1
|
Li L, Ma Y, Zhu C, Li Y, Cao H, Wu Z, Jin T, Wang Y, Chen S, Dong W. Paternal obesity induces subfertility in male offspring by modulating the oxidative stress-related transcriptional network. Int J Obes (Lond) 2024; 48:1318-1331. [PMID: 38902387 DOI: 10.1038/s41366-024-01562-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND/OBJECTIVE The effects of fathers' high-fat diet (HFD) on the reproductive health of their male offspring (HFD- F1) remain to be elucidated. Parental obesity is known to have a negative effect on offspring fertility, but there are few relevant studies on the effects of HFD-F1 on reproductive function. METHODS We first succeeded in establishing the HFD model, which provides a scientific basis in the analysis of HFD-F1 reproductive health. Next, we assessed biometric indices, intratesticular cellular status, seminiferous tubules and testicular transcriptomic homeostasis in HFD-F1. Finally, we examined epididymal (sperm-containing) apoptosis, as well as antioxidant properties, motility, plasma membrane oxidation, DNA damage, and sperm-egg binding in the epididymal sperm. RESULTS Our initial results showed that HFD-F1 mice had characteristics similar to individuals with obesity, including higher body weight and altered organ size. Despite no major changes in the types of testicular cells, we found decreased activity of important genes and noticed the presence of abnormally shaped sperm at seminiferous tubule lumen. Further analysis of HFD-F1 testes suggests that these changes might be caused by increased vulnerability to oxidative stress. Finally, we measured several sperm parameters, these results presented HFD-F1 offspring exhibited a deficiency in antioxidant properties, resulting in damaged sperm mitochondrial membrane potential, insufficient ATP content, increased DNA fragmentation, heightened plasma membrane oxidation, apoptosis-prone and decreased capacity for sperm-oocyte binding during fertilization. CONCLUSION HFD- F1 subfertility arises from the susceptibility of the transcriptional network to oxidative stress, resulting in reduced antioxidant properties, motility, sperm-egg binding, and elevated DNA damage. Schematic representation of the HFD-F1 oxidative stress susceptibility to subfertility. Notably, excessive accumulation of ROS surpasses the physiological threshold, thereby damaging PUFAs within the sperm plasma membrane. This oxidative assault affects crucial components such as mitochondria and DNA. Consequently, the sperm's antioxidant defense mechanisms become compromised, leading to a decline in vitality, motility, and fertility.
Collapse
Affiliation(s)
- Long Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Yuxuan Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
- Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chao Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
- Ankang R&D Center of Se-enriched Products, Ankang, Shaanxi, 725000, China
| | - Yan Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Heran Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Zifang Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Tianqi Jin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Yang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Shaoxian Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China.
- Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
2
|
Meng B, He J, Cao W, Zhang Y, Qi J, Luo S, Shen C, Zhao J, Xue Y, Qu P, Liu E. Paternal high-fat diet altered H3K36me3 pattern of pre-implantation embryos. ZYGOTE 2024; 32:1-6. [PMID: 38018398 DOI: 10.1017/s0967199423000448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The global transition towards diets high in calories has contributed to 2.1 billion people becoming overweight, or obese, which damages male reproduction and harms offspring. Recently, more and more studies have shown that paternal exposure to stress closely affects the health of offspring in an intergenerational and transgenerational way. SET Domain Containing 2 (SETD2), a key epigenetic gene, is highly conserved among species, is a crucial methyltransferase for converting histone 3 lysine 36 dimethylation (H3K36me2) into histone 3 lysine 36 trimethylation (H3K36me3), and plays an important regulator in the response to stress. In this study, we compared patterns of SETD2 expression and the H3K36me3 pattern in pre-implantation embryos derived from normal or obese mice induced by high diet. The results showed that SETD2 mRNA was significantly higher in the high-fat diet (HFD) group than the control diet (CD) group at the 2-cell, 4-cell, 8-cell, and 16-cell stages, and at the morula and blastocyst stages. The relative levels of H3K36me3 in the HFD group at the 2-cell, 4-cell, 8-cell, 16-cell, morula stage, and blastocyst stage were significantly higher than in the CD group. These results indicated that dietary changes in parental generation (F0) male mice fed a HFD were traceable in SETD2/H3K36me3 in embryos, and that a paternal high-fat diet brings about adverse effects for offspring that might be related to SETD2/H3K36me3, which throws new light on the effect of paternal obesity on offspring from an epigenetic perspective.
Collapse
Affiliation(s)
- Bin Meng
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China
- The Assisted Reproduction Center, Northwest Women's and Children's Hospital, Xi'an, China
| | - Jiahui He
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Wenbin Cao
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an, China
| | - Yanru Zhang
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an, China
| | - Jia Qi
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an, China
| | - Shiwei Luo
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China
| | - Chong Shen
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China
| | - Juan Zhao
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ying Xue
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China
| | - Pengxiang Qu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an, China
| | - Enqi Liu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an, China
| |
Collapse
|
3
|
Huang C, Yang C, Pang D, Li C, Gong H, Cao X, He X, Chen X, Mu B, Cui Y, Liu W, Luo Q, Cheng A, Jia L, Chen M, Xiao B, Chen Z. Animal models of male subfertility targeted on LanCL1-regulated spermatogenic redox homeostasis. Lab Anim (NY) 2022; 51:133-145. [PMID: 35469022 DOI: 10.1038/s41684-022-00961-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 03/23/2022] [Indexed: 02/08/2023]
Abstract
Oxidative stress in spermatozoa is a major contributor to male subfertility, which makes it an informed choice to generate animal models of male subfertility with targeted modifications of the antioxidant systems. However, the critical male germ cell-specific antioxidant mechanisms have not been well defined yet. Here we identify LanCL1 as a major male germ cell-specific antioxidant gene, reduced expression of which is related to human male infertility. Mice deficient in LanCL1 display spermatozoal oxidative damage and impaired male fertility. Histopathological studies reveal that LanCL1-mediated antioxidant response is required for mouse testicular homeostasis, from the initiation of spermatogenesis to the maintenance of viability and functionality of male germ cells. Conversely, a mouse model expressing LanCL1 transgene is protected against high-fat-diet/obesity-induced oxidative damage and subfertility. We further show that germ cell-expressed LanCL1, in response to spermatogenic reactive oxygen species, is regulated by transcription factor specific protein 1 (SP1) during spermatogenesis. This study demonstrates a critical role for the SP1-LanCL1 axis in regulating testicular homeostasis and male fertility mediated by redox balance, and provides evidence that LanCL1 genetically modified mice have attractive applications as animal models of male subfertility.
Collapse
Affiliation(s)
- Chao Huang
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Chengcheng Yang
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Dejiang Pang
- Neuroscience & Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Chao Li
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Huan Gong
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Xiyue Cao
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Xia He
- Clinical Laboratory of the People's Hospital of Ya'an, Ya'an, P. R. China
| | - Xueyao Chen
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Bin Mu
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Yiyuan Cui
- Neuroscience & Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Wentao Liu
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Qihui Luo
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Anchun Cheng
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Lanlan Jia
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Mina Chen
- Neuroscience & Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China.
| | - Bo Xiao
- Department of Biology, Southern University of Science and Technology, Shenzhen, P. R. China.
| | - Zhengli Chen
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China.
| |
Collapse
|
4
|
Ayad B, Omolaoye TS, Louw N, Ramsunder Y, Skosana BT, Oyeipo PI, Du Plessis SS. Oxidative Stress and Male Infertility: Evidence From a Research Perspective. FRONTIERS IN REPRODUCTIVE HEALTH 2022; 4:822257. [PMID: 36303652 PMCID: PMC9580735 DOI: 10.3389/frph.2022.822257] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/17/2022] [Indexed: 11/30/2022] Open
Abstract
Male fertility potential can be influenced by a variety of conditions that frequently coincide. Spermatozoa are particularly susceptible to oxidative damage due to their limited antioxidant capacity and cell membrane rich in polyunsaturated fatty acids (PUFAs). The role of oxidative stress (OS) in the etiology of male infertility has been the primary focus of our Stellenbosch University Reproductive Research Group (SURRG) over the last 10 years. This review aims to provide a novel insight into the impact of OS on spermatozoa and male reproductive function by reviewing the OS-related findings from a wide variety of studies conducted in our laboratory, along with those emerging from other investigators. We will provide a concise overview of the production of reactive oxygen species (ROS) and the development of OS in the male reproductive tract along with the physiological and pathological effects thereof on male reproductive functions. Recent advances in methods and techniques used for the assessment of OS will also be highlighted. We will furthermore consider the current evidence regarding the association between OS and ejaculatory abstinence period, as well as the potential mechanisms involved in the pathophysiology of various systemic diseases such as obesity, insulin resistance, hypertension, and certain mental health disorders which have been shown to cause OS induced male infertility. Finally, special emphasis will be placed on the potential for transferring and incorporating research findings emanating from different experimental studies into clinical practice.
Collapse
Affiliation(s)
- Bashir Ayad
- Department of Physiology, Faculty of Medicine, Misurata University, Misrata, Libya
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Temidayo S. Omolaoye
- Department of Basic Medical Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Nicola Louw
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Yashthi Ramsunder
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Bongekile T. Skosana
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Peter I. Oyeipo
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
- Department of Physiology, College of Health Sciences, Osun State University, Osogbo, Nigeria
| | - Stefan S. Du Plessis
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
- Department of Basic Medical Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
5
|
Deshpande SSS, Nemani H, Balasinor NH. High fat diet-induced- and genetically inherited- obesity differential alters DNA demethylation pathways in the germline of adult male rats. Reprod Biol 2021; 21:100532. [PMID: 34246869 DOI: 10.1016/j.repbio.2021.100532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/11/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022]
Abstract
Obesity is a multifactorial condition with predominantly genetic and environmental causes and is an emerging risk factor for male infertility/subfertility. Epigenetic mechanisms are vulnerable to genetic and environmental changes. Our earlier studies have shown differential effects of genetically inherited (GIO) - and diet-induced- obesity (DIO) on DNA methylation in male germline. Contrary to DNA methylation is DNA demethylation, which also regulates the gene expression by activating transcription. The present study aimed to delineate the effects of obesity on the DNA demethylation pathway using two rat models: GIO (WNIN/Ob) and DIO (high-fat diet). We observed differential alterations in enzymes involved in DNA demethylation by oxidation (Tet1-3) pathway in testis in both groups. An increase in Tets in DIO group and a decrease in GIO group were noted. Analysis of oxidation pathway intermediates (5-hmC, 5-fC, and 5-caC) did not show any effect on testis in DIO group but an increase in 5-hmC and decrease in 5-caC levels in GIO group was observed. Analysis of transcript levels of enzymes related to deamination pathway in testis showed an increase (Gadd45a, Aicda, and Tdg) in DIO group and a decrease (Gadd45a, Aicda, and Tdg) in GIO group. Also, 5-hmC levels were differentially altered in the spermatozoa of both groups without any changes in Tet enzyme levels. These findings highlight differences in effects of GIO and DIO on DNA demethylation mechanisms in male germline, which could be due to differences in endocrine and metabolic profile as well as white fat distribution observed earlier in two groups.
Collapse
Affiliation(s)
- Sharvari S S Deshpande
- Department of Neuroendocrinology, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400012, India
| | - Harishankar Nemani
- National Institute of Nutrition Animal Facility, ICMR-National Institute of Nutrition, Jamai-Osmania PO, Hyderabad, 500 007, India
| | - Nafisa H Balasinor
- Department of Neuroendocrinology, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400012, India.
| |
Collapse
|
6
|
Greish SM, Abdel Kader GS, Abdelaziz EZ, Eltamany DA, Sallam HS, Abogresha NM. Lycopene is superior to moringa in improving fertility markers in diet-induced obesity male rats. Saudi J Biol Sci 2021; 28:2956-2963. [PMID: 34025172 PMCID: PMC8117045 DOI: 10.1016/j.sjbs.2021.02.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 02/04/2021] [Accepted: 02/07/2021] [Indexed: 01/24/2023] Open
Abstract
Obesity contributes to male infertility. Can lycopene or moringa improve male infertility? Tested in a rodent model of diet-induced obesity. Lycopene was superior to Moringa in improving male fertility parameters.
Obesity is a condition of chronic tissue inflammation and oxidative stress that poses as a risk factor for male infertility. Moringa oleifera oil extract is known to have cholesterol-lowering properties and a potential to treat obesity, while lycopene is a potent antioxidant. We hypothesize that Moringa or lycopene may improve male fertility markers in an animal model of diet-induced obesity. Male Albino rats (n = 60) were randomized to receive regular chow (RC) or high-fat diet (HFD) for 12 weeks (n = 30 each). Animals in each arm were further randomized to receive gavage treatment with corn oil (vehicle), lycopene (10 mg/kg), or Moringa (400 mg/kg) for four weeks starting on week 9 (n = 10 each). Animals were sacrificed at 12 weeks, and blood was collected to assess lipid profile, serum testosterone, and gonadotropin levels. The testes and epididymides were removed for sperm analysis, oxidative stress and inflammatory markers, and histopathological assessment. In comparison to their RC littermates, animals on HFD showed an increase in body weights, serum lipids, testosterone and gonadotrophin levels, testicular oxidative stress and inflammatory markers, as well as sperm abnormalities and disrupted testicular histology. Moringa or lycopene reduced body weight, improved oxidative stress, and male fertility markers in HFD-fed animals with lycopene exhibiting better anti-antioxidant and anti-lipidemic effects. Lycopene is superior to Moringa in improving male fertility parameters, possibly by attenuating oxidative stress.
Collapse
Key Words
- FSH, follicle-stimulating hormone
- Fertility
- GSH, reduced glutathione
- H&E, hematoxylin and eosin
- HDL, high-density lipoprotein
- HFD, high-fat diet
- HMG-Co-A, β-Hydroxy β-methylglutaryl-CoA
- IHC, immunohistochemistry
- LDL, low-density lipoprotein
- LH, Luteinizing hormone
- LY, lycopene
- Lycopene
- MDA, malondialdehyde
- MO, moringa
- Moringa
- NE, Eosin-Nigrosin
- Obesity
- Oxidative stress
- PBS, phosphate buffered saline
- RC, regular chow
- ROS, reactive oxygen species
- SOD, superoxide dismutase
- TC, total cholesterol
- VLDL, very low-density lipoprotein
- iNOS, inducible nitric oxide synthase
Collapse
Affiliation(s)
- Sahar M Greish
- Physiology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.,Medical Science Department, School of Oral and Dental Medicine, Badr University in Cairo, Cairo, Egypt
| | - Ghada S Abdel Kader
- Human Anatomy and Embryology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Eman Z Abdelaziz
- Pharmacology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Dalia A Eltamany
- Nutrition and Food Science, Home Economic Department, Faculty of Education, Suez Canal University, Ismailia, Egypt
| | - Hanaa S Sallam
- Physiology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.,Endocrinology Division, Internal Medicine Department, University of Texas Medical Branch, Galveston, TX, USA
| | - Noha M Abogresha
- Physiology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
7
|
Deshpande SS, Nemani H, Arumugam G, Ravichandran A, Balasinor NH. High-fat diet-induced and genetically inherited obesity differentially alters DNA methylation profile in the germline of adult male rats. Clin Epigenetics 2020; 12:179. [PMID: 33213487 PMCID: PMC7678167 DOI: 10.1186/s13148-020-00974-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/10/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Paternal obesity has been associated with reduced live birth rates. It could lead to inheritance of metabolic disturbances to the offspring through epigenetic mechanisms. However, obesity is a multifactorial disorder with genetic or environmental causes. Earlier we had demonstrated differential effects of high-fat diet-induced obesity (DIO) and genetically inherited obesity (GIO) on metabolic, hormonal profile, male fertility, and spermatogenesis using two rat models. The present study aimed to understand the effect of DIO and GIO on DNA methylation in male germline, and its subsequent effects on the resorbed (post-implantation embryo loss) and normal embryos. First, we assessed the DNA methylation enzymatic machinery in the testis by Real-Time PCR, followed global DNA methylation levels in spermatozoa and testicular cells by ELISA and flow cytometry, respectively. Further, we performed Methylation Sequencing in spermatozoa for both the groups. Sequencing data in spermatozoa from both the groups were validated using Pyrosequencing. Expression of the differentially methylated genes was assessed in the resorbed and normal embryos sired by the DIO group using Real-Time PCR for functional validation. RESULTS We noted a significant decrease in Dnmt transcript and global DNA methylation levels in the DIO group and an increase in the GIO group. Sequencing analysis showed 16,966 and 9113 differentially methylated regions in the spermatozoa of the DIO and GIO groups, respectively. Upon pathway analysis, we observed genes enriched in pathways involved in embryo growth and development namely Wnt, Hedgehog, TGF-beta, and Notch in spermatozoa for both the groups, the methylation status of which partially correlated with the gene expression pattern in resorbed and normal embryos sired by the DIO group. CONCLUSION Our study reports the mechanism by which diet-induced and genetically inherited obesity causes differential effects on the DNA methylation in the male germline that could be due to a difference in the white adipose tissue accumulation. These differences could either lead to embryo loss or transmit obesity-related traits to the offspring in adult life.
Collapse
Affiliation(s)
- Sharvari S. Deshpande
- Department of Neuroendocrinology, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai 400012 India
| | - Harishankar Nemani
- National Institute of Nutrition Animal Facility, ICMR-National Institute of Nutrition, Jamai-Osmania PO, Hyderabad 500 007 India
| | - Gandhimathi Arumugam
- Genome Informatics Department, Genotypic Technologies Pvt. Ltd., #2/13, Balaji Complex, Poojari Layout, 80 Feet Road, R.M.V. 2nd stage, Bengaluru, India
| | - Avinash Ravichandran
- Genome Informatics Department, Genotypic Technologies Pvt. Ltd., #2/13, Balaji Complex, Poojari Layout, 80 Feet Road, R.M.V. 2nd stage, Bengaluru, India
| | - Nafisa H. Balasinor
- Department of Neuroendocrinology, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai 400012 India
| |
Collapse
|