps and controversies, advents of new technologies and approaches, new fronts facing us, as well as priorities to be addressed in future phases. Particularly, screening asssys with a clinically tested biomarker, tetrahydrobiopterin (H4B), enables unpresended accessibility, consistency and throughput to accommodate the needs of a larger population. Furthermore, patients with AAAs at size below the eligibility threhold for surgical intervention (e.g., < 5.5 cm) can be treated with novel oral medications. Confronting factors such as changing demographics and COVID-19 aftermath are putting up new challenges. Nevertheless, running a program at national scale demands both unwavering commitment and agile fine-tuning. Technical innovation will be an indispensable chapter of its continued success. The burden of aortic aneurysm-led sudden death is too heavy for any family and the society to bear; it is time to step up our resolve with additional capacities as discussed in the present review.
Collapse
Affiliation(s)
- Nobel Chenggong Zong
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Kai Huang
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, College of Life Science, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Hua Cai
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
3
|
Ren H, Hu W, Jiang T, Yao Q, Qi Y, Huang K. Mechanical stress induced mitochondrial dysfunction in cardiovascular diseases: Novel mechanisms and therapeutic targets. Biomed Pharmacother 2024; 174:116545. [PMID: 38603884 DOI: 10.1016/j.biopha.2024.116545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide. Others and our studies have shown that mechanical stresses (forces) including shear stress and cyclic stretch, occur in various pathological conditions, play significant roles in the development and progression of CVDs. Mitochondria regulate the physiological processes of cardiac and vascular cells mainly through adenosine triphosphate (ATP) production, calcium flux and redox control while promote cell death through electron transport complex (ETC) related cellular stress response. Mounting evidence reveal that mechanical stress-induced mitochondrial dysfunction plays a vital role in the pathogenesis of many CVDs including heart failure and atherosclerosis. This review summarized mitochondrial functions in cardiovascular system under physiological mechanical stress and mitochondrial dysfunction under pathological mechanical stress in CVDs (graphical abstract). The study of mitochondrial dysfunction under mechanical stress can further our understanding of the underlying mechanisms, identify potential therapeutic targets, and aid the development of novel treatments of CVDs.
Collapse
Affiliation(s)
- He Ren
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, China; Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Weiyi Hu
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, China
| | - Tao Jiang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Qingping Yao
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, China
| | - Yingxin Qi
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, China
| | - Kai Huang
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, China.
| |
Collapse
|
4
|
Murugesan P, Zhang Y, Huang Y, Chenggong Zong N, Youn JY, Chen W, Wang C, Loscalzo J, Cai H. Reversal of Pulmonary Hypertension in a Human-Like Model: Therapeutic Targeting of Endothelial DHFR. Circ Res 2024; 134:351-370. [PMID: 38299369 PMCID: PMC10880947 DOI: 10.1161/circresaha.123.323090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 01/06/2024] [Accepted: 01/15/2024] [Indexed: 02/02/2024]
Abstract
BACKGROUND Pulmonary hypertension (PH) is a progressive disorder characterized by remodeling of the pulmonary vasculature and elevated mean pulmonary arterial pressure, resulting in right heart failure. METHODS Here, we show that direct targeting of the endothelium to uncouple eNOS (endothelial nitric oxide synthase) with DAHP (2,4-diamino 6-hydroxypyrimidine; an inhibitor of GTP cyclohydrolase 1, the rate-limiting synthetic enzyme for the critical eNOS cofactor tetrahydrobiopterin) induces human-like, time-dependent progression of PH phenotypes in mice. RESULTS Critical phenotypic features include progressive elevation in mean pulmonary arterial pressure, right ventricular systolic blood pressure, and right ventricle (RV)/left ventricle plus septum (LV+S) weight ratio; extensive vascular remodeling of pulmonary arterioles with increased medial thickness/perivascular collagen deposition and increased expression of PCNA (proliferative cell nuclear antigen) and alpha-actin; markedly increased total and mitochondrial superoxide production, substantially reduced tetrahydrobiopterin and nitric oxide bioavailabilities; and formation of an array of human-like vascular lesions. Intriguingly, novel in-house generated endothelial-specific dihydrofolate reductase (DHFR) transgenic mice (tg-EC-DHFR) were completely protected from the pathophysiological and molecular features of PH upon DAHP treatment or hypoxia exposure. Furthermore, DHFR overexpression with a pCMV-DHFR plasmid transfection in mice after initiation of DAHP treatment completely reversed PH phenotypes. DHFR knockout mice spontaneously developed PH at baseline and had no additional deterioration in response to hypoxia, indicating an intrinsic role of DHFR deficiency in causing PH. RNA-sequencing experiments indicated great similarity in gene regulation profiles between the DAHP model and human patients with PH. CONCLUSIONS Taken together, these results establish a novel human-like murine model of PH that has long been lacking in the field, which can be broadly used for future mechanistic and translational studies. These data also indicate that targeting endothelial DHFR deficiency represents a novel and robust therapeutic strategy for the treatment of PH.
Collapse
Affiliation(s)
- Priya Murugesan
- Division of Molecular Medicine, Department of Anesthesiology, Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (P.M., Y.Z., Y.H., N.C.Z., J.Y.Y., H.C.)
| | - Yixuan Zhang
- Division of Molecular Medicine, Department of Anesthesiology, Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (P.M., Y.Z., Y.H., N.C.Z., J.Y.Y., H.C.)
| | - Yuanli Huang
- Division of Molecular Medicine, Department of Anesthesiology, Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (P.M., Y.Z., Y.H., N.C.Z., J.Y.Y., H.C.)
| | - Nobel Chenggong Zong
- Division of Molecular Medicine, Department of Anesthesiology, Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (P.M., Y.Z., Y.H., N.C.Z., J.Y.Y., H.C.)
| | - Ji Youn Youn
- Division of Molecular Medicine, Department of Anesthesiology, Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (P.M., Y.Z., Y.H., N.C.Z., J.Y.Y., H.C.)
| | - Wenhui Chen
- Peking Union Medical College and Chinese Academy of Medical Sciences, Department of Respiratory Medicine, China-Japan Friendship Hospital, Beijing (W.C., C.W.)
| | - Chen Wang
- Peking Union Medical College and Chinese Academy of Medical Sciences, Department of Respiratory Medicine, China-Japan Friendship Hospital, Beijing (W.C., C.W.)
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (J.L.)
| | - Hua Cai
- Division of Molecular Medicine, Department of Anesthesiology, Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (P.M., Y.Z., Y.H., N.C.Z., J.Y.Y., H.C.)
| |
Collapse
|
5
|
Wang Y, Panicker IS, Anesi J, Sargisson O, Atchison B, Habenicht AJR. Animal Models, Pathogenesis, and Potential Treatment of Thoracic Aortic Aneurysm. Int J Mol Sci 2024; 25:901. [PMID: 38255976 PMCID: PMC10815651 DOI: 10.3390/ijms25020901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Thoracic aortic aneurysm (TAA) has a prevalence of 0.16-0.34% and an incidence of 7.6 per 100,000 person-years, accounting for 1-2% of all deaths in Western countries. Currently, no effective pharmacological therapies have been identified to slow TAA development and prevent TAA rupture. Large TAAs are treated with open surgical repair and less invasive thoracic endovascular aortic repair, both of which have high perioperative mortality risk. Therefore, there is an urgent medical need to identify the cellular and molecular mechanisms underlying TAA development and rupture to develop new therapies. In this review, we summarize animal TAA models including recent developments in porcine and zebrafish models: porcine models can assess new therapeutic devices or intervention strategies in a large mammal and zebrafish models can employ large-scale small-molecule suppressor screening in microwells. The second part of the review covers current views of TAA pathogenesis, derived from recent studies using these animal models, with a focus on the roles of the transforming growth factor-beta (TGFβ) pathway and the vascular smooth muscle cell (VSMC)-elastin-contractile unit. The last part discusses TAA treatment options as they emerge from recent preclinical studies.
Collapse
Affiliation(s)
- Yutang Wang
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia; (I.S.P.)
| | - Indu S. Panicker
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia; (I.S.P.)
| | - Jack Anesi
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia; (I.S.P.)
| | - Owen Sargisson
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia; (I.S.P.)
| | - Benjamin Atchison
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia; (I.S.P.)
| | - Andreas J. R. Habenicht
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München (LMU), 80336 Munich, Germany;
| |
Collapse
|
6
|
Kalyanaraman H, Casteel DE, Cabriales JA, Tat J, Zhuang S, Chan A, Dretchen KL, Boss GR, Pilz RB. The Antioxidant/Nitric Oxide-Quenching Agent Cobinamide Prevents Aortic Disease in a Mouse Model of Marfan Syndrome. JACC Basic Transl Sci 2024; 9:46-62. [PMID: 38362350 PMCID: PMC10864892 DOI: 10.1016/j.jacbts.2023.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 02/17/2024]
Abstract
Major pathologic changes in the proximal aorta underlie the life-threatening aortic aneurysms and dissections in Marfan Syndrome; current treatments delay aneurysm development without addressing the primary pathology. Because excess oxidative stress and nitric oxide/protein kinase G signaling likely contribute to the aortopathy, we hypothesized that cobinamide, a strong antioxidant that can attenuate nitric oxide signaling, could be uniquely suited to prevent aortic disease. In a well-characterized mouse model of Marfan Syndrome, cobinamide dramatically reduced elastin breaks, prevented excess collagen deposition and smooth muscle cell apoptosis, and blocked DNA, lipid, and protein oxidation and excess nitric oxide/protein kinase G signaling in the ascending aorta. Consistent with preventing pathologic changes, cobinamide diminished aortic root dilation without affecting blood pressure. Cobinamide exhibited excellent safety and pharmacokinetic profiles indicating it could be a practical treatment. We conclude that cobinamide deserves further study as a disease-modifying treatment of Marfan Syndrome.
Collapse
Affiliation(s)
- Hema Kalyanaraman
- Department of Medicine, University of California-San Diego, La Jolla, California, USA
| | - Darren E. Casteel
- Department of Medicine, University of California-San Diego, La Jolla, California, USA
| | - Justin A. Cabriales
- Department of Medicine, University of California-San Diego, La Jolla, California, USA
| | - John Tat
- Department of Medicine, University of California-San Diego, La Jolla, California, USA
| | - Shunhui Zhuang
- Department of Medicine, University of California-San Diego, La Jolla, California, USA
| | - Adriano Chan
- Department of Medicine, University of California-San Diego, La Jolla, California, USA
| | | | - Gerry R. Boss
- Department of Medicine, University of California-San Diego, La Jolla, California, USA
| | - Renate B. Pilz
- Department of Medicine, University of California-San Diego, La Jolla, California, USA
| |
Collapse
|
7
|
Rega S, Farina F, Bouhuis S, de Donato S, Chiesa M, Poggio P, Cavallotti L, Bonalumi G, Giambuzzi I, Pompilio G, Perrucci GL. Multi-omics in thoracic aortic aneurysm: the complex road to the simplification. Cell Biosci 2023; 13:131. [PMID: 37475058 DOI: 10.1186/s13578-023-01080-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 07/05/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Thoracic aortic aneurysm (TAA) is a serious condition that affects the aorta, characterized by the dilation of its first segment. The causes of TAA (e.g., age, hypertension, genetic syndromes) are heterogeneous and contribute to the weakening of the aortic wall. This complexity makes treating this life-threatening aortopathy challenging, as there are currently no etiological therapy available, and pharmacological strategies, aimed at avoiding surgical aortic replacement, are merely palliative. Recent studies on novel therapies for TAA have focused on identifying biological targets and etiological mechanisms of the disease by using advanced -omics techniques, including epigenomics, transcriptomics, proteomics, and metabolomics approaches. METHODS This review presents the latest findings from -omics approaches and underscores the importance of integrating multi-omics data to gain more comprehensive understanding of TAA. RESULTS Literature suggests that the alterations in TAA mediators frequently involve members of pro-fibrotic process (i.e., TGF-β signaling pathways) or proteins associated with cell/extracellular structures (e.g., aggrecans). Further analyses often reported the importance in TAA of processes as inflammation (PCR, CD3, leukotriene compounds), oxidative stress (chromatin OXPHOS, fatty acids), mitochondrial respiration and glycolysis/gluconeogenesis (e.g., PPARs and HIF1a). Of note, more recent metabolomics studies added novel molecular markers to the list of TAA-specific detrimental mediators (proteoglycans). CONCLUSION It is increasingly clear that integrating data from different -omics branches, along with clinical data, is essential as well as complicated both to reveal hidden relevant information and to address complex diseases such as TAA. Importantly, recent progresses in metabolomics highlighted novel potential and unprecedented marks in TAA diagnosis and therapy.
Collapse
Affiliation(s)
- Sara Rega
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Unit for the Study of Aortic, Valvular and Coronary Pathologies, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Floriana Farina
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU) München, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Silvia Bouhuis
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Silvia de Donato
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Mattia Chiesa
- Bioinformatics and Artificial Intelligence Facility, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Electronics, Information and Biomedical Engineering, Politecnico Di Milano, Milan, Italy
| | - Paolo Poggio
- Unit for the Study of Aortic, Valvular and Coronary Pathologies, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Laura Cavallotti
- Department of Cardiovascular Surgery, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Giorgia Bonalumi
- Department of Cardiovascular Surgery, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Ilaria Giambuzzi
- Department of Cardiovascular Surgery, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Clinical Sciences and Community Health, Università Degli Studi Di Milano, Milan, Italy
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Cardiovascular Surgery, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, Università Degli Studi Di Milano, Milan, Italy
| | - Gianluca L Perrucci
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy.
| |
Collapse
|
8
|
Rodríguez-Rovira I, López-Sainz A, Palomo-Buitrago ME, Pérez B, Jiménez-Altayó F, Campuzano V, Egea G. Hyperuricaemia Does Not Interfere with Aortopathy in a Murine Model of Marfan Syndrome. Int J Mol Sci 2023; 24:11293. [PMID: 37511051 PMCID: PMC10379183 DOI: 10.3390/ijms241411293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Redox stress is involved in the aortic aneurysm pathogenesis in Marfan syndrome (MFS). We recently reported that allopurinol, a xanthine oxidoreductase inhibitor, blocked aortopathy in a MFS mouse model acting as an antioxidant without altering uric acid (UA) plasma levels. Hyperuricaemia is ambiguously associated with cardiovascular injuries as UA, having antioxidant or pro-oxidant properties depending on the concentration and accumulation site. We aimed to evaluate whether hyperuricaemia causes harm or relief in MFS aortopathy pathogenesis. Two-month-old male wild-type (WT) and MFS mice (Fbn1C1041G/+) were injected intraperitoneally for several weeks with potassium oxonate (PO), an inhibitor of uricase (an enzyme that catabolises UA to allantoin). Plasma UA and allantoin levels were measured via several techniques, aortic root diameter and cardiac parameters by ultrasonography, aortic wall structure by histopathology, and pNRF2 and 3-NT levels by immunofluorescence. PO induced a significant increase in UA in blood plasma both in WT and MFS mice, reaching a peak at three and four months of age but decaying at six months. Hyperuricaemic MFS mice showed no change in the characteristic aortic aneurysm progression or aortic wall disarray evidenced by large elastic laminae ruptures. There were no changes in cardiac parameters or the redox stress-induced nuclear translocation of pNRF2 in the aortic tunica media. Altogether, the results suggest that hyperuricaemia interferes neither with aortopathy nor cardiopathy in MFS mice.
Collapse
Affiliation(s)
- Isaac Rodríguez-Rovira
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Angela López-Sainz
- Department of Cardiology, Hospital Clínic de Barcelona, IDIBAPS, 08036 Barcelona, Spain
| | | | - Belen Pérez
- Department of Pharmacology, School of Medicine, Autonomous University of Barcelona, Bellaterra, 08192 Barcelona, Spain
| | - Francesc Jiménez-Altayó
- Department of Pharmacology, School of Medicine, Autonomous University of Barcelona, Bellaterra, 08192 Barcelona, Spain
| | - Victoria Campuzano
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 28029 Madrid, Spain
| | - Gustavo Egea
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- UZA/UA Center of Medical Genetics, University of Antwerp, 2650 Edegem, Belgium
| |
Collapse
|
9
|
Shen Y, Dong Z, Fan F, Li K, Zhu S, Dai R, Huang J, Xie N, He L, Gong Z, Yang X, Tan J, Liu L, Yu F, Tang Y, You Z, Xi J, Wang Y, Kong W, Zhang Y, Fu Y. Targeting cytokine-like protein FAM3D lowers blood pressure in hypertension. Cell Rep Med 2023:101072. [PMID: 37301198 DOI: 10.1016/j.xcrm.2023.101072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 03/08/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023]
Abstract
Current antihypertensive options still incompletely control blood pressure, suggesting the existence of uncovered pathogenic mechanisms. Here, whether cytokine-like protein family with sequence similarity 3, member D (FAM3D) is involved in hypertension etiology is evaluated. A case-control study exhibits that FAM3D is elevated in patients with hypertension, with a positive association with odds of hypertension. FAM3D deficiency significantly ameliorates angiotensin II (AngII)-induced hypertension in mice. Mechanistically, FAM3D directly causes endothelial nitric oxide synthase (eNOS) uncoupling and impairs endothelium-dependent vasorelaxation, whereas 2,4-diamino-6-hydroxypyrimidine to induce eNOS uncoupling abolishes the protective effect of FAM3D deficiency against AngII-induced hypertension. Furthermore, antagonism of formyl peptide receptor 1 (FPR1) and FPR2 or the suppression of oxidative stress blunts FAM3D-induced eNOS uncoupling. Translationally, targeting endothelial FAM3D by adeno-associated virus or intraperitoneal injection of FAM3D-neutralizing antibodies markedly ameliorates AngII- or deoxycorticosterone acetate (DOCA)-salt-induced hypertension. Conclusively, FAM3D causes eNOS uncoupling through FPR1- and FPR2-mediated oxidative stress, thereby exacerbating the development of hypertension. FAM3D may be a potential therapeutic target for hypertension.
Collapse
Affiliation(s)
- Yicong Shen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Zhigang Dong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Fangfang Fan
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Department of Cardiology, Institute of Cardiovascular Disease, Peking University First Hospital, Beijing 100034, China
| | - Kaiyin Li
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Department of Cardiology, Institute of Cardiovascular Disease, Peking University First Hospital, Beijing 100034, China
| | - Shirong Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Rongbo Dai
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Jiaqi Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Nan Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Guangdong 518057, China
| | - Li He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
| | - Ze Gong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Xueyuan Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Jiaai Tan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Limei Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Fang Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Yida Tang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Zhen You
- Department of Biliary Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Jianzhong Xi
- Department of Biomedicine, College of Engineering, Peking University, Beijing 100871, China
| | - Ying Wang
- Department of Immunology, School of Basic Medical Sciences, and Key Laboratory of Medical Immunology of Ministry of Health, Peking University, Beijing 100191, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China.
| | - Yan Zhang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Department of Cardiology, Institute of Cardiovascular Disease, Peking University First Hospital, Beijing 100034, China.
| | - Yi Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China.
| |
Collapse
|
10
|
The mechanism and therapy of aortic aneurysms. Signal Transduct Target Ther 2023; 8:55. [PMID: 36737432 PMCID: PMC9898314 DOI: 10.1038/s41392-023-01325-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 12/15/2022] [Accepted: 01/14/2023] [Indexed: 02/05/2023] Open
Abstract
Aortic aneurysm is a chronic aortic disease affected by many factors. Although it is generally asymptomatic, it poses a significant threat to human life due to a high risk of rupture. Because of its strong concealment, it is difficult to diagnose the disease in the early stage. At present, there are no effective drugs for the treatment of aneurysms. Surgical intervention and endovascular treatment are the only therapies. Although current studies have discovered that inflammatory responses as well as the production and activation of various proteases promote aortic aneurysm, the specific mechanisms remain unclear. Researchers are further exploring the pathogenesis of aneurysms to find new targets for diagnosis and treatment. To better understand aortic aneurysm, this review elaborates on the discovery history of aortic aneurysm, main classification and clinical manifestations, related molecular mechanisms, clinical cohort studies and animal models, with the ultimate goal of providing insights into the treatment of this devastating disease. The underlying problem with aneurysm disease is weakening of the aortic wall, leading to progressive dilation. If not treated in time, the aortic aneurysm eventually ruptures. An aortic aneurysm is a local enlargement of an artery caused by a weakening of the aortic wall. The disease is usually asymptomatic but leads to high mortality due to the risk of artery rupture.
Collapse
|
11
|
Mieremet A, van der Stoel M, Li S, Coskun E, van Krimpen T, Huveneers S, de Waard V. Endothelial dysfunction in Marfan syndrome mice is restored by resveratrol. Sci Rep 2022; 12:22504. [PMID: 36577770 PMCID: PMC9797556 DOI: 10.1038/s41598-022-26662-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
Patients with Marfan syndrome (MFS) develop thoracic aortic aneurysms as the aorta presents excessive elastin breaks, fibrosis, and vascular smooth muscle cell (vSMC) death due to mutations in the FBN1 gene. Despite elaborate vSMC to aortic endothelial cell (EC) signaling, the contribution of ECs to the development of aortic pathology remains largely unresolved. The aim of this study is to investigate the EC properties in Fbn1C1041G/+ MFS mice. Using en face immunofluorescence confocal microscopy, we showed that EC alignment with blood flow was reduced, EC roundness was increased, individual EC surface area was larger, and EC junctional linearity was decreased in aortae of Fbn1C1041G/+ MFS mice. This modified EC phenotype was most prominent in the ascending aorta and occurred before aortic dilatation. To reverse EC morphology, we performed treatment with resveratrol. This restored EC blood flow alignment, junctional linearity, phospho-eNOS expression, and improved the structural integrity of the internal elastic lamina of Fbn1C1041G/+ mice. In conclusion, these experiments identify the involvement of ECs and underlying internal elastic lamina in MFS aortic pathology, which could act as potential target for future MFS pharmacotherapies.
Collapse
Affiliation(s)
- Arnout Mieremet
- Department of Medical Biochemistry, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis and Ischemic Syndromes, Amsterdam, The Netherlands
| | - Miesje van der Stoel
- Department of Medical Biochemistry, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis and Ischemic Syndromes, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
| | - Siyu Li
- Department of Medical Biochemistry, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis and Ischemic Syndromes, Amsterdam, The Netherlands
| | - Evrim Coskun
- Department of Medical Biochemistry, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis and Ischemic Syndromes, Amsterdam, The Netherlands
| | - Tsveta van Krimpen
- Department of Medical Biochemistry, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis and Ischemic Syndromes, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
| | - Stephan Huveneers
- Department of Medical Biochemistry, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis and Ischemic Syndromes, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
| | - Vivian de Waard
- Department of Medical Biochemistry, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.
- Amsterdam Cardiovascular Sciences, Atherosclerosis and Ischemic Syndromes, Amsterdam, The Netherlands.
| |
Collapse
|
12
|
Huang K, Wu Y, Zhang Y, Youn JY, Cai H. Combination of folic acid with nifedipine is completely effective in attenuating aortic aneurysm formation as a novel oral medication. Redox Biol 2022; 58:102521. [PMID: 36459715 PMCID: PMC9713368 DOI: 10.1016/j.redox.2022.102521] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 11/17/2022] Open
Abstract
Aortic aneurysms are prevalent and severe vascular diseases with high mortality from unpredicted ruptures, while the only treatment option is surgical correction of large aneurysms with considerable risk. We have shown that folic acid (FA) is highly effective in alleviating development of aneurysms although not sufficient to completely attenuate aneurysm formation. Here, we examined therapeutic effects on aneurysms of combining FA with Nifedipine as novel and potentially more effective oral medication. Oral administration with FA (15 mg/kg/day) significantly reduced incidence of AAA from 85.71% to 18.75% in Ang II-infused apolipoprotein E (apoE) null mice, while combination of FA with Nifedipine (1.5, 5.0 or 20 mg/kg/day) substantially and completely further reduced incidence of AAA to 12.5%, 11.76% and 0.00% respectively in a dose-dependent manner. The combinatory therapy substantially and completely further alleviated enlargement of abdominal aortas defined by ultrasound, vascular remodeling characterized by elastin degradation and adventitial hypertrophy, as well as aortic superoxide production and eNOS uncoupling activity also in a dose-dependent manner, with combination of FA with 20 mg/kg/day Nifedipine attenuating all of these features by 100% to control levels. Aortic NO and H4B bioavailabilities were also dose-dependently further improved by combining FA with Nifedipine. These data establish entirely innovative and robust therapeutic regime of FA combined with Nifedipine for the treatment of aortic aneurysms. The comminatory therapy can serve as a first-in-class and most effective oral medication for aortic aneurysms, which can be rapidly translated into clinical practice to revolutionize management of the devastating vascular diseases of aortic aneurysms known as silent killers.
Collapse
Affiliation(s)
- Kai Huang
- Division of Molecular Medicine, Department of Anesthesiology, Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Yusi Wu
- Division of Molecular Medicine, Department of Anesthesiology, Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Yixuan Zhang
- Division of Molecular Medicine, Department of Anesthesiology, Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Ji Youn Youn
- Division of Molecular Medicine, Department of Anesthesiology, Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Hua Cai
- Division of Molecular Medicine, Department of Anesthesiology, Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
13
|
Rodríguez-Rovira I, Arce C, De Rycke K, Pérez B, Carretero A, Arbonés M, Teixidò-Turà G, Gómez-Cabrera MC, Campuzano V, Jiménez-Altayó F, Egea G. Allopurinol blocks aortic aneurysm in a mouse model of Marfan syndrome via reducing aortic oxidative stress. Free Radic Biol Med 2022; 193:538-550. [PMID: 36347404 DOI: 10.1016/j.freeradbiomed.2022.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Increasing evidence indicates that redox stress participates in MFS aortopathy, though its mechanistic contribution is little known. We reported elevated reactive oxygen species (ROS) formation and NADPH oxidase NOX4 upregulation in MFS patients and mouse aortae. Here we address the contribution of xanthine oxidoreductase (XOR), which catabolizes purines into uric acid and ROS in MFS aortopathy. METHODS AND RESULTS In aortic samples from MFS patients, XOR protein expression, revealed by immunohistochemistry, increased in both the tunicae intima and media of the dilated zone. In MFS mice (Fbn1C1041G/+), aortic XOR mRNA transcripts and enzymatic activity of the oxidase form (XO) were augmented in the aorta of 3-month-old mice but not in older animals. The administration of the XOR inhibitor allopurinol (ALO) halted the progression of aortic root aneurysm in MFS mice. ALO administrated before the onset of the aneurysm prevented its subsequent development. ALO also inhibited MFS-associated endothelial dysfunction as well as elastic fiber fragmentation, nuclear translocation of pNRF2 and increased 3'-nitrotyrosine levels, and collagen maturation remodeling, all occurring in the tunica media. ALO reduced the MFS-associated large aortic production of H2O2, and NOX4 and MMP2 transcriptional overexpression. CONCLUSIONS Allopurinol interferes in aortic aneurysm progression acting as a potent antioxidant. This study strengthens the concept that redox stress is an important determinant of aortic aneurysm formation and progression in MFS and warrants the evaluation of ALO therapy in MFS patients.
Collapse
Affiliation(s)
- Isaac Rodríguez-Rovira
- Department of Biomedical Sciences, University of Barcelona School of Medicine and Health Sciences, 08036, Barcelona, Spain
| | - Cristina Arce
- Department of Biomedical Sciences, University of Barcelona School of Medicine and Health Sciences, 08036, Barcelona, Spain
| | - Karo De Rycke
- Department of Biomedical Sciences, University of Barcelona School of Medicine and Health Sciences, 08036, Barcelona, Spain
| | - Belén Pérez
- Department of Pharmacology, Toxicology and Therapeutics, Neuroscience Institute, School of Medicine, Autonomous University of Barcelona, 08193, Cerdanyola del Vallès, Spain
| | - Aitor Carretero
- Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Marc Arbonés
- Department of Biomedical Sciences, University of Barcelona School of Medicine and Health Sciences, 08036, Barcelona, Spain
| | - Gisela Teixidò-Turà
- Department of Cardiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain; CIBER-CV, Vall d'Hebrón Institut de Recerca (VHIR), Barcelona, Spain
| | - Mari Carmen Gómez-Cabrera
- Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Victoria Campuzano
- Department of Biomedical Sciences, University of Barcelona School of Medicine and Health Sciences, 08036, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Spain
| | - Francesc Jiménez-Altayó
- Department of Pharmacology, Toxicology and Therapeutics, Neuroscience Institute, School of Medicine, Autonomous University of Barcelona, 08193, Cerdanyola del Vallès, Spain
| | - Gustavo Egea
- Department of Biomedical Sciences, University of Barcelona School of Medicine and Health Sciences, 08036, Barcelona, Spain.
| |
Collapse
|
14
|
Zhang Y, Siu KL, Li Q, Howard-Quijano K, Scovotti J, Mahajan A, Cai H. Diagnostic and predictive values of circulating tetrahydrobiopterin levels as a novel biomarker in patients with thoracic and abdominal aortic aneurysms. Redox Biol 2022; 56:102444. [PMID: 36116158 PMCID: PMC9486112 DOI: 10.1016/j.redox.2022.102444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/25/2022] Open
Abstract
We have previously shown that circulating levels of tetrahydrobiopterin (H4B) function as a robust biomarker for aortic aneurysms in several independent animal models. In the present study, we examined diagnostic and predictive values of circulating H4B levels in human patients of thoracic aortic aneurysm (TAA) and abdominal aortic aneurysm (AAA) for the first time, while clinically applicable biomarkers for aortic aneurysms have never been previously available. Ninety-five patients scheduled for TAA repair surgeries and 53 control subjects were recruited at University of California Los Angeles (UCLA) Ronald Regan Medical Center, while 44 control subjects and 29 AAA patients were recruited through National Institute of Health (NIH) National Disease Research Interchange (NDRI) program. We had intriguing observations that circulating H4B levels were substantially lower in TAA and AAA patients, linearly correlated with aortic H4B levels (blood: R = 0.8071, p < 0.0001, n = 75; plasma: R = 0.7983, p < 0.0001, n = 75), and associated with incidence of TAA (blood: adjusted OR 0.495; 95% CI 0.379-0.647; p < 0.001; plasma: adjusted OR 0.501; 95% CI 0.385-0.652; p < 0.001) or AAA (blood: adjusted OR 0.329; 95% CI 0.125-0.868; p = 0.025) after adjustment for other factors. Blood or plasma H4B levels below 0.2 pmol/μg serve as an important threshold for prediction of aortic aneurysms independent of age and gender (for TAA risk - blood: adjusted OR 419.67; 95% CI 59.191-2975.540; p < 0.001; plasma: adjusted OR 206.11; 95% CI 40.956-1037.279; p < 0.001). This threshold was also significantly associated with incidence of AAA (p < 0.001 by Chi-square analysis). In addition, we observed previously unrecognized inverse association of Statin use with TAA, and an association of AAA with arrhythmia. Taken together, our data strongly demonstrate for the first time that circulating H4B levels can serve as a first-in-class, sensitive, robust and independent biomarker for clinical diagnosis and prediction of TAA and AAA in human patients, which can be rapidly translated to bedside to fundamentally improve clinical management of the devastating human disease of aortic aneurysms.
Collapse
Affiliation(s)
- Yixuan Zhang
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, California, 90095, USA
| | - Kin Lung Siu
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, California, 90095, USA
| | - Qiang Li
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, California, 90095, USA
| | - Kimberly Howard-Quijano
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pennsylvania, 15260, USA
| | - Jennifer Scovotti
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, California, 90095, USA
| | - Aman Mahajan
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pennsylvania, 15260, USA
| | - Hua Cai
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, California, 90095, USA.
| |
Collapse
|
15
|
Youn JY, Wang J, Li Q, Huang K, Cai H. Robust therapeutic effects on COVID-19 of novel small molecules: Alleviation of SARS-CoV-2 S protein induction of ACE2/TMPRSS2, NOX2/ROS, and MCP-1. Front Cardiovasc Med 2022; 9:957340. [PMID: 36187008 PMCID: PMC9520320 DOI: 10.3389/fcvm.2022.957340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
While new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) constantly emerge to prolong the pandemic of COVID-19, robust and safe therapeutics are in urgent need. During the previous and ongoing fight against the pandemic in China, Traditional Chinese Medicine (TCM) has proven to be markedly effective in treating COVID-19. Among active ingredients of TCM recipes, small molecules such as quercetin, glabridin, gallic acid, and chrysoeriol have been predicted to target viral receptor angiotensin-converting enzyme 2 (ACE2) via system pharmacology/molecular docking/visualization analyses. Of note, endothelial dysfunction induced by oxidative stress and inflammation represents a critical mediator of acute respiratory distress syndrome (ARDS) and multi-organ injuries in patients with COVID-19. Hence, in the present study, we examined whether quercetin, glabridin, gallic acide and chrysoeriol regulate viral receptors of ACE2 and transmembrane serine protease 2 (TMPRSS2), redox modulator NADPH oxidase isoform 2 (NOX2), and inflammatory protein of monocyte chemoattractant protein-1 (MCP-1) in endothelial cells to mediate therapeutic protection against COVID-19. Indeed, quercetin, glabridin, gallic acide and chrysoeriol completely attenuated SARS-CoV-2 spike protein (S protein)-induced upregulation in ACE2 protein expression in endothelial cells. In addition, these small molecules abolished S protein upregulation of cleaved/active form of TMPRSS2, while native TMPRSS2 was not significantly regulated. Moreover, these small molecules completely abrogated S protein-induced upregulation in NOX2 protein expression, which resulted in alleviated superoxide production, confirming their preventive efficacies against S protein-induced oxidative stress in endothelial cells. In addition, treatment with these small molecules abolished S protein induction of MCP-1 expression. Collectively, our findings for the first time demonstrate that these novel small molecules may be used as novel and robust therapeutic options for the treatment of patients with COVID-19, via effective attenuation of S protein induction of endothelial oxidative stress and inflammation.
Collapse
Affiliation(s)
- Ji Youn Youn
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United State
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| | - Jian Wang
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Qian Li
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United State
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| | - Kai Huang
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United State
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| | - Hua Cai
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United State
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
- *Correspondence: Hua Cai,
| |
Collapse
|
16
|
Murugesan P, Zhang Y, Youn JY, Cai H. Novel and robust treatment of pulmonary hypertension with netrin-1 and netrin-1-derived small peptides. Redox Biol 2022; 55:102348. [PMID: 35830752 PMCID: PMC9287481 DOI: 10.1016/j.redox.2022.102348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/11/2022] [Accepted: 05/18/2022] [Indexed: 11/07/2022] Open
Abstract
Limited medical therapies have been implemented for the treatment of the devastating cardiorespiratory disease of pulmonary hypertension (PH) while none of which is sufficiently effective to stop or regress development of PH. We have previously shown that netrin-1, an axon-guiding protein during development, protects against ischemia reperfusion injury induced myocardial infarction via modest and stable production of nitric oxide (NO) and attenuation of oxidative stress. Since NO deficiency and oxidative stress-mediated vascular remodeling play important roles in the pathogenesis of PH, our present study investigated therapeutic effects on PH of netrin-1 and its derived small peptides. Infused into mice for 3 weeks during exposure to hypoxia, netrin-1 and netrin-1 derived small peptides V1, V2 or V3 substantially alleviated pathophysiological and molecular features of PH, as indicated by abrogated increases in mean pulmonary artery pressure (mPAP) and right ventricular systolic pressure (RVSP), attenuated right ventricular hypertrophy, diminished vascular remodeling of medial thickening and upregulation in smooth muscle alpha-actin (SMA) and proliferative cell nuclear antigen (PCNA), and alleviated perivascular and peribronchial fibrosis reflected by collagen deposition. NO bioavailability was substantially improved by treatment with netrin-1 and netrin-1 derived small peptides, while hypoxia induced increases in total superoxide production and eNOS uncoupling activity were all attenuated. These dual mechanisms of increasing NO bioavailability and decreasing oxidative stress at the same time, underlie robust protective effects on PH of netrin-1 and its derived small peptides, which are different from existing medications that primarily target NO signaling alone. Our data for the first time demonstrate intriguing findings that netrin-1 and netrin-1 derived small peptides can be used as novel and robust therapeutics for the treatment of PH.
Collapse
Affiliation(s)
- Priya Murugesan
- Division of Molecular Medicine, Department of Anesthesiology, Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, United States
| | - Yixuan Zhang
- Division of Molecular Medicine, Department of Anesthesiology, Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, United States
| | - Ji Youn Youn
- Division of Molecular Medicine, Department of Anesthesiology, Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, United States
| | - Hua Cai
- Division of Molecular Medicine, Department of Anesthesiology, Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, United States.
| |
Collapse
|
17
|
Zhou H, Wang L, Liu S, Wang W. The role of phosphoinositide 3-kinases in immune-inflammatory responses: potential therapeutic targets for abdominal aortic aneurysm. Cell Cycle 2022; 21:2339-2364. [PMID: 35792922 DOI: 10.1080/15384101.2022.2094577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The pathogenesis of abdominal aortic aneurysm (AAA) includes inflammatory responses, matrix metalloproteinases (MMPs) degradation, VSMC apoptosis, oxidative stress, and angiogenesis, among which the inflammatory response plays a key role. At present, surgery is the only curing treatment, and no effective drug can delay AAA progression in clinical practice. Therefore, searching for a signaling pathway related to the immune-inflammatory response is an essential direction for developing drugs targeting AAA. Recent studies have confirmed that the PI3K family plays an important role in many inflammatory diseases and is involved in regulating various cellular functions, especially in the immune-inflammatory response. This review focuses on the role of each isoform of PI3K in each stage of AAA immune-inflammatory response, making available explorations for a deeper understanding of the mechanism of inflammation and immune response during the formation and development of AAA.
Collapse
Affiliation(s)
- Haiyang Zhou
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Lei Wang
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Shuai Liu
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Wang
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
18
|
Wang Q, Guo X, Huo B, Feng X, Fang ZM, Jiang DS, Wei X. Integrating Bulk Transcriptome and Single-Cell RNA Sequencing Data Reveals the Landscape of the Immune Microenvironment in Thoracic Aortic Aneurysms. Front Cardiovasc Med 2022; 9:846421. [PMID: 35463756 PMCID: PMC9021420 DOI: 10.3389/fcvm.2022.846421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/15/2022] [Indexed: 11/23/2022] Open
Abstract
Thoracic aortic aneurysm (TAA) is a life-threatening cardiovascular disease whose formation is reported to be associated with massive vascular inflammatory responses. To elucidate the roles of immune cell infiltration in the pathogenesis underlying TAA, we utilized multiple TAA datasets (microarray data and scRNA-seq data) and various immune-related algorithms (ssGSEA, CIBERSORT, and Seurat) to reveal the landscapes of the immune microenvironment in TAA. The results exhibited a significant increase in the infiltration of macrophages and T cells, which were mainly responsible for TAA formation among the immune cells. To further reveal the roles of immunocytes in TAA, we inferred the intercellular communications among the identified cells of aortic tissues. Notably, we found that in both normal aortic tissue and TAA tissue, the cells that interact most frequently are macrophages, endothelial cells (ECs), fibroblasts, and vascular smooth muscle cells (VSMCs). Among the cells, macrophages were the most prominent signal senders and receivers in TAA and normal aortic tissue. These findings suggest that macrophages play an important role in both the physiological and pathological conditions of the aorta. The present study provides a comprehensive evaluation of the immune cell composition and reveals the intercellular communication among aortic cells in human TAA tissues. These findings improve our understanding of TAA formation and progression and facilitate the development of effective medications to treat these conditions.
Collapse
Affiliation(s)
- Qunhui Wang
- Division of Cardiothoracic and Vascular Surgery, Tongji Medical College, Tongji Hospital, Sino-Swiss Heart-Lung Transplantation Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Xian Guo
- Division of Cardiothoracic and Vascular Surgery, Tongji Medical College, Tongji Hospital, Sino-Swiss Heart-Lung Transplantation Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Huo
- Division of Cardiothoracic and Vascular Surgery, Tongji Medical College, Tongji Hospital, Sino-Swiss Heart-Lung Transplantation Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Feng
- Division of Cardiothoracic and Vascular Surgery, Tongji Medical College, Tongji Hospital, Sino-Swiss Heart-Lung Transplantation Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Ze-Min Fang
- Division of Cardiothoracic and Vascular Surgery, Tongji Medical College, Tongji Hospital, Sino-Swiss Heart-Lung Transplantation Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Ding-Sheng Jiang
- Division of Cardiothoracic and Vascular Surgery, Tongji Medical College, Tongji Hospital, Sino-Swiss Heart-Lung Transplantation Institute, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- *Correspondence: Ding-Sheng Jiang,
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Tongji Medical College, Tongji Hospital, Sino-Swiss Heart-Lung Transplantation Institute, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Xiang Wei,
| |
Collapse
|
19
|
Gallego-Lopez MDC, Ojeda ML, Romero-Herrera I, Nogales F, Carreras O. Folic Acid Homeostasis and Its Pathways Related to Hepatic Oxidation in Adolescent Rats Exposed to Binge Drinking. Antioxidants (Basel) 2022; 11:antiox11020362. [PMID: 35204242 PMCID: PMC8868551 DOI: 10.3390/antiox11020362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/21/2022] [Accepted: 02/08/2022] [Indexed: 12/19/2022] Open
Abstract
Chronic ethanol consumption and liver disease are intimately related to folic acid (FA) homeostasis. Despite the fact that FA decreases lipid oxidation, its mechanisms are not yet well elucidated. Lately, adolescents have been practising binge drinking (BD), consisting of the intake of a high amount of alcohol in a short time; this is a particularly pro-oxidant form of consumption. The aim of this study is to examine, for the first time, FA homeostasis in BD adolescent rats and its antioxidant properties in the liver. We used adolescent rats, including control rats and rats exposed to an intermittent intraperitoneal BD model, supplemented with or without FA. Renal FA reabsorption and renal FA deposits were increased in BD rats; hepatic deposits were decreased, and heart and serum levels remained unaffected. This depletion in the liver was accompanied by higher transaminase levels; an imbalance in the antioxidant endogenous enzymatic system; lipid and protein oxidation; a decrease in glutathione (GSH) levels; hyper-homocysteinemia (HHcy); an increase in NADPH oxidase (NOX) 1 and NOX4 enzymes; an increase in caspase 9 and 3; and a decrease in the anti-apoptotic metallopeptidase inhibitor 1. Furthermore, BD exposure increased the expression of uncoupled endothelial nitric oxide synthase (eNOS) by increasing reactive nitrogen species generation and the nitration of tyrosine proteins. When FA was administered, hepatic FA levels returned to normal levels; transaminase and lipid and protein oxidation also decreased. Its antioxidant activity was due, in part, to the modulation of superoxide dismutase activity, GSH synthesis and NOX1, NOX4 and caspase expression. FA reduced HHcy and increased the expression of coupled eNOS by increasing tetrahydrobiopterin expression, avoiding nitrosative stress. In conclusion, FA homeostasis and its antioxidant properties are affected in BD adolescent rats, making it clear that this vitamin plays an important role in the oxidative, nitrosative and apoptotic hepatic damage generated by acute ethanol exposure. For this, FA supplementation becomes a potential BD therapy for adolescents, preventing future acute alcohol-related harms.
Collapse
|
20
|
The Multiple Functions of Fibrillin-1 Microfibrils in Organismal Physiology. Int J Mol Sci 2022; 23:ijms23031892. [PMID: 35163812 PMCID: PMC8836826 DOI: 10.3390/ijms23031892] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 02/05/2023] Open
Abstract
Fibrillin-1 is the major structural component of the 10 nm-diameter microfibrils that confer key physical and mechanical properties to virtually every tissue, alone and together with elastin in the elastic fibers. Mutations in fibrillin-1 cause pleiotropic manifestations in Marfan syndrome (MFS), including dissecting thoracic aortic aneurysms, myocardial dysfunction, progressive bone loss, disproportionate skeletal growth, and the dislocation of the crystalline lens. The characterization of these MFS manifestations in mice, that replicate the human phenotype, have revealed that the underlying mechanisms are distinct and organ-specific. This brief review summarizes relevant findings supporting this conclusion.
Collapse
|
21
|
Pathophysiology and Therapeutics of Thoracic Aortic Aneurysm in Marfan Syndrome. Biomolecules 2022; 12:biom12010128. [PMID: 35053276 PMCID: PMC8773516 DOI: 10.3390/biom12010128] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 12/16/2022] Open
Abstract
About 20% of individuals afflicted with thoracic aortic disease have single-gene mutations that predispose the vessel to aneurysm formation and/or acute aortic dissection often without associated syndromic features. One widely studied exception is Marfan syndrome (MFS) in which mutations in the extracellular protein fibrillin-1 cause additional abnormalities in the heart, eyes, and skeleton. Mouse models of MFS have been instrumental in delineating major cellular and molecular determinants of thoracic aortic disease. In spite of research efforts, translating experimental findings from MFS mice into effective drug therapies for MFS patients remains an unfulfilled promise. Here, we describe a series of studies that have implicated endothelial dysfunction and improper angiotensin II and TGFβ signaling in driving thoracic aortic disease in MFS mice. We also discuss how these investigations have influenced the way we conceptualized possible new therapies to slow down or even halt aneurysm progression in this relatively common connective tissue disorder.
Collapse
|
22
|
Stilo F, Catanese V, Nenna A, Montelione N, Codispoti FA, Verghi E, Gabellini T, Jawabra M, Chello M, Spinelli F. Biomarkers in EndoVascular Aneurysm Repair (EVAR) and Abdominal Aortic Aneurysm: Pathophysiology and Clinical Implications. Diagnostics (Basel) 2022; 12:diagnostics12010183. [PMID: 35054350 PMCID: PMC8774611 DOI: 10.3390/diagnostics12010183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/16/2022] Open
Abstract
Circulating biomarkers have been recently investigated among patients undergoing endovascular aortic aneurysm repair (EVAR) for abdominal aortic aneurysm (AAA). Considering the plethora of small descriptive studies reporting potential associations between biomarkers and clinical outcomes, this review aims to summarize the current literature considering both the treated disease (post EVAR) and the untreated disease (AAA before EVAR). All studies describing outcomes of tissue biomarkers in patients undergoing EVAR and in patients with AAA were included, and references were checked for additional sources. In the EVAR scenario, circulating interleukin-6 (IL-6) is a marker of inflammatory reaction which might predict postoperative morbidity; cystatin C is a promising early marker of post-procedural acute kidney injury; plasma matrix metalloproteinase-9 (MMP-9) concentration after 3 months from EVAR might help in detecting post-procedural endoleak. This review also summarizes the current gaps in knowledge and future direction of this field of research. Among markers used in patients with AAA, galectin and granzyme appear to be promising and should be carefully investigated even in the EVAR setting. Larger prospective trials are required to establish and evaluate prognostic models with highest values with these markers.
Collapse
Affiliation(s)
- Francesco Stilo
- Department of Vascular Surgery, Campus Bio-Medico University, 00128 Rome, Italy;
| | - Vincenzo Catanese
- Department of Vascular Surgery, Campus Bio-Medico University, 00128 Rome, Italy;
- Correspondence: or
| | - Antonio Nenna
- Department of Cardiovascular Surgery, Campus Bio-Medico University, 00128 Rome, Italy; (A.N.); (N.M.); (F.A.C.); (E.V.); (M.J.); (M.C.); (F.S.)
| | - Nunzio Montelione
- Department of Cardiovascular Surgery, Campus Bio-Medico University, 00128 Rome, Italy; (A.N.); (N.M.); (F.A.C.); (E.V.); (M.J.); (M.C.); (F.S.)
| | - Francesco Alberto Codispoti
- Department of Cardiovascular Surgery, Campus Bio-Medico University, 00128 Rome, Italy; (A.N.); (N.M.); (F.A.C.); (E.V.); (M.J.); (M.C.); (F.S.)
| | - Emanuele Verghi
- Department of Cardiovascular Surgery, Campus Bio-Medico University, 00128 Rome, Italy; (A.N.); (N.M.); (F.A.C.); (E.V.); (M.J.); (M.C.); (F.S.)
| | - Teresa Gabellini
- Residency Program of Vascular and Endovascular Surgery, University of Ferrara, 44121 Ferrara, Italy;
| | - Mohamad Jawabra
- Department of Cardiovascular Surgery, Campus Bio-Medico University, 00128 Rome, Italy; (A.N.); (N.M.); (F.A.C.); (E.V.); (M.J.); (M.C.); (F.S.)
| | - Massimo Chello
- Department of Cardiovascular Surgery, Campus Bio-Medico University, 00128 Rome, Italy; (A.N.); (N.M.); (F.A.C.); (E.V.); (M.J.); (M.C.); (F.S.)
| | - Francesco Spinelli
- Department of Cardiovascular Surgery, Campus Bio-Medico University, 00128 Rome, Italy; (A.N.); (N.M.); (F.A.C.); (E.V.); (M.J.); (M.C.); (F.S.)
| |
Collapse
|
23
|
Tehrani AY, Ciufolini MA, Bernatchez P. Nitric oxide in the Marfan vasculature: Friend or foe? Nitric Oxide 2021; 116:27-34. [PMID: 34478846 DOI: 10.1016/j.niox.2021.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/13/2021] [Accepted: 08/25/2021] [Indexed: 10/20/2022]
Abstract
Marfan syndrome (MFS) is a connective tissue disorder caused by mutations in the FBN1 gene, which encodes fibrillin-1, a protein essential for the formation and stabilization of elastic fibers as well as signaling homeostasis. Progressive aortic root widening is the most serious manifestation of MFS as it can lead to aortic dissection, aneurysm formation and rupture. However, despite their ability to decrease the hemodynamic stress the aorta is subjected to, anti-hypertensive medications often lead to underwhelming reductions in the rate of aortic root dilation, which illustrates how fragmental our understanding of MFS-associated aortic remodeling is. This manuscript summarizes recent evidence that document nitric oxide (NO) synthase (NOS)-related changes to the vasculature during the pathogenesis of MFS and how they result in a unique state of vascular dysfunction that likely plays a causal role in the aortic root widening process. We also review how clinic-approved and experimental therapies as well lifestyle approaches may promote aortic root stability by correcting NO homeostasis, which if properly optimized may improve outcomes in this population afflicted by a notoriously refractory type of aortopathy.
Collapse
Affiliation(s)
- Arash Y Tehrani
- Centre for Heart + Lung Innovation, St. Paul's Hospital, Department of Anesthesiology, Pharmacology & Therapeutics, Faculty of Medicine, University of British Columbia (UBC), Vancouver, Canada
| | | | - Pascal Bernatchez
- Centre for Heart + Lung Innovation, St. Paul's Hospital, Department of Anesthesiology, Pharmacology & Therapeutics, Faculty of Medicine, University of British Columbia (UBC), Vancouver, Canada.
| |
Collapse
|
24
|
Therapeutic application of estrogen for COVID-19: Attenuation of SARS-CoV-2 spike protein and IL-6 stimulated, ACE2-dependent NOX2 activation, ROS production and MCP-1 upregulation in endothelial cells. Redox Biol 2021; 46:102099. [PMID: 34509916 PMCID: PMC8372492 DOI: 10.1016/j.redox.2021.102099] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 01/08/2023] Open
Abstract
The outbreak of COVID-19 has remained uncontained with urgent need for robust therapeutics. We have previously reported sex difference of COVID-19 for the first time indicating male predisposition. Males are more susceptible than females, and more often to develop into severe cases with higher mortality. This predisposition is potentially linked to higher prevalence of cigarette smoking. Nonetheless, we found for the first time that cigarette smoking extract (CSE) had no effect on angiotensin converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2) expression in endothelial cells. The otherwise observed worse outcomes in smokers is likely linked to baseline respiratory diseases associated with chronic smoking. Instead, we hypothesized that estrogen mediated protection might underlie lower morbidity, severity and mortality of COVID-19 in females. Of note, endothelial inflammation and barrier dysfunction are major mediators of disease progression, and development of acute respiratory distress syndrome (ARDS) and multi-organ failure in patients with COVID-19. Therefore, we investigated potential protective effects of estrogen on endothelial cells against oxidative stress induced by interleukin-6 (IL-6) and SARS-CoV-2 spike protein (S protein). Indeed, 17β-estradiol completely reversed S protein-induced selective activation of NADPH oxidase isoform 2 (NOX2) and reactive oxygen species (ROS) production that are ACE2-dependent, as well as ACE2 upregulation and induction of pro-inflammatory gene monocyte chemoattractant protein-1 (MCP-1) in endothelial cells to effectively attenuate endothelial dysfunction. Effects of IL-6 on activating NOX2-dependent ROS production and upregulation of MCP-1 were also completely attenuated by 17β-estradiol. Of note, co-treatment with CSE had no additional effects on S protein stimulated endothelial oxidative stress, confirming that current smoking status is likely unrelated to more severe disease in chronic smokers. These data indicate that estrogen can serve as a novel therapy for patients with COVID-19 via inhibition of initial viral responses and attenuation of cytokine storm induced endothelial dysfunction, to substantially alleviate morbidity, severity and mortality of the disease, especially in men and post-menopause women. Short-term administration of estrogen can therefore be readily applied to the clinical management of COVID-19 as a robust therapeutic option.
Collapse
|
25
|
Huang K, Narumi T, Zhang Y, Li Q, Murugesan P, Wu Y, Liu NM, Cai H. Targeting MicroRNA-192-5p, a Downstream Effector of NOXs (NADPH Oxidases), Reverses Endothelial DHFR (Dihydrofolate Reductase) Deficiency to Attenuate Abdominal Aortic Aneurysm Formation. Hypertension 2021; 78:282-293. [PMID: 34176283 DOI: 10.1161/hypertensionaha.120.15070] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Kai Huang
- Division of Molecular Medicine, Department of Anesthesiology (K.H., T.N., Y.Z., Q.L., P.M., Y.W., N.M.L., H.C.), David Geffen School of Medicine, University of California Los Angeles.,Division of Cardiology, Department of Medicine ((K.H., T.N., Y.Z., Q.L., P.M., Y.W., N.M.L., H.C.), David Geffen School of Medicine, University of California Los Angeles
| | - Taro Narumi
- Division of Molecular Medicine, Department of Anesthesiology (K.H., T.N., Y.Z., Q.L., P.M., Y.W., N.M.L., H.C.), David Geffen School of Medicine, University of California Los Angeles.,Division of Cardiology, Department of Medicine ((K.H., T.N., Y.Z., Q.L., P.M., Y.W., N.M.L., H.C.), David Geffen School of Medicine, University of California Los Angeles
| | - Yixuan Zhang
- Division of Molecular Medicine, Department of Anesthesiology (K.H., T.N., Y.Z., Q.L., P.M., Y.W., N.M.L., H.C.), David Geffen School of Medicine, University of California Los Angeles.,Division of Cardiology, Department of Medicine ((K.H., T.N., Y.Z., Q.L., P.M., Y.W., N.M.L., H.C.), David Geffen School of Medicine, University of California Los Angeles
| | - Qiang Li
- Division of Molecular Medicine, Department of Anesthesiology (K.H., T.N., Y.Z., Q.L., P.M., Y.W., N.M.L., H.C.), David Geffen School of Medicine, University of California Los Angeles.,Division of Cardiology, Department of Medicine ((K.H., T.N., Y.Z., Q.L., P.M., Y.W., N.M.L., H.C.), David Geffen School of Medicine, University of California Los Angeles
| | - Priya Murugesan
- Division of Molecular Medicine, Department of Anesthesiology (K.H., T.N., Y.Z., Q.L., P.M., Y.W., N.M.L., H.C.), David Geffen School of Medicine, University of California Los Angeles.,Division of Cardiology, Department of Medicine ((K.H., T.N., Y.Z., Q.L., P.M., Y.W., N.M.L., H.C.), David Geffen School of Medicine, University of California Los Angeles
| | - Yusi Wu
- Division of Molecular Medicine, Department of Anesthesiology (K.H., T.N., Y.Z., Q.L., P.M., Y.W., N.M.L., H.C.), David Geffen School of Medicine, University of California Los Angeles.,Division of Cardiology, Department of Medicine ((K.H., T.N., Y.Z., Q.L., P.M., Y.W., N.M.L., H.C.), David Geffen School of Medicine, University of California Los Angeles
| | - Norika Mengchia Liu
- Division of Molecular Medicine, Department of Anesthesiology (K.H., T.N., Y.Z., Q.L., P.M., Y.W., N.M.L., H.C.), David Geffen School of Medicine, University of California Los Angeles.,Division of Cardiology, Department of Medicine ((K.H., T.N., Y.Z., Q.L., P.M., Y.W., N.M.L., H.C.), David Geffen School of Medicine, University of California Los Angeles
| | - Hua Cai
- Division of Molecular Medicine, Department of Anesthesiology (K.H., T.N., Y.Z., Q.L., P.M., Y.W., N.M.L., H.C.), David Geffen School of Medicine, University of California Los Angeles.,Division of Cardiology, Department of Medicine ((K.H., T.N., Y.Z., Q.L., P.M., Y.W., N.M.L., H.C.), David Geffen School of Medicine, University of California Los Angeles
| |
Collapse
|
26
|
Abstract
A link between oxidative stress and hypertension has been firmly established in multiple animal models of hypertension but remains elusive in humans. While initial studies focused on inactivation of nitric oxide by superoxide, our understanding of relevant reactive oxygen species (superoxide, hydrogen peroxide, and peroxynitrite) and how they modify complex signaling pathways to promote hypertension has expanded significantly. In this review, we summarize recent advances in delineating the primary and secondary sources of reactive oxygen species (nicotinamide adenine dinucleotide phosphate oxidases, uncoupled endothelial nitric oxide synthase, endoplasmic reticulum, and mitochondria), the posttranslational oxidative modifications they induce on protein targets important for redox signaling, their interplay with endogenous antioxidant systems, and the role of inflammasome activation and endoplasmic reticular stress in the development of hypertension. We highlight how oxidative stress in different organ systems contributes to hypertension, describe new animal models that have clarified the importance of specific proteins, and discuss clinical studies that shed light on how these processes and pathways are altered in human hypertension. Finally, we focus on the promise of redox proteomics and systems biology to help us fully understand the relationship between ROS and hypertension and their potential for designing and evaluating novel antihypertensive therapies.
Collapse
Affiliation(s)
- Kathy K Griendling
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, USA
| | - Livia L Camargo
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow
| | - Francisco Rios
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow
| | - Rhéure Alves-Lopes
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow
| |
Collapse
|
27
|
Portelli SS, Hambly BD, Jeremy RW, Robertson EN. Oxidative stress in genetically triggered thoracic aortic aneurysm: role in pathogenesis and therapeutic opportunities. Redox Rep 2021; 26:45-52. [PMID: 33715602 PMCID: PMC7971305 DOI: 10.1080/13510002.2021.1899473] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: The primary objective of this review was to explore the contribution of oxidative stress to the pathogenesis of genetically-triggered thoracic aortic aneurysm (TAA). Genetically-triggered TAAs manifest substantial variability in onset, progression, and risk of aortic dissection, posing a significant clinical management challenge. There is a need for non-invasive biomarkers that predict the natural course of TAA and therapeutics that prevent aneurysm progression. Methods: An online systematic search was conducted within PubMed, MEDLINE, Scopus and ScienceDirect databases using keywords including: oxidative stress, ROS, nitrosative stress, genetically triggered thoracic aortic aneurysm, aortic dilatation, aortic dissection, Marfan syndrome, Bicuspid Aortic Valve, familial TAAD, Loeys Dietz syndrome, and Ehlers Danlos syndrome. Results: There is extensive evidence of oxidative stress and ROS imbalance in genetically triggered TAA. Sources of ROS imbalance are variable but include dysregulation of redox mediators leading to either insufficient ROS removal or increased ROS production. Therapeutic exploitation of redox mediators is being explored in other cardiovascular conditions, with potential application to TAA warranting further investigation. Conclusion: Oxidative stress occurs in genetically triggered TAA, but the precise contribution of ROS to pathogenesis remains incompletely understood. Further research is required to define causative pathological relationships in order to develop therapeutic options.
Collapse
Affiliation(s)
- Stefanie S Portelli
- Discipline of Pathology and Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - Brett D Hambly
- Discipline of Pathology and Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - Richmond W Jeremy
- Cardiology Department, Royal Prince Alfred Hospital, Sydney, Australia
| | - Elizabeth N Robertson
- Discipline of Pathology and Charles Perkins Centre, The University of Sydney, Sydney, Australia.,Cardiology Department, Royal Prince Alfred Hospital, Sydney, Australia
| |
Collapse
|
28
|
Creamer TJ, Bramel EE, MacFarlane EG. Insights on the Pathogenesis of Aneurysm through the Study of Hereditary Aortopathies. Genes (Basel) 2021; 12:183. [PMID: 33514025 PMCID: PMC7912671 DOI: 10.3390/genes12020183] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/15/2022] Open
Abstract
Thoracic aortic aneurysms (TAA) are permanent and localized dilations of the aorta that predispose patients to a life-threatening risk of aortic dissection or rupture. The identification of pathogenic variants that cause hereditary forms of TAA has delineated fundamental molecular processes required to maintain aortic homeostasis. Vascular smooth muscle cells (VSMCs) elaborate and remodel the extracellular matrix (ECM) in response to mechanical and biochemical cues from their environment. Causal variants for hereditary forms of aneurysm compromise the function of gene products involved in the transmission or interpretation of these signals, initiating processes that eventually lead to degeneration and mechanical failure of the vessel. These include mutations that interfere with transduction of stimuli from the matrix to the actin-myosin cytoskeleton through integrins, and those that impair signaling pathways activated by transforming growth factor-β (TGF-β). In this review, we summarize the features of the healthy aortic wall, the major pathways involved in the modulation of VSMC phenotypes, and the basic molecular functions impaired by TAA-associated mutations. We also discuss how the heterogeneity and balance of adaptive and maladaptive responses to the initial genetic insult might contribute to disease.
Collapse
Affiliation(s)
- Tyler J. Creamer
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (T.J.C.); (E.E.B.)
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Emily E. Bramel
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (T.J.C.); (E.E.B.)
- Predoctoral Training in Human Genetics and Molecular Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elena Gallo MacFarlane
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (T.J.C.); (E.E.B.)
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|