1
|
Ahmad Wagay S, Sheikh J. Microfibre pollution: An emerging contaminant, alarming threat to the global environment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123055. [PMID: 39520864 DOI: 10.1016/j.jenvman.2024.123055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/04/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024]
Abstract
Microfibres, mostly obtained from home laundry, textiles, industrial materials, sewage effluents, and sludge, are considered the main source of environmental pollution, which has become a prevalent threat to terrestrial and aquatic creatures. Global population growth and industrialization have led to a rise in fibre consumption and production, which spread its network in drinking water, beer, and seafood. Focusing on the alarming threat of microfibre towards the natural environment, we have penned an extensive review article about microfibre pollution. The manuscript is divided into various subparts, such as the introductory portion, which briefly summarizes the sources and presence of various hazardous pollutants in the environment, followed by a detailed discussion about microfibre. The second part elaborates on the sources and distribution of microfibreous pollutants and the third portion discloses the toxic chemicals utilized or produced from functionalization, as well as the negative implications of microfibre on the environment. The fourth part discloses the leading application strategies to diminish microfibre pollution by controlling the sources and the development of various remediations. The last portion deals with the future and critical aspects of microfibre contamination. The authors hope this review article will boost its domain in environmental chemistry, sustainable development and environmental engineering from academic to industrial level as it helps researchers in particular and academics in general.
Collapse
Affiliation(s)
- Shafieq Ahmad Wagay
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Javed Sheikh
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India.
| |
Collapse
|
2
|
Raimondo S, Chiusano ML, Gentile M, Gentile T, Cuomo F, Gentile R, Danza D, Siani L, Crescenzo C, Palmieri M, Iaccarino S, Iaccarino M, Fortunato A, Liguori F, Esposito A, Zullo C, Sosa L, Sosa L, Ferrara I, Piscopo M, Notari T, Lacatena R, Gentile A, Montano L. Comparative analysis of the bioaccumulation of bisphenol A in the blood serum and follicular fluid of women living in two areas with different environmental impacts. Front Endocrinol (Lausanne) 2024; 15:1392550. [PMID: 39439569 PMCID: PMC11495266 DOI: 10.3389/fendo.2024.1392550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/22/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction Bisphenol A (BPA) is a common contaminant widely used in many industrial sectors. Because of its wide use and dispersion, it can be accumulated in living human bodies through both oral assumption and nondietary routes. BPA exhibits hormone-like properties, falling under the class of endocrine disruptors; therefore, it can alter relevant physiological functions. In particular, in women, it can affect folliculogenesis and therefore reproduction, contributing not only to infertility, but also to endometriosis and premature puberty. Methods We conducted a multicenter study on 91 women undergoing a first in vitro fertilization (IVF) treatment in the Campania region (Southern Italy). We investigated the presence and concentration of BPA in serum and follicular fluids to assess the effects of airborne BPA contamination. The analysis was conducted on 32 women living in a low environmental impact (LEI) area, from the Sele Valley River and Cilento region, and 59 women living in a high environmental impact (HEI) area, the so-called "Land of Fires", a highly contaminated territory widely exposed to illegal waste practices. Results A higher average BPA content in both blood serum and follicular fluid was revealed in the HEI group when compared with the LEI group. In addition, we revealed higher average BPA content in blood serum than in folliclular fluid in the HEI area, with opposite average content in the two fluids in the LEI zone. In addition, our results also showed a lack of correlation between BPA content in follicular and serum fluids both in the overall population and in the HEI and LEI groups, with peculiar trends in different subsets of women. Conclusion From our results, we revealed a heterogeneity in the distribution of BPA content between serum and follicular fluid. Further studies are needed to unravel the bioaccumulation mechanisms of BPA in highly polluted and nonpolluted areas.
Collapse
Affiliation(s)
- Salvatore Raimondo
- Network for Environmental and Reproductive Health (Eco-FoodFertility Project), “Gentile S.A.S.” Research Center, Gragnano, Italy
| | - Maria Luisa Chiusano
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Mariacira Gentile
- Residential Program in laboratory Medicine, Department of Medicine and Surgery, University of Milan Bicocca, Milan, Italy
| | - Tommaso Gentile
- Network for Environmental and Reproductive Health (Eco-FoodFertility Project), “Gentile S.A.S.” Research Center, Gragnano, Italy
| | - Felice Cuomo
- Network for Environmental and Reproductive Health (Eco-FoodFertility Project), “Gentile S.A.S.” Research Center, Gragnano, Italy
| | - Raffaella Gentile
- Network for Environmental and Reproductive Health (Eco-FoodFertility Project), “Gentile S.A.S.” Research Center, Gragnano, Italy
| | - Domenico Danza
- Mediterraneo Medical Assisted Procreation (MAP), Salerno, Italy
| | - Laura Siani
- Mediterraneo Medical Assisted Procreation (MAP), Salerno, Italy
| | | | | | - Stefania Iaccarino
- Clinica Hera-Medical Assisted Procreation (MAP), Giugliano in Campania, NA, Italy
| | - Mirella Iaccarino
- Clinica Hera-Medical Assisted Procreation (MAP), Giugliano in Campania, NA, Italy
| | | | | | - Antonio Esposito
- Centro Medical Assisted Procreation (MAP), ASL Napoli 2 Nord, Napoli, Italy
| | - Clelia Zullo
- Centro Medical Assisted Procreation (MAP), ASL Napoli 2 Nord, Napoli, Italy
| | | | | | | | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Tiziana Notari
- Andrology Unit, Check-Up PolyDiagnostics and Research Laboratory, Salerno, Italy
| | - Raffaele Lacatena
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Alberto Gentile
- Network for Environmental and Reproductive Health (Eco-FoodFertility Project), “Gentile S.A.S.” Research Center, Gragnano, Italy
| | - Luigi Montano
- Andrology Unit and Service of Lifestyle Medicine in UroAndrology, Local Health Authority (ASL) Salerno, Coordination Unit of the Network for Environmental and Reproductive Health (Eco-FoodFertility Project), “St. Francis of Assisi Hospital”, Salerno, Italy
- PhD Program in Evolutionary Biology and Ecology, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
3
|
Abolhasanzadeh N, Sarabandi S, Dehghan B, Karamad V, Avci CB, Shademan B, Nourazarian A. Exploring the intricate relationship between miRNA dysregulation and breast cancer development: insights into the impact of environmental chemicals. Front Immunol 2024; 15:1333563. [PMID: 38807590 PMCID: PMC11130376 DOI: 10.3389/fimmu.2024.1333563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/03/2024] [Indexed: 05/30/2024] Open
Abstract
Breast cancer stands as the most prevalent form of cancer among women globally, influenced by a combination of genetic and environmental factors. Recent studies have investigated changes in microRNAs (miRNAs) during breast cancer progression and the potential impact of environmental chemicals on miRNA expression. This review aims to provide an updated overview of miRNA alterations in breast cancer and to explore their potential association with environmental chemicals. We will discuss the current knowledge on dysregulated miRNAs in breast cancer, including both upregulated and downregulated miRNAs. Additionally, we will review the influence of environmental chemicals, such as endocrine-disrupting compounds, heavy metals, and air pollutants, on miRNA expression and their potential contribution to breast cancer development. This review aims to advance our understanding of the complex molecular mechanisms underlying miRNA dysregulation in breast cancer by comprehensively examining miRNA alterations and their association with environmental chemicals. This knowledge is crucial for the development of targeted therapies and preventive measures. Furthermore, identifying specific miRNAs affected by environmental chemicals may allow the prediction of individual susceptibility to breast cancer and the design of personalized intervention strategies.
Collapse
Affiliation(s)
- Narges Abolhasanzadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Sajed Sarabandi
- Department of Computer Science Leiden University, Leiden, Netherlands
| | - Bahar Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Vahidreza Karamad
- Department of Medical Biology, Ege University Medical School, Izmir, Türkiye
| | - Cigir Biray Avci
- Department of Medical Biology, Ege University Medical School, Izmir, Türkiye
| | - Behrouz Shademan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Nourazarian
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| |
Collapse
|
4
|
Zhao J, Chen J, Wang Q, Xiong R, Ma J. Activation of periodate by biocarbon-supported multiple modified nanoscale iron for the degradation of bisphenol A in high-temperature aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24263-24281. [PMID: 38436863 DOI: 10.1007/s11356-024-32483-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/10/2024] [Indexed: 03/05/2024]
Abstract
As reported, the persistent toxic and harmful pollutant bisphenol A (BPA) from industrial emissions has been consistently found in aquatic environments inhabited by humans. Periodate (PI)-based advanced oxidation processes (AOPs) have been employed to degrade BPA, although activating PI proves more challenging compared to other oxidants. A novel nano iron metal catalyst, sulfided nanoscale iron-nickel bimetallic nanoparticle supported on biocarbon (S-(nFe0-Ni)/BC) was synthesized and utilized to activate PI for the removal of BPA. The morphology, structure, and composition of S-(nFe0-Ni)/BC were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy-energy dispersive spectrometer (SEM-EDS), and fourier-transform infrared spectrum (FTIR). The catalyst demonstrates an excellent ability to activate PI, achieving a BPA removal efficacy of 86.4%, accompanied by a 33% reduction in total organic carbon (TOC) in the {S-(nFe0-Ni)/BC}/PI system. BPA degradation exhibited a significant change at the 5-min mark. In the first stage (0-5 min), nonlinear dynamic fitting research, combined with scavenging experiments, unveiled the competitive degradation of pollutants primarily driven by iodate radical ( IO 3 · ), singlet oxygen1 O 2 , and hydroxyl radical ( · OH ). The competitive dynamics aligned with the ExpAssoc model. The contribution rates of different active species during the second stage (5-120 min) were calculated. The contributions of main species to BPA removal follow the order of IO 3 · >1 O 2 > · OH throughout the entire process. The influence of various parameters, such as the dosage of S-(nFe0-Ni)/BC, initial PI concentration, BPA concentration, pH, temperature, and the presence of coexisting anions, was also examined. Finally, a plausible reaction mechanism in the system is proposed, suggesting that the {S-(nFe0-Ni)/BC}/PI system involves a heterogeneous synergistic reaction occurring primarily on the surface of S-(nFe0-Ni)/BC. Therefore, this study proposes a promising approach for PI-based AOPs to degrade organic pollutants, aiming to mitigate the irreversible harm caused by such pollutants to organisms and the environment.
Collapse
Affiliation(s)
- Jingnan Zhao
- The IT Electronics Eleventh Design & Research Institute Scientific and Technological Engineering Co., LTD, Chengdu, 610021, People's Republic of China
- Faculty of Geoscience and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - Junwen Chen
- Faculty of Geoscience and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Qun Wang
- Faculty of Geoscience and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China.
| | - Renxuan Xiong
- Faculty of Geoscience and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| |
Collapse
|
5
|
Roy P, Kandel R, Sawant N, Singh KP. Estrogen-induced reactive oxygen species, through epigenetic reprogramming, causes increased growth in breast cancer cells. Mol Cell Endocrinol 2024; 579:112092. [PMID: 37858609 DOI: 10.1016/j.mce.2023.112092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
Despite the progress made in cancer diagnosis and treatment, breast cancer remains the second leading cause of cancer-related death among the women. Exposure to elevated levels of endogenous estrogen or environmental estrogenic chemicals is an important risk factor for breast cancer. Estrogen metabolites and ROS generated during estrogen metabolism are known to play a critical role in estrogen carcinogenesis. However, the molecular mechanisms through which estrogen-induced ROS regulate gene expression is not clear. Epigenetic changes of DNA methylation and histone modifications are known to regulate genes expression. Therefore, the objective of this study was to evaluate whether estrogen-induced ROS, through aberrant expression of epigenetic regulatory genes and epigenetic reprogramming, causes growth of breast cancer cells. Estrogen responsive MCF-7 and T47D human breast cancer cells were exposed to natural estrogen 17 beta-estradiol (E2) and synthetic estrogen Diethylstilbestrol (DES) both alone and in combination with antioxidant N-acetyl cysteine. Effects of NAC-mediated scavenging of estrogen-induced ROS on cell growth, gene expression, and histone modifications were measured. The result of MTT and cell cycle analysis revealed significant abrogation of E2 and DES-induced growth by scavenging ROS through NAC. E2 and DES caused significant changes in expression of epigenetic regulatory genes for DNA methylation and histone modifications as well as changes in both gene activating and repressive marks in the Histone H3. NAC restored the expression of epigenetic regulatory genes and changes in histone marks. Novel findings of this study suggest that estrogen can induce growth of breast cancer cells through ROS-dependent regulation of epigenetic regulatory genes and epigenetic reprogramming of histone marks.
Collapse
Affiliation(s)
- Priti Roy
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, 79409, USA
| | - Ramji Kandel
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, 79409, USA
| | - Neha Sawant
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, 79409, USA
| | - Kamaleshwar P Singh
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
6
|
Du M, Liu J, Huang B, Wang Q, Wang F, Bi L, Ma C, Song M, Jiang G. Spatial nanopores promote laccase degradation of bisphenol A and its analogs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166429. [PMID: 37619739 DOI: 10.1016/j.scitotenv.2023.166429] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Bisphenol A (BPA) and its analogs are endocrine-disrupting chemicals that are frequently detected in environmental and human samples. However, the effective removal of BPA and its analogs has not yet been extensively studied. Herein, we introduce a novel enzyme reactor for the degradation of BPA and its analogs in water. The influence of pore size on the degradation efficiency of immobilized laccase in the spatial nanopores of hydrogel was investigated using BPA as a representative compound. This showed that nanopores enhance the activity of immobilized laccases in a pore size-dependent manner and increase their stability. Compared with the same amount of free laccase, the 50 mg/L BPA degradation performance of laccase immobilized in 76 nm nanopores increased to 300 %. Taking advantage of magnetic separation, this immobilized laccase can be reused, and its degradation capacity was maintained at over 73.7 % after ten reactions. Moreover, the degradation of seven BPA analogs was 1.03-5.88 times higher using laccase immobilized in nanopores compared with free laccase. Also, the biocatalyst could efficiently degrade BPA analogs in real water matrix. This study opens up a new avenue for the removal of BPA and its analogs by immobilizing laccase in nanopores, overcoming the key limitations introduced by the short enzyme life span and non-reusability.
Collapse
Affiliation(s)
- Mei Du
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingzhang Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bang Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, 430056 Wuhan, China
| | - Qiong Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengbang Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Bi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyan Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maoyong Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Jiang VS, Calafat AM, Williams PL, Chavarro JE, Ford JB, Souter I, Hauser R, Mínguez-Alarcón L. Temporal trends in urinary concentrations of phenols, phthalate metabolites and phthalate replacements between 2000 and 2017 in Boston, MA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165353. [PMID: 37437643 PMCID: PMC10543552 DOI: 10.1016/j.scitotenv.2023.165353] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/14/2023]
Abstract
Endocrine disrupting chemicals (EDCs) can adversely affect human health and are ubiquitously found in everyday products. We examined temporal trends in urinary concentrations of EDCs and their replacements. Urinary concentrations of 11 environmental phenols, 15 phthalate metabolites, phthalate replacements such as two di(isononyl)cyclohexane-1,2-dicarboxylate (DINCH) metabolites, and triclocarban were quantified using isotope-dilution tandem mass spectrometry. This ecological study included 996 male and 819 female patients who were predominantly White/Caucasian (83 %) with an average age of 35 years and a BMI of 25.5 kg/m2 seeking fertility treatment in Boston, MA, USA. Patients provided a total of 6483 urine samples (median = 2, range = 1-30 samples per patient) between 2000 and 2017. Over the study period, we observed significant decreases (% per year) in urinary concentrations of traditional phenols, parabens, and phthalates such as bisphenol A (β: -6.3, 95 % CI: -7.2, -5.4), benzophenone-3 (β: -6.5, 95 % CI: -1.1, -18.9), parabens ((β range:-5.4 to -14.2), triclosan (β: -18.8, 95 % CI: -24, -13.6), dichlorophenols (2.4-dichlorophenol β: -6.6, 95 % CI: -8.8, -4.3); 2,5-dichlorophenol β: -13.6, 95 % CI: -17, -10.3), di(2-ethylhexyl) phthalate metabolites (β range: -11.9 to -22.0), and other phthalate metabolites including mono-ethyl, mono-n-butyl, and mono-methyl phthalate (β range: -0.3 to -11.5). In contrast, we found significant increases in urinary concentrations of environmental phenol replacements including bisphenol S (β: 3.9, 95 % CI: 2.7, 7.6) and bisphenol F (β: 6, 95 % CI: 1.8, 10.3), DINCH metabolites (cyclohexane-1,2-dicarboxylic acid monohydroxy isononyl ester [MHiNCH] β: 20, 95 % CI: 17.8, 22.2; monocarboxyisooctyl phthalate [MCOCH] β: 16.2, 95 % CI: 14, 18.4), and newer phthalate replacements such as mono-3-carboxypropyl phthalate, monobenzyl phthalate, mono-2-ethyl-5-carboxypentyl phthalate and di-isobutyl phthalate metabolites (β range = 5.3 to 45.1), over time. Urinary MHBP concentrations remained stable over the study period. While the majority of biomarkers measured declined over time, concentrations of several increased, particularly replacement chemicals that are studied.
Collapse
Affiliation(s)
- Victoria S Jiang
- Division of Reproductive Endocrinology and Infertility, Vincent Department of Obstetrics & Gynecology, Massachusetts General Hospital/Harvard Medical School; 55 Fruit Street, Suite 10A, Boston, MA, USA
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, USA
| | - Paige L Williams
- Departments of Epidemiology and Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, USA; Departments of Biostatistics and Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, USA
| | - Jorge E Chavarro
- Departments of Epidemiology and Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, USA; Departments of Nutrition and Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, USA; Channing Division of Network Medicine, Harvard Medical School & Brigham and Women's Hospital, 75 Francis St, Boston, MA, USA
| | - Jennifer B Ford
- Departments of Environmental Health and Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, USA
| | - Irene Souter
- Division of Reproductive Endocrinology and Infertility, Vincent Department of Obstetrics & Gynecology, Massachusetts General Hospital/Harvard Medical School; 55 Fruit Street, Suite 10A, Boston, MA, USA
| | - Russ Hauser
- Division of Reproductive Endocrinology and Infertility, Vincent Department of Obstetrics & Gynecology, Massachusetts General Hospital/Harvard Medical School; 55 Fruit Street, Suite 10A, Boston, MA, USA; Departments of Epidemiology and Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, USA; Departments of Environmental Health and Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, USA
| | - Lidia Mínguez-Alarcón
- Departments of Environmental Health and Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, USA; Channing Division of Network Medicine, Harvard Medical School & Brigham and Women's Hospital, 75 Francis St, Boston, MA, USA.
| |
Collapse
|
8
|
Muncke J, Andersson AM, Backhaus T, Belcher SM, Boucher JM, Carney Almroth B, Collins TJ, Geueke B, Groh KJ, Heindel JJ, von Hippel FA, Legler J, Maffini MV, Martin OV, Peterson Myers J, Nadal A, Nerin C, Soto AM, Trasande L, Vandenberg LN, Wagner M, Zimmermann L, Thomas Zoeller R, Scheringer M. A vision for safer food contact materials: Public health concerns as drivers for improved testing. ENVIRONMENT INTERNATIONAL 2023; 180:108161. [PMID: 37758599 DOI: 10.1016/j.envint.2023.108161] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 09/29/2023]
Abstract
Food contact materials (FCMs) and food contact articles are ubiquitous in today's globalized food system. Chemicals migrate from FCMs into foodstuffs, so called food contact chemicals (FCCs), but current regulatory requirements do not sufficiently protect public health from hazardous FCCs because only individual substances used to make FCMs are tested and mostly only for genotoxicity while endocrine disruption and other hazard properties are disregarded. Indeed, FCMs are a known source of a wide range of hazardous chemicals, and they likely contribute to highly prevalent non-communicable diseases. FCMs can also include non-intentionally added substances (NIAS), which often are unknown and therefore not subject to risk assessment. To address these important shortcomings, we outline how the safety of FCMs may be improved by (1) testing the overall migrate, including (unknown) NIAS, of finished food contact articles, and (2) expanding toxicological testing beyond genotoxicity to multiple endpoints associated with non-communicable diseases relevant to human health. To identify mechanistic endpoints for testing, we group chronic health outcomes associated with chemical exposure into Six Clusters of Disease (SCOD) and we propose that finished food contact articles should be tested for their impacts on these SCOD. Research should focus on developing robust, relevant, and sensitive in-vitro assays based on mechanistic information linked to the SCOD, e.g., through Adverse Outcome Pathways (AOPs) or Key Characteristics of Toxicants. Implementing this vision will improve prevention of chronic diseases that are associated with hazardous chemical exposures, including from FCMs.
Collapse
Affiliation(s)
- Jane Muncke
- Food Packaging Forum Foundation, Zurich, Switzerland.
| | - Anna-Maria Andersson
- Dept. of Growth and Reproduction, Rigshospitalet and Centre for Research and Research Training in Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Thomas Backhaus
- Dept of Biological and Environmental Sciences, University of Gothenburg, Sweden
| | - Scott M Belcher
- Dept. of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | | | | | | | - Birgit Geueke
- Food Packaging Forum Foundation, Zurich, Switzerland
| | - Ksenia J Groh
- Department of Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Durham, NC, USA
| | - Frank A von Hippel
- Mel & Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Juliette Legler
- Dept. of Population Health Sciences, Faculty of Veterinary Medicine, University of Utrecht, Netherlands
| | | | - Olwenn V Martin
- Plastic Waste Innovation Hub, Department of Arts and Science, University College London, UK
| | - John Peterson Myers
- Dept. of Chemistry, Carnegie Mellon University, Pittsburgh, PA, USA; Environmental Health Sciences, Charlottesville, VA, USA
| | - Angel Nadal
- IDiBE and CIBERDEM, Miguel Hernández University of Elche, Alicante, Spain
| | - Cristina Nerin
- Dept. of Analytical Chemistry, I3A, University of Zaragoza, Zaragoza, Spain
| | - Ana M Soto
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA; Centre Cavaillès, Ecole Normale Supérieure, Paris, France
| | - Leonardo Trasande
- College of Global Public Health and Grossman School of Medicine and Wagner School of Public Service, New York University, New York, NY, USA
| | - Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Martin Wagner
- Dept. of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - R Thomas Zoeller
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Martin Scheringer
- RECETOX, Masaryk University, Brno, Czech Republic; Department of Environmental Systems Science, ETH Zurich, Switzerland.
| |
Collapse
|
9
|
Jaber M, Jähne M, Oberle M, Morlock GE. Screening bisphenols in complex samples via a planar Arxula adeninivorans bioluminescence bioassay. Anal Bioanal Chem 2023; 415:5193-5204. [PMID: 37458782 PMCID: PMC10404207 DOI: 10.1007/s00216-023-04820-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 08/06/2023]
Abstract
The Arxula yeast bisphenol screen (A-YBS) utilizes the bioluminescent Arxula adeninivorans yeast-based reporter cells for tailored analysis of bisphenols, one of the major endocrine-disrupting compound groups. For the first time, this bioreporter has been applied on the high-performance thin-layer chromatography (HPTLC) adsorbent surface to develop a respective planar bioluminescence bioassay (pA-YBS). The goal was to combine the advantages of HPTLC with a more selective bioassay detection for bisphenols. The performance of this pA-YBS bioluminescence bioassay was demonstrated by calculating the half-maximal effective concentration (EC50) of bisphenols compared to references. The EC50 ranged from 267 pg/band for bisphenol Z and 322 pg/band for bisphenol A (BPA) to > 1 ng/band for other bisphenols (BPC, BPE, BPF, and BPS) and references (17β-estradiol and 17α-ethinylestradiol). The EC50 value of BPA was three times more sensitive in signal detection than that of 17β-estradiol. The visual or videodensitometric limit of detection of BPA was about 200 pg/zone. The higher signal intensity and sensitivity for BPA confirmed the tailored bioassay selectivity compared to the existing estrogen screen bioassay. It worked on different types of HPTLC silica gel plates. This HPTLC-UV/Vis/FLD-pA-YBS bioluminescence bioassay method was used to analyze complex mixtures such as six tin can migrates, five thermal papers, and eleven botanicals. The detected estrogenic compound zones in the tin can migrates were successfully verified via the duplex planar yeast antagonist estrogen screen (pYAES) bioassay. The two bisphenols A and S were identified in one out of five thermal papers and confirmed with high-resolution mass spectrometry. No bisphenols were detected in the botanicals investigated via the pA-YBS bioluminescence bioassay. However, the botanicals proved to contain phytoestrogens as detected via the pYAES bioassay, which confirmed the tailored bioassay selectivity. This HPTLC-UV/Vis/FLD-pA-YBS bioluminescence bioassay is suited for cost-efficient analysis of BPA in complex samples, with no need for sterile conditions due to the fast workflow.
Collapse
Affiliation(s)
- Max Jaber
- Institute of Nutritional Science, Chair of Food Science, and TransMIT Center for Effect-Directed Analysis, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Martin Jähne
- QuoData GmbH, Prellerstrasse 14, 01309, Dresden, Germany
| | | | - Gertrud E Morlock
- Institute of Nutritional Science, Chair of Food Science, and TransMIT Center for Effect-Directed Analysis, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
| |
Collapse
|
10
|
Stojanović S, Rac V, Mojsilović K, Vasilić R, Marković S, Damjanović-Vasilić L. Photocatalytic degradation of bisphenol A in aqueous solution using TiO 2/clinoptilolite hybrid photocatalyst. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:84046-84060. [PMID: 37354298 DOI: 10.1007/s11356-023-28397-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 06/19/2023] [Indexed: 06/26/2023]
Abstract
Photocatalytic degradation of bisphenol A (BPA) was investigated using commercial TiO2 P25 nanoparticles supported on natural zeolite clinoptilolite (Cli). Employing ultrasound assisted solid-state dispersion method hybrid photocatalyst containing 20 wt% of TiO2, marked TCli-20, was prepared. The structural, morphological and surface properties, and particle size distribution of TCli-20 were studied by X-ray powder diffraction, Fourier transform infrared spectroscopy, ultraviolet-visible diffuse reflectance spectroscopy, scanning electron microscopy with energy dispersive spectroscopy, atomic force microscopy, Brunner-Emmet-Teller method and laser diffraction. The results revealed a successful loading of TiO2 P25 nanoparticles on Cli surface and the preservation of both zeolitic structure and optical properties of TiO2. The influence of catalyst dose, pH value and the addition of hydrogen peroxide (H2O2) was evaluated. The optimal reaction conditions were 2 g/L of catalyst at near-neutral conditions (pH = 6.4) for complete BPA (5 mg/L) photodegradation after 180 min of exposure to simulated solar light. The addition of H2O2 was beneficial for the degradation process and led to the removal of BPA after 120 min of irradiation. BPA removal (60% for 180 min of irradiation) was reduced when TCli-20 was tested in bottled drinking water due to the presence of bicarbonate ions which acted as scavengers for hydroxyl radicals. Even though the photocatalytic activity of TCli-20 decreased after several cycles of usage, 70% of BPA was still successfully degraded during the fourth cycle. The reusability study showed easy separation, stability and good photocatalytic ability of investigated cost-effective hybrid photocatalyst.
Collapse
Affiliation(s)
- Srna Stojanović
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, P.O. Box 47, 11158, Belgrade 118, Serbia
| | - Vladislav Rac
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080, Belgrade, Serbia
| | - Kristina Mojsilović
- Faculty of Physics, University of Belgrade, Studentski Trg 12-16, 11000, Belgrade, Serbia
| | - Rastko Vasilić
- Faculty of Physics, University of Belgrade, Studentski Trg 12-16, 11000, Belgrade, Serbia
| | - Smilja Marković
- Institute of Technical Sciences of SASA, Knez Mihailova 35/IV, 11000, Belgrade, Serbia
| | - Ljiljana Damjanović-Vasilić
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, P.O. Box 47, 11158, Belgrade 118, Serbia.
| |
Collapse
|
11
|
Lu X, Gu X. A review on lignin-based epoxy resins: Lignin effects on their synthesis and properties. Int J Biol Macromol 2023; 229:778-790. [PMID: 36603715 DOI: 10.1016/j.ijbiomac.2022.12.322] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/25/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023]
Abstract
Lignin can be used as a sustainable alternative to bisphenol A (BPA) to prepared lignin-based epoxy resins. Lignin effects including molecular weight, phenolic content, G/S unit ratio and flexible/rigid linkage ratio on epoxy synthesis and performance were summarized comprehensively. The incorporation of lignin with a higher molecular weight would lead to the higher rigidity of epoxy crosslinking network. Higher contents of ether bonds in lignin would provide higher structural flexibility of lignin incorporated epoxy thermosets. Lignin with higher contents of phenolic hydroxyls was more beneficial for improving the reactivity of its epoxy products after glycidylation. Due to the excellent charring capacity of lignin, higher contents of residue char can be produced at higher additions of lignin at high temperatures, while the loss of crosslinking density caused by the increasing lignin addition (especially for the macromolecular lignin) would deteriorate the thermal stability of their thermosets. Several applications of lignin-based epoxy resins were also mentioned based on their mechanical, thermal and chemical properties, such as coatings (with anticorrosion and UV-blocking), adhesives (with highly crosslinking network, excellent mechanical, and thermal properties) and flame retardants (with high charring capability).
Collapse
Affiliation(s)
- Xinyu Lu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoli Gu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
12
|
Impacts of bisphenol A on growth and reproductive traits of submerged macrophyte Vallisneria natans. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:46383-46393. [PMID: 36719573 DOI: 10.1007/s11356-023-25521-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/18/2023] [Indexed: 02/01/2023]
Abstract
Bisphenol A (BPA) is considered a contaminant of emerging concern and interferes with the normal activities of living organisms. The toxicity of BPA is evident in animals and terrestrial plants. However, the response of aquatic plants to low BPA concentrations is still unclear. In the present study, effects of varying BPA loadings (targeting at 0.01, 0.1, and 1 mg/L) on the growth and reproductive traits of the dioecious annual submerged macrophyte Vallisneria natans were assessed through a 5-month experiment. The results showed that BPA inhibited the elongation of V. natans leaves but resulted in an increase in leaf number and ramet number under the highest BPA loading treatment (targeting at 1 mg/L). In addition, detectable biochemical changes in the total carbon and soluble sugar contents were found, which both were significantly higher at the highest BPA loading treatment. However, the total biomass did not alter significantly after the BPA treatments, indicating that BPA did not induce direct toxic effects on the growth of V. natans. At the highest BPA loading treatment, female individuals of V. natans allocated less number for ramet than male ones, showing a clear sexual dimorphism. No significant differences between the five treatments were found for the flower or fruit traits, while the germination rate was significantly inhibited for the seeds collected from the highest BPA loading treatment. In conclusion, V. natans tolerated low concentrations of BPA by making a trade-off between ramet (leaf) number and leaf elongation, as well as modulating the total carbon and soluble sugar contents. However, serious consequence of decline in seed viability implied that the impact of BPA on plant reproduction were usually underestimated.
Collapse
|
13
|
Makarova K, Olchowik-Grabarek E, Drabikowski K, Kurkowiak J, Zawada K. Products of Bisphenol A Degradation Induce Cytotoxicity in Human Erythrocytes (In Vitro). Int J Mol Sci 2022; 24:ijms24010492. [PMID: 36613931 PMCID: PMC9820436 DOI: 10.3390/ijms24010492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
The aim of this work has been to study the possible degradation path of BPA under the Fenton reaction, namely to determine the energetically favorable intermediate products and to compare the cytotoxicity of BPA and its intermediate products of degradation. The DFT calculations of the Gibbs free energy at M06-2X/6-311G(d,p) level of theory showed that the formation of hydroquinone was the most energetically favorable path in a water environment. To explore the cytotoxicity the erythrocytes were incubated with BPA and three intermediate products of its degradation, i.e., phenol, hydroquinone and 4-isopropylphenol, in the concentrations 5-200 μg/mL, for 1, 4 and 24 h. BPA induced the strongest hemolytic changes in erythrocytes, followed by hydroquinone, phenol and 4-isopropylphenol. In the presence of hydroquinone, the highest level of RONS was observed, whereas BPA had the weakest effect on RONS generation. In addition, hydroquinone decreased the level of GSH the most. Generally, our results suggest that a preferable BPA degradation path under a Fenton reaction should be controlled in order to avoid the formation of hydroquinone. This is applicable to the degradation of BPA during waste water treatment and during chemical degradation in sea water.
Collapse
Affiliation(s)
- Katerina Makarova
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, The Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
- Correspondence:
| | - Ewa Olchowik-Grabarek
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, Konstanty Ciolkowskiego 1J, 15-245 Bialystok, Poland
| | - Krzysztof Drabikowski
- Laboratory of Biological Chemistry of Metal Ions, Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Justyna Kurkowiak
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, The Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Katarzyna Zawada
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, The Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| |
Collapse
|
14
|
Sharma P, Vishwakarma R, Varjani S, Gautam K, Gaur VK, Farooqui A, Sindhu R, Binod P, Awasthi MK, Chaturvedi P, Pandey A. Multi-omics approaches for remediation of bisphenol A: Toxicity, risk analysis, road blocks and research perspectives. ENVIRONMENTAL RESEARCH 2022; 215:114198. [PMID: 36063912 DOI: 10.1016/j.envres.2022.114198] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/01/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
In this "plastic era" with the increased use of plastic in day today's life the accumulation of its degraded products like microplastics or plastic additives such as Bisphenol A(BPA) is also increasing. BPA is an endocrine-disrupting chemical used as a plasticizing agent in clear plastic, building materials, coatings, and epoxy resin. Several enzymes including laccases and lipases have been studied for the reduction of BPA toxicity. Over the decades of encountering these toxicants, microorganisms have evolved to degrade different classes of plastic additives. Since the degradation of BPA is a long process thus meta-omics approaches have been employed to identify the active microbiota and microbial dynamics involved in the mitigation of BPA. It is also necessary to investigate the impact of processing activities on transit of BPA in food items and to limit its entrance in food world. This review summarizes a comprehensive overview on BPA sources, toxicity, bio-based mitigation approaches along with a deeper understanding of multi-omics approaches for its reduction and risk analysis. Knowledge gaps and opportunities have been comprehensively compiled that would aid the state-of-the-art information in the available literature for the researchers to further address this issue.
Collapse
Affiliation(s)
- Poonam Sharma
- Department of Bioengineering, Integral University, Lucknow, 226 026, India
| | - Reena Vishwakarma
- Department of Bioengineering, Integral University, Lucknow, 226 026, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, 382 010, India.
| | - Krishna Gautam
- Centre of Energy and Environmental Sustainability, Lucknow, 226 021, India
| | - Vivek K Gaur
- Centre of Energy and Environmental Sustainability, Lucknow, 226 021, India; School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, Republic of Korea
| | - Alvina Farooqui
- Department of Bioengineering, Integral University, Lucknow, 226 026, India
| | - Raveendran Sindhu
- Department of Food Technology, T K M Institute of Technology, Kollam, 691 505, Kerala, India
| | - Parameswaran Binod
- CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum, 695 019, Kerala, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A& F University, Yangling, Shaanxi Province, 712100, PR China
| | - Preeti Chaturvedi
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Ashok Pandey
- Centre of Energy and Environmental Sustainability, Lucknow, 226 021, India; Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, India; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248 007, India
| |
Collapse
|
15
|
Omeljaniuk WJ, Charkiewicz AE, Garley M, Ratajczak-Wrona W, Czerniecki J, Jabłońska E, Cechowska-Pasko M, Miltyk W. Bisphenol A: Potential Factor of Miscarriage in Women in the Context of the Phenomenon of Neutrophil Extracellular Traps. Arch Immunol Ther Exp (Warsz) 2022; 70:24. [PMID: 36181646 PMCID: PMC9526682 DOI: 10.1007/s00005-022-00661-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/08/2022] [Indexed: 11/05/2022]
Abstract
Humans are exposed to a number of environmental pollutants every day. Among them, endocrine disruptors are particularly harmful to human health. Bisphenol A (BPA) is a xenoestrogen that has been shown to disrupt the endocrine system and cause reproductive toxicity. In this study, we aimed to verify the potential relationship between BPA and miscarriage involving the formation of neutrophil extracellular traps (NETs). Blood samples were collected from healthy women and women who had miscarriage in the first trimester of pregnancy. The serum levels of cytoplasmic anti-PR3 antibody and perinuclear anti-MPO antibody were determined using an immunoenzymatic method. The concentrations of key proinflammatory proteins TNF-α and MCP-1, as well as NADPH oxidase subunits NOX1 and NCF2, were also measured in the serum samples. The serum concentration of BPA was determined using gas chromatography. The results showed that the concentrations of BPA were significantly elevated in the serum of women who had miscarriage compared to the control group, with the highest concentration found in the “NETs-positive” group. The levels of MCP-1 and TNF-α were significantly higher in the “NETs-positive” group compared to the “NETs-negative” and control group. The levels of NOX1 and NCF2 were also higher in the “NETs-positive” group compared to the “NETs-negative” group. The study showed that BPA could play a role in the course of miscarriage through the formation of NETs. The results indicate the need to limit the exposure of women planning pregnancy to xenoestrogens, including BPA.
Collapse
Affiliation(s)
- Wioleta Justyna Omeljaniuk
- Department of Analysis and Bioanalysis of Medicines, Medical University of Bialystok, Bialystok, Poland.
| | | | - Marzena Garley
- Department of Immunology, Medical University of Bialystok, Bialystok, Poland
| | | | - Jan Czerniecki
- Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Olsztyn, Poland
| | - Ewa Jabłońska
- Department of Immunology, Medical University of Bialystok, Bialystok, Poland
| | | | - Wojciech Miltyk
- Department of Analysis and Bioanalysis of Medicines, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
16
|
Gruber ES, Stadlbauer V, Pichler V, Resch-Fauster K, Todorovic A, Meisel TC, Trawoeger S, Hollóczki O, Turner SD, Wadsak W, Vethaak AD, Kenner L. To Waste or Not to Waste: Questioning Potential Health Risks of Micro- and Nanoplastics with a Focus on Their Ingestion and Potential Carcinogenicity. EXPOSURE AND HEALTH 2022; 15:33-51. [PMID: 36873245 PMCID: PMC9971145 DOI: 10.1007/s12403-022-00470-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/30/2021] [Accepted: 02/11/2022] [Indexed: 05/27/2023]
Abstract
Micro- and nanoplastics (MNPs) are recognized as emerging contaminants, especially in food, with unknown health significance. MNPs passing through the gastrointestinal tract have been brought in context with disruption of the gut microbiome. Several molecular mechanisms have been described to facilitate tissue uptake of MNPs, which then are involved in local inflammatory and immune responses. Furthermore, MNPs can act as potential transporters ("vectors") of contaminants and as chemosensitizers for toxic substances ("Trojan Horse effect"). In this review, we summarize current multidisciplinary knowledge of ingested MNPs and their potential adverse health effects. We discuss new insights into analytical and molecular modeling tools to help us better understand the local deposition and uptake of MNPs that might drive carcinogenic signaling. We present bioethical insights to basically re-consider the "culture of consumerism." Finally, we map out prominent research questions in accordance with the Sustainable Development Goals of the United Nations.
Collapse
Affiliation(s)
- Elisabeth S. Gruber
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Vanessa Stadlbauer
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria
- Center for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Verena Pichler
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | | | - Andrea Todorovic
- Materials Science and Testing of Polymers, Montanuniversitaet Leoben, Styria, Austria
| | - Thomas C. Meisel
- General and Analytical Chemistry, Montanuniversitaet Leoben, Styria, Austria
| | - Sibylle Trawoeger
- Division of Systematic Theology and its Didactics, Faculty of Catholic Theology, University of Wuerzburg, Wuerzburg, Germany
| | - Oldamur Hollóczki
- Mulliken Center for Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Suzanne D. Turner
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP UK
- Central European Institute of Technology, Masaryk University, 602 00 Brno, Czech Republic
| | - Wolfgang Wadsak
- Center for Biomarker Research in Medicine (CBmed), Graz, Austria
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - A. Dick Vethaak
- Department of Environment and Health, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Unit of Marine and Coastal Systems, Deltares, P.O. Box 177, 2600 MH Delft, Netherlands
| | - Lukas Kenner
- Center for Biomarker Research in Medicine (CBmed), Graz, Austria
- Christian Doppler Laboratory for Applied Metabolomics, Medical University of Vienna, Vienna, Austria
- Division of Experimental and Laboratory Animal Pathology, Department of Pathology Medical, University of Vienna, Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
17
|
Monitoring of Bisphenol A in water and soft drink products using electrochemical sensor amplified with TiO2-SWCNTs and ionic liquid. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01321-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Zhang X, Guo N, Jin H, Liu R, Zhang Z, Cheng C, Fan Z, Zhang G, Xiao M, Wu S, Zhao Y, Lu X. Bisphenol A drives di(2-ethylhexyl) phthalate promoting thyroid tumorigenesis via regulating HDAC6/PTEN and c-MYC signaling. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127911. [PMID: 34910997 DOI: 10.1016/j.jhazmat.2021.127911] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Bisphenol A (BPA) and di-(2-ethylhcxyl) phthalate (DEHP) are exist widespread in the environment and produce adverse effect to human as environmental disruptors (EDCs). Epidemiological studies have found that the exposure of DEHP and BPA could increase the susceptibility to thyroid diseases including thyroid cancer and benign thyroid nodules. Due to the existence of multiple pollutants in our daily life, the mixed toxic effects of exposure and their interrelationships may distinguish from the exposure to a single chemical, so it is of great significance to explore the mixed toxic effect of DEHP and BPA co-exposure. Thyroid, as one of the target organs of EDCs, is prone to tumor occurrence, however, whether the mixture of BPA and DEHP will affect the occurrence of thyroid cancer is still obscure. We aim to investigate the effect of single or combined exposure to BPA and DEHP on the occurrence of thyroid cancer. An animal model of exposure to BPA and DEHP was firstly established to evaluate their effect on DMD-induced thyroid cancer. Additionally, human thyroid cancer cells BCPAP and thyroid cells Nthy-ori3-1 were used to further clarify some possible mechanisms of BPA and MEHP, the main metabolite of DEHP. Consequently, we found that BPA alone could increase the incidence of thyroid tumors in female rats compared with DEHP, and DEHP enhanced the effect of BPA on cancer promotion. BPA alone and in combination with DEHP mainly induced the expression of HDAC6, inhibited tumor suppressor gene PTEN upregulated the expression of oncogene c-MYC, and eventually elevate the susceptibility to thyroid tumors. Mechanistically, BPA alone and in combination with MEHP could significantly induce the proliferation of BCPAP cells depending on HDAC6, which could modulate H3K9ac to inhibit PTEN, activate AKT signaling pathway, and simultaneously upregulate the expression of c-MYC. Interestingly, we found that BPA alone and in combination with MEHP could significantly induce the proliferation of Nthy-ori3-1 cells independent on HDAC6 via activating ERK signaling pathway. Taken together, these findings not only provide new evidence of the promoting effect of BPA and DEHP on thyroid cancer but also discusses some possible mechanisms underlying these effects.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Toxicology, School of Public health, China Medical University, Shenyang, PR China
| | - Nan Guo
- Department of head and Neck Surgery, Cancer hospital of China Medical University/Liaoning Cancer hospital & Institute, Shenyang, PR China
| | - Hao Jin
- Jin Zhou Center for Disease Control and Prevention, Jinzhou, PR China
| | - Renqi Liu
- Jin Zhou Center for Disease Control and Prevention, Jinzhou, PR China
| | - Zhen Zhang
- Jin Zhou Center for Disease Control and Prevention, Jinzhou, PR China
| | - Cheng Cheng
- Department of Toxicology, School of Public health, China Medical University, Shenyang, PR China
| | - Zhijun Fan
- Department of Toxicology, School of Public health, China Medical University, Shenyang, PR China
| | - Guopei Zhang
- Department of Toxicology, School of Public health, China Medical University, Shenyang, PR China
| | - Mingyang Xiao
- Department of Toxicology, School of Public health, China Medical University, Shenyang, PR China
| | - Shengwen Wu
- Department of Toxicology, School of Public health, China Medical University, Shenyang, PR China
| | - Yuejiao Zhao
- Department of head and Neck Surgery, Cancer hospital of China Medical University/Liaoning Cancer hospital & Institute, Shenyang, PR China.
| | - Xiaobo Lu
- Department of Toxicology, School of Public health, China Medical University, Shenyang, PR China.
| |
Collapse
|
19
|
Jain R, Jain A, Jain S, Thakur SS, Jain SK. Linking bisphenol potential with deleterious effect on immune system: a review. THE NUCLEUS 2022. [DOI: 10.1007/s13237-022-00383-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
20
|
Girardi KG, Zheng T, Zhu Y. Can Muscle Building Supplements Increase Testicular Cancer Risk? Front Nutr 2022; 9:778426. [PMID: 35155536 PMCID: PMC8834066 DOI: 10.3389/fnut.2022.778426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Kevin G. Girardi
- Department of Environmental Health Sciences, Yale University School of Public Health, New Haven, CT, United States
| | - Tongzhang Zheng
- Brown University School of Public Health, Providence, RI, United States
| | - Yong Zhu
- Department of Environmental Health Sciences, Yale University School of Public Health, New Haven, CT, United States
- *Correspondence: Yong Zhu
| |
Collapse
|
21
|
Schatten H. External and Environmental Effects on Centrosomes. THE CENTROSOME AND ITS FUNCTIONS AND DYSFUNCTIONS 2022; 235:81-83. [DOI: 10.1007/978-3-031-20848-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
Yang D, Gao P, Ren X, Niu Y, Wu Z, Gu Z, Peng H. The role of solvents and oxygen-containing functional groups on the adsorption of Bisphenol A on carbon nanotubes. ENVIRONMENTAL TECHNOLOGY 2021; 42:4260-4268. [PMID: 32249723 DOI: 10.1080/09593330.2020.1752815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/14/2020] [Indexed: 06/11/2023]
Abstract
The wide application of endocrine disruptors (EDs) has recently created great public concerns because of their toxicities. Previous studies have stated that the effect of oxygen-containing functional groups of carbon nanotubes (CNTs) for Bisphenol A (BPA) sorption, but no study has been quantified the exact contribution of the oxygen-containing functional groups. Moreover, the role of solvents on the adsorption of BPA should be considered. Considering the well properties of CNTs, graphitized (MG), carboxylated (MC) and hydroxylated (MH) multi-walled CNTs were selected as model adsorbents, BPA was used as model adsorbate. Solubility and single point adsorption coefficient (logKd) of BPA were n-hexadecane > water > methanol, suggesting that hydrophobic interaction was the main mechanism for BPA sorption on CNTs. For different functional groups of CNTs, π-π interaction between MH and BPA may be stronger than that of MC, and thus the sorption of BPA on MH was higher than that of MC. Moreover, hydrogen bond resulted in the higher adsorption of BPA on MH when compared with MC. The oxygen-containing functional groups of CNTs played a key role for BPA sorption in methanol because the values of contribution were 20%-45% for -OH and were 5%-25% for -COOH. In n-hexadecane, other factors such as hydrophobic interactions should be considered because the contribution percentages of -OH were ca.15% and the values for -COOH were ca.10%. The results are expected to provide important information on the interaction of EDs and CNTs.
Collapse
Affiliation(s)
- Dong Yang
- Faculty of Agriculture and Food, Kunming University of Science & Technology, Kunming, People's Republic of China
| | - Peng Gao
- City College, Kunming University of Science & Technology, Kunming, People's Republic of China
| | - Xin Ren
- Faculty of Agriculture and Food, Kunming University of Science & Technology, Kunming, People's Republic of China
| | - Yifan Niu
- Faculty of Agriculture and Food, Kunming University of Science & Technology, Kunming, People's Republic of China
| | - Zhenfen Wu
- Faculty of Agriculture and Food, Kunming University of Science & Technology, Kunming, People's Republic of China
| | - Zhenggang Gu
- Faculty of Civil Engineering and Mechanics, Kunming University of Science & Technology, Kunming, People's Republic of China
| | - Hongbo Peng
- Faculty of Agriculture and Food, Kunming University of Science & Technology, Kunming, People's Republic of China
- Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming, People's Republic of China
| |
Collapse
|
23
|
Rahman MS, Adegoke EO, Pang MG. Drivers of owning more BPA. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126076. [PMID: 34004580 DOI: 10.1016/j.jhazmat.2021.126076] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/02/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA) is a ubiquitous environmental toxin worldwide. Despite the many studies documenting the toxicity of this substance, it remains a popular choice for consumer products. The internet, magazine articles, and newspaper reports are replete with tips on how to avoid BPA exposure, which mostly spread contradictory and often unscientific information. Therefore, based on a comprehensive search of the available biomedical literature, we summarized several confounding factors that may be directly or indirectly related to human BPA exposure. We found that the unique properties of BPA materials (i.e. low cost, light-weight, resistance to corrosion, and water/air-tightness), lack of personal health and hygiene education, fear of BPA-substitutes (with yet unknown risks), inappropriate production, processing, and marketing of materials containing BPA, as well as the state of regulatory guidance are influencing the increased exposure to BPA. Besides, we detailed the disparities between scientifically derived safe dosages of BPA and those designated as "safe" by government regulatory agencies. Therefore, in addition to providing a current assessment of the states of academic research, government policies, and consumer behaviors, we make several reasonable and actionable recommendations for limiting human exposure to BPA through improved labeling, science-based dosage limits, and public awareness campaigns.
Collapse
Affiliation(s)
- Md Saidur Rahman
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Elikanah Olusayo Adegoke
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea.
| |
Collapse
|
24
|
Salamanca-Fernández E, Rodríguez-Barranco M, Amiano P, Delfrade J, Chirlaque MD, Colorado S, Guevara M, Jimenez A, Arrebola JP, Vela F, Olea N, Agudo A, Sánchez MJ. Bisphenol-A exposure and risk of breast and prostate cancer in the Spanish European Prospective Investigation into Cancer and Nutrition study. Environ Health 2021; 20:88. [PMID: 34399780 PMCID: PMC8369702 DOI: 10.1186/s12940-021-00779-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/29/2021] [Indexed: 06/03/2023]
Abstract
BACKGROUND Bisphenol A (BPA) is an endocrine disruptor that it is present in numerous products of daily use. The aim of this study was to assess the potential association of serum BPA concentrations and the risk of incident breast and prostate cancer in a sub-cohort of the Spanish European Prospective Investigation into Cancer and Nutrition (EPIC). METHODS We designed a case-cohort study within the EPIC-Spain cohort. Study population consisted on 4812 participants from 4 EPIC-Spain centers (547 breast cancer cases, 575 prostate cancer cases and 3690 sub-cohort participants). BPA exposure was assessed by means of chemical analyses of serum samples collected at recruitment. Borgan II weighted Cox regression was used to estimate hazard ratios. RESULTS Median follow-up time in our study was 16.9 years. BPA geometric mean serum values of cases and sub-cohort were 1.12 ng/ml vs 1.10 ng/ml respectively for breast cancer and 1.33 ng/ml vs 1.29 ng/ml respectively for prostate cancer. When categorizing BPA into tertiles, a 40% increase in risk of prostate cancer for tertile 1 (p = 0.022), 37% increase for tertile 2 (p = 0.034) and 31% increase for tertile 3 (p = 0.072) was observed with respect to values bellow the limit of detection. No significant association was observed between BPA levels and breast cancer risk. CONCLUSIONS We found a similar percentage of detection of BPA among cases and sub-cohort from our population, and no association with breast cancer risk was observed. However, we found a higher risk of prostate cancer for the increase in serum BPA levels. Further investigation is needed to understand the influence of BPA in prostate cancer risk.
Collapse
Affiliation(s)
- Elena Salamanca-Fernández
- Andalusian School of Public Health (EASP), Campus Universitario de Cartuja, C/Cuesta del Observatorio 4, 18080, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | - Miguel Rodríguez-Barranco
- Andalusian School of Public Health (EASP), Campus Universitario de Cartuja, C/Cuesta del Observatorio 4, 18080, Granada, Spain.
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain.
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| | - Pilar Amiano
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Public Health Division of Gipuzkoa, BioDonostia Research Institute, Donostia-San Sebastian, Spain
| | - Josu Delfrade
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Navarra Public Health Institute, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Maria Dolores Chirlaque
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain
- Department of Health and Sciences, University of Murcia, Murcia, Spain
| | - Sandra Colorado
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain
- Research Group on Demography and Health, National Faculty of Public Health, University of Antioquia, Medellín, Colombia
| | - Marcela Guevara
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Navarra Public Health Institute, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Ana Jimenez
- Public Health Division of Gipuzkoa, BioDonostia Research Institute, Donostia-San Sebastian, Spain
| | - Juan Pedro Arrebola
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Granada, Granada, Spain
| | - Fernando Vela
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | - Nicolás Olea
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Radiology, University of Granada, Granada, Spain
| | - Antonio Agudo
- Unit of Nutrition and Cancer, Catalan Institute of Oncology - ICO, Nutrition and Cancer Group, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, 08908, Barcelona, Spain
| | - Maria-José Sánchez
- Andalusian School of Public Health (EASP), Campus Universitario de Cartuja, C/Cuesta del Observatorio 4, 18080, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Granada, Granada, Spain
| |
Collapse
|
25
|
Lumio RT, Tan MA, Magpantay HD. Biotechnology-based microbial degradation of plastic additives. 3 Biotech 2021; 11:350. [PMID: 34221820 PMCID: PMC8217394 DOI: 10.1007/s13205-021-02884-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 06/06/2021] [Indexed: 10/21/2022] Open
Abstract
Plastic additives are agents responsible to the flame resistance, durability, microbial resistance, and flexibility of plastic products. High demand for production and use of plastic additives is associated with environmental accumulation and various health hazards. One of the suitable methods of depleting plastic additive in the environment is bioremediation as it offers cost-efficiency, convenience, and sustainability. Microbial activity is one of the effective ways of detoxifying various compounds as microorganisms can adapt in an environment with high prevalence of pollutants. The present review discusses the use and abundance of these plastic additives, their health-related risks, the microorganisms capable of degrading them, the proposed mechanism of biodegradation, and current innovations capable of improving the efficiency of bioremediation.
Collapse
Affiliation(s)
- Rob T. Lumio
- Chemistry Department, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
| | - Mario A. Tan
- The Graduate School, University of Santo Tomas, Manila, Philippines
- College of Science and Research Center for the Natural and Applied Sciences, University of Santo, Tomas, Manila, Philippines
| | - Hilbert D. Magpantay
- Chemistry Department, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
| |
Collapse
|
26
|
Wang M, Jia S, Lee SH, Chow A, Fang M. Polycyclic aromatic hydrocarbons (PAHs) in indoor environments are still imposing carcinogenic risk. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124531. [PMID: 33250308 DOI: 10.1016/j.jhazmat.2020.124531] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/08/2020] [Accepted: 11/08/2020] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are among the most health-relevant air pollutants. Herein, we conducted meta-analysis and experimental validation to evaluate PAHs in our surroundings and carcinogenic risks. We summarized the occurrence of PAHs in outdoors and indoors from 131 studies with 6,766 samples collected in different countries in 1989-2019. The global weighted-median concentration in outdoor air, indoor air and dust of ΣPAHs were 142 ng/m3, 369 ng/m3 and 10,201 ng/g; respectively. ΣPAHs have decreased in indoor air but remained steady in outdoor air and indoor dust. More carcinogenic PAHs in indoor/outdoor air was observed in Asia, while in dust was North America. Monte-Carlo simulation further showed indoor sources for children's exposure from dust and air can exceed outdoor. To further validate the health effect of PAHs from indoors, 15 more recent indoor dust samples were collected to examine their mutagenicity. The results showed that ΣPAHs were found to be significantly correlated with mutagenicity potency in the dust sample metabolically activated with liver S9 subcellular fraction and likely accounted for 0.42-0.50 of the mutagenic activity. Our findings indicated that PAHs are still likely to have carcinogenic activity in indoor environments and exposure risk of children to indoor dust should be emphasized.
Collapse
Affiliation(s)
- Mengjing Wang
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore; Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore
| | - Shenglan Jia
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore; Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore
| | - Suk Hyun Lee
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| | - Agnes Chow
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore; Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore
| | - Mingliang Fang
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore; Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore.
| |
Collapse
|
27
|
Sharin T, Williams KL, Chiu S, Crump D, O'Brien JM. Toxicity Screening of Bisphenol A Replacement Compounds: Cytotoxicity and mRNA Expression in Primary Hepatocytes of Chicken and Double-Crested Cormorant. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:1368-1378. [PMID: 33465250 DOI: 10.1002/etc.4985] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/17/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
A market for bisphenol A (BPA) replacement compounds has emerged as a result of restrictions on the use of BPA. Some of these compounds have been detected in the environment; however, little is known about their toxicological properties. In the present study, an avian in vitro toxicogenomic approach was used to compare the effects of 5 BPA alternatives. Cell viability and mRNA expression were compared in primary embryonic hepatocytes of chicken (CEH) and double-crested cormorant (DCEH) exposed to 4,4'-(propane-2,2-diyl) diphenol (BPA), bis (4-hydroxyphenyl) methane (BPF), bis (3-allyl-4-hydroxyphenyl) sulfone (TGSH), 7-bis (4-hydroxyphenylthio)-3,5-dioxaheptane (DD-70), 2,2-bis (4-hydroxyphenyl) hexafluoropropane (BPAF), and 4-hydroxyphenyl 4-isoprooxyphenylsulfone (BPSIP). Changes in gene expression were determined using 2 polymerase chain reaction (PCR) arrays: 1) species-specific ToxChips that contain genes representing toxicologically relevant pathways, and 2) chicken-specific AestroChip that measures estrogen responsive genes. In CEH and DCEH, BPA alternatives TGSH, DD-70, and BPAF were most cytotoxic. Some of the replacement compounds changed the expression of genes related to xenobiotic metabolism, bile acid, and cholesterol regulation. The rank order based on the number of genes altered on the chicken ToxChip array was TGSH > DD-70 > BPAF = BPF > 17β estradiol (E2) > BPSIP > BPA. On the cormorant ToxChip array, BPSIP altered the greatest number of genes. Based on the chicken AestroChip data, BPSIP and BPF were slightly estrogenic. These results suggest that the replacement compounds have comparable or even greater toxicity than BPA and act via different mechanisms. Environ Toxicol Chem 2021;40:1368-1378. © 2021 Her Majesty the Queen in Right of Canada. Reproduced with the permission of the Minister of Environment and Climate Change Canada.
Collapse
Affiliation(s)
- Tasnia Sharin
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario, Canada
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Kim L Williams
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario, Canada
| | - Suzanne Chiu
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario, Canada
| | - Doug Crump
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario, Canada
| | - Jason M O'Brien
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario, Canada
| |
Collapse
|
28
|
Moghadam FH, Taher MA, Karimi-Maleh H. A sensitive and fast approach for voltammetric analysis of bisphenol a as a toxic compound in food products using a Pt-SWCNTs/ionic liquid modified sensor. Food Chem Toxicol 2021; 152:112166. [PMID: 33819550 DOI: 10.1016/j.fct.2021.112166] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/02/2021] [Accepted: 03/29/2021] [Indexed: 12/24/2022]
Abstract
A sensitive and fast approach has been introduced for the voltammetric sensing of bisphenol A based on modification of a paste electrode with Pt-SWCNTs and 1-ethyl-3-methylimidazolium n-butylsulfate as a highly conductive binder. The new sensor was used to determine the concentration of bisphenol A in food products in I-V mode. The Pt-SWCNTs nanocomposite was synthesized through the polyol method and its morphology was evaluated by field emission scanning electron microscopy, transmission electron microscopy and energy-dispersive X-ray spectroscopy techniques. The determining factors influencing the sensing performance, i.e., pH and mediators used in the modification process were optimized in the first step and the results showed that at a pH of 7.0, a modified paste containing 9% (w:w) nanocomposite and 20% (v:v) 1-ethyl-3-methylimidazolium n-butylsulfate formed catalytic properties enhancing the oxidation signal of bisphenol A by 5.9 folds. Current density investigation clearly confirmed the conductivity of Pt-SWCNTs and 1-ethyl-3-methylimidazolium n-butylsulfate in the paste matrix. In addition, fabricated sensor showed considerable sensing behavior for bisphenol A in the concentration range of 0.5 nM-180 μM with a detection limit of 0.2 nM. In the final step, using standard addition technique, the ability of fabricated sensor for sensing bisphenol A in food products was evaluated, and the results confirmed improved performance of the modified electrodes.
Collapse
Affiliation(s)
| | - Mohammad A Taher
- Department of Chemistry, Shahid Bahonar University of Kerman, Iran.
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Xiyuan Ave, P.O. Box 611731, Chengdu, People's Republic of China; Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology, Quchan, Islamic Republic of Iran; Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg, 2028, South Africa.
| |
Collapse
|
29
|
vom Saal FS, Vandenberg LN. Update on the Health Effects of Bisphenol A: Overwhelming Evidence of Harm. Endocrinology 2021; 162:6124507. [PMID: 33516155 PMCID: PMC7846099 DOI: 10.1210/endocr/bqaa171] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 12/14/2022]
Abstract
In 1997, the first in vivo bisphenol A (BPA) study by endocrinologists reported that feeding BPA to pregnant mice induced adverse reproductive effects in male offspring at the low dose of 2 µg/kg/day. Since then, thousands of studies have reported adverse effects in animals administered low doses of BPA. Despite more than 100 epidemiological studies suggesting associations between BPA and disease/dysfunction also reported in animal studies, regulatory agencies continue to assert that BPA exposures are safe. To address this disagreement, the CLARITY-BPA study was designed to evaluate traditional endpoints of toxicity and modern hypothesis-driven, disease-relevant outcomes in the same set of animals. A wide range of adverse effects was reported in both the toxicity and the mechanistic endpoints at the lowest dose tested (2.5 µg/kg/day), leading independent experts to call for the lowest observed adverse effect level (LOAEL) to be dropped 20 000-fold from the current outdated LOAEL of 50 000 µg/kg/day. Despite criticism by members of the Endocrine Society that the Food and Drug Administration (FDA)'s assumptions violate basic principles of endocrinology, the FDA rejected all low-dose data as not biologically plausible. Their decisions rely on 4 incorrect assumptions: dose responses must be monotonic, there exists a threshold below which there are no effects, both sexes must respond similarly, and only toxicological guideline studies are valid. This review details more than 20 years of BPA studies and addresses the divide that exists between regulatory approaches and endocrine science. Ultimately, CLARITY-BPA has shed light on why traditional methods of evaluating toxicity are insufficient to evaluate endocrine disrupting chemicals.
Collapse
Affiliation(s)
- Frederick S vom Saal
- University of Missouri – Columbia, Division of Biological Sciences, Columbia, Missouri
- Correspondence: Dr. Frederick vom Saal, University of Missouri-Columbia, Division of Biological Sciences, 105 Lefevre Hall, Columbia, MO, 65211, USA. E-mail:
| | - Laura N Vandenberg
- University of Massachusetts – Amherst, Department of Environmental Health Sciences, Amherst, Massachusetts
| |
Collapse
|
30
|
Sessa F, Polito R, Monda V, Scarinci A, Salerno M, Carotenuto M, Cibelli G, Valenzano A, Campanozzi A, Mollica MP, Monda M, Messina G. Effects of a Plastic-Free Lifestyle on Urinary Bisphenol A Levels in School-Aged Children of Southern Italy: A Pilot Study. Front Public Health 2021; 9:626070. [PMID: 33598445 PMCID: PMC7882684 DOI: 10.3389/fpubh.2021.626070] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/05/2021] [Indexed: 11/23/2022] Open
Abstract
Bisphenol A (BPA) is an endocrine disruptor (ED) frequently used in food packaging. BPA is used as a monomer in the manufacture of some food packaging. This study aimed to evaluate the urinary BPA concentration in an Italian pediatric cohort, testing the levels of this ED over a period of 6 months, evaluating the effects of a diet regimen with a reduction of Plastic Food Packaging (PFP). One hundred thirty Italian children were enrolled and divided into two groups "School Canteen" and "No School Canteen." The first group consumed one meal at school using a plastic-free service for 5 days/weeks, while the other group did not modify their normal meal-time habits. The BPA levels were tested in urine samples at three time points: T0, is the time before the application of the plastic-free regimen diet; T3, 3 months later; and T6, 6 months later. A reduction of urine BPA levels was detected in the "School Canteen" group. In particular, the reduction was significant analyzing both the intra (among the three testing times) group and inter (between "School Canteen" and "No School Canteen") group variability. Our results show the effects of a diet regimen with a reduction of PFP, demonstrating a connection between urinary BPA levels and food packaging.
Collapse
Affiliation(s)
- Francesco Sessa
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Rita Polito
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli,”Naples, Italy
| | - Vincenzo Monda
- Section of Human Physiology and Unit of Dietetics and Sports Medicine, Department of Experimental Medicine, Università degli Studi della Campania “Luigi Vanvitelli,”Naples, Italy
| | - Alessia Scarinci
- Department of Education Sciences, Psychology, and Communication, University of Bari, Bari, Italy
| | - Monica Salerno
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia,” University of Catania, Catania, Italy
| | - Marco Carotenuto
- Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, Università degli Studi della Campania “Luigi Vanvitelli,”Naples, Italy
| | - Giuseppe Cibelli
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Anna Valenzano
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Angelo Campanozzi
- Pediatrics, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Maria Pina Mollica
- Section of Human Physiology and Unit of Dietetics and Sports Medicine, Department of Experimental Medicine, Università degli Studi della Campania “Luigi Vanvitelli,”Naples, Italy
| | - Marcellino Monda
- Section of Human Physiology and Unit of Dietetics and Sports Medicine, Department of Experimental Medicine, Università degli Studi della Campania “Luigi Vanvitelli,”Naples, Italy
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| |
Collapse
|
31
|
Salamanca-Fernández E, Rodríguez-Barranco M, Petrova D, Larrañaga N, Guevara M, Moreno-Iribas C, Chirlaque MD, Colorado-Yohar S, Arrebola JP, Vela F, Olea N, Agudo A, Sánchez MJ. Bisphenol A exposure and risk of ischemic heart disease in the Spanish European Prospective Investigation into cancer and nutrition study. CHEMOSPHERE 2020; 261:127697. [PMID: 32731019 DOI: 10.1016/j.chemosphere.2020.127697] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/26/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Cardiovascular disease, particularly ischemic heart disease (IHD), is the leading cause of mortality worldwide. Bisphenol A (BPA) is considered an endocrine disruptor and obesogen, present in numerous products of daily use. The aim of this study was to assess the potential association of serum BPA concentrations and the risk of incident IHD in a sub-cohort of the Spanish European Prospective Investigation into Cancer and Nutrition (EPIC). METHODS We designed a case-cohort study within the EPIC-Spain cohort. The population consisted of 4636 participants from 4 EPIC-Spain centers (946 IHD cases and 3690 sub-cohort participants). BPA exposure was assessed by means of chemical analyses of serum samples collected at recruitment. Follow-up was performed by linking with national and regional databases and reviewing patients' clinical records. Cox Proportional Hazards Models were used for the statistical analyses. RESULTS Median follow-up time was 16 years and 70% of the participants showed detectable BPA values (>0.2 ng/ml). Geometric mean (GM) values of cases and sub-cohort were 1.22 ng/ml vs 1.19 ng/ml respectively (p = 0.90). Cox regression models showed no significant association of BPA serum levels and IHD, acute myocardial infarction or angina pectoris risk. CONCLUSIONS We evidenced a similar percentage of detection of BPA among cases and sub-cohort participants from our population, and no clear association with IHD risk was observed. However, further investigation is needed to understand the influence of BPA on IHD risk.
Collapse
Affiliation(s)
- Elena Salamanca-Fernández
- Andalusian School of Public Health (EASP), Granada, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
| | - Miguel Rodríguez-Barranco
- Andalusian School of Public Health (EASP), Granada, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| | - Dafina Petrova
- Andalusian School of Public Health (EASP), Granada, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Nerea Larrañaga
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Public Health Department of Gipuzkoa, Donostia, Spain
| | - Marcela Guevara
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Navarra Public Health Institute, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Conchi Moreno-Iribas
- Navarra Public Health Institute, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Maria Dolores Chirlaque
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain; Department of Health and Sciences, University of Murcia, Spain
| | - Sandra Colorado-Yohar
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain; Research Group on Demography and Health, National Faculty of Public Health, University of Antioquia, Medellín, Colombia
| | - Juan Pedro Arrebola
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Department of Preventive Medicine and Public Health, University of Granada, Granada, Spain
| | - Fernando Vela
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
| | - Nicolás Olea
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Department of Radiology, School of Medicine, University of Granada, Granada, Spain
| | - Antonio Agudo
- Unit of Nutrition and Cancer, Catalan Institute of Oncology - ICO, Nutrition and Cancer Group, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, Barcelona, 08908, Spain
| | - Maria-José Sánchez
- Andalusian School of Public Health (EASP), Granada, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Department of Preventive Medicine and Public Health, University of Granada, Granada, Spain
| |
Collapse
|
32
|
Koual M, Tomkiewicz C, Cano-Sancho G, Antignac JP, Bats AS, Coumoul X. Environmental chemicals, breast cancer progression and drug resistance. Environ Health 2020; 19:117. [PMID: 33203443 PMCID: PMC7672852 DOI: 10.1186/s12940-020-00670-2] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 10/21/2020] [Indexed: 05/04/2023]
Abstract
Breast cancer (BC) is one of the most common causes of cancer in the world and the second leading cause of cancer deaths among women. Mortality is associated mainly with the development of metastases. Identification of the mechanisms involved in metastasis formation is, therefore, a major public health issue. Among the proposed risk factors, chemical environment and pollution are increasingly suggested to have an effect on the signaling pathways involved in metastatic tumor cells emergence and progression. The purpose of this article is to summarize current knowledge about the role of environmental chemicals in breast cancer progression, metastasis formation and resistance to chemotherapy. Through a scoping review, we highlight the effects of a wide variety of environmental toxicants, including persistent organic pollutants and endocrine disruptors, on invasion mechanisms and metastatic processes in BC. We identified the epithelial-to-mesenchymal transition and cancer-stemness (the stem cell-like phenotype in tumors), two mechanisms suspected of playing key roles in the development of metastases and linked to chemoresistance, as potential targets of contaminants. We discuss then the recently described pro-migratory and pro-invasive Ah receptor signaling pathway and conclude that his role in BC progression is still controversial. In conclusion, although several pertinent pathways for the effects of xenobiotics have been identified, the mechanisms of actions for multiple other molecules remain to be established. The integral role of xenobiotics in the exposome in BC needs to be further explored through additional relevant epidemiological studies that can be extended to molecular mechanisms.
Collapse
Affiliation(s)
- Meriem Koual
- INSERM UMR-S1124, 3TS, Toxicologie Pharmacologie et Signalisation Cellulaire, Université de Paris, Paris, France.
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, Service de Chirurgie Cancérologique Gynécologique et du Sein, Paris, France.
- Faculté de Médecine, Université de Paris, Paris, France.
| | - Céline Tomkiewicz
- INSERM UMR-S1124, 3TS, Toxicologie Pharmacologie et Signalisation Cellulaire, Université de Paris, Paris, France
- Faculté de Médecine, Université de Paris, Paris, France
| | | | | | - Anne-Sophie Bats
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, Service de Chirurgie Cancérologique Gynécologique et du Sein, Paris, France
- Faculté de Médecine, Université de Paris, Paris, France
- INSERM UMR-S1147, Equipe labellisée Ligue Nationale Contre le Cancer, Université de Paris, Paris, France
| | - Xavier Coumoul
- INSERM UMR-S1124, 3TS, Toxicologie Pharmacologie et Signalisation Cellulaire, Université de Paris, Paris, France.
- Faculté de Médecine, Université de Paris, Paris, France.
| |
Collapse
|
33
|
Zhang Y, Mi K, Xue W, Wei W, Yang H. Acute BPA exposure-induced oxidative stress, depressed immune genes expression and damage of hepatopancreas in red swamp crayfish Procambarus clarkii. FISH & SHELLFISH IMMUNOLOGY 2020; 103:95-102. [PMID: 32325215 DOI: 10.1016/j.fsi.2020.04.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/08/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
Bisphenol A is a typical endocrine disrupting chemicals (EDCs) and produce various toxic effects on animals due to its potential endocrine disruption, oxidative damage effect, mutagenic effect and hypomethylation. To study its effect on the immune system of crustaceans, the Procambarus clarkii were utilized to detect the immune related indicators after 225 μg/L BPA exposure for 1 week. Hepatopancreatic histology and ultrastructure analysis showed that the brush border disappeared, the lumen increased, and the connection between the hepatic tubules fade away in BPA treated group. BPA could significantly increase the level of ROS, inhibit the activities of antioxidant-related enzymes (SOD, POD, and CAT), and thereby cause the oxidative stress. The enzyme activities of AKP, ACP and lysozyme in hepatopancreas after BPA exposure were also depressed even after Aeromonas hydrophila infections. The relative expression profiles of immune-related genes after BPA exposure and bacterial infection showed suppressed trends of most selected genes. Under A. hydrophila infections, the cumulative mortality of 225 μg/L BPA-treated crayfish was significantly higher than other groups. All these results indicated that BPA exposure had adverse effects on the immune ability of P. clarkii. The present study will provide an important foundation for further understanding the effects of EDCs on crustacean immune functions.
Collapse
Affiliation(s)
- Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Kaihang Mi
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Wen Xue
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Wenzhi Wei
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
34
|
Calaf GM, Ponce-Cusi R, Aguayo F, Muñoz JP, Bleak TC. Endocrine disruptors from the environment affecting breast cancer. Oncol Lett 2020; 20:19-32. [PMID: 32565930 PMCID: PMC7286136 DOI: 10.3892/ol.2020.11566] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
Evaluation of carcinogenic substances from the environment is a challenge for scientists. Recently, a novel approach based on 10 key characteristics of human carcinogens classified by the International Agency for Research on Cancer (IARC) has emerged. Carcinogenesis depends on different mechanisms and factors, including genetic, infectious (bacteria, viruses) and environmental (chemicals) factors. Endocrine disruptors are exogenous chemicals that can interfere and impair the function of the endocrine system due to their interaction with estrogen receptors or their estrogen signaling pathways inducing adverse effects in the normal mammary development, originating cancer. They are heterogeneous chemicals and include numerous synthetic substances used worldwide in agriculture, industry and consumer products. The most common are plasticizers, such as bisphenol A (BPA), pesticides, such as dichlorodiphenyltrichloroethane, and polychlorinated biphenyls (PCBs). Xenoestrogens appear to serve an important role in the increased incidence of breast cancer in the United States and numerous other countries. Several studies have demonstrated the role of organochlorine xenoestrogens in breast cancer. Therefore, the overall cumulative exposure of women to estrogens results in an increased risk for this type of cancer. Factors like lifestyle and diet also serve a role in the increased incidence of this disease. The aim of the present study was to analyze these chemical compounds based on the key characteristics given by the IARC, with a special focus on breast cancer, to establish whether these compounds are carcinogens, and to create a model for future analysis of other endocrine disruptors.
Collapse
Affiliation(s)
- Gloria M Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
- Center for Radiological Research, Columbia University Medical Center, New York, NY 10032, USA
| | - Richard Ponce-Cusi
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
| | - Francisco Aguayo
- Programa de Virología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago 8380000, Chile
| | - Juan P Muñoz
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
| | - Tammy C Bleak
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
| |
Collapse
|
35
|
Rasdi Z, Kamaludin R, Ab Rahim S, Syed Ahmad Fuad SB, Othman MHD, Siran R, Mohd Nor NS, Abdul Hamid Hasani N, Sheikh Abdul Kadir SH. The impacts of intrauterine Bisphenol A exposure on pregnancy and expression of miRNAs related to heart development and diseases in animal model. Sci Rep 2020; 10:5882. [PMID: 32246001 PMCID: PMC7125099 DOI: 10.1038/s41598-020-62420-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/11/2020] [Indexed: 12/21/2022] Open
Abstract
This study aimed to examine the impact of BPA exposure on pregnancy and foetuses on cardiac tissues and the expression of cardiac microRNAs (miRNAs) related to heart development and diseases. Pregnancy is known to be the "critical windows" in determining the offspring physical and cells development in their life after birth. The increment of the risk of cardiovascular disease (CVD) in a later stage of life has been reported by few studies demonstrated from prenatal exposure of BPA. BPA has been shown to alter miRNAs expression profiles for organ development, regeneration and metabolic functions. These alterations have been associated with the risk of CVDs. However, the associations between pregnancy outcomes and miRNAs expression in cardiac of mother- and foetuses-exposed to BPA are still not entirely explored. In BPA-exposed pregnant rat groups, a significant weight gained was observed in comparison to control (p < 0.05). Interestingly, significant changes in systolic and diastolic blood pressure between the first and third trimester of BPA-exposed pregnant rats were also observed (p < 0.05). In BPA-exposed pregnant rats, miR-499-5p was significantly altered in the heart (p < 0.01). Meanwhile, altered miR-17-5p, -208-3p, and -210-3p expressions were observed in all heart of the foetuses from BPA-exposed pregnant rats (p < 0.05). In H&E staining, BPA-exposed foetal hearts showed a sign of fibrosis while BPA-exposed pregnant rats showed muscle remnant. Masson trichrome staining further confirmed the presence of fibrosis observed in BPA-exposed foetal heart and reduced expression of cardiac troponin I (cTnI) was also observed in BPA-exposed foetal heart. In summary, altered cardiac miRNAs with histological changes were observed in both mother- and foetus-exposed BPA These findings put forward the importance of future work to further understand how prenatal BPA exposure affect foetuses in their later stage of life.
Collapse
Affiliation(s)
- Zatilfarihiah Rasdi
- Institute of Medical Molecular Biotechnology, Faculty of Medicine, Universiti Teknologi MARA, Cawangan Selangor, 47000, Sungai Buloh, Selangor, Malaysia
- Centre of Preclinical Sciences Studies, Faculty of Dentistry, Universiti Teknologi MARA, Cawangan Selangor, 47000, Sungai Buloh, Selangor, Malaysia
| | - Roziana Kamaludin
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Sharaniza Ab Rahim
- Faculty of Medicine, Universiti Teknologi MARA, Cawangan Selangor, 47000, Sungai Buloh, Selangor, Malaysia
| | | | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| | - Rosfaiizah Siran
- Faculty of Medicine, Universiti Teknologi MARA, Cawangan Selangor, 47000, Sungai Buloh, Selangor, Malaysia
| | - Noor Shafina Mohd Nor
- Faculty of Medicine, Universiti Teknologi MARA, Cawangan Selangor, 47000, Sungai Buloh, Selangor, Malaysia
- Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Cawangan Selangor, 47000, Sungai Buloh, Selangor, Malaysia
| | - Narimah Abdul Hamid Hasani
- Faculty of Medicine, Universiti Teknologi MARA, Cawangan Selangor, 47000, Sungai Buloh, Selangor, Malaysia
| | - Siti Hamimah Sheikh Abdul Kadir
- Institute of Medical Molecular Biotechnology, Faculty of Medicine, Universiti Teknologi MARA, Cawangan Selangor, 47000, Sungai Buloh, Selangor, Malaysia.
- Faculty of Medicine, Universiti Teknologi MARA, Cawangan Selangor, 47000, Sungai Buloh, Selangor, Malaysia.
- Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Cawangan Selangor, 47000, Sungai Buloh, Selangor, Malaysia.
| |
Collapse
|
36
|
Lee CC, Hsieh CY, Chen CS, Tien CJ. Emergent contaminants in sediments and fishes from the Tamsui River (Taiwan): Their spatial-temporal distribution and risk to aquatic ecosystems and human health. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113733. [PMID: 31838387 DOI: 10.1016/j.envpol.2019.113733] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/21/2019] [Accepted: 12/04/2019] [Indexed: 05/20/2023]
Abstract
The occurrence of emergent contaminants, 24 polybrominated diphenyl ethers (PBDEs), di(2-ethylhexyl)phthalate (DEHP), dibutyl phthalate (DBP), butyl benzyl phthalate (BBP), diethyl phthalate (DEP), dimethyl phthalate (DMP), di-n-octyl phthalate (DnOP), bisphenol A (BPA) and nonylphenol (NP), was investigated in sediments and fishes collected from the Tamsui River system to determine the factors that influence their distribution and their risk to aquatic ecosystems and human health. The concentrations of total PBDEs, DEHP, DBP, BBP, DEP, DMP, DnOP, BPA and NP in sediments were 1-955, ND-23570, <50-411, <50-430, ND-80, ND-<50, ND-<50, 1-144, 3-19624 μg/kg dw, respectively. The spatial-temporal distribution trends of these compounds in sediments could be attributed to urbanization, industrial discharge and effluents from wastewater treatment plants. The PBDE congener distribution patterns (BDE-209 was the dominant congener) in sediments reflected the occurrence of debromination of BDE-209 and the elution of penta-BDE from the treated products. The concentrations of total PBDEs, DEHP, DBP, BBP, DEP, DMP, DnOP, BPA and NP in fish muscles were 2-66, 17-1046, <10-231, <10-66, <30, ND-<30, ND-<30, 0.4-7 and 3-440 μg/kg ww, respectively. The species-specific bioaccumulation of these compounds by fish was found and four species particularly showed high bioaccumulation potential. BDE-47 was the predominant BDE congener in fish muscles, suggesting high bioavailability and bioaccumulation of this compound. The results of biota-sediment accumulation factors showed that BDE-47, 99, 100, 153 and 154 had relatively high bioavailability and bioaccumulation potential for some fish species. The ecological risk assessment showed that the concentrations of BPA and NP in sediments were likely to have adverse effects on aquatic organisms (risk quotients > 1). The human health risk assessment according to hazard quotients (HQs) and carcinogenic risks (CRs) revealed no remarkable risk to human health through consumption of fish contaminated with BDE-47, 99, 100, 154, 209, DEHP, BPA and NP.
Collapse
Affiliation(s)
- Ching-Chang Lee
- Department of Environmental and Occupational Health, Medical College, National Cheng Kung University, 138 Sheng Li Road, Tainan, 704, Taiwan; Research Center of Environmental Trace Toxic Substances, National Cheng Kung University, 138 Sheng Li Road, Tainan, 704, Taiwan
| | - Chia-Yi Hsieh
- Research Center of Environmental Trace Toxic Substances, National Cheng Kung University, 138 Sheng Li Road, Tainan, 704, Taiwan
| | - Colin S Chen
- Department of Biotechnology, National Kaohsiung Normal University, 62, Shen-Chung Road, Yanchao, Kaohsiung, 824, Taiwan
| | - Chien-Jung Tien
- Department of Biotechnology, National Kaohsiung Normal University, 62, Shen-Chung Road, Yanchao, Kaohsiung, 824, Taiwan.
| |
Collapse
|
37
|
Salamanca-Fernández E, Rodríguez-Barranco M, Arrebola JP, Vela F, Díaz C, Chirlaque MD, Colorado-Yohar S, Jiménez-Zabala A, Irizar A, Guevara M, Ardanaz E, Iribarne-Durán LM, Pérez Del Palacio J, Olea N, Agudo A, Sánchez MJ. Bisphenol-A in the European Prospective Investigation into Cancer and Nutrition cohort in Spain: Levels at recruitment and associated dietary factors. ENVIRONMENTAL RESEARCH 2020; 182:109012. [PMID: 31837551 DOI: 10.1016/j.envres.2019.109012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/26/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
Bisphenol A (BPA) is considered an endocrine disruptor and it is present in numerous products of daily use. The aim of this study was to analyze serum BPA concentrations in a subcohort of the Spanish European Prospective Investigation into Cancer and Nutrition (EPIC), as well as to identify potential predictors of the exposure. The population consisted on 3553 subjects from 4 EPIC-Spain centres and BPA levels were measured in serum samples by UHPLC-MS/MS. Almost 70% of the participants showed detectable BPA values (>0.2 ng/ml), with a geometric mean of 1.19 ng/ml (95% CI: 1.12-1.25). By sex, detectable percentages were similar (p = 0.56) but with higher serum levels in men (1.27 vs 1.11 ng/ml, p = 0.01). Based on the adjusted regression models, a 50 g/day increase in the consumption of added fats and oils were associated with 43% lower BPA serum levels, while sugar and confectionary was associated with 25% higher levels of serum BPA. We evidenced differential exposure levels by province, sex and age, but not by anthropometric or lifestyle characteristics. Further investigation is needed to understand the influence of diet in BPA exposure.
Collapse
Affiliation(s)
- Elena Salamanca-Fernández
- Andalusian School of Public Health (EASP). Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA. Granada, Spain
| | - Miguel Rodríguez-Barranco
- Andalusian School of Public Health (EASP). Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA. Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP). Madrid, Spain.
| | - Juan Pedro Arrebola
- Instituto de Investigación Biosanitaria ibs.GRANADA. Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP). Madrid, Spain; Department of Public Health, School of Medicine, University of Granada. Granada, Spain
| | - Fernando Vela
- Instituto de Investigación Biosanitaria ibs.GRANADA. Granada, Spain
| | - Caridad Díaz
- MEDINA Foundation, Center of Excellence in Research into Innovative Medicines in Andalusia, Technology Park of Health Sciences, Granada, Spain
| | - María Dolores Chirlaque
- CIBER de Epidemiología y Salud Pública (CIBERESP). Madrid, Spain; Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain; Department of Health and Social Sciences, University of Murcia, Spain
| | - Sandra Colorado-Yohar
- CIBER de Epidemiología y Salud Pública (CIBERESP). Madrid, Spain; Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain; Research Group on Demography and Health, National Faculty of Public Health, University of Antioquia, Medellín, Colombia
| | - Ana Jiménez-Zabala
- CIBER de Epidemiología y Salud Pública (CIBERESP). Madrid, Spain; Public Health Division of Gipuzkoa, Basque Government, Avenida Navarra No 4, 20013, San Sebastián, Gipuzkoa, Spain; Health Research Institute, Biodonostia, San Sebastián, Spain
| | - Amaia Irizar
- Health Research Institute, Biodonostia, San Sebastián, Spain
| | - Marcela Guevara
- CIBER de Epidemiología y Salud Pública (CIBERESP). Madrid, Spain; Navarra Public Health Institute, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Eva Ardanaz
- CIBER de Epidemiología y Salud Pública (CIBERESP). Madrid, Spain; Navarra Public Health Institute, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Luz María Iribarne-Durán
- Instituto de Investigación Biosanitaria ibs.GRANADA. Granada, Spain; Department of Radiology, School of Medicine, University of Granada. Granada, Spain
| | - José Pérez Del Palacio
- MEDINA Foundation, Center of Excellence in Research into Innovative Medicines in Andalusia, Technology Park of Health Sciences, Granada, Spain
| | - Nicolás Olea
- Instituto de Investigación Biosanitaria ibs.GRANADA. Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP). Madrid, Spain; Department of Radiology, School of Medicine, University of Granada. Granada, Spain
| | - Antonio Agudo
- Unit of Nutrition and Cancer, Catalan Institute of Oncology - ICO, Nutrition and Cancer Group, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Maria-José Sánchez
- Andalusian School of Public Health (EASP). Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA. Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP). Madrid, Spain; Universidad de Granada. Granada, Spain
| |
Collapse
|
38
|
Molecular dynamics study of the migration of Bisphenol A from polycarbonate into food simulants. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
39
|
Üstündağ ÜV, Emekli-Alturfan E. Wnt pathway: A mechanism worth considering in endocrine disrupting chemical action. Toxicol Ind Health 2020; 36:41-53. [DOI: 10.1177/0748233719898989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are defined as exogenous substances that can alter the development and functioning of the endocrine system. The Wnt signaling pathway is an evolutionarily conserved pathway consisting of proteins that transmit cell-to-cell receptors through cell surface receptors, regulating important aspects of cell migration, polarity, neural formation, and organogenesis, which determines the fate of the cell during embryonic development. Although the effects of EDCs have been studied in terms of many molecular mechanisms; because of its critical role in embryogenesis, the Wnt pathway is of special interest in EDC exposure. This review provides information about the effects of EDC exposure on the Wnt/β-catenin pathway focusing on studies on bisphenol A, di-(2-ethylhexyl) phthalate, diethylstilbestrol, cadmium, and 2,3,7,8-tetrachlorodibenzo-p-dioxin.
Collapse
Affiliation(s)
- Ünsal Veli Üstündağ
- Department of Biochemistry, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Ebru Emekli-Alturfan
- Department of Biochemistry, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| |
Collapse
|
40
|
Valdez CA, Leif RN, Hok S. Carbene-based Difluoromethylation of Bisphenols: Application to the Instantaneous Tagging of Bisphenol A in Spiked Soil for Its Detection and Identification by Electron Ionization Gas Chromatography-Mass Spectrometry. Sci Rep 2019; 9:17360. [PMID: 31758017 PMCID: PMC6874605 DOI: 10.1038/s41598-019-53735-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/17/2019] [Indexed: 11/09/2022] Open
Abstract
The rapid and efficient difluoromethylation of a panel of eleven bisphenols (BPs) for their enhanced detection and identification by Electron-Ionization Gas Chromatography-Mass Spectrometry (EI-GC-MS) is presented. The derivatization employs the inexpensive, environmentally benign agent diethyl (bromodifluoromethyl) phosphonate (DBDFP) as a difluorocarbene-generating species that converts the BPs into bis-difluoromethylated ethers that can be detected and identified by GC-MS means. Key attributes of the protocol include its extreme rapidity (30 seconds) at ambient temperature, high specificity for BPs amidst other alcohol-containing analytes, and its biphasic nature that allows for its convenient adaptation to the analysis of BPs in organic as well as aqueous matrices. The protocol furnishes stable, novel BP ethers armed with a total of four fluorine atoms for their subsequent analysis by EI-GC-MS. Furthermore, each derivatized bisphenol exhibits unique retention times vastly different from their native counterparts leading to their unequivocal identification. The effectiveness and robustness of the developed methodology was applied to the tagging of the most famous member of this family of compounds, bisphenol-A (BPA), when spiked (at 1 μg.g−1 concentration) in the physically and compositionally complex Nebraska EPA standard soil. The method detection limit (MDL) for the bis-difluoromethylated BPA was determined to be 0.01 μg.mL−1. The bis-difluoromethylated BPA was conveniently detected on the organic layers from the biphasic, derivatized mixtures, highlighting the protocol’s practicality and utility in the rapid, qualitative detection of this endocrine disruptor during environmental analysis.
Collapse
Affiliation(s)
- Carlos A Valdez
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA. .,Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA. .,Forensic Science Center, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA.
| | - Roald N Leif
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA.,Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA.,Forensic Science Center, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Saphon Hok
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA.,Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA.,Forensic Science Center, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| |
Collapse
|
41
|
Bilal M, Iqbal HMN, Barceló D. Mitigation of bisphenol A using an array of laccase-based robust bio-catalytic cues - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 689:160-177. [PMID: 31271985 DOI: 10.1016/j.scitotenv.2019.06.403] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 06/23/2019] [Accepted: 06/24/2019] [Indexed: 02/05/2023]
Abstract
Bisphenol A (BPA) is a known endocrine disruptor that poses concerning environmental and human-health related issues and ecological risks. It has been largely used as an intermediate in the manufacture of epoxy resins and polycarbonate plastics. Traces of BPA can reach into the environment through inadequate or inefficient removal during wastewater treatment, uncontrolled landfill leachates, and leaching out from the discarded BPA-based materials. Several physicochemical treatment methods including adsorption, Fenton, ozonation, electrochemical and photochemical degradation, and membrane filtration, have been applied for BPA elimination. However, these methods are not adequate for large-scale treatment due to some inherent limitations. Benefiting from high catalytic efficiency and specificity, enzyme-based bio-catalytic degradation strategies are considered quite meaningful alternative for efficient and effective BPA removal from different routes. Among various oxidoreductases, i.e., laccases exhibited a superior potential for the remediation of BPA-containing wastewater. Enzymatic oxidation of BPA can be boosted by using various natural or synthetic redox mediators. Immobilized enzymes can expand their applicability to continuous bioprocessing and facilitates process intensification. Therefore, optimized formulations of insolubilized biocatalysts are of strategic interest in the environmental biotechnology. In this review, recent research studies dealing with BPA removal by the laccase-catalyzed system are presented. At first, the presence of BPA in the ecosystem, sources, exposure, and its impact on the living organisms and human beings is summarized. Then, we highlighted the use of crude as well as immobilized laccases for the degradation of BPA. In addition to toxicity and estrogenicity removal studies, the unresolved challenges, concluding remarks, and possible future direction is proposed in this important research area. It is palpable from the literature reviewed that free as well as immobilized forms of laccases have displayed noteworthy potential for BPA removal from wastewater.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. 64849, Mexico.
| | - Damiá Barceló
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain; ICRA, Catalan Institute for Water Research, University of Girona, Emili Grahit 101, Girona 17003, Spain; Botany and Microbiology Department, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
42
|
Renaud L, Huff M, da Silveira WA, Angert M, Haas M, Hardiman G. Genome-Wide Analysis of Low Dose Bisphenol-A (BPA) Exposure in Human Prostate Cells. Curr Genomics 2019; 20:260-274. [PMID: 32030086 PMCID: PMC6983955 DOI: 10.2174/1389202920666190603123040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 02/07/2023] Open
Abstract
Endocrine disrupting compounds (EDCs) have the potential to cause adverse effects on wild-life and human health. Two important EDCs are the synthetic estrogen 17α-ethynylestradiol (EE2) and bisphenol-A (BPA) both of which are xenoestrogens (XEs) as they bind the estrogen receptor and dis-rupt estrogen physiology in mammals and other vertebrates. In the recent years the influence of XEs on oncogenes, specifically in relation to breast and prostate cancer has been the subject of considerable study.
Collapse
Affiliation(s)
- Ludivine Renaud
- 1Department of Medicine, Medical University of South Carolina, Charleston, SC, USA; 2MUSC Bioinformatics, Center for Genomic Medicine, Medical University of South Carolina, Charleston, SC, USA; 3MS in Biomedical Sciences Program, Medical University of South Carolina, Charleston, SC, USA; 4School of Biological Sciences and Institute for Global Food Security, Queens University Belfast, BelfastBT9 5AG, UK; 5Department of Medicine, University of California, La Jolla, CA, USA; 6Moores UCSD Cancer Center, University of California San Diego, La Jolla, California, CA, USA; 7Division of Biological Sciences, University of California San Diego, La Jolla, California, CA, USA
| | - Matthew Huff
- 1Department of Medicine, Medical University of South Carolina, Charleston, SC, USA; 2MUSC Bioinformatics, Center for Genomic Medicine, Medical University of South Carolina, Charleston, SC, USA; 3MS in Biomedical Sciences Program, Medical University of South Carolina, Charleston, SC, USA; 4School of Biological Sciences and Institute for Global Food Security, Queens University Belfast, BelfastBT9 5AG, UK; 5Department of Medicine, University of California, La Jolla, CA, USA; 6Moores UCSD Cancer Center, University of California San Diego, La Jolla, California, CA, USA; 7Division of Biological Sciences, University of California San Diego, La Jolla, California, CA, USA
| | - Willian A da Silveira
- 1Department of Medicine, Medical University of South Carolina, Charleston, SC, USA; 2MUSC Bioinformatics, Center for Genomic Medicine, Medical University of South Carolina, Charleston, SC, USA; 3MS in Biomedical Sciences Program, Medical University of South Carolina, Charleston, SC, USA; 4School of Biological Sciences and Institute for Global Food Security, Queens University Belfast, BelfastBT9 5AG, UK; 5Department of Medicine, University of California, La Jolla, CA, USA; 6Moores UCSD Cancer Center, University of California San Diego, La Jolla, California, CA, USA; 7Division of Biological Sciences, University of California San Diego, La Jolla, California, CA, USA
| | - Mila Angert
- 1Department of Medicine, Medical University of South Carolina, Charleston, SC, USA; 2MUSC Bioinformatics, Center for Genomic Medicine, Medical University of South Carolina, Charleston, SC, USA; 3MS in Biomedical Sciences Program, Medical University of South Carolina, Charleston, SC, USA; 4School of Biological Sciences and Institute for Global Food Security, Queens University Belfast, BelfastBT9 5AG, UK; 5Department of Medicine, University of California, La Jolla, CA, USA; 6Moores UCSD Cancer Center, University of California San Diego, La Jolla, California, CA, USA; 7Division of Biological Sciences, University of California San Diego, La Jolla, California, CA, USA
| | - Martin Haas
- 1Department of Medicine, Medical University of South Carolina, Charleston, SC, USA; 2MUSC Bioinformatics, Center for Genomic Medicine, Medical University of South Carolina, Charleston, SC, USA; 3MS in Biomedical Sciences Program, Medical University of South Carolina, Charleston, SC, USA; 4School of Biological Sciences and Institute for Global Food Security, Queens University Belfast, BelfastBT9 5AG, UK; 5Department of Medicine, University of California, La Jolla, CA, USA; 6Moores UCSD Cancer Center, University of California San Diego, La Jolla, California, CA, USA; 7Division of Biological Sciences, University of California San Diego, La Jolla, California, CA, USA
| | - Gary Hardiman
- 1Department of Medicine, Medical University of South Carolina, Charleston, SC, USA; 2MUSC Bioinformatics, Center for Genomic Medicine, Medical University of South Carolina, Charleston, SC, USA; 3MS in Biomedical Sciences Program, Medical University of South Carolina, Charleston, SC, USA; 4School of Biological Sciences and Institute for Global Food Security, Queens University Belfast, BelfastBT9 5AG, UK; 5Department of Medicine, University of California, La Jolla, CA, USA; 6Moores UCSD Cancer Center, University of California San Diego, La Jolla, California, CA, USA; 7Division of Biological Sciences, University of California San Diego, La Jolla, California, CA, USA
| |
Collapse
|
43
|
Qu J, Li Y, Gao M, Tan C, Li J, Wang X, Wang H. Development and optimization of a thiol imidazolium-based ionic liquid for ultrasonic assisted liquid-liquid microextraction combined with HPLC-FLD for determination of bisphenols in milk and juice samples. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.05.096] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Zhang X, Yang S, Chen W, Li Y, Wei Y, Luo A. Magnetic Fluorescence Molecularly Imprinted Polymer Based on FeO x/ZnS Nanocomposites for Highly Selective Sensing of Bisphenol A. Polymers (Basel) 2019; 11:polym11071210. [PMID: 31331050 PMCID: PMC6680805 DOI: 10.3390/polym11071210] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 01/05/2023] Open
Abstract
In this study, magnetic fluorescence molecularly imprinted polymers were fabricated and used for the selective separation and fluorescence sensing of trace bisphenol A (BPA) in environmental water samples. The carboxyl-functionalized FeOx magnetic nanoparticles were conjugated with mercaptoethylamine-capped Mn2+ doped ZnS quantum dots to prepare magnetic FeOx and ZnS quantum dot nanoparticles (FeOx/ZnS NPs). Additionally, molecular imprinting on the FeOx/ZnS NPs was employed to synthesize core-shell molecularly imprinted polymers. The resulting nanoparticles were well characterized using transmission electron microscopy, Fourier transform infrared spectra, vibrating sample magnetometer and fluorescence spectra, and the adsorption behavior was investigated. Binding experiments showed that the molecularly imprinted FeOX/ZnS NPs (FeOx/ZnS@MIPs) exhibited rapid fluorescent and magnetic responses, and high selectivity and sensitivity for the detection of bisphenol A (BPA). The maximum adsorption capacity of FeOx/ZnS@MIPs was 50.92 mg·g-1 with an imprinting factor of 11.19. Under optimal conditions, the constructed fluorescence magnetic molecularly imprinted polymers presented good linearity from 0 to 80 ng mL-1 with a detection limit of 0.3626 ng mL-1 for BPA. Moreover, the proposed fluorescence magnetic polymers were successfully applied to on-site magnetic separation and real-time fluorescence analysis of target molecule in real samples.
Collapse
Affiliation(s)
- Xin Zhang
- School of Life Science and Technology, Nanyang Normal University, Nanyang 473061, China.
- School of Life Science, Beijing Institute of Technology, No.5 Zhongguancun South Street, Beijing 100081, China.
| | - Shu Yang
- School of Life Science, Beijing Institute of Technology, No.5 Zhongguancun South Street, Beijing 100081, China
| | - Weijie Chen
- School of Life Science, Beijing Institute of Technology, No.5 Zhongguancun South Street, Beijing 100081, China
| | - Yansong Li
- School of Life Science and Technology, Nanyang Normal University, Nanyang 473061, China
| | - Yuping Wei
- School of Life Science and Technology, Nanyang Normal University, Nanyang 473061, China
| | - Aiqin Luo
- School of Life Science, Beijing Institute of Technology, No.5 Zhongguancun South Street, Beijing 100081, China
| |
Collapse
|
45
|
Salvaggio A, Tiralongo F, Krasakopoulou E, Marmara D, Giovos I, Crupi R, Messina G, Lombardo BM, Marzullo A, Pecoraro R, Scalisi EM, Copat C, Zuccarello P, Ferrante M, Brundo MV. Biomarkers of Exposure to Chemical Contamination in the Commercial Fish Species Lepidopus caudatus (Euphrasen, 1788): A Particular Focus on Plastic Additives. Front Physiol 2019; 10:905. [PMID: 31379607 PMCID: PMC6646597 DOI: 10.3389/fphys.2019.00905] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 07/01/2019] [Indexed: 12/31/2022] Open
Abstract
In recent years, the Mediterranean Sea has become an accumulation zone for waste generated by the 22 countries bordering its shores. Although the effects of plastic litter on the marine environment and on organisms have recently been studied in other areas, further information is needed for the Mediterranean Sea and, in particular, about plastics additives inputs and interactions with the biota and the trophic network, such as phthalates and bisphenol A. Plastic material production, use and disposal contribute also to the release of heavy metals into the environment, such as mercury (Hg), often used during the production of chlorine, the primary ingredient in PVC, lead (Pb) and cadmium (Cd), which are used as stabilizers in PVC and leach out of products during use and disposal. Our research aims to evaluate phthalates, bisphenol A and heavy metals contamination in Lepidopus caudatus (Pisces, Trichiuridae), which could be considered as a potential sentinel species. For the evaluation of toxicological effects, we evaluated the expression of vitellogenin and metallothioneins 1. In all samples analyzed, we have not found microplastics in the gastrointestinal tract but chemical analysis revealed the presence of high content of phthalates, and in particular high quantities of DIDP, DEHP, bis-benzylester phthalate, bis-butyl ester phthalate and mono-N-butyl ester phthalate in different organs. Instead, trace elements detected in tissue revealed a trend of concentrations generally higher in liver and intestine than gill and muscle tissues. Immunohistochemical analysis for anti-metallothionein 1 antibody showed a strong positivity of liver cells, both in females and males. Analysis for the anti-vitellogenin antibody showed in females a strong positivity both in the liver cells and in the gonads, in male specimens was found to be always negative except for a specimen, in which it was highlighted a positivity in some areas of the liver and of the gonad.
Collapse
Affiliation(s)
- Antonio Salvaggio
- Experimental Zooprophylactic Institute of Sicily A. Mirri, Palermo, Italy
| | - Francesco Tiralongo
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | | | - Dimitra Marmara
- Department of Marine Sciences, University of the Aegean, Mytilene, Greece
| | - Ioannis Giovos
- iSEA, Environmental Organization for the Preservation of the Aquatic Ecosystems Ochi Av., Thessaloniki, Greece
| | - Rosalia Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Giuseppina Messina
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Bianca Maria Lombardo
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Alessandra Marzullo
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Roberta Pecoraro
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Elena Maria Scalisi
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Chiara Copat
- Department of Medical, Surgery Sciences and Advanced Technologies, G. F. Ingrassia, University of Catania, Catania, Italy
| | - Pietro Zuccarello
- Department of Medical, Surgery Sciences and Advanced Technologies, G. F. Ingrassia, University of Catania, Catania, Italy
| | - Margherita Ferrante
- Department of Medical, Surgery Sciences and Advanced Technologies, G. F. Ingrassia, University of Catania, Catania, Italy
| | - Maria Violetta Brundo
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| |
Collapse
|
46
|
Sonavane M, Gassman NR. Bisphenol A co-exposure effects: a key factor in understanding BPA's complex mechanism and health outcomes. Crit Rev Toxicol 2019; 49:371-386. [PMID: 31256736 DOI: 10.1080/10408444.2019.1621263] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bisphenol A (BPA) is an environmental endocrine disrupting chemical widely used in the production of consumer products, such as polycarbonate plastics, epoxies, and thermal receipt paper. Human exposure to BPA is ubiquitous due to its high-volume production and use. BPA exposure has been associated with obesity, diabetes, reproductive disorders, and cancer. Yet, the molecular mechanisms or modes of action underlying these disease outcomes are poorly understood due to the pleiotropic effects induced by BPA. A further confounding factor in understanding BPA's impact on human health is that co-exposure of BPA with endogenous and exogenous agents occurs during the course of daily life. Studies investigating BPA exposure effects and their relationship to adverse health outcomes often ignore interactions between BPA and other chemicals present in the environment. This review examines BPA co-exposure studies to highlight potentially unexplored mechanisms of action and their possible associations with the adverse health effects attributed to BPA. Importantly, both adverse and beneficial co-exposure effects are observed between BPA and natural chemicals or environmental stressors in in vitro and in vivo models. These interactions clearly influence cellular responses and impact endpoint measures and need to be considered when evaluating BPA exposures and their health effects.
Collapse
Affiliation(s)
- Manoj Sonavane
- Department of Oncologic Sciences, University of South Alabama Mitchell Cancer Institute, Mobile, AL, USA.,Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - Natalie R Gassman
- Department of Oncologic Sciences, University of South Alabama Mitchell Cancer Institute, Mobile, AL, USA.,Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| |
Collapse
|
47
|
Li L, Ying Y, Zhang C, Wang W, Li Y, Feng Y, Liang J, Song H, Wang Y. Bisphenol A exposure and risk of thyroid nodules in Chinese women: A case-control study. ENVIRONMENT INTERNATIONAL 2019; 126:321-328. [PMID: 30825751 DOI: 10.1016/j.envint.2019.02.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/27/2019] [Accepted: 02/10/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Thyroid nodules (TNs) are highly prevalent worldwide and have a pattern of female predominance. Bisphenol A (BPA) is an endocrine disruptor that can lead to adverse effects in human health. However, epidemiologic studies revealing the association between BPA exposure and TNs are limited and the results are inconsistent. We aimed to examine the association between urinary BPA and TNs in women who are more susceptible to TNs. METHODS We conducted a case-control study with 1416 women aged 18 years or older (705 cases, 711 controls). All participants underwent thyroid ultrasonography. Urinary total BPA (free and conjugated) concentration was quantified using the HPLC-MS/MS. We analyzed the association between urinary BPA concentration and the risk of TNs using crude and multivariable logistic regression models. Participants were further stratified into thyroid autoantibody positive group (at least one positive) and thyroid autoantibody negative group (both negative) according to the thyroglobulin antibody (TGAb) and thyroid peroxidase antibody (TPOAb) levels, and restricted cubic spline regression was also applied to determine the possible nonlinear relationship between urinary BPA and TNs. RESULTS Compared with women in the first quartile, the odds of TNs was 72% (adjusted OR = 1.72, 95% CI: 1.25 to 2.35) higher for those in the second quartile, 54% (adjusted OR = 1.54, 95% CI: 1.12 to 2.12) higher for those in the third quartile, and 108% (adjusted OR = 2.08, 95% CI: 1.50 to 2.90) higher for those in the fourth quartile after adjusting for age, BMI, education, HDL-C, LDL-C, triglyceride, total cholesterol, urinary iodine, TGAb and TPOAb. When the study population was stratified into thyroid autoantibody positive group and thyroid autoantibody negative group, we found that only in the positive group, the association was significant in model 1 (crude OR = 2.80; 95% CI = 1.90 to 4.12), model 2 (adjusted OR = 2.84; 95% CI = 1.91 to 4.22), model 3 (adjusted OR = 4.01; 95% CI = 2.57 to 6.27) and model 4 (adjusted OR = 3.71; 95% CI = 2.36 to 5.83). Multivariable-adjusted restricted cubic spline analysis demonstrated a similar result that in the thyroid autoantibody positive group, the association between urinary BPA and TNs risk was near linear (P-overall <0.001; P-non-linear = 0.054). CONCLUSION In Chinese women, higher urinary BPA concentration was associated with increased risk of TNs only in those with positive thyroid autoantibodies. Moreover, this association was near linear, indicating that any rise in BPA exposure was associated with elevated TNs risk.
Collapse
Affiliation(s)
- Lu Li
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai 200011, China
| | - Yingxia Ying
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai 200011, China
| | - Changrun Zhang
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai 200011, China
| | - Wei Wang
- School of Public Health, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai 200025, China
| | - Yan Li
- School of Public Health, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai 200025, China
| | - Yan Feng
- School of Public Health, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai 200025, China
| | - Jun Liang
- Department of Endocrinology, the Central Hospital of Xuzhou, Affiliated Hospital of Southeast University, Xuzhou 221009, Jiangsu Province, China
| | - Huaidong Song
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai 200011, China.
| | - Yan Wang
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai 200011, China; School of Public Health, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai 200025, China.
| |
Collapse
|
48
|
Tweats D, Eastmond DA, Lynch AM, Elhajouji A, Froetschl R, Kirsch-Volders M, Marchetti F, Masumura K, Pacchierotti F, Schuler M. Role of aneuploidy in the carcinogenic process: Part 3 of the report of the 2017 IWGT workgroup on assessing the risk of aneugens for carcinogenesis and hereditary diseases. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 847:403032. [PMID: 31699349 DOI: 10.1016/j.mrgentox.2019.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/10/2019] [Accepted: 03/13/2019] [Indexed: 12/13/2022]
Abstract
Aneuploidy is regarded as a hallmark of cancer, however, its role is complex with both pro- and anti-carcinogenic effects evident. In this IWGT review, we consider the role of aneuploidy in cancer biology; cancer risk associated with constitutive aneuploidy; rodent carcinogenesis with known chemical aneugens; and chemotherapy-related malignant neoplasms. Aneuploidy is seen at various stages in carcinogenesis. However, the relationship between induced aneuploidy occurring after exposure and clonal aneuploidy present in tumours is not clear. Recent evidence indicates that the induction of chromosomal instability (CIN), may be more important than aneuploidy per se, in the carcinogenic process. Down Syndrome, trisomy 21, is associated with altered hematopoiesis in utero which, in combination with subsequent mutations, results in an increased risk for acute megakaryoblastic and lymphoblastic leukemias. In contrast, there is reduced cancer risk for most solid tumours in Down Syndrome. Mouse models with high levels of aneuploidy are also associated with increased cancer risk for particular tumours with long latencies, but paradoxically other types of tumour often show decreased incidence. The aneugens reviewed that induce cancer in humans and animals all possess other carcinogenic properties, such as mutagenicity, clastogenicity, cytotoxicity, organ toxicities, hormonal and epigenetic changes which likely account for, or interact with aneuploidy, to cause carcinogenesis. Although the role that aneuploidy plays in carcinogenesis has not been fully established, in many cases, it may not play a primary causative role. Tubulin-disrupting aneugens that do not possess other properties linked to carcinogenesis, were not carcinogenic in rodents. Similarly, in humans, for the tubulin-disrupting aneugens colchicine and albendazole, there is no reported association with increased cancer risk. There is a need for further mechanistic studies on agents that induce aneuploidy, particularly by mechanisms other than tubulin disruption and to determine the role of aneuploidy in pre-neoplastic events and in early and late stage neoplasia.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Kenichi Masumura
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kanagawa, Japan
| | - Francesca Pacchierotti
- Health Protection Technology Division, Laboratory of Biosafety and Risk Assessment, ENEA, CR Casaccia, Rome, Italy
| | | |
Collapse
|
49
|
Isolation of Bisphenol A-Tolerating/degrading Shewanella haliotis Strain MH137742 from an Estuarine Environment. Appl Biochem Biotechnol 2019; 189:103-115. [PMID: 30868384 DOI: 10.1007/s12010-019-02989-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 03/01/2019] [Indexed: 10/27/2022]
Abstract
The human exposure to bisphenol A (BPA) occurs frequently. Once, this compound was one of the highest volume chemicals produced worldwide and used as a plasticizer in many products. However, even at low concentration, it can cause severe damage to the endocrine system because of its endocrine disruptor activity. Thus, mitigation studies to remove or reduce this contaminant from the environment are essential. An alternative method of removing it from the environment is the use of bioremediation processes to the selected bacteria isolated from a BPA-impacted area. In this work, four halotolerant strains were isolated from the Santos Estuary System, one of the most important Brazilian examples of environmental degradation. In the present work, one strain presented strong BPA tolerance and high BPA-degrading activity and could grow in a minimum medium containing BPA as the main carbon source. Strain MH137742 was identified as Shewanella haliotis, based on 16S rRNA gene sequencing and mass spectrometry identification by MALDI-TOF Biotyper. Shewanella haliotis was able to tolerate up to 150 mg L-1 of BPA and biotransform 75 mg L-1 in 10 h in a liquid culture medium. Based on the analysis of the produced metabolites by LC-MS, it was possible to predict the metabolic pathway used by this microorganism to degrade the BPA.
Collapse
|
50
|
Amine cured double Schiff base epoxy as efficient anticorrosive coating materials for protection of mild steel in 3.5% NaCl medium. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.01.066] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|