1
|
Catlin NR, Cappon GD, Davenport SD, Stethem CM, Nowland WS, Campion SN, Bowman CJ. New approach methodologies to confirm developmental toxicity of pharmaceuticals based on weight of evidence. Reprod Toxicol 2024; 129:108686. [PMID: 39128486 DOI: 10.1016/j.reprotox.2024.108686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
The aim of embryo-fetal developmental toxicity assessments for pharmaceuticals is to inform potential risk of adverse pregnancy outcome, which has traditionally relied on studies in pregnant animals. Recent updates to international safety guidelines (ICH S5R3) have incorporated information on how to use weight of evidence and alternative assays to reduce animal use while still informing risk of fetal harm. Uptake of these alternative approaches has been slow due to limitations in understanding how alternative assays translate to in vivo effects and then relevance to human exposure. To understand the predictivity of new approach methodologies for developmental toxicity (DevTox NAMs), we used two pharmaceutical examples (glasdegib and lorlatinib) to illustrate the value of DevTox NAMs to complement weight of evidence (WoE) assessments while considering the relationship of concentration-effect levels in NAMs to in vivo studies. The in vitro results generated in a battery of assays (mEST, rWEC, zebrafish, and human based stem cells) confirmed the WoE based on literature and further confirmed by preliminary embryo-fetal development data. The data generated for these two compounds supports integrating DevTox NAMs into the developmental toxicity assessment for advanced cancer indications.
Collapse
Affiliation(s)
- Natasha R Catlin
- Drug Safety Research and Development, Pfizer Research & Development, Groton, CT, USA.
| | - Gregg D Cappon
- Drug Safety Research and Development, Pfizer Research & Development, Groton, CT, USA; Current: ToxStrategies, Katy, TX, USA
| | - Scott D Davenport
- Drug Safety Research and Development, Pfizer Research & Development, Groton, CT, USA
| | - Christine M Stethem
- Drug Safety Research and Development, Pfizer Research & Development, Groton, CT, USA
| | - William S Nowland
- Drug Safety Research and Development, Pfizer Research & Development, Groton, CT, USA
| | - Sarah N Campion
- Drug Safety Research and Development, Pfizer Research & Development, Groton, CT, USA
| | - Christopher J Bowman
- Drug Safety Research and Development, Pfizer Research & Development, Groton, CT, USA
| |
Collapse
|
2
|
Zizioli D, Quiros-Roldan E, Ferretti S, Mignani L, Tiecco G, Monti E, Castelli F, Zanella I. Dolutegravir and Folic Acid Interaction during Neural System Development in Zebrafish Embryos. Int J Mol Sci 2024; 25:4640. [PMID: 38731859 PMCID: PMC11083492 DOI: 10.3390/ijms25094640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/04/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Dolutegravir (DTG) is one of the most prescribed antiretroviral drugs for treating people with HIV infection, including women of child-bearing potential or pregnant. Nonetheless, neuropsychiatric symptoms are frequently reported. Early reports suggested that, probably in relation to folic acid (FA) shortage, DTG may induce neural tube defects in infants born to women taking the drug during pregnancy. Subsequent reports did not definitively confirm these findings. Recent studies in animal models have highlighted the association between DTG exposure in utero and congenital anomalies, and an increased risk of neurologic abnormalities in children exposed during in utero life has been reported. Underlying mechanisms for DTG-related neurologic symptoms and congenital anomalies are not fully understood. We aimed to deepen our knowledge on the neurodevelopmental effects of DTG exposure and further explore the protective role of FA by the use of zebrafish embryos. We treated embryos at 4 and up to 144 h post fertilization (hpf) with a subtherapeutic DTG concentration (1 μM) and observed the disruption of the anterior-posterior axis and several morphological malformations in the developing brain that were both prevented by pre-exposure (2 hpf) and rescued by post-exposure (10 hpf) with FA. By whole-mount in situ hybridization with riboprobes for genes that are crucial during the early phases of neurodevelopment (ntl, pax2a, ngn1, neurod1) and by in vivo visualization of the transgenic Tg(ngn1:EGFP) zebrafish line, we found that DTG induced severe neurodevelopmental defects over time in most regions of the nervous system (notochord, midbrain-hindbrain boundary, eye, forebrain, midbrain, hindbrain, spinal cord) that were mostly but not completely rescued by FA supplementation. Of note, we observed the disruption of ngn1 expression in the dopaminergic regions of the developing forebrain, spinal cord neurons and spinal motor neuron projections, with the depletion of the tyrosine hydroxylase (TH)+ dopaminergic neurons of the dorsal diencephalon and the strong reduction in larvae locomotion. Our study further supports previous evidence that DTG can interfere with FA pathways in the developing brain but also provides new insights regarding the mechanisms involved in the increased risk of DTG-associated fetal neurodevelopmental defects and adverse neurologic outcomes in in utero exposed children, suggesting the impairment of dopaminergic pathways.
Collapse
Affiliation(s)
- Daniela Zizioli
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (D.Z.); (S.F.); (L.M.); (E.M.); (I.Z.)
| | - Eugenia Quiros-Roldan
- Unit of Infectious and Tropical Diseases, Department of Clinical and Experimental Sciences, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (G.T.); (F.C.)
| | - Sara Ferretti
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (D.Z.); (S.F.); (L.M.); (E.M.); (I.Z.)
| | - Luca Mignani
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (D.Z.); (S.F.); (L.M.); (E.M.); (I.Z.)
| | - Giorgio Tiecco
- Unit of Infectious and Tropical Diseases, Department of Clinical and Experimental Sciences, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (G.T.); (F.C.)
| | - Eugenio Monti
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (D.Z.); (S.F.); (L.M.); (E.M.); (I.Z.)
| | - Francesco Castelli
- Unit of Infectious and Tropical Diseases, Department of Clinical and Experimental Sciences, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (G.T.); (F.C.)
| | - Isabella Zanella
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (D.Z.); (S.F.); (L.M.); (E.M.); (I.Z.)
- Cytogenetics and Molecular Genetics Laboratory, Diagnostic Department, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| |
Collapse
|
3
|
Weiner AMJ, Irijalba I, Gallego MP, Ibarburu I, Sainz L, Goñi-de-Cerio F, Quevedo C, Muriana A. Validation of a zebrafish developmental defects assay as a qualified alternative test for its regulatory use following the ICH S5(R3) guideline. Reprod Toxicol 2024; 123:108513. [PMID: 38016617 DOI: 10.1016/j.reprotox.2023.108513] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/08/2023] [Accepted: 11/18/2023] [Indexed: 11/30/2023]
Abstract
Zebrafish is a popular toxicology model and provides an ethically acceptable small-scale analysis system with the complexity of a complete organism. Our goal is to further validate this model for its regulatory use for reproductive and developmental defects by testing the compounds indicated in the "Guideline on detection of reproductive and developmental toxicity for human pharmaceuticals" (ICH S5(R3) guideline.) To determine the embryotoxic and developmental risk of the 32 reference compounds listed in the ICH S5(R3) guideline, the presence of morphological alterations in zebrafish embryos was analyzed at two different stages to calculateLC50 and EC50 values for each stage. Teratogenic Indexes were established as the ratio between LC50 and EC50 critical for the proper compound classification as teratogenic when it is ≥ 2. A total of three biological replicates have been conducted to study the reproducibility of the assay. The chemicals' concentration in the medium and internally in the zebrafish embryos was evaluated. In this study, the 3 negative compounds were properly categorized while 23 compounds out of the 29 reference ones (sensitivity of 79.31%) were classified as teratogenic in zebrafish. The 6 that had false-negative results were classified 4 as inconclusive, 1 as not toxic, and 1 compound resulted toxic for zebrafish embryos under testing conditions. After the bioavailability experiments, some of the obtained inconclusive results were refined. The developmental defects assay in zebrafish gives an accuracy of 89.66%, sensitivity of 88.46%, specificity and repeatability of 100% compared to mammals; therefore, this is a well-integrated strategy using New Alternative Methods, to minimize the use of animals in developmental toxicity studies.
Collapse
Affiliation(s)
- A M J Weiner
- BBD BioPhenix SLU (BIOBIDE), San Sebastian, Spain.
| | - I Irijalba
- BBD BioPhenix SLU (BIOBIDE), San Sebastian, Spain
| | - M P Gallego
- BBD BioPhenix SLU (BIOBIDE), San Sebastian, Spain
| | - I Ibarburu
- BBD BioPhenix SLU (BIOBIDE), San Sebastian, Spain
| | - L Sainz
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), Zamudio, Spain
| | - F Goñi-de-Cerio
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), Zamudio, Spain
| | - C Quevedo
- BBD BioPhenix SLU (BIOBIDE), San Sebastian, Spain
| | - A Muriana
- BBD BioPhenix SLU (BIOBIDE), San Sebastian, Spain.
| |
Collapse
|
4
|
Burbank M, Gautier F, Hewitt N, Detroyer A, Guillet-Revol L, Carron L, Wildemann T, Bringel T, Riu A, Noel-Voisin A, De Croze N, Léonard M, Ouédraogo G. Advancing the use of new approach methodologies for assessing teratogenicity: Building a tiered approach. Reprod Toxicol 2023; 120:108454. [PMID: 37543254 DOI: 10.1016/j.reprotox.2023.108454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/11/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
Many New Approach Methodologies (NAMs) have been developed for the safety assessment of new ingredients. Research into reproductive toxicity and teratogenicity is a particularly high priority, especially given their mechanistic complexity. Forty-six non-teratogenic and 39 teratogenic chemicals were screened for teratogenic potential using the in silico DART model from the OECD QSAR Toolbox; the devTox quickPredict™ (devTox assay) test and the Zebrafish Embryotoxicity Test (ZET). The sensitivity and specificity were 94.7% and 84.1%, respectively, for the DART tree (83 chemicals), 86.1% and 35.6% for the devTox (81 chemicals) and 77.8% and 76.7% for the ZET (57 chemicals). Fifty-three chemicals were tested in all three assays and when results were combined and based on a "2 out of 3 rule", the sensitivity and specificity were 96.0% and 71.4%, respectively. The specificity of the devTox assay for a sub-set of 43 chemicals was increased from 26.1% to 82.6% by incorporating human plasma concentrations into the assay interpretation. When all 85 chemicals were assessed in a decision tree approach, there was an excellent predictivity and assay robustness of 90%. In conclusion, all three models exhibited a good sensitivity and specificity, especially when outcomes from all three were combined or used in "2 out of 3" or a tiered decision tree approach. The latter is an interesting predictive approach for evaluating the teratogenic potential of new chemicals. Future investigations will extend the number of chemicals tested, as well as explore ways to refine the results and obtain a robust Integrated Testing Strategy to evaluate teratogenic potential.
Collapse
Affiliation(s)
- M Burbank
- L'Oréal Research & Innovation, France.
| | - F Gautier
- L'Oréal Research & Innovation, France
| | | | | | | | - L Carron
- L'Oréal Research & Innovation, France
| | | | - T Bringel
- L'Oréal Research & Innovation, France
| | - A Riu
- L'Oréal Research & Innovation, France
| | | | | | - M Léonard
- L'Oréal Research & Innovation, France
| | | |
Collapse
|
5
|
Xu Y, Yang L, Teng Y, Li J, Li N. Exploring the underlying molecular mechanism of tri(1,3-dichloropropyl) phosphate-induced neurodevelopmental toxicity via thyroid hormone disruption in zebrafish by multi-omics analysis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 258:106510. [PMID: 37003012 DOI: 10.1016/j.aquatox.2023.106510] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Tri(1,3-dichloropropyl) phosphate (TDCPP) is widespread in the environment as a typical thyroid hormone-disrupting chemical. Here, we aimed to explore the toxicological mechanisms of the thyroid hormone-disrupting effects induced by TDCPP in zebrafish embryos/larvae using multi-omics analysis. The results showed that TDCPP (400 and 600 µg/L) induced phenotypic alteration and thyroid hormone imbalance in zebrafish larvae. It resulted in behavioral abnormalities during zebrafish embryonic development, suggesting that this chemical might exhibit neurodevelopmental toxicity. Transcriptomic and proteomic analysis provided consistent evidence at the gene and protein levels that neurodevelopmental disorders were significantly enhanced by TDCPP exposure (p < 0.05). Additionally, multi-omics data indicated that membrane thyroid hormone receptor (mTR)-mediated non-genomic pathways, including cell communication (ECM-receptor interactions, focal adhesion, etc.) and signal transduction pathways (MAPK signaling pathway, calcium signaling pathway, neuroactive ligand-receptor interaction pathway, etc.), were significantly disturbed (p < 0.05) and might contribute to the neurodevelopmental toxicity induced by TDCPP. Therefore, behavioral abnormalities and neurodevelopmental disorders might be important phenotypic characteristics of TDCPP-induced thyroid hormone disruption, and mTR-mediated non-genomic networks might participate in the disruptive effects of this chemical. This study provides new insights into the toxicological mechanisms of TDCPP-induced thyroid hormone disruption and proposes a theoretical basis for risk management of this chemical.
Collapse
Affiliation(s)
- Ying Xu
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Lei Yang
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yanguo Teng
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Jian Li
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Na Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
6
|
Zizioli D, Ferretti S, Mignani L, Castelli F, Tiecco G, Zanella I, Quiros-Roldan E. Developmental safety of nirmatrelvir in zebrafish (Danio rerio) embryos. Birth Defects Res 2023; 115:430-440. [PMID: 36373861 DOI: 10.1002/bdr2.2128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/12/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Nirmatrelvir, in combination with ritonavir, is one of the first orally available antiviral treatment for coronavirus disease 2019 (COVID-19). Symptomatic pregnant women are at increased risk for severe illness and complications that can affect the developing baby. No malformations or lower embryo-fetal survival have been observed when nirmatrelvir were administered to pregnant rats and rabbits. Safety evaluation of drugs used for treating COVID-19 also in pregnancy is urgent for public health, then in this study we further investigated nirmatrelvir developmental toxicity using zebrafish as in vivo model. MATERIAL AND METHODS Using the standardized Fish Embryo Toxicity (FET) test, we first determined the lethal concentration 50 (LC50), exposing embryos from gastrula stage up to 120 hr post fertilization (hpf) and daily recording lethality. Then, we exposed embryos to five doses comprising the human therapeutic one and up to the LC50 (25 μM). Morphology was evaluated at 72 and 120 hpf. RESULTS Nirmatrelvir did not affect survival rate and did not induce morphological defects up to the human therapeutic dose. Exposure at higher doses (2.4× and 3× the human Cmax ) however resulted in decreased hatching rate, reduced growth, slower heartbeat with pericardial edema, reduction of eye dimension, absence of the swim bladder and disruption of the anterior-posterior axis, with lack of tail detachment, spinal curvature and straight and smaller head. CONCLUSIONS Our findings in zebrafish embryos add further information about developmental nirmatrelvir safety. Further studies are needed for pharmacological safety assessment of nirmatrelvir exposure during pregnancy.
Collapse
Affiliation(s)
- Daniela Zizioli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Sara Ferretti
- Division of Infectious and Tropical Diseases, ASST Spedali Civili di Brescia, Brescia, Italy.,Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Luca Mignani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Francesco Castelli
- Division of Infectious and Tropical Diseases, ASST Spedali Civili di Brescia, Brescia, Italy.,Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Giorgio Tiecco
- Division of Infectious and Tropical Diseases, ASST Spedali Civili di Brescia, Brescia, Italy.,Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Isabella Zanella
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Clinical Chemistry Laboratory, Cytogenetics and Molecular Genetics Section, Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Eugenia Quiros-Roldan
- Division of Infectious and Tropical Diseases, ASST Spedali Civili di Brescia, Brescia, Italy.,Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
7
|
Gong S, McLamb F, Shea D, Vu JP, Vasquez MF, Feng Z, Bozinovic K, Hirata KK, Gersberg RM, Bozinovic G. Toxicity assessment of hexafluoropropylene oxide-dimer acid on morphology, heart physiology, and gene expression during zebrafish (Danio rerio) development. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:32320-32336. [PMID: 36462083 PMCID: PMC10017623 DOI: 10.1007/s11356-022-24542-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/25/2022] [Indexed: 05/25/2023]
Abstract
Hexafluoropropylene oxide-dimer acid (HFPO-DA) is one of the emerging replacements for the "forever" carcinogenic and toxic long-chain PFAS. HFPO-DA is a polymerization aid used for manufacturing fluoropolymers, whose global distribution and undetermined toxic properties are a concern regarding human and ecological health. To assess embryotoxic potential, zebrafish embryos were exposed to HFPO-DA at concentrations of 0.5-20,000 mg/L at 24-, 48-, and 72-h post-fertilization (hpf). Heart rate increased significantly in embryos exposed to 2 mg/L and 10 mg/L HFPO-DA across all time points. Spinal deformities and edema phenotypes were evident among embryos exposed to 1000-16,000 mg/L HFPO-DA at 72 hpf. A median lethal concentration (LC50) was derived as 7651 mg/L at 72 hpf. Shallow RNA sequencing analysis of 9465 transcripts identified 38 consistently differentially expressed genes at 0.5 mg/L, 1 mg/L, 2 mg/L, and 10 mg/L HFPO-DA exposures. Notably, seven downregulated genes were associated with visual response, and seven upregulated genes were expressed in or regulated the cardiovascular system. This study identifies biological targets and molecular pathways affected during animal development by an emerging, potentially problematic, and ubiquitous industrial chemical.
Collapse
Affiliation(s)
- Sylvia Gong
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA
- Division of Extended Studies, University of California San Diego, La Jolla, CA, 92093-0355, USA
- School of Public Health, San Diego State University, San Diego, CA, USA
| | - Flannery McLamb
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA
- Division of Extended Studies, University of California San Diego, La Jolla, CA, 92093-0355, USA
| | | | - Jeanne P Vu
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA
- Division of Extended Studies, University of California San Diego, La Jolla, CA, 92093-0355, USA
- School of Public Health, San Diego State University, San Diego, CA, USA
| | - Miguel F Vasquez
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA
- Division of Extended Studies, University of California San Diego, La Jolla, CA, 92093-0355, USA
| | - Zuying Feng
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA
- School of Public Health, San Diego State University, San Diego, CA, USA
| | - Kesten Bozinovic
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA
- Division of Extended Studies, University of California San Diego, La Jolla, CA, 92093-0355, USA
- Graduate School of Arts and Sciences, Georgetown University, Washington, DC, USA
| | - Ken K Hirata
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA
- Division of Extended Studies, University of California San Diego, La Jolla, CA, 92093-0355, USA
| | | | - Goran Bozinovic
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA.
- School of Public Health, San Diego State University, San Diego, CA, USA.
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, 92093-0355, USA.
| |
Collapse
|
8
|
Xu S, Chen F, Zhang H, Huang ZL, Li J, Wu D, Chen X. Development a high-throughput zebrafish embryo acute toxicity testing method based on OECD TG 236. Toxicol Mech Methods 2023; 33:104-112. [PMID: 35799369 DOI: 10.1080/15376516.2022.2099772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The Organization for Economic Co-operation and Development (OECD)Test Guideline (TG) 236 for zebrafish embryo acute toxicity testing was adopted for chemical toxicity assessment in 2013. Due to the increasing demand for prediction and evaluation of the acute toxicity using zebrafish embryos, we developed a method based on OECD 236 test guideline with the aim to improve the testing efficiency. We used 4-128 cell stage zebrafish embryos and performed an exposure assay in a 96-well microtiter plate, observing the lethality endpoints of embryos at 48-h postexposure. A total of 32 chemicals (two batches) were used in the comparison study. Our results indicated that the logarithmic LC50 (half lethal concentration) obtained by the modified method exhibited good correlation with that obtained by the OECD 236 testing method, and the R2 of the linear regression analysis was 0.9717 (0.9621 and 0.9936 for the two batches, respectively). Additionally, the intra- and inter-laboratory coefficient of variation (CVs) for the LC50 from the testing chemicals (17 chemicals in second batch) was less than 30%, except for CuSO4. Therefore, the developed method was less time-consuming and demonstrated a higher throughput for toxicity testing compared to the prior method. We argue the developed method could be used as an additional choice for high-throughput zebrafish embryo acute toxicity test.
Collapse
Affiliation(s)
- Shisan Xu
- School of Life Sciences, Guangxi Normal University, Guilin, China.,Guangxi Universities Key Laboratory of Stem cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
| | - Fengyan Chen
- School of Life Sciences, Guangxi Normal University, Guilin, China.,Guangxi Universities Key Laboratory of Stem cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
| | - Huan Zhang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, PRC
| | - Zhen-Lie Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jianjun Li
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, China
| | - Desheng Wu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, China
| | - Xueping Chen
- Vitargent (International) Biotechnology Limited, Shatin, Hong Kong SAR, China.,Centre for Biotech Big Data Research and Development, Research Institute of Tsinghua, Pearl River Delta, China
| |
Collapse
|
9
|
Marikawa Y. Toward better assessments of developmental toxicity using stem cell-based in vitro embryogenesis models. Birth Defects Res 2022; 114:972-982. [PMID: 35102709 PMCID: PMC9339025 DOI: 10.1002/bdr2.1984] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/18/2022] [Indexed: 12/30/2022]
Abstract
In the past few decades, pluripotent stem cells have been explored as nonanimal alternatives to assess the developmental toxicity of chemicals. To date, numerous versions of stem cell-based assays have been reported that are allegedly effective. Nonetheless, none of the assays has become the gold standard in developmental toxicity assessment. Why? This article discusses several issues in the hope of facilitating the refinement of stem cell assays and their acceptance as the cornerstone in predictive developmental toxicology. Each stem cell assay is built on a limited representation of embryogenesis, so that multiple assays are needed to detect the diverse effects of various chemicals. To validate and compare the strengths and weaknesses of individual assays, standardized lists of reference chemicals should be established. Reference lists should consist of exposures defined by toxicokinetic data, namely maternal plasma concentrations that cause embryonic death or malformations, and also by the effects on the molecular machineries that control embryogenesis. Although not entirely replacing human or animal tests, carefully selected stem cell assays should serve as practical and ethical alternatives to proactively identify chemical exposures that disturb embryogenesis. To achieve this goal, unprecedented levels of coordination and conviction are required among research and regulatory communities.
Collapse
Affiliation(s)
- Yusuke Marikawa
- Department of Anatomy, Biochemistry and PhysiologyInstitute for Biogenesis Research, University of Hawaii John A. Burns School of MedicineHonoluluHawaiiUSA
| |
Collapse
|
10
|
Krishnaraj C, Radhakrishnan S, Ramachandran R, Ramesh T, Kim BS, Yun SI. In vitro toxicological assessment and biosensing potential of bioinspired chitosan nanoparticles, selenium nanoparticles, chitosan/selenium nanocomposites, silver nanoparticles and chitosan/silver nanocomposites. CHEMOSPHERE 2022; 301:134790. [PMID: 35504473 DOI: 10.1016/j.chemosphere.2022.134790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/15/2022] [Accepted: 04/27/2022] [Indexed: 05/20/2023]
Abstract
Hydrogen peroxide (H2O2) is widely used in various industries and biological fields. H2O2 rapidly contaminants with water resources and hence simple detection process is highly wanted in various fields. The present study was focused on the biosensing, antimicrobial and embryotoxicity of bioinspired chitosan nanoparticles (Cs NPs), selenium nanoparticles (Se NPs), chitosan/selenium nanocomposites (Cs/Se NCs), silver nanoparticles (Ag NPs) and chitosan/silver nanocomposites (Cs/Ag NCs) synthesized using the aqueous Cucurbita pepo Linn. leaves extract. The physico-chemical properties of as-synthesized nanomaterials were confirmed by various spectroscopic and microscopic techniques. Further, hydrogen peroxide (H2O2) sensing properties and their sensitivities were confirmed by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and chronoamperometry (CA) methods, in which Cs/Ag NCs showed pronounced sensing properties. In addition, the mode of antibacterial interaction results clearly demonstrated the effective inhibitory activity of as-prepared Ag NPs and Cs/Ag NCs against Gram negative pathogenic bacteria. The highest embryotoxicity was recorded at 0.19 μg/ml of Ag NPs and 1.56 μg/ml of Se NPs. Intriguingly, the embryo treated with Cs/Se NCs and Cs/Ag NCs significantly reduced the toxicity in the presence of Cs matrix. However, Cs/Se NCs did not show good response in H2O2 sensing than the Cs/Ag NCs, implying the biocompatibility of Cs/Ag NCs. Overall, the obtained results clearly suggest that Cs/Ag NCs could be suitable for dual applications such as for the detection of environmental pollutant biosensors and for biomedical research.
Collapse
Affiliation(s)
- Chandran Krishnaraj
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea; Department of Agricultural Convergence Technology, College of Agriculture and Life Science, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea.
| | - Sivaprakasam Radhakrishnan
- Department of Organic Materials & Fiber Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Rajan Ramachandran
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Byoung-Suhk Kim
- Department of Organic Materials & Fiber Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea; Department of Carbon Composites Convergence Materials Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Soon-Il Yun
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea; Department of Agricultural Convergence Technology, College of Agriculture and Life Science, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea.
| |
Collapse
|
11
|
Krishnaraj C, Kaliannagounder VK, Rajan R, Ramesh T, Kim CS, Park CH, Liu B, Yun SI. Silver nanoparticles decorated reduced graphene oxide: Eco-friendly synthesis, characterization, biological activities and embryo toxicity studies. ENVIRONMENTAL RESEARCH 2022; 210:112864. [PMID: 35149108 DOI: 10.1016/j.envres.2022.112864] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 05/27/2023]
Abstract
This study was aimed on the eco-friendly synthesis of silver nanoparticles (AgNPs), reduced graphene oxide (rGO) and AgNPs decorated rGO (rGO/AgNPs) nanocomposite and appraisal of their bioactivities and toxicity. As-prepared nanomaterials were established through high resolution X-ray diffraction (HR-XRD), high resolution transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, UV-Vis. spectroscopy and Fourier transform infrared spectroscopy (FT-IR). In this study, leaves extract, graphene oxide (GO) and rGO did not show antibacterial and anticancer activities; no significant embryo toxicity was recorded. On the other hand, AgNPs displayed good antibacterial and anticancer activities; however, higher toxic effects were observed even at the lowest test concentration (0.7 μg/ml). In case of rGO/AgNPs nanocomposite, significant antibacterial activity together with low cytotoxicity was noticed. Interestingly, the embryo toxicity of AgNPs was significantly reduced by rGO, implying the biocompatible nature of as-synthesized nanocomposite. Taken together, these results clearly suggest that rGO/AgNPs nano hybrid composite could be developed as the promising biomaterial for future biomedical applications.
Collapse
Affiliation(s)
- Chandran Krishnaraj
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea; Department of Agricultural Convergence Technology, College of Agriculture and Life Science, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea.
| | - Vignesh Krishnamoorthi Kaliannagounder
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea; Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Ramachandran Rajan
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Cheol Sang Kim
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea; Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Chan Hee Park
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea; Mechanical Design Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Bo Liu
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Soon-Il Yun
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea; Department of Agricultural Convergence Technology, College of Agriculture and Life Science, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea.
| |
Collapse
|
12
|
Piersma AH, Baker NC, Daston GP, Flick B, Fujiwara M, Knudsen TB, Spielmann H, Suzuki N, Tsaioun K, Kojima H. Pluripotent stem cell assays: Modalities and applications for predictive developmental toxicity. Curr Res Toxicol 2022; 3:100074. [PMID: 35633891 PMCID: PMC9130094 DOI: 10.1016/j.crtox.2022.100074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/21/2022] [Accepted: 05/09/2022] [Indexed: 12/02/2022] Open
Abstract
This manuscript provides a review focused on embryonic stem cell-based models and their place within the landscape of alternative developmental toxicity assays. Against the background of the principles of developmental toxicology, the wide diversity of alternative methods using pluripotent stem cells developed in this area over the past half century is reviewed. In order to provide an overview of available models, a systematic scoping review was conducted following a published protocol with inclusion criteria, which were applied to select the assays. Critical aspects including biological domain, readout endpoint, availability of standardized protocols, chemical domain, reproducibility and predictive power of each assay are described in detail, in order to review the applicability and limitations of the platform in general and progress moving forward to implementation. The horizon of innovative routes of promoting regulatory implementation of alternative methods is scanned, and recommendations for further work are given.
Collapse
Affiliation(s)
- Aldert H. Piersma
- Center for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | | - George P. Daston
- Global Product Stewardship, The Procter & Gamble Company, Cincinnati, OH, USA
| | - Burkhard Flick
- Experimental Toxicology and Ecology, BASF SE, Ludwigshafen am Rhein, Germany
| | - Michio Fujiwara
- Drug Safety Research Labs, Astellas Pharma Inc., Tsukuba-shi, Japan
| | - Thomas B. Knudsen
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, USA
| | - Horst Spielmann
- Institute for Pharmacy, Faculty of Biology, Chemistry, and Pharmacy, Freie Universität, Berlin, Germany
| | - Noriyuki Suzuki
- Cell Science Group Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Osaka, Japan
| | - Katya Tsaioun
- Evidence-Based Toxicology Collaboration at Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Hajime Kojima
- National Institute of Health Sciences, Kawasaki, Japan
| |
Collapse
|
13
|
Krishnaraj C, Young GM, Yun SI. In vitro embryotoxicity and mode of antibacterial mechanistic study of gold and copper nanoparticles synthesized from Angelica keiskei (Miq.) Koidz. leaves extract. Saudi J Biol Sci 2022; 29:2552-2563. [PMID: 35531254 PMCID: PMC9072899 DOI: 10.1016/j.sjbs.2021.12.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/24/2022] Open
Abstract
The present study demonstrated the in vitro embryotoxicity assessment of gold nanoparticles (AuNPs) and copper nanoparticles (CuNPs) prepared from the leaves extract of Angelica keiskei (Miq.) Koidz. and addressed their mode of antibacterial mechanisms. Both AuNPs and CuNPs were rapidly synthesized and the formations were observed within 1 h and 24 h, respectively. Further the morphological images of the nanoparticles were confirmed through transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). The high-resolution X-ray diffraction (HR-XRD) analysis of the biosynthesized AuNPs and CuNPs were matched with joint committee on powder diffraction standards (JCPDS) file no of 04-0784 and 89-5899, respectively. A strong prominent Au and Cu signals were observed through energy dispersive spectroscopy (EDS) analysis. Fourier transform infrared spectroscopy (FT-IR) analysis confirmed the responsible phytochemicals for the synthesis of AuNPs and CuNPs. In order to assess the toxic effects of AuNPs and CuNPs, bactericidal activity was performed against few of the test pathogens in which the effective inhibition was observed against Gram-negative bacteria than the Gram-positive bacteria. The mode of action and interaction of nanoparticles were performed on the bacterial pathogens and the results concluded that the interaction of nanoparticles initially initiated on the surface of the cell wall adherence followed by ruptured the cells and caused the cell death. In addition to the antibacterial activity, in vitro embryotoxicity studies were performed against zebrafish embryos and the results confirmed that 200 µg/ml concentration of AuNPs showed the embryotoxicity, whereas 2 µg/ml of CuNPs resulted the embryotoxicity. Furthermore, the morphological anomalies of zebrafish embryos revealed the toxic nature of the synthesized nanoparticles.
Collapse
Affiliation(s)
- Chandran Krishnaraj
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea.,Department of Agricultural Convergence Technology, College of Agriculture and Life Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Glenn M Young
- Department of Food Science and Technology, University of California, Davis, CA 95616, USA
| | - Soon-Il Yun
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea.,Department of Agricultural Convergence Technology, College of Agriculture and Life Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
14
|
Lanzarin G, Venâncio C, Félix LM, Monteiro S. Inflammatory, Oxidative Stress, and Apoptosis Effects in Zebrafish Larvae after Rapid Exposure to a Commercial Glyphosate Formulation. Biomedicines 2021; 9:biomedicines9121784. [PMID: 34944599 PMCID: PMC8698920 DOI: 10.3390/biomedicines9121784] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 01/24/2023] Open
Abstract
Glyphosate-based herbicides (GBH) are the most used herbicides in the world, carrying potentially adverse consequences to the environment and non-target species due to their massive and inadequate use. This study aimed to evaluate the effects of acute exposure to a commercial formulation of glyphosate, Roundup® Flex (RF), at environmentally relevant and higher concentrations in zebrafish larvae through the assessment of the inflammatory, oxidative stress and cell death response. Transgenic Tg(mpxGFP)i114 and wild-type (WT) zebrafish larvae (72 h post-fertilisation) were exposed to 1, 5, and 10 µg mL-1 of RF (based on the active ingredient concentration) for 4 h 30 min. A concentration of 2.5 µg mL-1 CuSO4 was used as a positive control. Copper sulphate exposure showed effectiveness in enhancing the inflammatory profile by increasing the number of neutrophils, nitric oxide (NO) levels, reactive oxygen species (ROS), and cell death. None of the RF concentrations tested showed changes in the number of neutrophils and NO. However, the concentration of 10 µg a.i. mL-1 was able to induce an increase in ROS levels and cell death. The activity of antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx)), the biotransformation activity, the levels of reduced (GSH) and oxidised (GSSG) glutathione, lipid peroxidation (LPO), lactate dehydrogenase (LDH), and acetylcholinesterase (AChE) were similar among groups. Overall, the evidence may suggest toxicological effects are dependent on the concentration of RF, although at concentrations that are not routinely detected in the environment. Additional studies are needed to better understand the underlying molecular mechanisms of this formulation.
Collapse
Affiliation(s)
- Germano Lanzarin
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Correspondence: (G.L.); (L.M.F.); (S.M.)
| | - Carlos Venâncio
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Department of Animal Science, School of Agrarian and Veterinary Sciences, UTAD, 5000-801 Vila Real, Portugal
- Animal and Veterinary Research Center (CECAV), UTAD, 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), UTAD, 5000-801 Vila Real, Portugal
| | - Luís M. Félix
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Instituto de Investigação e Inovação em Saúde (i3s), Laboratory Animal Science (LAS), Instituto de Biologia Molecular Celular (IBMC), University of Porto (UP), 4200-135 Porto, Portugal
- Correspondence: (G.L.); (L.M.F.); (S.M.)
| | - Sandra Monteiro
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), UTAD, 5000-801 Vila Real, Portugal
- Department of Biology and Environment (DeBA), School of Life and Environmental Sciences (ECVA), UTAD, 5000-801 Vila Real, Portugal
- Correspondence: (G.L.); (L.M.F.); (S.M.)
| |
Collapse
|
15
|
Di Paolo C, Hoffmann S, Witters H, Carrillo JC. Minimum reporting standards based on a comprehensive review of the zebrafish embryo teratogenicity assay. Regul Toxicol Pharmacol 2021; 127:105054. [PMID: 34653553 DOI: 10.1016/j.yrtph.2021.105054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/08/2021] [Accepted: 10/04/2021] [Indexed: 11/20/2022]
Abstract
Reproductive toxicity chemical safety assessment involves extensive use of vertebrate animals for regulatory testing purposes. Although alternative methods such as the zebrafish embryo teratogenicity assay (identified in the present manuscript by the acronym ZETA) are promising for replacing tests with mammals, challenges to regulatory application involve lack of standardization and incomplete validation. To identify key protocol aspects and ultimately support improving this situation, a comprehensive review of the literature on the level of harmonization/standardization and validation status of the ZETA has been conducted. The gaps and needed advances of the available ZETA protocols were evaluated and discussed with respect to its applicability as an alternative approach for teratogenicity assessment. Based on the review outcomes, a set of minimum reporting standards for the experimental protocol is proposed. Together with other initiatives towards implementation of alternative approaches at the screening and regulatory levels, the application of minimum reporting requirements is anticipated to support future method standardization and validation, as well as identifying potential improvement aspects. Present findings are expected to ultimately support advancing the ongoing validation initiatives towards the regulatory acceptance of the ZETA.
Collapse
Affiliation(s)
- Carolina Di Paolo
- Shell Health, Shell International, B.V. Carel van Bylandtlaan 16, 2596, HR, The Hague, the Netherlands.
| | | | - Hilda Witters
- Flemish Institute for Technological Research (VITO), Unit Health, Boeretang 200, B-2400, Mol, Belgium
| | - Juan-Carlos Carrillo
- Shell Health, Shell International, B.V. Carel van Bylandtlaan 16, 2596, HR, The Hague, the Netherlands
| |
Collapse
|
16
|
Rothe LE, Botha TL, Feld CK, Weyand M, Zimmermann S, Smit NJ, Wepener V, Sures B. Effects of conventionally-treated and ozonated wastewater on mortality, physiology, body length, and behavior of embryonic and larval zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117241. [PMID: 33975214 DOI: 10.1016/j.envpol.2021.117241] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/31/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
To date, micropollutants from anthropogenic sources cannot be completely removed from effluents of wastewater treatment plants and therefore enter freshwater systems, where they may impose adverse effects on aquatic organisms, for example, on fish. Advanced treatment such as ozonation aims to reduce micropollutants in wastewater effluents and, thus, to mitigate adverse effects on the environment. To investigate the impact and efficiency of ozonation, four different water types were tested: ozonated wastewater (before and after biological treatment), conventionally-treated wastewater, and water from a river (River Ruhr, Germany) upstream of the wastewater treatment plant effluent. Zebrafish (Danio rerio) embryos were used to study lethal and sublethal effects in a modified fish early life-stage test. Mortality occurred during exposure in the water samples from the wastewater treatment plant and the river in the first 24 h post-fertilization, ranging from 12% (conventional wastewater) to 40% (river water). Regarding sublethal endpoints, effects compared to the negative control resulted in significantly higher heart rates (ozonated wastewater), and significantly reduced swimming activity (highly significant in ozonated wastewater and ozone reactor water, significant in only the last time interval in river water). Moreover, the respiration rates were highly increased in both ozonated wastewater samples in comparison to the negative control. Significant differences between the ozonated wastewater samples occurred in the embryonic behavior and heart rates, emphasizing the importance of subsequent biological treatment of the ozonated wastewater. Only the conventionally-treated wastewater sample did not elicit negative responses in zebrafish, indicating that the discharge of conventional wastewater poses no greater risk to embryonic and larval zebrafish than water from the river Ruhr itself. The sublethal endpoints embryonic- and larval behavior, heart rates, and respiration were found to be the most sensitive endpoints in this fish early life-stage test and can add valuable information on the toxicity of environmental samples.
Collapse
Affiliation(s)
- Louisa E Rothe
- Aquatic Ecology and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany.
| | - Tarryn L Botha
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, 11 Hoffman St, Potchefstroom, 2520, South Africa; Agricultural Research Council - Soil, Climate and Water, Private Bag X79, Pretoria, 0001, South Africa
| | - Christian K Feld
- Aquatic Ecology and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| | - Michael Weyand
- Ruhrverband, Department of River Basin Management, Kronprinzenstr. 37, 45128, Essen, Germany
| | - Sonja Zimmermann
- Aquatic Ecology and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany; Water Research Group, Unit for Environmental Sciences and Management, North-West University, 11 Hoffman St, Potchefstroom, 2520, South Africa
| | - Nico J Smit
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, 11 Hoffman St, Potchefstroom, 2520, South Africa
| | - Victor Wepener
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, 11 Hoffman St, Potchefstroom, 2520, South Africa
| | - Bernd Sures
- Aquatic Ecology and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| |
Collapse
|
17
|
Baines RP, Wolton K, Thompson CRL. Dictyostelium discoideum: an alternative non-animal model for developmental toxicity testing. Toxicol Sci 2021; 183:302-318. [PMID: 34387693 PMCID: PMC8538044 DOI: 10.1093/toxsci/kfab097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
A critical aspect of toxicity evaluation is developmental and reproductive toxicity (DART) testing. Traditionally, DART testing has been conducted in vivo in mammalian model systems. New legislation aimed at reducing animal use and the prohibitive costs associated with DART testing, together with a need to understand the genetic pathways underlying developmental toxicity means there is a growing demand for alternative model systems for toxicity evaluation. Here we explore the potential of the eukaryotic social amoeba Dictyostelium discoideum, which is already widely used as a simple model system for cell and developmental biology, as a potential nonanimal model for DART testing. We developed assays for high-throughput screening of toxicity during D. discoideum growth and development. This allowed the toxicity of a broad range of test compounds to be characterized, which revealed that D. discoideum can broadly predict mammalian toxicity. In addition, we show that this system can be used to perform functional genomic screens to compare the molecular modes of action of different compounds. For example, genome-wide screens for mutations that affect lithium and valproic acid toxicity allowed common and unique biological targets and molecular processes mediating their toxicity to be identified. These studies illustrate that D. discoideum could represent a predictive nonanimal model for DART testing due to its amenability to high-throughput approaches and molecular genetic tractability.
Collapse
Affiliation(s)
- Robert P Baines
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Kathryn Wolton
- Syngenta, Jealott's Hill International Research Centre, RG42 6EY Bracknell, Berkshire
| | - Christopher R L Thompson
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
18
|
Concordance of 3 alternative teratogenicity assays with results from corresponding in vivo embryo-fetal development studies: Final report from the International Consortium for Innovation and Quality in Pharmaceutical Development (IQ) DruSafe working group 2. Regul Toxicol Pharmacol 2021; 124:104984. [PMID: 34216694 DOI: 10.1016/j.yrtph.2021.104984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/17/2021] [Accepted: 06/28/2021] [Indexed: 11/23/2022]
Abstract
An IQ DruSafe working group evaluated the concordance of 3 alternative teratogenicity assays (rat whole embryo culture, rWEC; zebrafish embryo culture, ZEC; and murine embryonic stem cells, mESC) with findings from rat or rabbit embryo-fetal development (EFD) studies. Data for 90 individual compounds from 9 companies were entered into a database. In vivo findings were deemed positive if malformations or embryo-fetal lethality were reported in either species. Each company used their own criteria for deciding whether the alternative assay predicted the in vivo findings. Standard concordance parameters were calculated, positive and negative predictive values (PPV and NPV) were adjusted for the aggregate portfolio prevalence of positive compounds (established by a survey of participating companies), and positive and negative likelihood ratios (LR+ and iLR-) were calculated. Of the 3 assays, only rWEC data were robustly predictive, particularly for negative predictions (NPVadj = 92%). However, both LR+ (4.92) and iLR- (4.72) were statistically significant for the rWEC assay. When analyzed separately for rats, the NPVadj and iLR-values for the rWEC assay increased to 96% and 9.75, respectively. These data suggest that a negative rWEC outcome could defer or replace a rat EFD study in certain regulatory settings.
Collapse
|
19
|
Thitinarongwate W, Mektrirat R, Nimlamool W, Khonsung P, Pikulkaew S, Okonogi S, Kunanusorn P. Phytochemical and Safety Evaluations of Zingiber ottensii Valeton Essential Oil in Zebrafish Embryos and Rats. TOXICS 2021; 9:toxics9050102. [PMID: 34063620 PMCID: PMC8147612 DOI: 10.3390/toxics9050102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/16/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023]
Abstract
Zingiber ottensii Valeton (ZO) exhibits pharmacological activity and has long been used in traditional medicine. However, reports about its safety profiles are limited. The present study aimed to evaluate the phytochemical profile and the toxic effects of ZO essential oil on the development of zebrafish and acute oral toxicity in rats. The essential oil was isolated from ZO rhizomes, and phytochemicals were analyzed using a gas chromatography-mass spectrometer (GC-MS). The embryotoxic and teratogenic effects of ZO essential oil were evaluated in zebrafish embryos and larvae and the acute oral toxicity was determined in rats. GC-MS results showed the essential oil contained zerumbone as a major phytoconstituent (24.73%). The zebrafish embryotoxicity of ZO essential oil appeared to be concentration- and time-dependent manner, with a moderate LC50 (1.003 µg/mL). Teratogenicity in zebrafish embryos also included morphological defects, decreased hatchability, and reduced heart rate. In rats, ZO essential oil (2000 mg/kg, p.o.) resulted in no mortality or significant toxicities. These findings suggest that ZO has embryotoxic and teratogenic effects in zebrafish embryos but does not result in death or acute oral toxicity in rats. Further long-term toxicity studies are needed to confirm the safety of products developed from ZO essential oil.
Collapse
Affiliation(s)
- Wisit Thitinarongwate
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (W.T.); (W.N.); (P.K.)
- Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Raktham Mektrirat
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand;
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Wutigri Nimlamool
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (W.T.); (W.N.); (P.K.)
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Parirat Khonsung
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (W.T.); (W.N.); (P.K.)
| | - Surachai Pikulkaew
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Food Animal Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Siriporn Okonogi
- Department of Food Animal Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand;
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Puongtip Kunanusorn
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (W.T.); (W.N.); (P.K.)
- Correspondence: ; Tel.: +66-53-935-353
| |
Collapse
|
20
|
Narumi R, Liu S, Ikeda N, Morita O, Tasaki J. Chemical-Induced Cleft Palate Is Caused and Rescued by Pharmacological Modulation of the Canonical Wnt Signaling Pathway in a Zebrafish Model. Front Cell Dev Biol 2020; 8:592967. [PMID: 33381503 PMCID: PMC7767894 DOI: 10.3389/fcell.2020.592967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 11/02/2020] [Indexed: 11/13/2022] Open
Abstract
Cleft palate is one of the most frequent birth defects worldwide. It causes severe problems regarding eating and speaking and requires long-term treatment. Effective prenatal treatment would contribute to reducing the risk of cleft palate. The canonical Wnt signaling pathway is critically involved in palatogenesis, and genetic or chemical disturbance of this signaling pathway leads to cleft palate. Presently, preventative treatment for cleft palate during prenatal development has limited efficacy, but we expect that zebrafish will provide a useful high-throughput chemical screening model for effective prevention. To achieve this, the zebrafish model should recapitulate cleft palate development and its rescue by chemical modulation of the Wnt pathway. Here, we provide proof of concept for a zebrafish chemical screening model. Zebrafish embryos were treated with 12 chemical reagents known to induce cleft palate in mammals, and all 12 chemicals induced cleft palate characterized by decreased proliferation and increased apoptosis of palatal cells. The cleft phenotype was enhanced by combinatorial treatment with Wnt inhibitor and teratogens. Furthermore, the expression of tcf7 and lef1 as a readout of the pathway was decreased. Conversely, cleft palate was prevented by Wnt agonist and the cellular defects were also prevented. In conclusion, we provide evidence that chemical-induced cleft palate is caused by inhibition of the canonical Wnt pathway. Our results indicate that this zebrafish model is promising for chemical screening for prevention of cleft palate as well as modulation of the Wnt pathway as a therapeutic target.
Collapse
Affiliation(s)
- Rika Narumi
- R&D, Safety Science Research, Kao Corporation, Kawasaki, Japan
| | - Shujie Liu
- R&D, Safety Science Research, Kao Corporation, Ichikai-machi, Japan
| | - Naohiro Ikeda
- R&D, Safety Science Research, Kao Corporation, Kawasaki, Japan
| | - Osamu Morita
- R&D, Safety Science Research, Kao Corporation, Ichikai-machi, Japan
| | - Junichi Tasaki
- R&D, Safety Science Research, Kao Corporation, Kawasaki, Japan
| |
Collapse
|
21
|
Jarque S, Rubio-Brotons M, Ibarra J, Ordoñez V, Dyballa S, Miñana R, Terriente J. Morphometric analysis of developing zebrafish embryos allows predicting teratogenicity modes of action in higher vertebrates. Reprod Toxicol 2020; 96:337-348. [PMID: 32822784 DOI: 10.1016/j.reprotox.2020.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/03/2020] [Accepted: 08/07/2020] [Indexed: 12/22/2022]
Abstract
The early identification of teratogens in humans and animals is mandatory for drug discovery and development. Zebrafish has emerged as an alternative model to traditional preclinical models for predicting teratogenicity and other potential chemical-induced toxicity hazards. To prove its predictivity, we exposed zebrafish embryos from 0 to 96 h post fertilization to a battery of 31 compounds classified as teratogens or non-teratogens in mammals. The teratogenicity score was based on the measurement of 16 phenotypical parameters, namely heart edema, pigmentation, body length, eye size, yolk size, yolk sac edema, otic vesicle defects, otoliths defects, body axis defects, developmental delay, tail bending, scoliosis, lateral fins absence, hatching ratio, lower jaw malformations and tissue necrosis. Among the 31 compounds, 20 were detected as teratogens and 11 as non-teratogens, resulting in 94.44 % sensitivity, 90.91 % specificity and 87.10 % accuracy compared to rodents. These percentages decreased slightly when referred to humans, with 87.50 % sensitivity, 81.82 % specificity and 74.19 % accuracy, but allowed an increase in the prediction levels reported by rodents for the same compounds. Positive compounds showed a high correlation among teratogenic parameters, pointing out at general developmental delay as major cause to explain the physiological/morphological malformations. A more detailed analysis based on deviations from main trends revealed potential specific modes of action for some compounds such as retinoic acid, DEAB, ochratoxin A, haloperidol, warfarin, valproic acid, acetaminophen, dasatinib, imatinib, dexamethasone, 6-aminonicotinamide and bisphenol A. The high degree of predictivity and the possibility of applying mechanistic approaches makes zebrafish a powerful model for screening teratogenicity.
Collapse
Affiliation(s)
- Sergio Jarque
- ZeClinics SL, Carretera de Can Ruti, Camí de les Escoles, s/n, Edificio IGTP Muntanya, Badalona, 08916 Barcelona, Spain.
| | - Maria Rubio-Brotons
- ZeClinics SL, Carretera de Can Ruti, Camí de les Escoles, s/n, Edificio IGTP Muntanya, Badalona, 08916 Barcelona, Spain
| | - Jone Ibarra
- ZeClinics SL, Carretera de Can Ruti, Camí de les Escoles, s/n, Edificio IGTP Muntanya, Badalona, 08916 Barcelona, Spain
| | - Víctor Ordoñez
- ZeClinics SL, Carretera de Can Ruti, Camí de les Escoles, s/n, Edificio IGTP Muntanya, Badalona, 08916 Barcelona, Spain
| | - Sylvia Dyballa
- ZeClinics SL, Carretera de Can Ruti, Camí de les Escoles, s/n, Edificio IGTP Muntanya, Badalona, 08916 Barcelona, Spain
| | - Rafael Miñana
- ZeClinics SL, Carretera de Can Ruti, Camí de les Escoles, s/n, Edificio IGTP Muntanya, Badalona, 08916 Barcelona, Spain
| | - Javier Terriente
- ZeClinics SL, Carretera de Can Ruti, Camí de les Escoles, s/n, Edificio IGTP Muntanya, Badalona, 08916 Barcelona, Spain.
| |
Collapse
|
22
|
Barrow P, Clemann N. Review of embryo-fetal developmental toxicity studies performed for pharmaceuticals approved by FDA in 2018 and 2019. Reprod Toxicol 2020; 99:144-151. [PMID: 32593570 DOI: 10.1016/j.reprotox.2020.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 12/11/2022]
Abstract
Details of embryo-fetal development (EFD) studies were compiled for all FDA drug approvals in 2018-19. EFD studies were performed for 82 % of approvals (84 % of small molecules and 70 % of biopharmaceuticals). Rats and rabbits were used for 84 % of small molecule (SM) drugs for which EFD studies were submitted. There was at least a 2-fold difference in sensitivity between the rat and the rabbit relative to the human exposure for the majority of drugs (62 %, small molecules and biopharmaceuticals combined) tested in both species. On average, however, the rat and rabbit were equally sensitive to developmental toxicity. Over the last 2 years, the use of non-human primates (NHP) for the developmental toxicity testing of biopharmaceuticals has fallen (26 % of biologics license applications), with many more biopharmaceuticals now tested in rodents (44 % of BLAs). EFD studies were not required for oncology drugs when the mode of action was associated with known developmental risk. One-third of SM non-oncology drugs and two-thirds of SM oncology drugs induced dysmorphogenesis in at least one species. The newly revised ICH S5(R3) guideline will bring about changes to the design of future EFD studies, particularly with respect to high dose selection. The revised guideline will also influence the interpretation of the findings in EFD studies (e.g. fetal morphological variations) and risk assessment.
Collapse
Affiliation(s)
- Paul Barrow
- Roche Pharmaceutical Research and Early Development, F. Hoffmann-La-Roche, Ltd., Basel, Switzerland.
| | - Nicole Clemann
- Roche Pharmaceutical Research and Early Development, F. Hoffmann-La-Roche, Ltd., Basel, Switzerland
| |
Collapse
|
23
|
Liu S, Narumi R, Ikeda N, Morita O, Tasaki J. Chemical-induced craniofacial anomalies caused by disruption of neural crest cell development in a zebrafish model. Dev Dyn 2020; 249:794-815. [PMID: 32314458 PMCID: PMC7384000 DOI: 10.1002/dvdy.179] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 12/11/2022] Open
Abstract
Background Craniofacial anomalies are among the most frequent birth defects worldwide, and are thought to be caused by gene‐environment interactions. Genetically manipulated zebrafish simulate human diseases and provide great advantages for investigating the etiology and pathology of craniofacial anomalies. Although substantial advances have been made in understanding genetic factors causing craniofacial disorders, limited information about the etiology by which environmental factors, such as teratogens, induce craniofacial anomalies is available in zebrafish. Results Zebrafish embryos displayed craniofacial malformations after teratogen treatments. Further observations revealed characteristic disruption of chondrocyte number, shape and stacking. These findings suggested aberrant development of cranial neural crest (CNC) cells, which was confirmed by gene expression analysis of the CNC. Notably, these observations suggested conserved etiological pathways between zebrafish and mammals including human. Furthermore, several of these chemicals caused malformations of the eyes, otic vesicle, and/or heart, representing a phenocopy of neurocristopathy, and these chemicals altered the expression levels of the responsible genes. Conclusions Our results demonstrate that chemical‐induced craniofacial malformation is caused by aberrant development of neural crest. This study indicates that zebrafish provide a platform for investigating contributions of environmental factors as causative agents of craniofacial anomalies and neurocristopathy.
Collapse
Affiliation(s)
- Shujie Liu
- R&D, Safety Science Research, Kao Corporation, Tochigi, Japan
| | - Rika Narumi
- R&D, Safety Science Research, Kao Corporation, Tochigi, Japan
| | - Naohiro Ikeda
- R&D, Safety Science Research, Kao Corporation, Tochigi, Japan
| | - Osamu Morita
- R&D, Safety Science Research, Kao Corporation, Tochigi, Japan
| | - Junichi Tasaki
- R&D, Safety Science Research, Kao Corporation, Tochigi, Japan
| |
Collapse
|
24
|
Cassar S, Adatto I, Freeman JL, Gamse JT, Iturria I, Lawrence C, Muriana A, Peterson RT, Van Cruchten S, Zon LI. Use of Zebrafish in Drug Discovery Toxicology. Chem Res Toxicol 2019; 33:95-118. [PMID: 31625720 DOI: 10.1021/acs.chemrestox.9b00335] [Citation(s) in RCA: 315] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Unpredicted human safety events in clinical trials for new drugs are costly in terms of human health and money. The drug discovery industry attempts to minimize those events with diligent preclinical safety testing. Current standard practices are good at preventing toxic compounds from being tested in the clinic; however, false negative preclinical toxicity results are still a reality. Continual improvement must be pursued in the preclinical realm. Higher-quality therapies can be brought forward with more information about potential toxicities and associated mechanisms. The zebrafish model is a bridge between in vitro assays and mammalian in vivo studies. This model is powerful in its breadth of application and tractability for research. In the past two decades, our understanding of disease biology and drug toxicity has grown significantly owing to thousands of studies on this tiny vertebrate. This Review summarizes challenges and strengths of the model, discusses the 3Rs value that it can deliver, highlights translatable and untranslatable biology, and brings together reports from recent studies with zebrafish focusing on new drug discovery toxicology.
Collapse
Affiliation(s)
- Steven Cassar
- Preclinical Safety , AbbVie , North Chicago , Illinois 60064 , United States
| | - Isaac Adatto
- Stem Cell and Regenerative Biology , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Jennifer L Freeman
- School of Health Sciences , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Joshua T Gamse
- Drug Safety Evaluation , Bristol-Myers Squibb , New Brunswick , New Jersey 08901 , United States
| | | | - Christian Lawrence
- Aquatic Resources Program , Boston Children's Hospital , Boston , Massachusetts 02115 , United States
| | | | - Randall T Peterson
- Pharmacology and Toxicology, College of Pharmacy , University of Utah , Salt Lake City , Utah 84112 , United States
| | | | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department , Harvard University , Boston , Massachusetts 02138 , United States
| |
Collapse
|
25
|
Exposure-based assessment of chemical teratogenicity using morphogenetic aggregates of human embryonic stem cells. Reprod Toxicol 2019; 91:74-91. [PMID: 31711903 PMCID: PMC6980740 DOI: 10.1016/j.reprotox.2019.10.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 10/17/2019] [Accepted: 10/22/2019] [Indexed: 12/15/2022]
Abstract
Pluripotent stem cells recapitulate many aspects of embryogenesis in vitro. Here, we established a novel culture system to differentiate human embryonic stem cell aggregates (HESCA), and evaluated its utility for teratogenicity assessment. Culture of HESCA with modulators of developmental signals induced morphogenetic and molecular changes associated with differentiation of the paraxial mesoderm and neuroectoderm. To examine impact of teratogenic exposures on HESCA differentiation, 18 compounds were tested, for which adequate information on in vivo plasma concentrations is available. HESCA treated with each compound were examined for gross morphology and transcript levels of 15 embryogenesis regulator genes. Significant alterations in the transcript levels were observed for 94% (15/16) of the teratogenic exposures within 5-fold margin, whereas no alteration was observed for 92% (11/12) of the non-teratogenic exposures. Our study demonstrates that transcriptional changes in HESCA serve as predictive indicator of teratogenicity in a manner comparable to in vivo exposure levels.
Collapse
|
26
|
Vo AH, Van Vleet TR, Gupta RR, Liguori MJ, Rao MS. An Overview of Machine Learning and Big Data for Drug Toxicity Evaluation. Chem Res Toxicol 2019; 33:20-37. [DOI: 10.1021/acs.chemrestox.9b00227] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Andy H. Vo
- Department of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Terry R. Van Vleet
- Department of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Rishi R. Gupta
- Information Research, Research and Development, AbbVie, 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Michael J. Liguori
- Department of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Mohan S. Rao
- Department of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| |
Collapse
|