1
|
Xu Z, Hu SW, Zhou Y, Guo Q, Wang D, Gao YH, Zhao WN, Tang HM, Yang JX, Yu X, Ding HL, Cao JL. Corticotropin-releasing factor neurones in the paraventricular nucleus of the hypothalamus modulate isoflurane anaesthesia and its responses to acute stress in mice. Br J Anaesth 2023; 130:446-458. [PMID: 36737387 DOI: 10.1016/j.bja.2022.12.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 11/23/2022] [Accepted: 12/23/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Corticotropin-releasing factor (CRF) neurones in the paraventricular nucleus (PVN) of the hypothalamus (PVNCRF neurones) can promote wakefulness and are activated under anaesthesia. However, whether these neurones contribute to anaesthetic effects is unknown. METHODS With a combination of chemogenetic and molecular approaches, we examined the roles of PVNCRF neurones in isoflurane anaesthesia in mice and further explored the underlying cellular and molecular mechanisms. RESULTS PVN neurones exhibited increased Fos expression during isoflurane anaesthesia (mean [standard deviation], 218 [69.3] vs 21.3 [7.3]; P<0.001), and ∼75% were PVNCRF neurones. Chemogenetic inhibition of PVNCRF neurones facilitated emergence from isoflurane anaesthesia (11.7 [1.1] vs 13.9 [1.2] min; P=0.001), whereas chemogenetic activation of these neurones delayed emergence from isoflurane anaesthesia (16.9 [1.2] vs 13.9 [1.3] min; P=0.002). Isoflurane exposure increased CRF protein expression in PVN (4.0 [0.1] vs 2.2 [0.3], respectively; P<0.001). Knockdown of CRF in PVNCRF neurones mimicked the effects of chemogenetic inhibition of PVNCRF neurones in facilitating emergence (9.6 [1.1] vs 13.0 [1.4] min; P=0.003) and also abolished the effects of chemogenetic activation of PVNCRF neurones on delaying emergence from isoflurane anaesthesia (10.3 [1.3] vs 16.0 [2.6] min; P<0.001). Acute, but not chronic, stress delayed emergence from isoflurane anaesthesia (15.5 [1.5] vs 13.0 [1.4] min; P=0.004). This effect was reversed by chemogenetic inhibition of PVNCRF neurones (11.7 [1.6] vs 14.7 [1.4] min; P=0.001) or knockdown of CRF in PVNCRF neurones (12.3 [1.5] vs 15.3 [1.6] min; P=0.002). CONCLUSIONS CRF neurones in the PVN of the hypothalamus neurones modulate isoflurane anaesthesia and acute stress effects on anaesthesia through CRF signalling.
Collapse
Affiliation(s)
- Zheng Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Su-Wan Hu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Yu Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Qingchen Guo
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Di Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Yi-Hong Gao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Wei-Nan Zhao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Hui-Mei Tang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Jun-Xia Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Xiaolu Yu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Hai-Lei Ding
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China.
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China; Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
2
|
Cano G, Hernan SL, Sved AF. Centrally Projecting Edinger-Westphal Nucleus in the Control of Sympathetic Outflow and Energy Homeostasis. Brain Sci 2021; 11:1005. [PMID: 34439626 PMCID: PMC8392615 DOI: 10.3390/brainsci11081005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/13/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022] Open
Abstract
The centrally projecting Edinger-Westphal nucleus (EWcp) is a midbrain neuronal group, adjacent but segregated from the preganglionic Edinger-Westphal nucleus that projects to the ciliary ganglion. The EWcp plays a crucial role in stress responses and in maintaining energy homeostasis under conditions that require an adjustment of energy expenditure, by virtue of modulating heart rate and blood pressure, thermogenesis, food intake, and fat and glucose metabolism. This modulation is ultimately mediated by changes in the sympathetic outflow to several effector organs, including the adrenal gland, heart, kidneys, brown and white adipose tissues and pancreas, in response to environmental conditions and the animal's energy state, providing for appropriate energy utilization. Classic neuroanatomical studies have shown that the EWcp receives inputs from forebrain regions involved in these functions and projects to presympathetic neuronal populations in the brainstem. Transneuronal tracing with pseudorabies virus has demonstrated that the EWcp is connected polysynaptically with central circuits that provide sympathetic innervation to all these effector organs that are critical for stress responses and energy homeostasis. We propose that EWcp integrates multimodal signals (stress, thermal, metabolic, endocrine, etc.) and modulates the sympathetic output simultaneously to multiple effector organs to maintain energy homeostasis under different conditions that require adjustments of energy demands.
Collapse
Affiliation(s)
- Georgina Cano
- Department of Neuroscience, A210 Langley Hall, University of Pittsburgh, Pittsburgh, PA 15260, USA; (S.L.H.); (A.F.S.)
| | | | | |
Collapse
|
3
|
Tenk J, Rostás I, Füredi N, Mikó A, Solymár M, Soós S, Gaszner B, Feller D, Székely M, Pétervári E, Balaskó M. Age-related changes in central effects of corticotropin-releasing factor (CRF) suggest a role for this mediator in aging anorexia and cachexia. GeroScience 2017; 39:61-72. [PMID: 28299639 PMCID: PMC5352590 DOI: 10.1007/s11357-017-9962-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 10/20/2016] [Indexed: 11/29/2022] Open
Abstract
Hypothalamic corticotropin-releasing factor (CRF) lays downstream to catabolic melanocortins and at least partly mediates their catabolic effects. Age-related changes in the melanocortin system (weak responsiveness in middle-aged and a strong one in old rats) have been shown to contribute to middle-aged obesity and later to aging anorexia and cachexia of old age groups. We hypothesized that catabolic (anorexigenic and hypermetabolic) CRF effects vary with aging similarly to those of melanocortins. Thus, we aimed to test whether age-related variations of CRF effects may also contribute to middle-aged obesity and aging anorexia leading to weight loss of old age groups. Food intake, body weight, core temperature, heart rate, and activity were recorded in male Wistar rats of young, middle-aged, aging, and old age groups (from 3 to 24 months) during a 7-day intracerebroventricular CRF infusion (0.2 μg/μl/h) in a biotelemetric system. In addition, CRF gene expression was also assessed by quantitative RT-PCR in the paraventricular nucleus (PVN) of intact animals of the same age groups. The infusion suppressed body weight in the young, aging, and old rats, but not in middle-aged animals. Weak anorexigenic and hypermetabolic effects were detected in the young, whereas strong anorexia (without hypermetabolism) developed in the oldest age groups in which post mortem analysis showed also a reduction of retroperitoneal fat mass. CRF gene expression in the PVN increased with aging. Our results support the potential contribution of age-related changes in CRF effects to aging anorexia and cachexia. The role of the peptide in middle-aged obesity cannot be confirmed.
Collapse
Affiliation(s)
- Judit Tenk
- Institute for Translational Medicine, Medical School, University of Pécs, 12 Szigeti str, Pécs, H-7624, Hungary
| | - Ildikó Rostás
- Institute for Translational Medicine, Medical School, University of Pécs, 12 Szigeti str, Pécs, H-7624, Hungary
| | - Nóra Füredi
- Institute for Translational Medicine, Medical School, University of Pécs, 12 Szigeti str, Pécs, H-7624, Hungary
| | - Alexandra Mikó
- Institute for Translational Medicine, Medical School, University of Pécs, 12 Szigeti str, Pécs, H-7624, Hungary
| | - Margit Solymár
- Institute for Translational Medicine, Medical School, University of Pécs, 12 Szigeti str, Pécs, H-7624, Hungary
| | - Szilvia Soós
- Institute for Translational Medicine, Medical School, University of Pécs, 12 Szigeti str, Pécs, H-7624, Hungary
| | - Balázs Gaszner
- Department of Anatomy, Medical School, University of Pécs, 12 Szigeti str, Pécs, H-7624, Hungary
| | - Diana Feller
- Department of Pharmaceutical Biotechnology, Medical School, University of Pecs, 12 Szigeti str, Pécs, H-7624, Hungary
| | - Miklós Székely
- Institute for Translational Medicine, Medical School, University of Pécs, 12 Szigeti str, Pécs, H-7624, Hungary
| | - Erika Pétervári
- Institute for Translational Medicine, Medical School, University of Pécs, 12 Szigeti str, Pécs, H-7624, Hungary
| | - Márta Balaskó
- Institute for Translational Medicine, Medical School, University of Pécs, 12 Szigeti str, Pécs, H-7624, Hungary.
| |
Collapse
|
4
|
Tenk J, Rostás I, Füredi N, Mikó A, Soós S, Solymár M, Gaszner B, Székely M, Pétervári E, Balaskó M. Acute central effects of corticotropin-releasing factor (CRF) on energy balance: Effects of age and gender. Peptides 2016; 85:63-72. [PMID: 27637621 DOI: 10.1016/j.peptides.2016.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/12/2016] [Accepted: 09/12/2016] [Indexed: 10/21/2022]
Abstract
Previously demonstrated age-related changes in the catabolic melanocortin system that may contribute to middle-aged obesity and aging anorexia, raise the question of the potential involvement of corticotropin-releasing factor (CRF) in these phenomena, as this catabolic hypothalamic mediator acts downstream to melanocortins. Catabolic effects of CRF were shown to be mediated by both CRF1 (hypermetabolism) and CRF2 (anorexia) receptors. To test the potential role of CRF in age-related obesity and aging anorexia, we investigated acute central effects of the peptide on energy balance in male and female rats during the course of aging. Effects of an intracerebroventricular CRF injection on food intake (FI), oxygen-consumption (VO2), core- and tail skin temperatures (Tc and Ts) were studied in male and female Wistar rats of five different age-groups (from 3- to 24-month). Anorexigenic responsiveness was tested during 180-min re-feeding (FeedScale) following 24-h fasting. Thermoregulatory analysis was performed by indirect calorimetry (Oxymax) complemented by thermocouples recording Tc and Ts (indicating heat loss). CRF suppressed FI in 3-month male and female animals. In males, CRF-induced anorexia declined with aging, whereas in females it was maintained in all groups. The peptide increased VO2 and Tc in all male age-groups, while the weaker hypermetabolic response characterizing 3-month females declined rapidly with aging. Thus, age-related alterations in acute central anorexigenic and hypermetabolic effects of CRF show different non-parallel patterns in males and females. Our findings underline the importance of gender differences. They also call the attention to the differential age-related changes in the CRF1 and CRF2 receptor systems.
Collapse
Affiliation(s)
- Judit Tenk
- Institute for Translational Medicine, Medical School, University of Pécs, Hungary
| | - Ildikó Rostás
- Institute for Translational Medicine, Medical School, University of Pécs, Hungary
| | - Nóra Füredi
- Institute for Translational Medicine, Medical School, University of Pécs, Hungary
| | - Alexandra Mikó
- Institute for Translational Medicine, Medical School, University of Pécs, Hungary
| | - Szilvia Soós
- Institute for Translational Medicine, Medical School, University of Pécs, Hungary
| | - Margit Solymár
- Institute for Translational Medicine, Medical School, University of Pécs, Hungary
| | - Balázs Gaszner
- Department of Anatomy, Medical School, University of Pécs, Hungary
| | - Miklós Székely
- Institute for Translational Medicine, Medical School, University of Pécs, Hungary
| | - Erika Pétervári
- Institute for Translational Medicine, Medical School, University of Pécs, Hungary
| | - Márta Balaskó
- Institute for Translational Medicine, Medical School, University of Pécs, Hungary.
| |
Collapse
|
5
|
Zampronio AR, Soares DM, Souza GEP. Central mediators involved in the febrile response: effects of antipyretic drugs. Temperature (Austin) 2015; 2:506-21. [PMID: 27227071 PMCID: PMC4843933 DOI: 10.1080/23328940.2015.1102802] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 09/24/2015] [Accepted: 09/29/2015] [Indexed: 11/13/2022] Open
Abstract
Fever is a complex signal of inflammatory and infectious diseases. It is generally initiated when peripherally produced endogenous pyrogens reach areas that surround the hypothalamus. These peripheral endogenous pyrogens are cytokines that are produced by leukocytes and other cells, the most known of which are interleukin-1β, tumor necrosis factor-α, and interleukin-6. Because of the capacity of these molecules to induce their own synthesis and the synthesis of other cytokines, they can also be synthesized in the central nervous system. However, these pyrogens are not the final mediators of the febrile response. These cytokines can induce the synthesis of cyclooxygenase-2, which produces prostaglandins. These prostanoids alter hypothalamic temperature control, leading to an increase in heat production, the conservation of heat, and ultimately fever. The effect of antipyretics is based on blocking prostaglandin synthesis. In this review, we discuss recent data on the importance of prostaglandins in the febrile response, and we show that some endogenous mediators can still induce the febrile response even when known antipyretics reduce the levels of prostaglandins in the central nervous system. These studies suggest that centrally produced mediators other than prostaglandins participate in the genesis of fever. Among the most studied central mediators of fever are corticotropin-releasing factor, endothelins, chemokines, endogenous opioids, and substance P, which are discussed herein. Additionally, recent evidence suggests that these different pathways of fever induction may be activated during different pathological conditions.
Collapse
Affiliation(s)
- Aleksander R Zampronio
- Department of Pharmacology; Biological Sciences Section; Federal University of Paraná ; Curitiba, PR, Brazil
| | - Denis M Soares
- Department of Medicament; Faculty of Pharmacy; Federal University of Bahia ; Salvador, BA, Brazil
| | - Glória E P Souza
- Discipline of Pharmacology; Faculty of Pharmaceutical Sciences of Ribeirão Preto; University of São Paulo ; Ribeirão Preto, SP, Brazil
| |
Collapse
|
6
|
Zampronio AR, Soares DM, Souza GEP. Central mediators involved in the febrile response: effects of antipyretic drugs. Temperature (Austin) 2015. [PMID: 27227071 DOI: 10.1080/23328940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2023] Open
Abstract
Fever is a complex signal of inflammatory and infectious diseases. It is generally initiated when peripherally produced endogenous pyrogens reach areas that surround the hypothalamus. These peripheral endogenous pyrogens are cytokines that are produced by leukocytes and other cells, the most known of which are interleukin-1β, tumor necrosis factor-α, and interleukin-6. Because of the capacity of these molecules to induce their own synthesis and the synthesis of other cytokines, they can also be synthesized in the central nervous system. However, these pyrogens are not the final mediators of the febrile response. These cytokines can induce the synthesis of cyclooxygenase-2, which produces prostaglandins. These prostanoids alter hypothalamic temperature control, leading to an increase in heat production, the conservation of heat, and ultimately fever. The effect of antipyretics is based on blocking prostaglandin synthesis. In this review, we discuss recent data on the importance of prostaglandins in the febrile response, and we show that some endogenous mediators can still induce the febrile response even when known antipyretics reduce the levels of prostaglandins in the central nervous system. These studies suggest that centrally produced mediators other than prostaglandins participate in the genesis of fever. Among the most studied central mediators of fever are corticotropin-releasing factor, endothelins, chemokines, endogenous opioids, and substance P, which are discussed herein. Additionally, recent evidence suggests that these different pathways of fever induction may be activated during different pathological conditions.
Collapse
Affiliation(s)
- Aleksander R Zampronio
- Department of Pharmacology; Biological Sciences Section; Federal University of Paraná ; Curitiba, PR, Brazil
| | - Denis M Soares
- Department of Medicament; Faculty of Pharmacy; Federal University of Bahia ; Salvador, BA, Brazil
| | - Glória E P Souza
- Discipline of Pharmacology; Faculty of Pharmaceutical Sciences of Ribeirão Preto; University of São Paulo ; Ribeirão Preto, SP, Brazil
| |
Collapse
|
7
|
Wellman LL, Yang L, Sanford LD. Effects of corticotropin releasing factor (CRF) on sleep and temperature following predictable controllable and uncontrollable stress in mice. Front Neurosci 2015; 9:258. [PMID: 26283899 PMCID: PMC4519684 DOI: 10.3389/fnins.2015.00258] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 07/10/2015] [Indexed: 02/05/2023] Open
Abstract
Corticotropin releasing factor (CRF) is a major mediator of central nervous system responses to stressors, including alterations in wakefulness and sleep. However, its role in mediating stress-induced alterations in sleep has not been fully delineated. In this study, we assessed the role of CRF and the non-specific CRF antagonist, astressin (AST), in regulating changes in sleep produced by signaled, escapable shock (SES) and signaled inescapable shock (SIS), two stressors that can increase or decrease sleep, respectively. Male BALB/cJ mice were surgically implanted with transmitters (DataSciences ETA10-F20) for recording EEG, activity and core body temperature by telemetry and a cannula for intracerebroventricular (ICV) microinjections. After baseline (Base) sleep recording, mice were presented tones (90 dB, 2 kHz) that started 5.0 s prior to and co-terminated with footshock (0.5 mA; 5.0 s maximum duration). SES mice (n = 9) always received shock but could terminate it by moving to the non-occupied chamber in a shuttlebox. Yoked SIS mice (n = 9) were treated identically, but could not alter shock duration. Training with SES or SIS was conducted over 2 days to stabilize responses. Afterwards, the mice received saline, CRF [0.4 μg (0.42 mM) or AST (1.0 μg (1.4 mM)] prior to SES or SIS. Sleep was analyzed over 20 h post-stress recordings. After administration of saline, REM was significantly greater in SES mice than in SIS mice whereas after CRF or AST, REM was similar in both groups. Total 20 h NREM did not vary across condition or group. However, after administration of saline and CRF, NREM episode duration was significantly decreased, and NREM episode number significantly increased, in SIS mice compared to SES animals. SES and SIS mice showed similar stress induced hyperthermia (SIH) across all conditions. These data demonstrate that CRF can mediate stress-induced changes in sleep independently of SIH, an index of hypothalamic-pituitary-adrenal axis activation.
Collapse
Affiliation(s)
- Laurie L Wellman
- Sleep Research Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School Norfolk, VA, USA
| | - Linghui Yang
- West China Hospital of Sichuan University Sichuan, China
| | - Larry D Sanford
- Sleep Research Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School Norfolk, VA, USA
| |
Collapse
|
8
|
Baiula M, Bedini A, Spampinato SM. Role of nociceptin/orphanin FQ in thermoregulation. Neuropeptides 2015; 50:51-6. [PMID: 25812480 DOI: 10.1016/j.npep.2015.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 02/25/2015] [Accepted: 03/11/2015] [Indexed: 01/30/2023]
Abstract
Nociceptin/Orphanin FQ (N/OFQ) is a 17-amino acid peptide that binds to the nociceptin receptor (NOP). N/OFQ and NOP receptors are expressed in numerous brain areas. The generation of specific agonists, antagonists and receptor-deficient mice or rats has enabled progress in elucidating the biological functions of N/OFQ. These tools have been employed to identify the biological significance of the N/OFQ system and how it interacts with other endogenous systems to regulate several body functions. The present review focuses on the role of N/OFQ in the regulation of body temperature and its relationship with energy balance. Critical evaluation of the literature data suggests that N/OFQ, acting through the NOP receptor, may cause hypothermia by influencing the complex thermoregulatory system that operates as a federation of independent thermoeffector loops to control body temperature at the hypothalamic level. Furthermore, N/OFQ counteracts hyperthermia elicited by cannabinoids or µ-opioid agonists. N/OFQ-induced hypothermia is prevented by ω-conotoxin GVIA, an N-type calcium channel blocker. Hypothermia induced by N/OFQ is considered within the framework of the complex action that this neuropeptide exerts on energy balance. Energy stores are regulated through the complex neural controls exerted on both food intake and energy expenditure. In laboratory rodents, N/OFQ stimulates consummatory behavior and decreases energy expenditure. Taken together, these studies support the idea that N/OFQ contributes to the regulation of energy balance by acting as an "anabolic" neuropeptide as it elicits effects similar to those produced in the hypothalamus by other neuropeptides such as orexins and neuropeptide Y.
Collapse
Affiliation(s)
- Monica Baiula
- Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Andrea Bedini
- Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | | |
Collapse
|
9
|
Kanashiro A, Figueiredo MJ, Malvar DDC, Souza GEP. Cytokines, but not corticotropin-releasing factor and endothelin-1, participate centrally in the febrile response in zymosan-induced arthritis in rats. Brain Res 2015; 1610:12-9. [PMID: 25819555 DOI: 10.1016/j.brainres.2015.03.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/13/2015] [Accepted: 03/19/2015] [Indexed: 02/07/2023]
Abstract
Recent literature has revealed that centrally generated prostaglandins participate in the febrile response in zymosan-induced arthritis in rats. However, it is not clear whether other centrally acting pyrogenic mediators such as cytokines, endothelins (ETs), and the corticotropin-releasing factor (CRF) contribute to the febrile response in this model. In the present study, rats were pretreated with intracerebroventricular (i.c.v.) injections of soluble TNF receptor I (sTNFRI), recombinant IL-1 receptor antagonist (IL-1ra), anti-rat IL-6 monoclonal antibody (AbIL-6), α-helical CRF9-41 (a nonselective CRF1/CRF2 receptor antagonist), BQ-123 (an ETA receptor antagonist), BQ-788 (an ETB receptor antagonist), and artificial cerebrospinal fluid (aCSF, control) prior to an intra-articular zymosan (4 mg) injection. Rectal temperatures were measured with a telethermometer. The administration of IL-1ra (200 µg), sTNFRI (500 ng), and AbIL-6 (5 µg) attenuated body temperature elevations after a zymosan injection. The administration of BQ-788 (3 pmol), BQ-123 (3 pmol), and α-helical CRF9-41 (25 µg) did not affect the zymosan-induced febrile response. All the compounds used to pretreat the animals did not significantly alter their basal body temperatures. Together, the results here demonstrate that the febrile response in zymosan-induced arthritis in rats depends on the centrally acting pyrogenic cytokines TNF-α, IL-1β, and IL-6, but does not depend on either CRF or ET-1.
Collapse
Affiliation(s)
- Alexandre Kanashiro
- Laboratory of Pharmacology, Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Ribeirão Preto 14040-903, SP, Brazil
| | - Maria J Figueiredo
- Laboratory of Pharmacology, Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Ribeirão Preto 14040-903, SP, Brazil
| | - David do C Malvar
- Laboratory of Pharmacology, Department of Physiologic Sciences, Federal Rural University of Rio de Janeiro, BR 465/Km 07, Seropédica 23890-000, RJ, Brazil
| | - Glória E P Souza
- Laboratory of Pharmacology, Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Ribeirão Preto 14040-903, SP, Brazil.
| |
Collapse
|
10
|
Ogino M, Okumura A, Khan MSI, Cline MA, Tachibana T. Comparison of brain urocortin-3 and corticotrophin-releasing factor for physiological responses in chicks. Physiol Behav 2014; 125:57-61. [DOI: 10.1016/j.physbeh.2013.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 11/18/2013] [Indexed: 10/26/2022]
|
11
|
Soares DM, Ott D, Melo MCC, Souza GEP, Roth J. Chemokine ligand (CCL)-3 promotes an integrated febrile response when injected within pre-optic area (POA) of rats and induces calcium signaling in cells of POA microcultures but not TNF-α or IL-6 synthesis. Brain Behav Immun 2013; 34:120-9. [PMID: 23999490 DOI: 10.1016/j.bbi.2013.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 08/09/2013] [Accepted: 08/09/2013] [Indexed: 11/26/2022] Open
Abstract
Although studies have shown that chemokines are pyrogenic when injected into the brain, there are no data indicating which cell types and receptors in the CNS are employed by chemokines such as CCL3 (synonym: MIP-1α) to induce fever in rats. We aimed to study, whether CCL3 induces fever when injected directly into the thermoregulatory center within the pre-optic area (POA). Moreover, we investigated whether CCL3 activates cells from POA microcultures resulting in intracellular Ca++ mobilization and synthesis/release of TNF-α and IL-6. Microinjections of CCL3 into the POA induced a dose-dependent fever, which was accompanied by a decrease in tail skin temperature. The primary microcultures of the POA (from topographically excised rat pup brain tissue) were stimulated by bolus administrations of 100 μl CCL3 (0.1 or 0.01 μg) or sterile PBS as control. We evaluated the responses of 261 (30.89%) neurons, 346 (40.94%) astrocytes and 238 microglia cells (29.17%). Stimulation of rat POA microcultures with CCL3 was capable of inducing Ca++ signaling in 15.31% of all astrocytes and 5.75% of all neurons investigated. No cellular Ca++-signals were observed after overnight incubation of the cultures with antiCCR1 or antiCCR5 antibodies. CCL3 did not alter the release of the pyrogenic cytokines IL-6 or TNF-α into the supernatant of the cultures. In conclusion the present study shows for the first time that CCL-3 injected directly into the rat POA, evoked an integrated febrile response. In parallel this chemokine induces Ca++ signaling in astrocytes and neurons via both CCR1 and CCR5 receptors when administered to POA microcultures without stimulating the synthesis of TNF-α and IL-6. It is a possibility that CCL3-induced fever may occur via CCR1 and CCR5 receptors stimulation of astrocytes and neurons from POA.
Collapse
Affiliation(s)
- Denis Melo Soares
- Laboratory of Pharmacology, Faculty of Pharmaceutical Science, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | | | | | | | | |
Collapse
|
12
|
Hatzelmann T, Harden LM, Roth J, Gerstberger R. Antipyretic effect of central [Pyr1]apelin13 on LPS-induced fever in the rat. ACTA ACUST UNITED AC 2013; 184:6-13. [DOI: 10.1016/j.regpep.2013.03.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 01/15/2013] [Accepted: 03/03/2013] [Indexed: 12/20/2022]
|