1
|
Winkler DE, Bernetière I, Böhmer C. Tooth eruption status and bite force determine dental microwear texture gradients in albino rats (Rattus norvegicus forma domestica). Anat Rec (Hoboken) 2024. [PMID: 39462871 DOI: 10.1002/ar.25595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/16/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024]
Abstract
Dental microwear texture analysis (DMTA) is widely applied for inferring diet in vertebrates. Besides diet and ingesta properties, factors like wear stage and bite force may affect microwear formation, potentially leading to tooth position-specific microwear patterns. We investigated DMTA consistency along the upper cheek tooth row in young adult female rats at different growth stages, but with erupted adult dentitions. Bite forces for each molar (M) position were determined using muscle cross-sectional areas and lever arm mechanics. Rats were categorized into three size classes based on increasing skull length. Maximum bite force increased with size, while across all size classes, M3 bite force was almost 1.4 times higher than M1 bite force. In size class 1, M1 and M2 showed higher values than M3 for DMTA complexity, height, and volume parameters, while in size class 3, M1 had the lowest values. Comparing the same tooth position between size classes revealed opposing trends: M1 and M2 showed, for most parameters, decreasing roughness and complexity from size class 1-3, while M3 displayed the opposite trend, with size class 1 showing lowest, and either size class 2 or 3 the highest roughness and complexity values. This suggests that as rats age and M3 fully occludes, it becomes more utilized during mastication. DMTA, being a short-term diet proxy, is influenced by eruption and occlusion status changes. Our findings emphasize the importance of bite force and ontogenetic stage when interpreting microwear patterns and advise to select teeth in full occlusion for diet reconstruction.
Collapse
Affiliation(s)
- Daniela E Winkler
- Zoology and Functional Morphology of Vertebrates, Zoologisches Institut, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Isabelle Bernetière
- Zoology and Functional Morphology of Vertebrates, Zoologisches Institut, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Christine Böhmer
- Zoology and Functional Morphology of Vertebrates, Zoologisches Institut, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
2
|
Arellano JI, Duque A, Rakic P. A coming-of-age story: adult neurogenesis or adolescent neurogenesis in rodents? Front Neurosci 2024; 18:1383728. [PMID: 38505771 PMCID: PMC10948509 DOI: 10.3389/fnins.2024.1383728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 02/23/2024] [Indexed: 03/21/2024] Open
Abstract
It is surprising that after more than a century using rodents for scientific research, there are no clear, consensual, or consistent definitions for when a mouse or a rat becomes adult. Specifically, in the field of adult hippocampal neurogenesis, where this concept is central, there is a trend to consider that puberty marks the start of adulthood and is not uncommon to find 30-day-old mice being described as adults. However, as others discussed earlier, this implies an important bias in the perceived importance of this trait because functional studies are normally done at very young ages, when neurogenesis is at its peak, disregarding middle aged and old animals that exhibit very little generation of new neurons. In this feature article we elaborate on those issues and argue that research on the postnatal development of mice and rats in the last 3 decades allows to establish an adolescence period that marks the transition to adulthood, as occurs in other mammals. Adolescence in both rat and mice ends around postnatal day 60 and therefore this age can be considered the onset of adulthood in both species. Nonetheless, to account for inter-individual, inter-strain differences in maturation and for possible delays due to environmental and social conditions, 3 months of age might be a safer option to consider mice and rats bona fide adults, as suggested by The Jackson Labs.
Collapse
Affiliation(s)
- Jon I. Arellano
- Department of Neuroscience, Yale University, New Haven, CT, United States
| | - Alvaro Duque
- Department of Neuroscience, Yale University, New Haven, CT, United States
| | - Pasko Rakic
- Department of Neuroscience, Yale University, New Haven, CT, United States
- Kavli Institute for Neuroscience at Yale, Yale University, New Haven, CT, United States
| |
Collapse
|
3
|
Barsky ST, Monks DA. Lifespan Effects of Muscle-Specific Androgen Receptor Overexpression on Body Composition of Male and Female Rats. Endocrinology 2024; 165:bqae012. [PMID: 38301268 DOI: 10.1210/endocr/bqae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/03/2024]
Abstract
Androgenic actions of gonadal testosterone are thought to be a major mechanism promoting sex differences in body composition across the lifespan. However, this inference is based on studies of androgen receptor (AR) function in late adolescent or emerging adult rodents. Here we assess body composition and AR expression in skeletal muscle of rats at defined ages, comparing wild-type (WT) to transgenic human skeletal actin-driven AR overexpression (HSAAR) rats which overexpress AR in skeletal muscle. Male and female HSAAR and WT Sprague Dawley rats (N = 288) underwent dual-energy x-ray absorptiometry (DXA) scanning and tissue collection at postnatal day (PND) 1, 10, 21, 42, 70, 183, 243, and 365. Expected sex differences in body composition and muscle mass largely onset with puberty (PND-21), with no associated changes to skeletal muscle AR protein. In adulthood, HSAAR increased tibialis anterior (TA) and extensor digitorum longus mass in males, and reduced the expected gain in gonadal fat mass in both sexes. In WT rats, AR protein was reduced in soleus, but not TA, throughout life. Nonetheless, soleus AR protein expression was greater in male rats than female rats at all ages of sexual development, yet only at PND-70 in TA. Overall, despite muscle AR overexpression effects, results are inconsistent with major sex differences in body composition during sexual development being driven by changes in muscle AR, rather suggesting that changes in ligand promote sexual differentiation of body composition during pubertal timing. Nonetheless, increased skeletal muscle AR in adulthood can be sufficient to increase muscle mass in males, and reduce adipose in both sexes.
Collapse
Affiliation(s)
- Sabrina Tzivia Barsky
- Department of Cell & Systems Biology, Faculty of Arts & Science, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Douglas Ashley Monks
- Department of Cell & Systems Biology, Faculty of Arts & Science, University of Toronto, Toronto, Ontario M5S 3G5, Canada
- Department of Psychology, Faculty of Arts & Science, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| |
Collapse
|
4
|
León-Ramírez YMD, Sánchez EP, Pérez AC, Sánchez-Solís CN, Rodríguez-Antolín J, Nicolás-Toledo L. Dietary intervention in adult rats exposed to a high-sugar diet early in life permanently impairs sperm quality. ANNALES D'ENDOCRINOLOGIE 2023; 84:779-789. [PMID: 37343721 DOI: 10.1016/j.ando.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/16/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023]
Abstract
Childhood obesity predicts the presence of adult obesity. Obesity is associated with poor sperm quality. We hypothesized that exposure to a high-sugar diet (HSD) in early life would cause permanent histomorphology damage to the testes, resulting in reduced sperm quality in adult life. Wistar rats (aged 21days) were divided into four groups (n=6). In the first experiment, the rats received tap water (control) and a 30% sucrose diet for two months (S30). In the second experiment, the control and 30% sucrose diets were fed for two months, followed by replacement with tap water for two months (IS30). Eating and drinking were monitored. Animals were then euthanized, visceral and gonadal fat tissue and testes were collected, and epididymal spermatozoa were excised. Testicular samples were used for morphological description by H&E staining and for quantifying triacylglycerol content, caspase activity, and oxidative stress. Serum testosterone concentration was evaluated. Spermatozoa were used to assess sperm quality. Our results show that sperm quality was impaired by consuming HSD and could not be restored by dietary intervention. HSD feeding induced hyperplasia of visceral adipose tissue, increased testicular weight, and serum testosterone levels. The dietary intervention increased visceral adipose tissue, serum, and testicular triacylglycerol levels and normalized serum testosterone levels. Overall, the HSD diet caused permanent changes in seminiferous tubule cross-sectional area, caspase activity, oxidative stress, and sperm quality. Therefore, a high-sugar diet in early life causes permanent damage to sperm quality in adulthood.
Collapse
Affiliation(s)
- Yeimy Mar De León-Ramírez
- Doctorado en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, México; Licenciatura en Química Clínica, Facultad de Ciencias de la Salud, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Eliut Pérez Sánchez
- Licenciatura en Química Clínica, Facultad de Ciencias de la Salud, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Adriana Corona Pérez
- Licenciatura en Nutrición, Unidad Académica Multidisciplinaria Calpulalpan, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Cristhian Neftaly Sánchez-Solís
- Licenciatura en Nutrición, Unidad Académica Multidisciplinaria Calpulalpan, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Jorge Rodríguez-Antolín
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Leticia Nicolás-Toledo
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, México.
| |
Collapse
|
5
|
Brouard V, Drouault M, Elie N, Guénon I, Hanoux V, Bouraïma-Lelong H, Delalande C. Effects of bisphenol A and estradiol in adult rat testis after prepubertal and pubertal exposure. Reprod Toxicol 2022; 111:211-224. [PMID: 35700937 DOI: 10.1016/j.reprotox.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/29/2022] [Accepted: 06/08/2022] [Indexed: 11/26/2022]
Abstract
Over the past few decades, male fertility has been decreasing worldwide. Many studies attribute this outcome to endocrine disruptors exposure such as bisphenol A (BPA), which is a chemical compound used in plastics synthesis and exhibiting estrogenic activity. In order to assess how the window of exposure modulates the effects of BPA on the testis, prepubertal (15 dpp to 30 dpp) and pubertal (60 dpp to 75 dpp) male Sprague-Dawley rats were exposed to BPA (50 µg/kg bw/day), 17-β-estradiol (E2) (20 µg/kg bw/day) as a positive control, or to a combination of these compounds. For both periods of exposure, the rats were sacrificed and their testes were collected at 75 dpp. The histological analysis and the quantification of the gene expression of testis cell markers by RT-qPCR confirmed the complete spermatogenesis in all groups for both periods of exposure. However, our results suggest a deleterious effect of BPA on the blood-testis barrier in adults after pubertal exposure as BPA and BPA+E2 treatments induced a decrease in caveolin-1 and connexin-43 gene expression; which are proteins of the junctional complexes. As none of these effects were found after a prepubertal exposure, these results suggested the reversibility of BPA's effects. Caution must be taken when transposing this finding to humans and further studies are needed in this regard. However, from a regulatory perspective, this study emphasizes the importance of taking into account different periods of exposure, as they present different sensitivities to BPA exposure.
Collapse
Affiliation(s)
| | | | - Nicolas Elie
- Normandie Univ, UNICAEN, SF 4206 ICORE, CMABIO3, 14000 Caen, France
| | | | | | | | | |
Collapse
|
6
|
Ghasemi A, Jeddi S, Kashfi K. The laboratory rat: Age and body weight matter. EXCLI JOURNAL 2021; 20:1431-1445. [PMID: 34737685 PMCID: PMC8564917 DOI: 10.17179/excli2021-4072] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/31/2021] [Indexed: 12/20/2022]
Abstract
Animal experimentation helps us to understand human biology. Rodents and, in particular, rats are among the most common animals used in animal experiments. Reporting data on animal age, animal body weight, and animal postnatal developmental stages is not consistent, which can cause the failure to translate animal data to humans. This review summarizes age-related postnatal developmental stages in rats by addressing age-related changes in their body weights. The age and body weight of animals can affect drug metabolism, gene expression, metabolic parameters, and other dependent variables measured in animal studies. In addition, considering the age and the body weight of the animals is of particular importance in animal modeling of human diseases. Appropriate reporting of age, body weight, and the developmental stage of animals used in studies can improve animal to human translation.
Collapse
Affiliation(s)
- Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, USA
| |
Collapse
|
7
|
Methods and Challenges in Investigating Sex-Specific Consequences of Social Stressors in Adolescence in Rats: Is It the Stress or the Social or the Stage of Development? Curr Top Behav Neurosci 2021; 54:23-58. [PMID: 34455576 DOI: 10.1007/7854_2021_245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Adolescence is a time of social learning and social restructuring that is accompanied by changes in both the hypothalamic-pituitary-gonadal axis and the hypothalamic-pituitary-adrenal (HPA) axis. The activation of these axes by puberty and stressors, respectively, shapes adolescent development. Models of social stress in rats are used to understand the consequences of perturbations of the social environment for ongoing brain development. This paper reviews the challenges in investigating the sex-specific consequences of social stressors, sex differences in the models of social stress used in rats and the sex-specific effects on behaviour and provides an overview of sex differences in HPA responding to stressors, the variability in pubertal development and in strains of rats that require consideration in conducting such research, and directions for future research.
Collapse
|
8
|
Vidal JD, Colman K, Bhaskaran M, de Rijk E, Fegley D, Halpern W, Jacob B, Kandori H, Manickam B, McKeag S, Parker GA, Regan KS, Sefing B, Thibodeau M, Vemireddi V, Werner J, Zalewska A. Scientific and Regulatory Policy Committee Best Practices: Documentation of Sexual Maturity by Microscopic Evaluation in Nonclinical Safety Studies. Toxicol Pathol 2021; 49:977-989. [PMID: 33661059 DOI: 10.1177/0192623321990631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The sexual maturity status of animals in nonclinical safety studies can have a significant impact on the microscopic assessment of the reproductive system, the interpretation of potential test article-related findings, and ultimately the assessment of potential risk to humans. However, the assessment and documentation of sexual maturity for animals in nonclinical safety studies is not conducted in a consistent manner across the pharmaceutical and chemical industries. The Scientific and Regulatory Policy Committee of the Society of Toxicologic Pathology convened an international working group of pathologists and nonclinical safety scientists with expertise in the reproductive system, pathology nomenclature, and Standard for Exchange of Nonclinical Data requirements. This article describes the best practices for documentation of the light microscopic assessment of sexual maturity in males and females for both rodent and nonrodent nonclinical safety studies. In addition, a review of the microscopic features of the immature, peripubertal, and mature male and female reproductive system and general considerations for study types and reporting are provided to aid the study pathologist tasked with documentation of sexual maturity.
Collapse
Affiliation(s)
| | - Karyn Colman
- Novartis Institutes for BioMedical Research, San Diego, CA, USA
| | | | - Eveline de Rijk
- 26135Charles River Laboratories, Hertogenbosch, the Netherlands
| | | | | | - Binod Jacob
- 331129Merck & Co, Inc, West Point, Pennsylvania, PA, USA
| | - Hitoshi Kandori
- 561471Axcelead Drug Discovery Partners, Fujisawa, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Positive symptom phenotypes appear progressively in "EDiPS", a new animal model of the schizophrenia prodrome. Sci Rep 2021; 11:4294. [PMID: 33619296 PMCID: PMC7900200 DOI: 10.1038/s41598-021-83681-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 12/24/2020] [Indexed: 11/08/2022] Open
Abstract
An increase in dopamine (DA) synthesis capacity in the dorsal striatum (DS) during the prodromal stage of schizophrenia becomes more pronounced as patients progress to the full disorder. Understanding this progression is critical to intervening in disease course. We developed an animal model-Enhanced Dopamine in Prodromal Schizophrenia (EDiPS)-which uses a genetic construct to increase DA synthesis capacity in the DS of male rats. We assessed pre-pulse inhibition (PPI) and amphetamine (AMPH)-induced locomotion (0.6 mg/kg) in EDiPS animals longitudinally after post-natal day 35 (when the EDiPS construct is administered). We also assessed their response to repeated acute restraint stress. In adult EDiPS animals, we measured baseline and evoked extracellular DA levels, and their stereotyped responses to 5 mg/kg AMPH. AMPH-induced hyperlocomotion was apparent in EDiPS animals 6-weeks after construct administration. There was an overall PPI deficit in EDiPS animals across all timepoints, however the stress response of EDiPS animals was unaltered. Adult EDiPS animals show normal baseline and potassium-evoked DA release in the DS. These findings suggest that key behavioural phenotypes in EDiPS animals show a progressive onset, similar to that demonstrated by patients as they transition to schizophrenia. The EDiPS model could therefore be used to investigate the molecular mechanisms underlying the prodrome of schizophrenia.
Collapse
|
10
|
Historical control data for hematology parameters obtained from toxicity studies performed on different Wistar rat strains: Acceptable value ranges, definition of severity degrees, and vehicle effects. TOXICOLOGY RESEARCH AND APPLICATION 2020. [DOI: 10.1177/2397847320931484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The physiological and health status of control animals may vary. Due to this variation, it is important to define acceptable ranges of control hematology parameters to gain a better understanding of adverse and non-adverse effects of test substances. After generating historical control data for two Wistar rat strains (RccHan™:WIST and Crl:WI(Han)) from different breeders, the data sets were statistically analyzed using Minitab®. After noticing that single outliers can affect the study control data set, the respective outliers were verified relative to the available histopathology findings, for example, inflammatory pulmonary lesions following vehicle aspiration or spontaneous sperm granuloma affecting the health status and hematology data of the respective animals. Such data points were excluded from the control data set. Comparing both data sets, it was obvious that different blood sampling and anesthesia methods as well as strain differences may result in slightly different values. After excluding the outliers, a data set from animals with presumably good health status was generated to define acceptable ranges and severity degrees. To evaluate effects, possibly influencing hematology parameters and defined acceptable ranges, selected vehicles and different study types were observed.
Collapse
|
11
|
Kállai V, Lénárd L, Péczely L, Gálosi R, Dusa D, Tóth A, László K, Kertes E, Kovács A, Zagoracz O, Berta B, Karádi Z, Ollmann T. Cognitive performance of the MAM-E17 schizophrenia model rats in different age-periods. Behav Brain Res 2020; 379:112345. [PMID: 31704232 DOI: 10.1016/j.bbr.2019.112345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/03/2019] [Accepted: 11/04/2019] [Indexed: 11/17/2022]
Abstract
Cognitive disturbances are among the most important features of schizophrenia, and have a significant role in the outcome of the disease. However, the treatment of cognitive symptoms is poorly effective. In order to develop new therapeutic opportunities, the MAM-E17 rat model of schizophrenia can be an appropriate implement. In the present study we investigated several cognitive capabilities of MAM-treated rats using radial arm maze (RAM) task, which corresponds to the recent research directives. Because of the diachronic appearance of schizophrenia symptoms and the early appearance of cognitive deficiencies, we carried out our experiments in three different age-periods of rats, i.e. in prepuberty, late puberty and adulthood. The performance of MAM-E17 rats was similar to control rats in the acquisition phase of RAM task, except for puberty. However, after rearrangement of reward positions (in the reverse paradigm) the number of errors of MAM-treated rats was higher in each age-period. In the reverse paradigm MAM-treated groups visited more frequently those non-rewarding arms, which were previously rewarding. Our results suggest that working memory of MAM-E17 rats is impaired. This deficit depends on the difficulty of the task and on the age-period. MAM-E17 rats seem to be more sensitive in puberty in comparison to controls. Diminished behavioral flexibility was shown as well. These behavioral results observed in MAM-E17 rats were similar to those of cognitive deficiencies in schizophrenia patients. Therefore, MAM-E17 model can be a useful implement for further research aiming to improve cognition in schizophrenia.
Collapse
Affiliation(s)
- Veronika Kállai
- Institute of Physiology, Medical School, Pécs University, Pécs, Hungary; Centre for Neuroscience, Pécs University, Pécs, Hungary
| | - László Lénárd
- Institute of Physiology, Medical School, Pécs University, Pécs, Hungary; Molecular Neuroendocrinology and Neurophysiology Research Group, Szentágothai Research Centre, Pécs University, Pécs, Hungary; Centre for Neuroscience, Pécs University, Pécs, Hungary.
| | - László Péczely
- Institute of Physiology, Medical School, Pécs University, Pécs, Hungary; Centre for Neuroscience, Pécs University, Pécs, Hungary
| | - Rita Gálosi
- Institute of Physiology, Medical School, Pécs University, Pécs, Hungary; Centre for Neuroscience, Pécs University, Pécs, Hungary
| | - Daniella Dusa
- Institute of Physiology, Medical School, Pécs University, Pécs, Hungary; Centre for Neuroscience, Pécs University, Pécs, Hungary
| | - Attila Tóth
- Institute of Physiology, Medical School, Pécs University, Pécs, Hungary; Centre for Neuroscience, Pécs University, Pécs, Hungary
| | - Kristóf László
- Institute of Physiology, Medical School, Pécs University, Pécs, Hungary; Centre for Neuroscience, Pécs University, Pécs, Hungary
| | - Erika Kertes
- Institute of Physiology, Medical School, Pécs University, Pécs, Hungary; Centre for Neuroscience, Pécs University, Pécs, Hungary
| | - Anita Kovács
- Institute of Physiology, Medical School, Pécs University, Pécs, Hungary; Centre for Neuroscience, Pécs University, Pécs, Hungary
| | - Olga Zagoracz
- Institute of Physiology, Medical School, Pécs University, Pécs, Hungary; Centre for Neuroscience, Pécs University, Pécs, Hungary
| | - Beáta Berta
- Institute of Physiology, Medical School, Pécs University, Pécs, Hungary; Centre for Neuroscience, Pécs University, Pécs, Hungary
| | - Zoltán Karádi
- Institute of Physiology, Medical School, Pécs University, Pécs, Hungary; Molecular Neuroendocrinology and Neurophysiology Research Group, Szentágothai Research Centre, Pécs University, Pécs, Hungary; Centre for Neuroscience, Pécs University, Pécs, Hungary
| | - Tamás Ollmann
- Institute of Physiology, Medical School, Pécs University, Pécs, Hungary; Centre for Neuroscience, Pécs University, Pécs, Hungary
| |
Collapse
|
12
|
Folwarczna J, Konarek N, Freier K, Karbowniczek D, Londzin P, Janas A. Effects of loratadine, a histamine H 1 receptor antagonist, on the skeletal system of young male rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:3357-3367. [PMID: 31576110 PMCID: PMC6767469 DOI: 10.2147/dddt.s215337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 07/26/2019] [Indexed: 01/03/2023]
Abstract
Background Histamine H1 receptor antagonists are widely used in the treatment of allergic diseases. H1 receptors are expressed on bone cells and histamine takes part in regulation of bone metabolism. Loratadine is often prescribed to children. Purpose The aim of the present study was to investigate the effects of loratadine on the skeletal system of young rats. Material and methods Loratadine (0.5, 5, and 50 mg/kg p.o. daily) was administered for 4 weeks to male Wistar rats, 6-week-old at the start of the experiment. Bone mass, mass of bone mineral, calcium, and phosphorus content in the bone mineral of the tibia, femur, and L-4 vertebra, histomorphometric parameters of the femur, mechanical properties of the proximal tibial metaphysis, femoral diaphysis and femoral neck, and serum levels of bone turnover markers were examined. Results Loratadine at 0.5 and 5 mg/kg did not significantly affect the skeletal system of young rats. At 50 mg/kg, loratadine decreased the femoral length, increased content of calcium and phosphorus in the bone mineral of the vertebra, and tended to improve mechanical properties of the tibial metaphysis. Conclusion High-dose loratadine slightly but significantly affected development of the skeletal system in rapidly growing rats.
Collapse
Affiliation(s)
- Joanna Folwarczna
- Department of Pharmacology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Sosnowiec 41-200, Poland
| | - Natalia Konarek
- Department of Pharmacology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Sosnowiec 41-200, Poland
| | - Karolina Freier
- Department of Pharmacology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Sosnowiec 41-200, Poland
| | - Dawid Karbowniczek
- Department of Pharmacology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Sosnowiec 41-200, Poland
| | - Piotr Londzin
- Department of Pharmacology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Sosnowiec 41-200, Poland
| | - Aleksandra Janas
- Department of Pharmacology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Sosnowiec 41-200, Poland
| |
Collapse
|
13
|
Krishna H, Changil A, Srinivas M, Roy TS, Jacob TG. Ultrastructural Study of Rat Testis Following Conventional Phototherapy during Neonatal Period. J Microsc Ultrastruct 2018; 6:205-211. [PMID: 30464894 PMCID: PMC6206757 DOI: 10.4103/jmau.jmau_17_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Introduction Phototherapy is the most common treatment for neonatal jaundice. This study sought to determine ultrastructural changes in testis, at different time-points, after 48 hours of conventional phototherapy was given to newborn rats. Methods Newborn male Wistar rats (n = 36) were divided into two groups as follows - group 1 (G1), control (without phototherapy) and group 2 (G2), exposure to conventional phototherapy for 48 h. Six animals from each group were sacrificed on postnatal days (PND) 70, 100 and 130. The testes were dissected out and processed for Transmission Electron Microscopy (TEM). Results TEM showed that G2 on PND 70 and 100 showed damaged organelles, including nuclei, mitochondria, endoplasmic reticulum, vacuoles and electron dense bodies in the testes. Seminiferous Tubule on PND130 showed lesser damage. On PND70 ST wall thickness (STWT) of G2 was significantly higher (P < 0.001) than G1 STWT of G2 was significantly lower than G1 on PND100 (P = 0.047) and on PND130 (P < 0.001). Mitochondrial diameter in spermatogonia was significantly higher in G2 on PND70 (P = 0.001), PND100 (P = 0.031) and PND130 (P = 0.028). Primary spermatocytes in G2 also had larger mitochondria on PND70 (P < 0.001), PND100 (P = 0.007) and PND130 (P = 0.008). Further, spermatids had larger mitochondria in G2 on PND70 (P < 0.001), PND100 (P = 0.044) and PND130 (P < 0.001). Conclusion Phototherapy causes degenerative changes in rat testis on PND70 and 100 that partially recover by PND 130.
Collapse
Affiliation(s)
- Hare Krishna
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Asha Changil
- Department of Anatomy, Army College of Medical Sciences, New Delhi, India
| | - M Srinivas
- Department of Paediatric Surgery, ESIC Medical College, Hyderabad, Telangana, India
| | - Tara Sankar Roy
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Tony George Jacob
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
14
|
Catlin NR, Willson CJ, Creasy DM, Rao DB, Kissling GE, McIntyre BS, Wyde M. Differentiating between Testicular Toxicity and Sexual Immaturity in Ortho-phthalaldehyde Inhalation Toxicity Studies in Rats and Mice. Toxicol Pathol 2018; 46:753-763. [PMID: 30259793 DOI: 10.1177/0192623318801790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Early deaths of young or juvenile animals (before sexual maturation is achieved) in routine regulatory safety studies present pathologists and toxicologists with the challenge of interpreting findings in the male reproductive tract. Additionally, the advent of toxicity testing regulations has resulted in a growing need for the use of juvenile animals in toxicology studies. Here, we present the reproductive toxicity findings from a 13-week inhalation toxicity study with ortho-phthalaldehyde (OPA) in male rats and mice as a case example for working through this challenging task. In this study with OPA, survival was significantly reduced in the two highest exposure concentrations of OPA tested. Early deaths and histopathological lesions in the testes and epididymides were generally also limited to these two highest exposure groups. Therefore, there was concern that peripubertal morphological features could be a confounding factor for the histopathological evaluation of exposure-related testicular and epididymal findings. Although it can be difficult to differentiate exposure-related effects from the normal morphological features defining peripubertal changes in the testes and epididymides in animals that die early in a toxicity study, the use of age-matched controls in this case study with OPA provided a reference and aided in the differentiation of these effects.
Collapse
Affiliation(s)
- Natasha R Catlin
- 1 National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA.,2 Current address: Pfizer Inc., Groton, Connecticut, USA
| | | | | | - Deepa B Rao
- 3 Integrated Laboratory Systems, Morrisville, North Carolina, USA.,5 Current address: Food and Drug Administration, Silver Spring, Maryland, USA
| | - Grace E Kissling
- 1 National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Barry S McIntyre
- 1 National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Michael Wyde
- 1 National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
15
|
Punhagui APF, Teixeira GR, de Freitas MC, Seraphim PM, Fernandes GSA. Intermittent resistance exercise and obesity, considered separately or combined, impair spermatic parameters in adult male Wistar rats. Int J Exp Pathol 2018; 99:95-102. [PMID: 29781539 DOI: 10.1111/iep.12270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 04/14/2018] [Indexed: 12/31/2022] Open
Abstract
Obesity and absence of physical exercise are global problems that affect concentration and sperm quality in the male reproductive system. The purpose of this study was to examine the effect of obesity and resistance training, considered separately or in association, on testicular function and reproductive capacity. Twenty pubertal male Wistar rats were distributed into four groups: control (C) and exercise (E) groups that received standard rat chow; and obese (O) and obese with exercise (OE) groups that received a high-fat diet. All the groups received filtered water during the experimental conditions. Groups E and OE were submitted to 8 weeks of high-intensity intermittent training. Afterwards, testes were collected for sperm count, spermatogenic kinetics, histopathology, morphometry and immunodetection of androgen receptors (AR). The vas deferens was collected for sperm morphology. The results showed that obesity increased body weight, naso-anal length, liver and epididymal fat weight, abnormal spermatozoa and immunodetectable AR. Intermittent exercise decreased daily sperm production (DSP), sperm count and normal spermatozoa, whereas the number of tubules with immunodetectable AR increased. The combination of obesity and intermittent training led to reduced sperm count and DSP, although abnormal spermatozoa and the number of tubules with immunodetectable AR increased. Thus, in conclusion, both obesity and resistance training impaired testicular function during puberty in rats; and this type of exercise has also been shown to be detrimental to testicular physiology.
Collapse
Affiliation(s)
- Ana Paula Franco Punhagui
- General Biology Department, Biological Sciences Center, State University of Londrina-UEL, Londrina, Brazil.,General Pathology Department, Biological Sciences Center, State University of Londrina-UEL, Londrina, Brazil
| | - Giovana Rampazzo Teixeira
- Physical Education Department, Júlio de Mesquita Filho State University of São Paulo, Presidente Prudente, Brazil
| | - Marcelo Conrado de Freitas
- Physical Education Department, Júlio de Mesquita Filho State University of São Paulo, Presidente Prudente, Brazil
| | - Patricia Monteiro Seraphim
- Physiotherapy Department, Júlio de Mesquita Filho State University of São Paulo, Presidente Prudente, Brazil
| | | |
Collapse
|
16
|
Picut CA, Ziejewski MK, Stanislaus D. Comparative Aspects of Pre- and Postnatal Development of the Male Reproductive System. Birth Defects Res 2017; 110:190-227. [PMID: 29063715 DOI: 10.1002/bdr2.1133] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 01/01/2023]
Abstract
This review describes pre- and postnatal development of the male reproductive system in humans and laboratory animals, and highlights species differences in the timing and control of hormonal and morphologic events. Major differences are that the fetal testis is dependent on gonadotropins in humans, but is independent of such in rats; humans have an extended postnatal quiescent period, whereas rats exhibit no quiescence; and events such as secretion by the prostate and seminal vesicles, testicular descent, and the appearance of spermatogonia are all prenatal events in humans, but are postnatal events in rats. Major differences in the timing of the developmental sequence between rats and humans include: gonocyte transformation period (rat: postnatal day 0-9; human: includes gestational week 22 to 9 months of age); masculinization programming window (rat: gestational day 15.5-17.5; human: gestational week 9-14); and mini-puberty (rat: 0-6 hr after birth; human: 3-6 months of age). Endocrine disruptors can cause unique lesions in the prenatal and early postnatal testis; therefore, it is important to consider the differences in the timing of the developmental sequence when designing preclinical studies as identification of windows of sensitivity for endocrine disruption or toxicants will aid in interpretation of results and provide clues to a mode of action. Birth Defects Research 110:190-227, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Catherine A Picut
- Charles River Laboratories, Pathology Associates, Durham, North Carolina
| | - Mary K Ziejewski
- GlaxoSmithKline Research & Development, King of Prussia, Pennsylvania
| | - D Stanislaus
- GlaxoSmithKline Research & Development, King of Prussia, Pennsylvania
| |
Collapse
|
17
|
Kállai V, Tóth A, Gálosi R, Péczely L, Ollmann T, Petykó Z, László K, Kállai J, Szabó I, Karádi Z, Lénárd L. The MAM-E17 schizophrenia rat model: Comprehensive behavioral analysis of pre-pubertal, pubertal and adult rats. Behav Brain Res 2017; 332:75-83. [DOI: 10.1016/j.bbr.2017.05.065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/26/2017] [Accepted: 05/28/2017] [Indexed: 01/17/2023]
|
18
|
Picut CA, Remick AK. Impact of Age on the Male Reproductive System from the Pathologist’s Perspective. Toxicol Pathol 2016; 45:195-205. [DOI: 10.1177/0192623316672744] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Age, and in particular young age, can significantly impact the response to toxicants in animals and can greatly influence the interpretation of tissue changes by the toxicologic pathologist. Although this applies to multiple organ systems, the current review focuses on the male reproductive system. When performing microscopic evaluation of male reproductive organs, the toxicologic pathologist must be aware of the dynamic changes in histomorphology, predominantly driven by timed hormonal alterations, at various life stages. Specific challenges pathologists face are understanding the appearance of male reproductive tissues throughout the neonatal, infantile, and juvenile developmental periods, recognizing when normal looks abnormal during tissue development, defining sexual maturity, and working with high interanimal variability in maturation rate and histologic appearance in developing large laboratory animals, such as nonhuman primates, dogs, and pigs. This review describes postnatal development of the male reproductive system in the rat, demonstrates how assessing toxicity during a defined window of postnatal development in the rat may improve definition of toxicant timing and targets, and discusses challenges associated with the interpretation of toxicity in immature large animal species. The emphasis is on key age-related characteristics that influence the interpretation of tissue changes by the toxicologic pathologist.
Collapse
Affiliation(s)
- Catherine A. Picut
- Charles River Laboratories, Pathology Associates, Durham, North Carolina, USA
| | - Amera K. Remick
- Charles River Laboratories, Pathology Associates, Durham, North Carolina, USA
| |
Collapse
|
19
|
Colman K. Impact of the Genetics and Source of Preclinical Safety Animal Models on Study Design, Results, and Interpretation. Toxicol Pathol 2016; 45:94-106. [DOI: 10.1177/0192623316672743] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
It has been long established that not only the species but also the strain and supplier of rodents used in preclinical safety studies can have a significant impact on the outcome of studies due to variability in their genetic background and thus spontaneous pathologic findings. In addition, local husbandry, housing, and other environmental conditions may have effects on the development and expression of comorbidities, particularly in longer-term or chronic studies. More recently, similar effects related to the source, including genetic and environmental variability, have been recognized in cynomolgus macaques ( Macaca fascicularis). The increased use of cynomolgus macaques from various sources of captive-bred animals (including nonnative, U.S./European Union-based breeding facilities or colonies) can affect study design and study results and outcome. It is important to acknowledge and understand the impact of this variability on the results and interpretation of research studies. This review includes recent examples where variability of preclinical animal models (rats and monkeys) affected the postmortem observations highlighting its relevance to study design or interpretation in safety studies.
Collapse
Affiliation(s)
- Karyn Colman
- Novartis Pharmaceuticals Corp., East Hanover, New Jersey, USA
| |
Collapse
|
20
|
Therapeutic effect of spermatogonial stem cell on testicular damage caused by lead in rats. Gene 2016; 592:148-153. [DOI: 10.1016/j.gene.2016.07.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 07/24/2016] [Accepted: 07/27/2016] [Indexed: 01/08/2023]
|
21
|
Breikaa RM, Mosli HA, Abdel-Naim AB. Influence of Onabotulinumtoxin A on testes of the growing rat. J Biochem Mol Toxicol 2016; 30:608-613. [PMID: 27492265 DOI: 10.1002/jbt.21828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/27/2016] [Accepted: 07/06/2016] [Indexed: 11/09/2022]
Abstract
Onabotulinumtoxin A (onabotA) is gaining wide medical use in children. The present study was planned to investigate the influence of its injection on the maturing testicular structures in rats. Immature rats were injected in the bilateral cremaster muscles by onabotA with three doses of (10, 20, and 40 U/kg) three times in a 2-week interval. The effect of these injections on fertility indices was examined. Levels of antisperm antibodies and several apoptosis parameters were also investigated. DNA content in form of ploidy and histopathological alterations were assessed. OnabotA-injected groups showed decreased sperm count and semen quality, while sperm vitality, morphology, and testosterone levels were not significantly affected. Furthermore, DNA flow cytometric analysis confirmed delayed sperm maturation. Apoptosis markers were significantly increased by the injections. In conclusion, onabotA injection in growing rats adversely affected sperm count and maturation. OnabotA testicular effects are mediated, at least partly, by apoptosis.
Collapse
Affiliation(s)
- Randa M Breikaa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Hisham A Mosli
- Department of Urology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ashraf B Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
22
|
Gotardo AT, Dipe VV, Hueza IM, Górniak SL. Maternal feed restriction during pregnancy in Wistar rats: Evaluation of offspring using classical and immunoteratology protocols. Hum Exp Toxicol 2016; 36:603-615. [DOI: 10.1177/0960327116660750] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Studies have revealed that impairment of the pregnant body weight reduces the fetal body weight and causes minor changes in skeletal development. The aim of the present study was to assess the effects of maternal feed restriction during pregnancy in offspring immune system development. Pregnant Wistar rats were distributed into 5 groups: 1 control in which dams received food ad libitum and 4 experimental groups in which dams were fed restricted amounts of rodent ration (16, 12, 9, or 6 g/rat/day) from the 6th to 17th gestation day. Teratogenicity was assessed using classical teratological evaluation and developmental immunotoxicology protocols. Maternal body weight gain, fetus weight, and placenta weight were reduced for feed-restricted females from the groups fed 12, 9, and 6 g/rat/day ( p < 0.05). No pup mortality was observed immediately after cesarean sections among the groups, and no visceral or skeletal malformations were detected. An immunoteratological study revealed an increase in the relative weight of the thymus and an increase in the phorbol myristate-acetate solution-induced hydrogen peroxide release by inflammatory cells in 21-day-old pups. Alterations in the delayed-type hypersensitivity response and the humoral immune response against sheep red blood cells were observed in pups from feed-restricted mothers. Feed restriction in Wistar rats during organogenesis did not promote structural malformations but resulted in offspring with lower birth weights and promoted significant changes in the immune responses of the rat pups.
Collapse
Affiliation(s)
- AT Gotardo
- Department of Pathology, School of Veterinary Medicine and Animal Sciences, Research Centre for Veterinary Toxicology (CEPTOX), University of São Paulo, Pirassununga, SP, Brazil
| | - VV Dipe
- Department of Pathology, School of Veterinary Medicine and Animal Sciences, Research Centre for Veterinary Toxicology (CEPTOX), University of São Paulo, Pirassununga, SP, Brazil
| | - IM Hueza
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo (ICAQF-UNIFESP), Campus Diadema, Diadema, Brazil
| | - SL Górniak
- Department of Pathology, School of Veterinary Medicine and Animal Sciences, Research Centre for Veterinary Toxicology (CEPTOX), University of São Paulo, Pirassununga, SP, Brazil
| |
Collapse
|
23
|
Halpern WG, Ameri M, Bowman CJ, Elwell MR, Mirsky ML, Oliver J, Regan KS, Remick AK, Sutherland VL, Thompson KE, Tremblay C, Yoshida M, Tomlinson L. Scientific and Regulatory Policy Committee Points to Consider Review: Inclusion of Reproductive and Pathology End Points for Assessment of Reproductive and Developmental Toxicity in Pharmaceutical Drug Development. Toxicol Pathol 2016; 44:789-809. [PMID: 27235322 PMCID: PMC4979743 DOI: 10.1177/0192623316650052] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Standard components of nonclinical toxicity testing for novel pharmaceuticals include clinical and anatomic pathology, as well as separate evaluation of effects on reproduction and development to inform clinical development and labeling. General study designs in regulatory guidances do not specifically mandate use of pathology or reproductive end points across all study types; thus, inclusion and use of these end points are variable. The Scientific and Regulatory Policy Committee of the Society of Toxicologic Pathology (STP) formed a Working Group to assess the current guidelines and practices on the use of reproductive, anatomic pathology, and clinical pathology end points in general, reproductive, and developmental toxicology studies. The Working Group constructed a survey sent to pathologists and reproductive toxicologists, and responses from participating organizations were collected through the STP for evaluation by the Working Group. The regulatory context, relevant survey results, and collective experience of the Working Group are discussed and provide the basis of each assessment by study type. Overall, the current practice of including specific end points on a case-by-case basis is considered appropriate. Points to consider are summarized for inclusion of reproductive end points in general toxicity studies and for the informed use of pathology end points in reproductive and developmental toxicity studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Amera K Remick
- WIL Research, a Charles River Company, Hillsborough, North Carolina, USA
| | | | | | | | - Midori Yoshida
- Food Safety Commission of Japan, Minato-ku, Tokyo, Japan
| | | |
Collapse
|
24
|
Lam T, Williams PL, Lee MM, Korrick SA, Birnbaum LS, Burns JS, Sergeyev O, Revich B, Altshul LM, Patterson DG, Hauser R. Prepubertal Serum Concentrations of Organochlorine Pesticides and Age at Sexual Maturity in Russian Boys. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:1216-21. [PMID: 26009253 PMCID: PMC4629743 DOI: 10.1289/ehp.1409022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 05/19/2015] [Indexed: 05/24/2023]
Abstract
BACKGROUND Few human studies have evaluated the impact of childhood exposure to organochlorine pesticides (OCP) on pubertal development. OBJECTIVE We evaluated associations of serum OCP concentrations [hexachlorobenzene (HCB), β-hexachlorocyclohexane (βHCH), and p,p-dichlorodiphenyldichloroethylene (p,p´-DDE)] with age at attainment of sexual maturity among boys. METHODS From 2003 through 2005, 350 8- to 9-year-old boys from Chapaevsk, Russia, with measured OCPs were enrolled and followed annually for 8 years. We used multivariable interval-censored models to evaluate associations of OCPs (quartiles) with three physician-assessed measures of sexual maturity: Tanner stage 5 for genitalia growth, Tanner stage 5 for pubic hair growth, or testicular volume (TV) ≥ 20 mL in either testis. RESULTS In adjusted models, boys with higher HCB concentrations achieved sexual maturity reflected by TV ≥ 20 mL a mean of 3.1 months (95% CI: -1.7, 7.8), 5.3 months (95% CI: 0.6, 10.1), and 5.0 months (95% CI: 0.2, 9.8) later for quartiles Q2, Q3, and Q4, respectively, compared with Q1 (p trend = 0.04). Tanner stage 5 for genitalia growth was attained a mean of 2.2 months (95% CI: -3.1, 7.5), 5.7 months (95% CI: 0.4, 11.0), and 3.7 months (95% CI: -1.7, 9.1) later for quartiles Q2, Q3, and Q4, respectively, of βHCH compared with Q1 (p trend = 0.09). Tanner stage 5 for pubic hair growth occurred 6-9 months later on average for boys in the highest versus lowest quartile for HCB (p trend < 0.001), βHCH (trend p = 0.01), and p,p´-DDE (p trend = 0.04). No associations were observed between p,p´-DDE and Tanner stage 5 for genitalia growth or TV ≥ 20 mL. CONCLUSIONS AND RELEVANCE Higher prepubertal serum HCB and βHCH concentrations were associated with a later age at attainment of sexual maturity. Only the highest quartile of serum p,p´-DDE was associated with later pubic hair maturation. CITATION Lam T, Williams PL, Lee MM, Korrick SA, Birnbaum LS, Burns JS, Sergeyev O, Revich B, Altshul LM, Patterson DG Jr, Hauser R. 2015. Prepubertal serum concentrations of organochlorine pesticides and age at sexual maturity in Russian boys. Environ Health Perspect 123:1216-1221; http://dx.doi.org/10.1289/ehp.1409022.
Collapse
Affiliation(s)
- Thuy Lam
- Environmental and Occupational Medicine and Epidemiology Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Haron MN, Mohamed M. Effect of honey on the reproductive system of male rat offspring exposed to prenatal restraint stress. Andrologia 2015; 48:525-31. [PMID: 26289766 DOI: 10.1111/and.12473] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2015] [Indexed: 11/28/2022] Open
Abstract
Exposure to prenatal stress is associated with impaired reproductive function in male rat offspring. Honey is traditionally used by the Malays for enhancement of fertility. The aim of this study was to determine the effect of honey on reproductive system of male rat offspring exposed to prenatal restraint stress. Dams were divided into four groups (n = 10/group): control, honey, stress and honey + stress groups. Dams from honey and honey + stress groups received oral honey (1.2 g kg(-1) body weight) daily from day 1 of pregnancy, meanwhile dams from stress and honey + stress groups were subjected to restraint stress (three times per day) from day 11 of pregnancy until delivery. At 10 weeks old, each male rat offspring was mated with a regular oestrus cycle female. Male sexual behaviour and reproductive performance were evaluated. Then, male rats were euthanised for assessment on reproductive parameters. Honey supplementation during prenatal restraint stress significantly increased testis and epididymis weights as well as improved the percentages of abnormal spermatozoa and sperm motility in male rat offspring. In conclusion, this study might suggest that supplementation of honey during pregnancy seems to reduce the adverse effects of restraint stress on reproductive organs weight and sperm parameters in male rat offspring.
Collapse
Affiliation(s)
- M N Haron
- School of Animal Science, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut, Terengganu
| | - M Mohamed
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan
| |
Collapse
|
26
|
Campion SN, Marcek JM, Kumpf SW, Chapin RE, Houle C, Cappon GD. Age-related testicular toxicity of mGluR5 negative allosteric modulators appears to be unrelated to testis drug transporter maturity. Reprod Toxicol 2015; 52:7-17. [PMID: 25678300 DOI: 10.1016/j.reprotox.2015.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 01/23/2015] [Accepted: 02/02/2015] [Indexed: 02/06/2023]
Abstract
Testicular degeneration was observed in exploratory toxicity studies in Wistar rats treated with several mGluR5 negative allosteric modulators. To determine if these testis effects were influenced by animal age, these compounds were administered to male Wistar rats of different ages (8, 10, and 12 weeks old) for 2 weeks followed by evaluation of male reproductive organ weights, testis histopathology, and inhibin B levels. Overall, seminiferous tubule degeneration was observed in 2/15, 5/15, and 0/15 compound treated rats from the 8, 10, and 12 week old cohorts and inhibin B was decreased in 8 and 10 week old animals, but not in 12 week old rats, suggesting that there is an age-related component to this testis toxicity. The gene expression profiles of drug transporters in the testis of rats aged PND 38 through PND 91 were very similar, indicating that immaturity of these transporters is an unlikely factor contributing to the age-related toxicity.
Collapse
Affiliation(s)
- Sarah N Campion
- Drug Safety Research and Development, Pfizer Worldwide Research & Development, Groton, CT, United States.
| | - John M Marcek
- Drug Safety Research and Development, Pfizer Worldwide Research & Development, Groton, CT, United States
| | - Steven W Kumpf
- Drug Safety Research and Development, Pfizer Worldwide Research & Development, Groton, CT, United States
| | - Robert E Chapin
- Drug Safety Research and Development, Pfizer Worldwide Research & Development, Groton, CT, United States
| | - Christopher Houle
- Drug Safety Research and Development, Pfizer Worldwide Research & Development, Groton, CT, United States
| | - Gregg D Cappon
- Drug Safety Research and Development, Pfizer Worldwide Research & Development, Groton, CT, United States
| |
Collapse
|
27
|
Picut CA, Remick AK, de Rijk EP, Simons ML, Stump DG, Parker GA. Postnatal Development of the Testis in the Rat. Toxicol Pathol 2014; 43:326-42. [DOI: 10.1177/0192623314547279] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Histopathologic examination of the testis from juvenile rats is often necessary to characterize the safety of new drugs for pediatric use and is a required end point in male pubertal development and thyroid function assays. To aid in evaluation and interpretation of the immature testis, the characteristic histologic features of the developing rat testis throughout postnatal development are described and correlated with published neuroendocrine parameter changes. During the neonatal period (postnatal day [PND] 3–7), seminiferous tubules contained gonocytes and mitotically active immature Sertoli cells. Profound proliferation of spermatogonia and continued Sertoli cell proliferation occurred in the early infantile period (PND 8–14). The spermatogonia reached maximum density forming double-layered rosettes with Sertoli cells in the late infantile period (PND 15–20). Leptotene/zygotene spermatocytes appeared centrally as tubular lumina developed, and individual tubules segregated into stages. The juvenile period (PND 21–32) featured a dramatic increase in number and size of pachytene spermatocytes with the formation of round spermatids and loss of “infantile” rosette architecture. In the peri-pubertal period (PND 32–55), stage VII tubules containing step 19 spermatids were visible by PND 46. The presented baseline morphologic and endocrinologic information will help pathologists distinguish delayed development from xenobiotic effects, determine pathogenesis when confronted with nonspecific findings, and identify sensitive time points for targeted study design.
Collapse
|
28
|
Takakura I, Creasy DM, Yokoi R, Terashima Y, Onozato T, Maruyama Y, Chino T, Tahara T, Tamura T, Kuroda J, Kusama H. Effects of male sexual maturity of reproductive endpoints relevant to DART studies in Wistar Hannover rats. J Toxicol Sci 2014; 39:269-79. [DOI: 10.2131/jts.39.269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Ikuro Takakura
- Safety Research Laboratory, R&D, Kissei Pharmaceuticals Co., Ltd
| | | | - Ryohei Yokoi
- Safety Research Laboratory, R&D, Kissei Pharmaceuticals Co., Ltd
| | - Yukari Terashima
- Safety Research Laboratory, R&D, Kissei Pharmaceuticals Co., Ltd
| | - Tomoya Onozato
- Safety Research Laboratory, R&D, Kissei Pharmaceuticals Co., Ltd
| | | | - Tomonobu Chino
- Safety Research Laboratory, R&D, Kissei Pharmaceuticals Co., Ltd
| | - Toru Tahara
- Safety Research Laboratory, R&D, Kissei Pharmaceuticals Co., Ltd
| | - Toru Tamura
- Safety Research Laboratory, R&D, Kissei Pharmaceuticals Co., Ltd
| | - Junji Kuroda
- Safety Research Laboratory, R&D, Kissei Pharmaceuticals Co., Ltd
| | - Hiroshi Kusama
- Safety Research Laboratory, R&D, Kissei Pharmaceuticals Co., Ltd
| |
Collapse
|