1
|
Ahmad R, Shaju R, Atfi A, Razzaque MS. Zinc and Diabetes: A Connection between Micronutrient and Metabolism. Cells 2024; 13:1359. [PMID: 39195249 DOI: 10.3390/cells13161359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Diabetes mellitus is a global health problem and a major contributor to mortality and morbidity. The management of this condition typically involves using oral antidiabetic medication, insulin, and appropriate dietary modifications, with a focus on macronutrient intake. However, several human studies have indicated that a deficiency in micronutrients, such as zinc, can be associated with insulin resistance as well as greater glucose intolerance. Zinc serves as a chemical messenger, acts as a cofactor to increase enzyme activity, and is involved in insulin formation, release, and storage. These diverse functions make zinc an important trace element for the regulation of blood glucose levels. Adequate zinc levels have also been shown to reduce the risk of developing diabetic complications. This review article explains the role of zinc in glucose metabolism and the effects of its inadequacy on the development, progression, and complications of diabetes mellitus. Furthermore, it describes the impact of zinc supplementation on preventing diabetes mellitus. The available information suggests that zinc has beneficial effects on the management of diabetic patients. Although additional large-scale randomized clinical trials are needed to establish zinc's clinical utility further, efforts should be made to increase awareness of its potential benefits on human health and disease.
Collapse
Affiliation(s)
- Rahnuma Ahmad
- Department of Physiology, Medical College for Women and Hospital, Dhaka 1230, Bangladesh
| | - Ronald Shaju
- Department of Medical Education, School of Medicine, University of Texas Rio Grande Valley (UTRGV), Edinburg, TX 78541, USA
| | - Azeddine Atfi
- Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Mohammed S Razzaque
- Department of Medical Education, School of Medicine, University of Texas Rio Grande Valley (UTRGV), Edinburg, TX 78541, USA
| |
Collapse
|
2
|
Ma J, Tan H, Bi J, Sun B, Zhen Y, Lian W, Wang S. Zinc Ameliorates Tripterygium Glycosides-Induced Reproductive Impairment in Male Rats by Regulating Zinc Homeostasis and Expression of Oxidative Stress-Related Genes. Biol Trace Elem Res 2024; 202:2111-2123. [PMID: 37612486 DOI: 10.1007/s12011-023-03815-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023]
Abstract
Tripterygium glycosides (TG) can seriously damage male reproductive function, and the reproductive system is difficult to restore after stopping the administration of TG in male rats. Zinc (Zn) is one of the most important trace elements in the human body and plays an important role in maintaining male fertility. The aim of this study was to investigate whether zinc supplementation could improve the testicular reproductive damage induced by TG toxicity in rats and to investigate its mechanism of action. The results showed that zinc sulfate (ZnSO4) could improve testicular tissue structure and semen parameters, promote testosterone synthesis, increase zinc-containing enzyme activity, increase zinc concentration in serum and testicular tissues, and maintain zinc homeostasis in male rats induced by TG toxicity. Zinc supplementation activated relevant signalling molecules in the KEAP1-NRF2/ARE pathway and alleviated TG-induced oxidative stress. Therefore, this study concluded that zinc supplementation could improve reproductive damage by regulating zinc homeostasis and the expression of genes related to oxidative stress.
Collapse
Affiliation(s)
- Jing Ma
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, No. 80 Heping Street, Xinhua District, Shijiazhuang, 050071, China
| | - He Tan
- Hebei General Hospital, Shijiazhuang, 050051, China
- Graduate School of Hebei Medical University, Shijiazhuang, 050017, China
| | - Jiajie Bi
- Graduate School of Chengde Medical University, Chengde, 067000, China
| | - Bo Sun
- Graduate School of Hebei Medical University, Shijiazhuang, 050017, China
| | - Yingxian Zhen
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, No. 80 Heping Street, Xinhua District, Shijiazhuang, 050071, China
| | - Weiguang Lian
- Department of Laboratory Animals, The Key Lab of Hebei Provincial Laboratory Animals, Hebei Medical University, Shijiazhuang, 050017, China.
| | - Shusong Wang
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, No. 80 Heping Street, Xinhua District, Shijiazhuang, 050071, China.
- Graduate School of Hebei Medical University, Shijiazhuang, 050017, China.
- Graduate School of Chengde Medical University, Chengde, 067000, China.
| |
Collapse
|
3
|
Zhang M, Li H, Ma J, Yang C, Yang Y, Zhao B, Tie Y, Wang S. Effects of Zinc Combined with Metformin on Zinc Homeostasis, Blood-Epididymal Barrier, and Epididymal Absorption in Male Diabetic Mice. Biol Trace Elem Res 2024:10.1007/s12011-024-04171-y. [PMID: 38589680 DOI: 10.1007/s12011-024-04171-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/01/2024] [Indexed: 04/10/2024]
Abstract
Diabetes increases the likelihood of germ cell damage, hypogonadism, and male infertility. Diabetes leads to lower zinc (Zn) levels, an important micronutrient for maintaining male fertility, and zinc deficiency can lead to decreased male fertility through multiple mechanisms. The aim of this study was to investigate the effect of combined metformin and zinc administration on epididymis in diabetic mice; 10 of 50 male mice were randomly selected as the control group (group C), and the remaining 40 mice were randomly divided into untreated diabetes group (group D), diabetes + zinc group (group Z), diabetes + metformin group (group M), and diabetes + metformin + zinc group (group ZM) with 10 mice each. Diabetic mice in group Z received oral zinc (10 mg/kg) once daily for 4 weeks; diabetic mice in group M received oral metformin (200 mg/kg) once daily for 4 weeks; diabetic mice in group ZM received oral metformin and zinc once daily for 4 weeks; and groups C and D received the same amount of sterile water by gavage. Overnight fasted mice were sacrificed, and blood samples, mouse epididymides, and sperm were collected for further experiments. In group D, fasting blood glucose and insulin resistance index increased significantly, semen quality, serum insulin, and testosterone decreased, and epididymal structure was disordered. In group D, epididymal tissue zinc, free zinc ions in the caput, and cauda of epididymis and zinc transporter (ZnT2) decreased significantly, while ZIP12, metallothionein (MT), and metal transcription factor (MTF1) increased significantly. In addition, the expressions of blood-epididymal barrier (BEB)-related molecules (including ZO-1 β-catenin and N-cadherin) and aquaporins (AQPs, including AQP3, AQP9, and AQP11) in the epididymis of mice in group D were significantly decreased. In addition, compared with groups D, Z, and M, in the ZM group, the expression of BEB-related molecules (including ZO-1, β-catenin, and N-cadherin) and aquaporins (AQP3, AQP9, and AQP11) in epididymis tissue were significantly increased, and sperm motility and serum testosterone were significantly increased. It was concluded that male diabetic mice have a disturbed epididymal structure and decreased semen quality by causing an imbalance in epididymal zinc homeostasis, BEB, and impaired absorptive function. The combination of zinc and metformin is an effective and safe alternative treatment and provides additional benefits over metformin alone.
Collapse
Affiliation(s)
- Menghui Zhang
- Graduate School, North China University of Science and Technology, Tangshan, 063210, China
| | - Huanhuan Li
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Shijiazhuang, 050071, China
| | - Jing Ma
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Shijiazhuang, 050071, China
| | - Chaoju Yang
- Department of Laboratory, Hebei Provincial People's Hospital, Shijiazhuang, 050051, China
| | - Yang Yang
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Shijiazhuang, 050071, China
| | - Bangrong Zhao
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Shijiazhuang, 050071, China
| | - Yanqing Tie
- Graduate School, North China University of Science and Technology, Tangshan, 063210, China.
- Department of Laboratory, Hebei Provincial People's Hospital, Shijiazhuang, 050051, China.
| | - Shusong Wang
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Shijiazhuang, 050071, China.
| |
Collapse
|
4
|
Sun B, Ma J, Liu J, Li Y, Bi J, Te L, Zuo X, Wang S. Mechanisms of damage to sperm structure in mice on the zinc-deficient diet. J Trace Elem Med Biol 2023; 79:127251. [PMID: 37392679 DOI: 10.1016/j.jtemb.2023.127251] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 06/05/2023] [Accepted: 06/22/2023] [Indexed: 07/03/2023]
Abstract
BACKGROUND Zinc (Zn)is an essential trace element for spermatogenesis and its deficiency causes abnormal spermatogenesis. OBJECTIVE The present study was conducted to examine the mechanisms by which Zn-deficient diet impairs sperm morphology and its reversibility. METHODS 30 SPF grade male Kunming (KM) mice were randomly divided into three groups, 10 mice per group. Zn-normal diet group (ZN group) was given Zn-normal diet(Zn content= 30 mg/kg)for 8 weeks. Zn-deficienct diet group (ZD group) was given Zn-deficienct diet(Zn content< 1 mg/kg)for 8 weeks. Zn-deficient and Zn-normal diet group(ZDN group)was given 4 weeks Zn-deficienct diet followed by 4 weeks Zn-normal diet. After 8 weeks, the overnight fasted mice were sacrificed, and blood and organs were collected for further analysis. RESULTS The experimental results showed that Zn-deficienct diet leads to increased abnormal morphology sperm and testicular oxidative stress.The rate of abnormal morphology sperm, chromomycin A3(CMA3), DNA fragmentation index (DFI), malondialdehyde (MDA) were significantly increased, and a-kinase anchor protein 4(AKAP4), dynein axonemal heavy chain 1(DNAH1), sperm associated antigen 6(SPAG6), cilia and flagella associated protein 44(CFAP44), glutathione peroxidase (GSH-PX), superoxide dismutase (SOD), total antioxidant capacity (T-AOC), nuclear factor erythroid 2-related factor (NRF2), NAD(P)H:quinone oxidoreductase 1(NQO1)and heme oxygenase 1(HO1) were significantly decreased in the ZD group mice. While the changes in above indicators caused by Zn-deficient diet were significantly alleviated in the ZDN group. CONCLUSION It was concluded that Zn-deficient diet causes abnormal morphology sperm and testicular oxidative stress in male mice. Abnormal morphology sperm caused by Zn-deficient diet are reversible, and Zn-normal diet can alleviate them.
Collapse
Affiliation(s)
- Bo Sun
- Graduate School of Hebei Medical University, Shijiazhuang 050017, China
| | - Jing Ma
- Hebei Key Laboratory of Reproductive Medicine, Hebei Institute of Reproductive Health Science and Technology, Shijiazhuang 050071, China
| | - Junsheng Liu
- Graduate School of Hebei Medical University, Shijiazhuang 050017, China
| | - Yuejia Li
- Graduate School of Hebei Medical University, Shijiazhuang 050017, China
| | - Jiajie Bi
- Chengde Medical College, Chengde 067000, China
| | - Liger Te
- Graduate School of Hebei Medical University, Shijiazhuang 050017, China
| | - Xin Zuo
- School of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Shusong Wang
- Graduate School of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Reproductive Medicine, Hebei Institute of Reproductive Health Science and Technology, Shijiazhuang 050071, China; Chengde Medical College, Chengde 067000, China; School of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China.
| |
Collapse
|
5
|
Te L, Liu J, Ma J, Wang S. Correlation between serum zinc and testosterone: A systematic review. J Trace Elem Med Biol 2023; 76:127124. [PMID: 36577241 DOI: 10.1016/j.jtemb.2022.127124] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 12/11/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Zinc is a vital trace element for normal function of the living system. In male, zinc is involved in various biological processes, an important function of which is as a balancer of hormones such as testosterone. For this purpose, studies related to the influence of zinc on serum testosterone were selected and summarized, including the effect of dietary zinc deficiency and zinc supplementation on testosterone concentrations. After preliminary searching of papers on databases, 38 papers including 8 clinical and 30 animal studies were included in this review. We concluded that zinc deficiency reduces testosterone levels and zinc supplementation improves testosterone levels. Furthermore, the effect degree of zinc on serum testosterone may vary depending on basal zinc and testosterone levels, zinc dosage form, elementary zinc dose, and duration. In conclusion, serum zinc was positively correlated with total testosterone, and moderate supplementation plays an important role in improving androgen.
Collapse
Affiliation(s)
- Liger Te
- Graduate School of Hebei Medical University, Shijiazhuang 050017, China
| | - Junsheng Liu
- Graduate School of Hebei Medical University, Shijiazhuang 050017, China
| | - Jing Ma
- Hebei Key Laboratory of Reproductive Medicine, Hebei Institute of Reproductive Health Science and Technology, Shijiazhuang 050071, China
| | - Shusong Wang
- Graduate School of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Reproductive Medicine, Hebei Institute of Reproductive Health Science and Technology, Shijiazhuang 050071, China.
| |
Collapse
|
6
|
Wang X, Liang Y, Liu Q, Cai J, Tang X, Liu S, Zhang J, Xu M, Wei C, Mo X, Wei Y, Lin Y, Huang S, Mai T, Tan D, Luo T, Gou R, Qin J, Zhang Z. Association of CYP19A1 Gene, Plasma Zinc, and Urinary Zinc with the Risk of Type 2 Diabetes Mellitus in a Chinese Population. Biol Trace Elem Res 2022:10.1007/s12011-022-03502-1. [PMID: 36441497 DOI: 10.1007/s12011-022-03502-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/19/2022] [Indexed: 11/30/2022]
Abstract
To explore the effects of CYP19A1 gene polymorphisms, plasma zinc, and urinary zinc levels and their interactions on type 2 diabetes mellitus (T2DM) in residents of Gongcheng County, Guangxi, China. The case-control study was used for the investing. The MassARRAY System was applied to genotype the CYP19A1 genes rs752760, rs10046, rs10459592, and rs700518 in 540 study subjects. Plasma and urinary zinc concentrations were measured by inductively coupled plasma mass spectrometry (ICP-MS). Conditional logistic regression showed that rs752760 and plasma zinc were associated with T2DM risks with ORs of 0.593 (95% CI: 0.371-0.948) and 0.563 (95% CI: 0.356-0.889), respectively. Unconditional logistic regression analysis showed an association between urinary zinc levels and the risk of T2DM as well, with an OR of 0.352 (95% CI: 0.212-0.585). The results of the multiplicative interaction model showed that the rs752760 T allele was associated with a significantly reduced risk of T2DM with moderate/low plasma zinc levels, with ORs of 0.340 (95% CI: 0.161-0.715) and 0.583 (95% CI: 0.346-0.981), respectively, and the rs752760 T allele was also associated with a significantly decreased risk of T2DM with moderate/low urinary zinc levels, with ORs of 0.358 (95% CI: 0.201-0.635) and 0.321 (95% CI: 0.183-0.562), respectively. CYP19A1 rs752760 T allele and moderate/low plasma/urinary zinc levels reduce the risk of T2DM.
Collapse
Affiliation(s)
- Xuexiu Wang
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Yujian Liang
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Qiumei Liu
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Jiansheng Cai
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Nanning, China
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
| | - Xu Tang
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Shuzhen Liu
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Junling Zhang
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Min Xu
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Chunmei Wei
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Xiaoting Mo
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Yanfei Wei
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Yinxia Lin
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Shenxiang Huang
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Tingyu Mai
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Guilin, China
| | - Dechan Tan
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Guilin, China
| | - Tingyu Luo
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Guilin, China
| | - Ruoyu Gou
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Guilin, China
| | - Jian Qin
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Nanning, China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China.
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, China.
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, China.
| | - Zhiyong Zhang
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Nanning, China.
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Guilin, China.
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, China.
| |
Collapse
|
7
|
Li Y, Li L, Yang W, Yu Z. <sup>1</sup>Effects of zinc deficiency in male mice on glucose metabolism of male offspring. Chem Pharm Bull (Tokyo) 2022; 70:369-374. [DOI: 10.1248/cpb.c21-00959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yang Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University
| | - LingLing Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University
| | - Wenjie Yang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University
| | - Zengli Yu
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University
| |
Collapse
|
8
|
Huang T, Zhou Y, Lu X, Tang C, Ren C, Bao X, Deng Z, Cao X, Zou J, Zhang Q, Ma B. Cordycepin, a major bioactive component of Cordyceps militaris, ameliorates diabetes-induced testicular damage through the Sirt1/Foxo3a pathway. Andrologia 2021; 54:e14294. [PMID: 34811786 DOI: 10.1111/and.14294] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/02/2021] [Accepted: 10/11/2021] [Indexed: 12/29/2022] Open
Abstract
Diabetes-induced male dysfunction is considered as a worldwide challenge, and testicular damage mainly caused by oxidative stress is its most common manifestation. Cordycepin, a natural antioxidant, has been used in the treatment of diabetic complications. However, the protective action and underlying mechanism of cordycepin on hyperglycaemia-induced testicular damage are unclear. This study aimed to investigate the protective effects and molecular mechanisms of cordycepin against diabetes-induced testicular damage. The type 2 diabetes model was established in C57BL/6 male mice via high-fat diet for 4 weeks and injected intraperitoneally with 50 mg/kg/day streptozotocin for five consecutive days. Then mice were treated with cordycepin (10 and 20 mg/kg, respectively) for 8 weeks. At the end of experiment, biochemical indicators, microstructure of testicular tissue, sperm morphology, TUNEL staining and protein expressions were evaluated. In the present study, cordycepin alleviated the testicular damage, restored disruption of the blood-testis barrier, and improved spermatogenic function via the antiapoptotic and antioxidant capacity. Mechanistically, cordycepin significantly enhanced SIRT1 expression and triggered the activity of Foxo3a, further to induce the expression of its downstream antioxidant enzymes, including Mn-SOD and CAT. These findings indicated that cordycepin could improve hyperglycaemia-induced testicular damage by regulating downstream antioxidant enzymes activity through the SIRT1/Foxo3a signalling pathway.
Collapse
Affiliation(s)
- Tao Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Yanfen Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Xuanzhao Lu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Chenglun Tang
- Luzhou Pinchuang Technology Co. Ltd., Luzhou, China.,Nanjing Sheng Ming Yuan Health Technology Co. Ltd., Nanjing, China
| | - Chaoxing Ren
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Xiaowen Bao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Zhewen Deng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Xiaomei Cao
- Department of Pharmacology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jianjun Zou
- Department of Clinical Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qi Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Bo Ma
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| |
Collapse
|
9
|
Zhao Y, Ye S, Lin J, Liang F, Chen J, Hu J, Chen K, Fang Y, Chen X, Xiong Y, Lin L, Tan X. NmFGF1-Regulated Glucolipid Metabolism and Angiogenesis Improves Functional Recovery in a Mouse Model of Diabetic Stroke and Acts via the AMPK Signaling Pathway. Front Pharmacol 2021; 12:680351. [PMID: 34025437 PMCID: PMC8139577 DOI: 10.3389/fphar.2021.680351] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/23/2021] [Indexed: 12/16/2022] Open
Abstract
Diabetes increases the risk of stroke, exacerbates neurological deficits, and increases mortality. Non-mitogenic fibroblast growth factor 1 (nmFGF1) is a powerful neuroprotective factor that is also regarded as a metabolic regulator. The present study aimed to investigate the effect of nmFGF1 on the improvement of functional recovery in a mouse model of type 2 diabetic (T2D) stroke. We established a mouse model of T2D stroke by photothrombosis in mice that were fed a high-fat diet and injected with streptozotocin (STZ). We found that nmFGF1 reduced the size of the infarct and attenuated neurobehavioral deficits in our mouse model of T2D stroke. Angiogenesis plays an important role in neuronal survival and functional recovery post-stroke. NmFGF1 promoted angiogenesis in the mouse model of T2D stroke. Furthermore, nmFGF1 reversed the reduction of tube formation and migration in human brain microvascular endothelial cells (HBMECs) cultured in high glucose conditions and treated with oxygen glucose deprivation/re-oxygenation (OGD). Amp-activated protein kinase (AMPK) plays a critical role in the regulation of angiogenesis. Interestingly, we found that nmFGF1 increased the protein expression of phosphorylated AMPK (p-AMPK) both in vivo and in vitro. We found that nmFGF1 promoted tube formation and migration and that this effect was further enhanced by an AMPK agonist (A-769662). In contrast, these processes were inhibited by the application of an AMPK inhibitor (compound C) or siRNA targeting AMPK. Furthermore, nmFGF1 ameliorated neuronal loss in diabetic stroke mice via AMPK-mediated angiogenesis. In addition, nmFGF1 ameliorated glucose and lipid metabolic disorders in our mouse model of T2D stroke without causing significant changes in body weight. These results revealed that nmFGF1-regulated glucolipid metabolism and angiogenesis play a key role in the improvement of functional recovery in a mouse model of T2D stroke and that these effects are mediated by the AMPK signaling pathway.
Collapse
Affiliation(s)
- Yeli Zhao
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shasha Ye
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jingjing Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Fei Liang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jun Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jian Hu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Kun Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yani Fang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiongjian Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ye Xiong
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Li Lin
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Research Units of Clinical Translation of Cell Growth Factors and Diseases Research, Chinese Academy of Medical Science, Wenzhou, China
| | - Xianxi Tan
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
10
|
Momordica cymbalaria improves reproductive parameters in alloxan-induced male diabetic rats. 3 Biotech 2021; 11:76. [PMID: 33505831 DOI: 10.1007/s13205-020-02612-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/23/2020] [Indexed: 10/22/2022] Open
Abstract
Male reproductive dysfunction is one of the common complications of diabetes mellitus that causes infertility. This study was designed to investigate the protective effect of Momordica cymbalaria (M. cymbalaria) extracts on diabetes mediated reproductive toxicity in male Wistar rats. The induction of diabetes was performed using a single intraperitoneal injection of alloxan (120 mg/kg). Skin and seed extracts (250 and 500 mg/kg) of M. cymbalaria were orally administered to alloxan-induced diabetic male rats for 28 days. Postprandial blood glucose (PBG) levels were recorded at 7-day interval for four weeks. The effects of the treatment on blood glucose, weight of reproductive organs, sperm count, testosterone levels, antioxidant capacity, and histomorphology were evaluated. Treatment with the above extracts of M. cymbalaria significantly (p < 0.05) improved the reproductive parameters as well as the antioxidant levels superoxide dismutase (SOD) and glutathione-s-transferase (GST) in the diabetic rats. Also, oral treatment with M. cymbalaria extracts significantly reduced the PBG and malondialdehyde (MDA) levels. Further, it revived the histomorphology of reproductive organs in diabetic rats. Interestingly, skin extract at a dose of 500 mg/kg was found to be more efficient in elevating the level of testosterone and sperm count in the diabetic rats. Based on the results, it is clear that M. cymbalaria not only regulates the postprandial blood glucose levels but also improves the reproductive health in the diabetic state.
Collapse
|
11
|
Yannasithinon S, Chaimontri C, Sawatpanich T, Iamsaard S. Dolichandrone serrulata flower extract ameliorates male reproductive damages in type 2 diabetic rats. Andrologia 2020; 53:e13911. [PMID: 33244776 DOI: 10.1111/and.13911] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 12/18/2022] Open
Abstract
Dolichandrone serrulata flower (DSF) has been believed to reduce blood glucose in hyperglycaemic persons with sub-fertility but its effect on improvement of male reproductive impairment has never been elucidated scientifically. This study attempted to investigate the hypoglycaemic effects of DSF on male reproductive damages in type 2 diabetes mellitus (T2DM) rats. Adult Sprague Dawley rats were divided into four groups (control, T2DM, DSF200 + T2DM and DSF600 + T2DM; n = 10/each). Control rats received low-fat diet for 14 days before saline injection while streptozocin (50 mg/kg BW) induced T2DM groups received high-fat diet and were orally administered with DSF (200 and 600 mg/kg BW) for 28 days. At the end, fasted blood glucose (FBG), malondialdehyde (MDA), testosterone, sperm quality, histology and protein expressions were examined. The result showed that DSF decreased high FBG and testicular MDA and increased testosterone levels of T2DM-treated rats. Low-sperm quality and histological malfunction were ameliorated in DSF-treated group. There was significant decrease in the expression of androgen receptor, heat-shock 70 and steroidogenic acute regulatory proteins of T2DM-treated rats. Our study demonstrated changes of six bands (116, 51, 45, 39, 35 and 29 kDas) of tyrosine-phosphorylated proteins. In conclusion, DSF could reduce the FBGand ameliorate the reproductive damages in male T2DM rats.
Collapse
Affiliation(s)
| | - Chadaporn Chaimontri
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Tarinee Sawatpanich
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sitthichai Iamsaard
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Research Institute for Human High Performance and Health Promotion (HHP&HP), Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|