1
|
Kaplan M, Kassirer Y, Hammerman C. Controversies in our understanding of extreme hyperbilirubinemia in glucose-6-phosphate dehydrogenase-deficient neonates. Pediatr Res 2024:10.1038/s41390-024-03611-8. [PMID: 39370450 DOI: 10.1038/s41390-024-03611-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 10/08/2024]
Abstract
Despite declarations that kernicterus should be a "never-event", the condition continues to occur, glucose-6-phosphate dehydrogenase (G6PD)-deficiency being a leading cause. In this paper, we address some controversies regarding the pathophysiology and the potential for extreme hyperbilirubinemia associated with G6PD-deficiency. We present evidence to demonstrate that G6PD-deficiency-associated neonatal hyperbilirubinemia is no longer limited to countries and geographic regions to which the condition was indigenous, but is also encountered in North America and other Western countries with a low inherent G6PD-deficiency frequency. Pathophysiologically, while a diminished bilirubin conjugative component is undoubtedly present, we present evidence that there is a component of increased hemolysis as well, contributing to the extreme, exponential hyperbilirubinemia associated with G6PD-deficiency. Extreme hyperbilirubinemia in G6PD heterozygotes, while less frequent than in male hemizygotes or female deficient homozygotes, has been reported, suggesting previous underestimation of the risks of heterozygosity. Universal neonatal screening for G6PD-deficiency, while not expected to prevent acute, episodic hyperbilirubinemia, should increase awareness, thereby facilitating earlier referral for treatment, prior to the onset of bilirubin encephalopathy. Finally, we speculate as to what the future looks like for babies with G6PD-deficiency, potential therapeutic stratagems, and the effect of G6PD-deficiency on medical conditions beyond the realm of neonatal hyperbilirubinemia. IMPACT STATEMENTS: G6PD-deficiency is encountered in North America and Western countries previously thought to have a low frequency of the condition. Extreme, sudden neonatal hyperbilirubinemia is due, in the main, to increased hemolysis, an independent risk factor for neurotoxicity. Extreme hyperbilirubinemia may follow apparently resolved neonatal hyperbilirubinemia which had been treated by phototherapy. Female G6PD heterozygotes, previously thought to be unaffected clinically by G6PD-deficiency, while at low risk, may, nevertheless, develop extreme hyperbilirubinemia. Universal neonatal G6PD screening should be aimed towards increasing caretaker awareness and facilitating referral for treatment prior to the onset of bilirubin encephalopathy.
Collapse
Affiliation(s)
- Michael Kaplan
- Department of Neonatology, Shaare Zedek Medical Center (M.K. emeritus), Jerusalem, Israel.
- Faculty of Medicine of the Hebrew University, Jerusalem, Israel.
| | - Yair Kassirer
- Department of Neonatology, Shaare Zedek Medical Center (M.K. emeritus), Jerusalem, Israel
| | - Cathy Hammerman
- Department of Neonatology, Shaare Zedek Medical Center (M.K. emeritus), Jerusalem, Israel
- Faculty of Medicine of the Hebrew University, Jerusalem, Israel
| |
Collapse
|
2
|
Langlands HD, Shoemark DK, Toye AM. Modulation of Antioxidant Enzyme Expression of In Vitro Culture-Derived Reticulocytes. Antioxidants (Basel) 2024; 13:1070. [PMID: 39334729 PMCID: PMC11429491 DOI: 10.3390/antiox13091070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
The regulation of reactive oxygen species (ROS) in red blood cells (RBCs) is crucial for maintaining functionality and lifespan. Indeed, dysregulated ROS occurs in haematological diseases such as sickle cell disease and β-thalassaemia. In order to combat this, RBCs possess high levels of protective antioxidant enzymes. We aimed to further boost RBC antioxidant capacity by overexpressing peroxiredoxin (Prxs) and glutathione peroxidase (GPxs) enzymes. Multiple antioxidant enzyme cDNAs were individually overexpressed in expanding immortalised erythroblasts using lentivirus, including Prx isoforms 1, 2, and 6 and GPx isoforms 1 and 4. Enhancing Prx protein expression proved straightforward, but GPx overexpression required modifications. For GPx4, these modifications included adding a SECIS element in the 3'UTR, the removal of a mitochondrial-targeting sequence, and removing putative ubiquitination sites. Culture-derived reticulocytes exhibiting enhanced levels of Prx and GPx antioxidant proteins were successfully engineered, demonstrating a novel approach to improve RBC resilience to oxidative stress. Further work is needed to explore the activity of these proteins and their impact on RBC metabolism, but this strategy shows promise for improving RBC function in physiological and pathological contexts and during storage for transfusion. Enhancing the antioxidant capacity of reticulocytes has exciting promise for developing culture-derived RBCs with enhanced resistance to oxidative damage and offers new therapeutic interventions in diseases with elevated oxidative stress.
Collapse
Affiliation(s)
- Hannah D Langlands
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Deborah K Shoemark
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Ashley M Toye
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
3
|
Guo D, Liao Y, Na J, Wu L, Yin Y, Mi Z, Fang S, Liu X, Huang Y. The Involvement of Ascorbic Acid in Cancer Treatment. Molecules 2024; 29:2295. [PMID: 38792156 PMCID: PMC11123810 DOI: 10.3390/molecules29102295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Vitamin C (VC), also known as ascorbic acid, plays a crucial role as a water-soluble nutrient within the human body, contributing to a variety of metabolic processes. Research findings suggest that increased doses of VC demonstrate potential anti-tumor capabilities. This review delves into the mechanisms of VC absorption and its implications for cancer management. Building upon these foundational insights, we explore modern delivery systems for VC, evaluating its use in diverse cancer treatment methods. These include starvation therapy, chemodynamic therapy (CDT), photothermal/photodynamic therapy (PTT/PDT), electrothermal therapy, immunotherapy, cellular reprogramming, chemotherapy, radiotherapy, and various combination therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (D.G.); (Y.L.); (J.N.); (L.W.); (Y.Y.); (Z.M.); (S.F.)
| | - Yong Huang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (D.G.); (Y.L.); (J.N.); (L.W.); (Y.Y.); (Z.M.); (S.F.)
| |
Collapse
|
4
|
Chatzinikolaou PN, Margaritelis NV, Paschalis V, Theodorou AA, Vrabas IS, Kyparos A, D'Alessandro A, Nikolaidis MG. Erythrocyte metabolism. Acta Physiol (Oxf) 2024; 240:e14081. [PMID: 38270467 DOI: 10.1111/apha.14081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/11/2023] [Accepted: 01/01/2024] [Indexed: 01/26/2024]
Abstract
Our aim is to present an updated overview of the erythrocyte metabolism highlighting its richness and complexity. We have manually collected and connected the available biochemical pathways and integrated them into a functional metabolic map. The focus of this map is on the main biochemical pathways consisting of glycolysis, the pentose phosphate pathway, redox metabolism, oxygen metabolism, purine/nucleoside metabolism, and membrane transport. Other recently emerging pathways are also curated, like the methionine salvage pathway, the glyoxalase system, carnitine metabolism, and the lands cycle, as well as remnants of the carboxylic acid metabolism. An additional goal of this review is to present the dynamics of erythrocyte metabolism, providing key numbers used to perform basic quantitative analyses. By synthesizing experimental and computational data, we conclude that glycolysis, pentose phosphate pathway, and redox metabolism are the foundations of erythrocyte metabolism. Additionally, the erythrocyte can sense oxygen levels and oxidative stress adjusting its mechanics, metabolism, and function. In conclusion, fine-tuning of erythrocyte metabolism controls one of the most important biological processes, that is, oxygen loading, transport, and delivery.
Collapse
Affiliation(s)
- Panagiotis N Chatzinikolaou
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Nikos V Margaritelis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Vassilis Paschalis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios A Theodorou
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Ioannis S Vrabas
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Antonios Kyparos
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Michalis G Nikolaidis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| |
Collapse
|
5
|
Halliwell B. Understanding mechanisms of antioxidant action in health and disease. Nat Rev Mol Cell Biol 2024; 25:13-33. [PMID: 37714962 DOI: 10.1038/s41580-023-00645-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 09/17/2023]
Abstract
Several different reactive oxygen species (ROS) are generated in vivo. They have roles in the development of certain human diseases whilst also performing physiological functions. ROS are counterbalanced by an antioxidant defence network, which functions to modulate ROS levels to allow their physiological roles whilst minimizing the oxidative damage they cause that can contribute to disease development. This Review describes the mechanisms of action of antioxidants synthesized in vivo, antioxidants derived from the human diet and synthetic antioxidants developed as therapeutic agents, with a focus on the gaps in our current knowledge and the approaches needed to close them. The Review also explores the reasons behind the successes and failures of antioxidants in treating or preventing human disease. Antioxidants may have special roles in the gastrointestinal tract, and many lifestyle features known to promote health (especially diet, exercise and the control of blood glucose and cholesterol levels) may be acting, at least in part, by antioxidant mechanisms. Certain reactive sulfur species may be important antioxidants but more accurate determinations of their concentrations in vivo are needed to help assess their contributions.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Neurobiology Research Programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
6
|
Sadowska-Bartosz I, Bartosz G. Peroxiredoxin 2: An Important Element of the Antioxidant Defense of the Erythrocyte. Antioxidants (Basel) 2023; 12:antiox12051012. [PMID: 37237878 DOI: 10.3390/antiox12051012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Peroxiredoxin 2 (Prdx2) is the third most abundant erythrocyte protein. It was known previously as calpromotin since its binding to the membrane stimulates the calcium-dependent potassium channel. Prdx2 is present mostly in cytosol in the form of non-covalent dimers but may associate into doughnut-like decamers and other oligomers. Prdx2 reacts rapidly with hydrogen peroxide (k > 107 M-1 s-1). It is the main erythrocyte antioxidant that removes hydrogen peroxide formed endogenously by hemoglobin autoxidation. Prdx2 also reduces other peroxides including lipid, urate, amino acid, and protein hydroperoxides and peroxynitrite. Oxidized Prdx2 can be reduced at the expense of thioredoxin but also of other thiols, especially glutathione. Further reactions of Prdx2 with oxidants lead to hyperoxidation (formation of sulfinyl or sulfonyl derivatives of the peroxidative cysteine). The sulfinyl derivative can be reduced by sulfiredoxin. Circadian oscillations in the level of hyperoxidation of erythrocyte Prdx2 were reported. The protein can be subject to post-translational modifications; some of them, such as phosphorylation, nitration, and acetylation, increase its activity. Prdx2 can also act as a chaperone for hemoglobin and erythrocyte membrane proteins, especially during the maturation of erythrocyte precursors. The extent of Prdx2 oxidation is increased in various diseases and can be an index of oxidative stress.
Collapse
Affiliation(s)
- Izabela Sadowska-Bartosz
- Laboratory of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszow, 4 Zelwerowicza St., 35-601 Rzeszow, Poland
| | - Grzegorz Bartosz
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszów, 4 Zelwerowicza St., 35-601 Rzeszow, Poland
| |
Collapse
|
7
|
Möller M, Orrico F, Villar S, López AC, Silva N, Donzé M, Thomson L, Denicola A. Oxidants and Antioxidants in the Redox Biochemistry of Human Red Blood Cells. ACS OMEGA 2023; 8:147-168. [PMID: 36643550 PMCID: PMC9835686 DOI: 10.1021/acsomega.2c06768] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/09/2022] [Indexed: 06/01/2023]
Abstract
Red blood cells (RBCs) are exposed to both external and internal sources of oxidants that challenge their integrity and compromise their physiological function and supply of oxygen to tissues. Autoxidation of oxyhemoglobin is the main source of endogenous RBC oxidant production, yielding superoxide radical and then hydrogen peroxide. In addition, potent oxidants from other blood cells and the surrounding endothelium can reach the RBCs. Abundant and efficient enzymatic systems and low molecular weight antioxidants prevent most of the damage to the RBCs and also position the RBCs as a sink of vascular oxidants that allow the body to maintain a healthy circulatory system. Among the antioxidant enzymes, the thiol-dependent peroxidase peroxiredoxin 2, highly abundant in RBCs, is essential to keep the redox balance. A great part of the RBC antioxidant activity is supported by an active glucose metabolism that provides reducing power in the form of NADPH via the pentose phosphate pathway. There are several RBC defects and situations that generate oxidative stress conditions where the defense mechanisms are overwhelmed, and these include glucose-6-phosphate dehydrogenase deficiencies (favism), hemoglobinopathies like sickle cell disease and thalassemia, as well as packed RBCs for transfusion that suffer from storage lesions. These oxidative stress-associated pathologies of the RBCs underline the relevance of redox balance in these anucleated cells that lack a mechanism of DNA-inducible antioxidant response and rely on a complex and robust network of antioxidant systems.
Collapse
Affiliation(s)
- Matias
N. Möller
- Laboratorio
de Fisicoquímica Biológica, Instituto de Química
Biológica, Facultad de Ciencias,
Universidad de la República, Montevideo 11400, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Florencia Orrico
- Laboratorio
de Fisicoquímica Biológica, Instituto de Química
Biológica, Facultad de Ciencias,
Universidad de la República, Montevideo 11400, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
- Laboratorio
de Enzimología, Instituto de Química Biológica,
Facultad de Ciencias, Universidad de la
República, Montevideo 11400, Uruguay
| | - Sebastián
F. Villar
- Laboratorio
de Fisicoquímica Biológica, Instituto de Química
Biológica, Facultad de Ciencias,
Universidad de la República, Montevideo 11400, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Ana C. López
- Laboratorio
de Fisicoquímica Biológica, Instituto de Química
Biológica, Facultad de Ciencias,
Universidad de la República, Montevideo 11400, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
- Laboratorio
de Enzimología, Instituto de Química Biológica,
Facultad de Ciencias, Universidad de la
República, Montevideo 11400, Uruguay
| | - Nicolás Silva
- Laboratorio
de Fisicoquímica Biológica, Instituto de Química
Biológica, Facultad de Ciencias,
Universidad de la República, Montevideo 11400, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
- Laboratorio
de Enzimología, Instituto de Química Biológica,
Facultad de Ciencias, Universidad de la
República, Montevideo 11400, Uruguay
- Departamento
de Medicina Transfusional, Hospital de Clínicas, Facultad de
Medicina, Universidad de la República, Montevideo 11600, Uruguay
| | - Marcel Donzé
- Laboratorio
de Fisicoquímica Biológica, Instituto de Química
Biológica, Facultad de Ciencias,
Universidad de la República, Montevideo 11400, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Leonor Thomson
- Centro
de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
- Laboratorio
de Enzimología, Instituto de Química Biológica,
Facultad de Ciencias, Universidad de la
República, Montevideo 11400, Uruguay
| | - Ana Denicola
- Laboratorio
de Fisicoquímica Biológica, Instituto de Química
Biológica, Facultad de Ciencias,
Universidad de la República, Montevideo 11400, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| |
Collapse
|
8
|
Tzounakas VL, Anastasiadi AT, Arvaniti VZ, Lelli V, Fanelli G, Paronis EC, Apostolidou AC, Balafas EG, Kostomitsopoulos NG, Papageorgiou EG, Papassideri IS, Stamoulis K, Kriebardis AG, Rinalducci S, Antonelou MH. Supplementation with uric and ascorbic acid protects stored red blood cells through enhancement of non-enzymatic antioxidant activity and metabolic rewiring. Redox Biol 2022; 57:102477. [PMID: 36155342 PMCID: PMC9513173 DOI: 10.1016/j.redox.2022.102477] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/29/2022] [Accepted: 09/12/2022] [Indexed: 11/27/2022] Open
Abstract
Redox imbalance and oxidative stress have emerged as generative causes of the structural and functional degradation of red blood cells (RBC) that happens during their hypothermic storage at blood banks. The aim of the present study was to examine whether the antioxidant enhancement of stored RBC units following uric (UA) and/or ascorbic acid (AA) supplementation can improve their storability as well as post-transfusion phenotypes and recovery by using in vitro and animal models, respectively. For this purpose, 34 leukoreduced CPD/SAGM RBC units were aseptically split in 4 satellite units each. UA, AA or their mixture were added in the three of them, while the fourth was used as control. Hemolysis as well as redox and metabolic parameters were studied in RBC units throughout storage. The addition of antioxidants maintained the quality parameters of stored RBCs, (e.g., hemolysis, calcium homeostasis) and furthermore, shielded them against oxidative defects by boosting extracellular and intracellular (e.g., reduced glutathione; GSH) antioxidant powers. Higher levels of GSH seemed to be obtained through distinct metabolic rewiring in the modified units: methionine-cysteine metabolism in UA samples and glutamine production in the other two groups. Oxidatively-induced hemolysis, reactive oxygen species accumulation and membrane lipid peroxidation were lower in all modifications compared to controls. Moreover, denatured/oxidized Hb binding to the membrane was minor, especially in the AA and mix treatments during middle storage. The treated RBC were able to cope against pro-oxidant triggers when found in a recipient mimicking environment in vitro, and retain control levels of 24h recovery in mice circulation. The currently presented study provides (a) a detailed picture of the effect of UA/AA administration upon stored RBCs and (b) insight into the differential metabolic rewiring when distinct antioxidant "enhancers" are used.
Collapse
Affiliation(s)
- Vassilis L Tzounakas
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Alkmini T Anastasiadi
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Vasiliki-Zoi Arvaniti
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Veronica Lelli
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Giuseppina Fanelli
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Efthymios C Paronis
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation, Academy of Athens (BRFAA), Athens, Greece
| | - Anastasia C Apostolidou
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation, Academy of Athens (BRFAA), Athens, Greece
| | - Evangelos G Balafas
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation, Academy of Athens (BRFAA), Athens, Greece
| | - Nikolaos G Kostomitsopoulos
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation, Academy of Athens (BRFAA), Athens, Greece
| | - Effie G Papageorgiou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Welfare Sciences, University of West Attica (UniWA), Egaleo, Greece
| | - Issidora S Papassideri
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | | | - Anastasios G Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Welfare Sciences, University of West Attica (UniWA), Egaleo, Greece
| | - Sara Rinalducci
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy.
| | - Marianna H Antonelou
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece.
| |
Collapse
|
9
|
Zheng Y, Li R, Fan X. Targeting Oxidative Stress in Intracerebral Hemorrhage: Prospects of the Natural Products Approach. Antioxidants (Basel) 2022; 11:1811. [PMID: 36139885 PMCID: PMC9495708 DOI: 10.3390/antiox11091811] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Intracerebral hemorrhage (ICH), the second most common subtype of stroke, remains a significant cause of morbidity and mortality worldwide. The pathological mechanism of ICH is very complex, and it has been demonstrated that oxidative stress (OS) plays an important role in the pathogenesis of ICH. Previous studies have shown that OS is a therapeutic target after ICH, and antioxidants have also achieved some benefits in the treatment of ICH. This review aimed to explore the promise of natural products therapy to target OS in ICH. We searched PubMed using the keywords "oxidative stress in intracerebral hemorrhage" and "natural products in intracerebral hemorrhage". Numerous animal and cell studies on ICH have demonstrated the potent antioxidant properties of natural products, including polyphenols and phenolic compounds, terpenoids, alkaloids, etc. In summary, natural products such as antioxidants offer the possibility of treatment of OS after ICH. However, researchers still have a long way to go to apply these natural products for the treatment of ICH more widely in the clinic.
Collapse
Affiliation(s)
| | | | - Xiang Fan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
10
|
Jordan AC, Perry CGR, Cheng AJ. Promoting a pro-oxidant state in skeletal muscle: Potential dietary, environmental, and exercise interventions for enhancing endurance-training adaptations. Free Radic Biol Med 2021; 176:189-202. [PMID: 34560246 DOI: 10.1016/j.freeradbiomed.2021.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/06/2021] [Accepted: 09/16/2021] [Indexed: 12/17/2022]
Abstract
Accumulating evidence now shows that supplemental antioxidants including vitamin C, vitamin E and N-Acetylcysteine consumption can suppress adaptations to endurance-type exercise by attenuating reactive oxygen and nitrogen species (RONS) formation within skeletal muscle. This emerging evidence points to the importance of pro-oxidation as an important stimulus for endurance-training adaptations, including mitochondrial biogenesis, endogenous antioxidant production, insulin signalling, angiogenesis and growth factor signaling. Although sustained oxidative distress is associated with many chronic diseases, athletes have, on average, elevated levels of certain endogenous antioxidants to maintain redox homeostasis. As a result, trained athletes may have a better capacity to buffer oxidants during and after exercise, resulting in a reduced oxidative eustress stimulus for adaptations. Thus, higher levels of RONS input and exercise-induced oxidative stress may benefit athletes in the pursuit of continuous endurance training redox adaptations. This review addresses why athletes should be looking to enhance exercise-induced oxidative stress and how it can be accomplished. Methods covered include high-intensity interval training, hyperthermia and heat stress, dietary antioxidant restriction and modified antioxidant timing, dietary antioxidants and polyphenols as adjuncts to exercise, and vitamin C as a pro-oxidant.
Collapse
Affiliation(s)
- Adam C Jordan
- Muscle Health Research Centre, School of Kinesiology and Health Sciences, Faculty of Health, York University, M3J 1P3, Toronto, Canada
| | - Christopher G R Perry
- Muscle Health Research Centre, School of Kinesiology and Health Sciences, Faculty of Health, York University, M3J 1P3, Toronto, Canada
| | - Arthur J Cheng
- Muscle Health Research Centre, School of Kinesiology and Health Sciences, Faculty of Health, York University, M3J 1P3, Toronto, Canada.
| |
Collapse
|
11
|
Garcia AA, Koperniku A, Ferreira JCB, Mochly-Rosen D. Treatment strategies for glucose-6-phosphate dehydrogenase deficiency: past and future perspectives. Trends Pharmacol Sci 2021; 42:829-844. [PMID: 34389161 DOI: 10.1016/j.tips.2021.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/19/2021] [Accepted: 07/13/2021] [Indexed: 01/20/2023]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) maintains redox balance in a variety of cell types and is essential for erythrocyte resistance to oxidative stress. G6PD deficiency, caused by mutations in the G6PD gene, is present in ~400 million people worldwide, and can cause acute hemolytic anemia. Currently, there are no therapeutics for G6PD deficiency. We discuss the role of G6PD in hemolytic and nonhemolytic disorders, treatment strategies attempted over the years, and potential reasons for their failure. We also discuss potential pharmacological pathways, including glutathione (GSH) metabolism, compensatory NADPH production routes, transcriptional upregulation of the G6PD gene, highlighting potential drug targets. The needs and opportunities described here may motivate the development of a therapeutic for hematological and other chronic diseases associated with G6PD deficiency.
Collapse
Affiliation(s)
- Adriana A Garcia
- Department of Chemical and Systems Biology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Ana Koperniku
- Department of Chemical and Systems Biology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Julio C B Ferreira
- Department of Chemical and Systems Biology, School of Medicine, Stanford University, Stanford, CA, USA; Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|