1
|
Holme JA, Myhre O, Øvrevik J. Adverse neurodevelopment in children associated with prenatal exposure to fine particulate matter (PM 2.5) - Possible roles of polycyclic aromatic hydrocarbons (PAHs) and mechanisms involved. Reprod Toxicol 2024; 130:108718. [PMID: 39276806 DOI: 10.1016/j.reprotox.2024.108718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Prenatal exposure to ambient fine particles (PM2.5) and polycyclic aromatic hydrocarbons (PAHs) has been associated with adverse birth outcomes including neurodevelopmental effects with cognitive and/or behavioral implications in early childhood. As a background we first briefly summarize human studies on PM2.5 and PAHs associated with adverse birth outcomes and modified neurodevelopment. Next, we add more specific information from animal studies and in vitro studies and elucidate possible biological mechanisms. More specifically we focus on the potential role of PAHs attached to PM2.5 and explore whether effects of these compounds may arise from disturbance of placental function or more directly by interfering with neurodevelopmental processes in the fetal brain. Possible molecular initiating events (MIEs) include interactions with cellular receptors such as the aryl hydrocarbon receptor (AhR), beta-adrenergic receptors (βAR) and transient receptor potential (TRP)-channels resulting in altered gene expression. MIE linked to the binding of PAHs to cytochrome P450 (CYP) enzymes and formation of reactive electrophilic metabolites are likely less important. The experimental animal and in vitro studies support the epidemiological findings and suggest steps involved in mechanistic pathways explaining the associations. An overall evaluation of the doses/concentrations used in experimental studies combined with the mechanistic understanding further supports the hypothesis that prenatal PAHs exposure may cause adverse outcomes (AOs) linked to human neurodevelopment. Several MIEs will likely occur simultaneously in various cells/tissues involving several key events (KEs) which relative importance will depend on dose, time, tissue, genetics, other environmental factors, and neurodevelopmental endpoint in study.
Collapse
Affiliation(s)
- Jørn A Holme
- Department of Air quality and Noise, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box PO Box 222 Skøyen, Oslo 0213, Norway.
| | - Oddvar Myhre
- Department of Chemical Toxicology, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, Oslo 0213, Norway
| | - Johan Øvrevik
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, PO Box 1066 Blindern, Oslo 0316, Norway; Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, Oslo 0213, Norway
| |
Collapse
|
2
|
Fuenzalida B, Basler V, Koechli N, Yi N, Staud F, Albrecht C. Modelling the maternal-fetal interface: An in vitro approach to investigate nutrient and drug transport across the human placenta. J Cell Mol Med 2024; 28:e70151. [PMID: 39422159 PMCID: PMC11487339 DOI: 10.1111/jcmm.70151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/20/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
The placenta plays a critical role in maternal-fetal nutrient transport and fetal protection against drugs. Creating physiological in vitro models to study these processes is crucial, but technically challenging. This study introduces an efficient cell model that mimics the human placental barrier using co-cultures of primary trophoblasts and primary human umbilical vein endothelial cells (HUVEC) on a Transwell®-based system. Monolayer formation was examined over 7 days by determining transepithelial electrical resistance (TEER), permeability of Lucifer yellow (LY) and inulin, localization of transport proteins at the trophoblast membrane (immunofluorescence), and syncytialization markers (RT-qPCR/ELISA). We analysed diffusion-based (caffeine/antipyrine) and transport-based (leucine/Rhodamine-123) processes to study the transfer of physiologically relevant compounds. The latter relies on the adequate localization and function of the amino-acid transporter LAT1 and the drug transporter P-glycoprotein (P-gp) which were studied by immunofluorescence microscopy and application of respective inhibitors (2-Amino-2-norbornanecarboxylic acid (BCH) for LAT1; cyclosporine-A for P-gp). The formation of functional monolayer(s) was confirmed by increasing TEER values, low LY transfer rates, minimal inulin leakage, and appropriate expression/release of syncytialization markers. These results were supported by microscopic monitoring of monolayer formation. LAT1 was identified on the apical and basal sides of the trophoblast monolayer, while P-gp was apically localized. Transport assays confirmed the inhibition of LAT1 by BCH, reducing both intracellular leucine levels and leucine transport to the basal compartment. Inhibiting P-gp with cyclosporine-A increased intracellular Rhodamine-123 concentrations. Our in vitro model mimics key aspects of the human placental barrier. It represents a powerful tool to study nutrient and drug transport mechanisms across the placenta, assisting in evaluating safer pregnancy therapies.
Collapse
Affiliation(s)
- Barbara Fuenzalida
- Institute of Biochemistry and Molecular Medicine, Faculty of MedicineUniversity of BernBernSwitzerland
| | - Virginia Basler
- Institute of Biochemistry and Molecular Medicine, Faculty of MedicineUniversity of BernBernSwitzerland
| | - Nadja Koechli
- Institute of Biochemistry and Molecular Medicine, Faculty of MedicineUniversity of BernBernSwitzerland
| | - Nan Yi
- Institute of Biochemistry and Molecular Medicine, Faculty of MedicineUniversity of BernBernSwitzerland
| | - Frantisek Staud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec KraloveCharles UniversityHradec KraloveCzech Republic
| | - Christiane Albrecht
- Institute of Biochemistry and Molecular Medicine, Faculty of MedicineUniversity of BernBernSwitzerland
| |
Collapse
|
3
|
Sturla Irizarry SM, Cathey AL, Zimmerman E, Rosario Pabón ZY, Huerta Montañez G, Vélez Vega CM, Alshawabkeh AN, Cordero JF, Meeker JD, Watkins DJ. Prenatal polycyclic aromatic hydrocarbon exposure and neurodevelopment among children in Puerto Rico. CHEMOSPHERE 2024; 366:143468. [PMID: 39369740 DOI: 10.1016/j.chemosphere.2024.143468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/04/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental contaminants produced through the combustion of organic matter, with sources ranging from traffic pollution to diet. Although PAH exposure has been associated with adverse health effects, few studies have examined its impact on neurodevelopmental delay (NDD). Thus, our study aims to investigate the effect of prenatal PAH exposure on the odds of NDD. We measured 7 hydroxylated PAH metabolites in spot urine samples collected up to three times during pregnancy in the PROTECT birth cohort. NDD was identified using score cutoffs from the Ages and Stages Questionnaire, 3rd edition offered in Spanish, across five domains at 12, 24, 36, and 48 months. We utilized logistic regression and mixed effects logistic regression models to assess associations between prenatal PAH concentrations and NDD. Our results showed mostly lower odds of NDD with higher PAH exposure (p < 0.05). However, male children showed higher odds of NDD in relation to PAH exposure, particularly in the Fine Motor domain. For example, 1-hydroxypyrene was associated with 1.11 (1.01, 1.23) times odds of delay in fine motor function in male children versus 0.91 (0.82, 1.00) times odds in female children. Our preliminary sex-specific results suggest that PAH exposure may impact neurodevelopment in male children and prompt further investigation into the potential sex-specific mechanisms of PAHs on motor function.
Collapse
Affiliation(s)
| | - Amber L Cathey
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA.
| | - Emily Zimmerman
- Department of Communication Sciences and Disorders, Northeastern University, Boston, MA, USA.
| | - Zaira Y Rosario Pabón
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, USA.
| | - Gredia Huerta Montañez
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, USA.
| | - Carmen M Vélez Vega
- Department of Social Sciences, Doctoral Program in Social Determinants of Health, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, USA.
| | - Akram N Alshawabkeh
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, USA.
| | - José F Cordero
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, USA.
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA.
| | - Deborah J Watkins
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
4
|
Wang S, Li C, Zhang L, Chen Q, Wang S. Assessing the ecological impacts of polycyclic aromatic hydrocarbons petroleum pollutants using a network toxicity model. ENVIRONMENTAL RESEARCH 2024; 245:117901. [PMID: 38092235 DOI: 10.1016/j.envres.2023.117901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are significant petroleum pollutants that have long-term impacts on human health and ecosystems. However, assessing their toxicity presents challenges due to factors such as cost, time, and the need for comprehensive multi-component analysis methods. In this study, we utilized network toxicity models, enrichment analysis, and molecular docking to analyze the toxicity mechanisms of PAHs at different levels: compounds, target genes, pathways, and species. Additionally, we used the maximum acceptable concentration (MAC) value and risk quotient (RQ) as an indicator for the potential ecological risk assessment of PAHs. The results showed that higher molecular weight PAHs had increased lipophilicity and higher toxicity. Benzo[a]pyrene and Fluoranthene were identified as core compounds, which increased the risk of cancer by affecting core target genes such as CCND1 in the human body, thereby influencing signal transduction and the immune system. In terms of biological species, PAHs had a greater toxic impact on aquatic organisms compared to terrestrial organisms. High molecular weight PAHs had lower effective concentrations on biological species, and the ecological risk was higher in the Yellow River Delta region. This research highlights the potential application of network toxicity models in understanding the toxicity mechanisms and species toxicity of PAHs and provides valuable insights for monitoring, prevention, and ecological risk assessment of these pollutants.
Collapse
Affiliation(s)
- Shiqi Wang
- School of Energy, Faculty of Engineering, China University of Geosciences, Beijing, 100083, PR China.
| | - Congcong Li
- College of Civil Engineering and Architecture, Binzhou University, Binzhou City, Shandong Province, 256600, PR China.
| | - Lisheng Zhang
- Shengli Geological Mud Logging Company of Sinopic Matrix Co., Ltd., Dongying, Shandong Province, 257000, PR China
| | - Qian Chen
- Shengli Geological Mud Logging Company of Sinopic Matrix Co., Ltd., Dongying, Shandong Province, 257000, PR China
| | - Shuoliang Wang
- School of Energy, Faculty of Engineering, China University of Geosciences, Beijing, 100083, PR China.
| |
Collapse
|
5
|
Harris SM, Su AL, Dou JF, Loch-Caruso R, Elkin ER, Jaber S, Bakulski KM. Placental cell conditioned media modifies hematopoietic stem cell transcriptome invitro. Placenta 2024; 145:117-125. [PMID: 38128222 PMCID: PMC11270901 DOI: 10.1016/j.placenta.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
INTRODUCTION Hematopoietic stem cells are cells that differentiate into blood cell types. Although the placenta secretes hormones, proteins and other factors important for maternal/fetal health, cross-talk between placental and hematopoietic stem cells is poorly understood. Moreover, toxicant impacts on placental-hematopoietic stem cell communication is understudied. The goals of this study were to determine if factors secreted from placental cells alter transcriptomic responses in hematopoietic stem cells and if monoethylhexyl phthalate (MEHP), the bioactive metabolite of the pollutant diethylhexyl phthalate, modifies these effects. METHODS We used K-562 and BeWo cells as in vitro models of hematopoietic stem cells and placental syncytiotrophoblasts, respectively. We treated K-562 cells with medium conditioned by incubation with BeWo cells, medium conditioned with BeWo cells treated with 10 μM MEHP for 24 h, or controls treated with unconditioned medium. We extracted K-562 cell RNA, performed RNA sequencing, then conducted differential gene expression and pathway analysis. RESULTS Relative to controls, K-562 cells treated with BeWo cell conditioned medium differentially expressed 173 genes (FDR<0.05 and fold-change>2.0), including 2.4-fold upregulatation of tropomyosin 4 (TPM4, a cytoskeletal regulator involved in processes such as cell morphology and migration) and 3.3-fold upregulatation of sphingosine-1-phosphate receptor 3 (S1PR3, a mediator of myeloid cell differentiation and inflammatory responses). Upregulated genes were enriched for pathways including stem cell maintenance, cell proliferation and immune processes. Downregulated genes were enriched for terms involved in protein translation and transcriptional regulation. MEHP treatment differentially expressed eight genes (FDR<0.05), including genes involved in lipid metabolism (e.g., Perilipin 2, fold-change: 1.4; Carnitine Palmitoyltransferase 1A, fold-change: 1.4). DISCUSSION K-562 cells, a model of hematopoietic stem cells, are responsive to media conditioned by placental cells, potentially impacting pathways like stem cell maintenance.
Collapse
Affiliation(s)
- Sean M Harris
- School of Public Health, Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA.
| | - Anthony L Su
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA, 19104
| | - John F Dou
- School of Public Health, Department of Epidemiology, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Rita Loch-Caruso
- School of Public Health, Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Elana R Elkin
- School of Public Health, Division of Environmental Health, San Diego State University, San Diego, CA, 92182, USA
| | - Sammy Jaber
- School of Public Health, Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Kelly M Bakulski
- School of Public Health, Department of Epidemiology, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| |
Collapse
|
6
|
Ohyama N, Furugen A, Sawada R, Aoyagi R, Nishimura A, Umazume T, Narumi K, Kobayashi M. Effects of valproic acid on syncytialization in human placental trophoblast cell lines. Toxicol Appl Pharmacol 2023; 474:116611. [PMID: 37385477 DOI: 10.1016/j.taap.2023.116611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
The placenta is a critical organ for fetal development and a healthy pregnancy, and has multifaceted functions (e.g., substance exchange and hormone secretion). Syncytialization of trophoblasts is important for maintaining placental functions. Epilepsy is one of the most common neurological conditions worldwide. Therefore, this study aimed to reveal the influence of antiepileptic drugs, including valproic acid (VPA), carbamazepine, lamotrigine, gabapentin, levetiracetam, topiramate, lacosamide, and clobazam, at clinically relevant concentrations on syncytialization using in vitro models of trophoblasts. To induce differentiation into syncytiotrophoblast-like cells, BeWo cells were treated with forskolin. Exposure to VPA was found to dose-dependently influence syncytialization-associated genes (ERVW-1, ERVFRD-1, GJA1, CGB, CSH, SLC1A5, and ABCC4) in differentiated BeWo cells. Herein, the biomarkers between differentiated BeWo cells and the human trophoblast stem model (TSCT) were compared. In particular, MFSD2A levels were low in BeWo cells but abundant in TSCT cells. VPA exposure affected the expression of ERVW-1, ERVFRD-1, GJA1, CSH, MFSD2A, and ABCC4 in differentiated cells (ST-TSCT). Furthermore, VPA exposure attenuated BeWo and TSCT cell fusion. Finally, the relationships between neonatal/placental parameters and the expression of syncytialization markers in human term placentas were analyzed. MFSD2A expression was positively correlated with neonatal body weight, head circumference, chest circumference, and placental weight. Our findings have important implications for better understanding the mechanisms of toxicity of antiepileptic drugs and predicting the risks to placental and fetal development.
Collapse
Affiliation(s)
- Nanami Ohyama
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Japan
| | - Ayako Furugen
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Japan.
| | - Riko Sawada
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Japan
| | - Ryoichi Aoyagi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Japan
| | | | - Takeshi Umazume
- Department of Obstetrics, Hokkaido University Hospital, Japan
| | - Katsuya Narumi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Japan
| | - Masaki Kobayashi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Japan.
| |
Collapse
|
7
|
Dai Y, Xu X, Huo X, Faas MM. Effects of polycyclic aromatic hydrocarbons (PAHs) on pregnancy, placenta, and placental trophoblasts. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115314. [PMID: 37536008 DOI: 10.1016/j.ecoenv.2023.115314] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/05/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a group of persistent organic pollutants that are carcinogenic, mutagenic, endocrine-toxic, and immunotoxic. PAHs can be found in maternal and fetal blood and in the placenta during pregnancy. They may thus affect placental and fetal development. Therefore, the exposure levels and toxic effects of PAHs in the placenta deserve further study and discussion. This review aims to summarize current knowledge on the effects of PAHs and their metabolites on pregnancy and birth outcomes and on placental trophoblast cells. A growing number of epidemiological studies detected PAH-DNA adducts as well as the 16 high-priority PAHs in the human placenta and showed that placental PAH exposure is associated with adverse fetal outcomes. Trophoblasts are important cells in the placenta and are involved in placental development and function. In vitro studies have shown that exposure to either PAH mixtures, benzo(a)pyrene (BaP) or BaP metabolite benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE) affected trophoblast cell viability, differentiation, migration, and invasion through various signaling pathways. Furthermore, similar effects of BPDE on trophoblast cells could also be observed in BaP-treated mouse models and were related to miscarriage. Although the current data show that PAHs may affect placental trophoblast cells and pregnancy outcomes, further studies (population studies, in vitro studies, and animal studies) are necessary to show the specific effects of different PAHs on placental trophoblasts and pregnancy outcomes.
Collapse
Affiliation(s)
- Yifeng Dai
- Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 22 Xinling Rd, Shantou 515041, Guangdong, China.
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 22 Xinling Rd, Shantou 515041, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, 22 Xinling Rd, Shantou 515041, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, Guangdong, China
| | - Marijke M Faas
- Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Department of Obstetrics and Gynecology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| |
Collapse
|
8
|
Harris SM, Su AL, Dou JF, Loch-Caruso R, Elkin ER, Jaber S, Bakulski KM. Placental Cell Conditioned Media Modifies Hematopoietic Stem Cell Transcriptome In Vitro. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.27.534393. [PMID: 37034658 PMCID: PMC10081206 DOI: 10.1101/2023.03.27.534393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Background Hematopoietic stem cells are cells that differentiate into all blood cell types. Although the placenta secretes hormones, proteins and other factors important for maternal and fetal health, cross-talk between placental cells and hematopoietic stem cells is poorly understood. Moreover, toxicant impacts on placental-hematopoietic stem cell communication is understudied. The goals of this study were to determine if factors secreted from placental cells alter transcriptomic responses in hematopoietic stem cells and if monoethylhexyl phthalate (MEHP), the bioactive metabolite of the pollutant diethylhexyl phthalate, modifies these effects. Methods We used K-562 and BeWo cells as in vitro models of hematopoietic stem cells and placental syncytiotrophoblasts, respectively. We treated K-562 cells with medium conditioned by incubation with BeWo cells, medium conditioned with BeWo cells treated with 10 μM MEHP for 24 hours, or controls treated with unconditioned medium. We extracted K-562 cell RNA, performed RNA sequencing, then conducted differential gene expression and pathway analysis by treatment group. Results Relative to controls, K-562 cells treated with BeWo cell conditioned medium differentially expressed 173 genes (FDR<0.05 and fold-change>2.0), including 2.4 fold upregulatation of TPM4 and 3.3 fold upregulatation of S1PR3. Upregulated genes were enriched for pathways including stem cell maintenance, cell proliferation and immune processes. Downregulated genes were enriched for terms involved in protein translation and transcriptional regulation. MEHP treatment differentially expressed eight genes (FDR<0.05), including genes involved in lipid metabolism (PLIN2, fold-change: 1.4; CPT1A, fold-change: 1.4). Conclusion K-562 cells, a model of hematopoietic stem cells, are responsive to media conditioned by placental cells, potentially impacting pathways like stem cell maintenance and proliferation.
Collapse
Affiliation(s)
- Sean M. Harris
- School of Public Health, Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Anthony L. Su
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA 19104
| | - John F. Dou
- School of Public Health, Department of Epidemiology, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Rita Loch-Caruso
- School of Public Health, Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Elana R. Elkin
- School of Public Health, Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Sammy Jaber
- School of Public Health, Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Kelly M. Bakulski
- School of Public Health, Department of Epidemiology, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| |
Collapse
|
9
|
Valderrama JFN, Gil VC, Alzate B V, Tavera EA, Noreña E, Porras J, Quintana-Castillo JC, García L JJ, Molina P FJ, Ramos-Contreras C, Sanchez JB. Effects of polycyclic aromatic hydrocarbons on gestational hormone production in a placental cell line: Application of passive dosing to in vitro tests. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 245:114090. [PMID: 36162350 DOI: 10.1016/j.ecoenv.2022.114090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Air pollution includes polycyclic aromatic hydrocarbons (PAHs), which have been correlated to endocrine disruptor pathways during early pregnancy. PAHs have been found in the placenta and cord blood, which may affect the hormones involved in placental development. We studied the effects of some airborne PAHs on beta human chorionic gonadotropin (β-hCG) and progesterone production by using a syncytial BeWo cell line as a placental model. PAH congeners were spiked in silicon rubber membrane (SRMs) and were then introduced into the cell medium by the passive dosing method to reach a freely dissolved concentration for BeWo cell exposure. Ultrahigh-performance liquid chromatography coupled with a diode array detector was used to analyze the PAHs, and electrochemiluminescence was used to test the hormone levels. Our results showed that passive dosing can deliver low levels of PAH congeners in the cell medium, which allowed us to calculate the individual release constants at equilibrium and to estimate their effects. Benzo[a]pyrene was released quickly from the SRMs to the cell medium, which can be attributed to its lipophilic properties. The PAHs were shown to decrease the β-hCG level in the short term and progesterone level in the long term, so they may serve as a pathway for endocrine disorder in trophoblastic cells. This approximation may explain observations of impaired endometrium receptivity and placental dysfunction, which enhance adverse pregnancy outcomes such as embryonic mortality and intrauterine growth restriction.
Collapse
Affiliation(s)
- Jhon Fredy Narváez Valderrama
- Grupo de Investigación Ingeniar, Facultad de Ciencias Básicas e Ingeniería, Corporación Universitaria Remington, Calle 51 No. 51-27, Medellín, Colombia.
| | - Vanessa Correa Gil
- Grupo de Investigaciones Biomédicas UniRemington, Corporación Universitaria Remington, Calle 51 No. 51-27, Medellín, Colombia
| | - Viviana Alzate B
- Grupo de Investigación Ingeniar, Facultad de Ciencias Básicas e Ingeniería, Corporación Universitaria Remington, Calle 51 No. 51-27, Medellín, Colombia
| | - Edison Andrés Tavera
- Grupo de Investigación Ingeniar, Facultad de Ciencias Básicas e Ingeniería, Corporación Universitaria Remington, Calle 51 No. 51-27, Medellín, Colombia
| | - Edgar Noreña
- Grupo de Investigaciones Biomédicas UniRemington, Corporación Universitaria Remington, Calle 51 No. 51-27, Medellín, Colombia
| | - Jazmín Porras
- Grupo de Investigaciones Biomédicas UniRemington, Corporación Universitaria Remington, Calle 51 No. 51-27, Medellín, Colombia
| | | | - Juan José García L
- Grupo de Investigación Ingeniar, Facultad de Ciencias Básicas e Ingeniería, Corporación Universitaria Remington, Calle 51 No. 51-27, Medellín, Colombia
| | - Francisco José Molina P
- Grupo de Investigación en Gestión y Modelación Ambiental - GAIA, Facultad de Ingeniería, Universidad de Antioquia U.de.A, Calle 70 # 52-21, Medellín, Colombia
| | - Carlos Ramos-Contreras
- Grupo de Investigación en Gestión y Modelación Ambiental - GAIA, Facultad de Ingeniería, Universidad de Antioquia U.de.A, Calle 70 # 52-21, Medellín, Colombia
| | - Julio Bueno Sanchez
- Grupo de Reproducción, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 # 52-21, Medellín, Colombia
| |
Collapse
|
10
|
Holme JA, Valen H, Brinchmann BC, Vist GE, Grimsrud TK, Becher R, Holme AM, Øvrevik J, Alexander J. Polycyclic aromatic hydrocarbons (PAHs) may explain the paradoxical effects of cigarette use on preeclampsia (PE). Toxicology 2022; 473:153206. [PMID: 35550401 DOI: 10.1016/j.tox.2022.153206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 11/21/2022]
Abstract
Tobacco smoking and use of snus (smokeless tobacco) are associated with adverse effects on pregnancy and neonatal outcomes. Nicotine is considered a key toxicant involved in effects caused by both smoking and snus, while pyrolysis products including polycyclic aromatic hydrocarbons (PAHs) in cigarette smoke represents the constituents most unequally divided between these two groups of tobacco products. The aim of this review was: i) to compare the impact, in terms of relative effect estimates, of cigarette smoking and use of Swedish snus on pregnancy outcomes using similar non-tobacco user controls, and ii) to examine whether exposure to PAHs from smoking could explain possible differences in impact on pregnancy outcomes. We systematically searched MEDLINE, Embase, PsycInfo, Web of Science and the Cochrane Database of Systematic Reviews up to October 2021 and identified studies reporting risks for adverse pregnancy and neonatal outcomes associated with snus use and with smoking relative to pregnant women with no use of tobacco. Both snus use and smoking were associated with increased risk of stillbirth, preterm birth, and oral cleft malformation, with comparable point estimates. These effects were likely due to comparable nicotine exposure. We also found striking differences. While both smoking and snus increased the risk of having small for gestational age (SGA) infants, risk from maternal smoking was markedly higher as was the reduction in birthweight. In contrast, the risk of preeclampsia (PE) was markedly lower in smokers than in controls, while snus use was associated with a slightly increased risk. We suggest that PAHs acting via AhR may explain the stronger effects of tobacco smoking on SGA and also to the apparent protective effect of cigarette smoking on PE. Possible mechanisms involved include: i) disrupted endocrine control of fetal development as well as placental development and function, and ii) stress adaption and immune suppression in placenta and mother.
Collapse
Affiliation(s)
- Jørn A Holme
- Division of Climate and Health, Norwegian Institute of Public Health, Oslo, Norway.
| | - Håkon Valen
- Division of Climate and Health, Norwegian Institute of Public Health, Oslo, Norway.
| | - Bendik C Brinchmann
- Division of Climate and Health, Norwegian Institute of Public Health, Oslo, Norway; Department of Occupational Medicine and Epidemiology, National Institute of Occupational Health, Oslo, Norway.
| | - Gunn E Vist
- Division for Health Services, Norwegian Institute of Public Health, Oslo, Norway.
| | - Tom K Grimsrud
- Department of Research, Cancer Registry of Norway, Oslo, Norway.
| | - Rune Becher
- Division of Climate and Health, Norwegian Institute of Public Health, Oslo, Norway.
| | - Ane M Holme
- Department of Obstetrics and Gynecology, Oslo University Hospital, Oslo, Norway.
| | - Johan Øvrevik
- Division of Climate and Health, Norwegian Institute of Public Health, Oslo, Norway; Department of Biosciences, University of Oslo, Oslo, Norway.
| | - Jan Alexander
- Division of Climate and Health, Norwegian Institute of Public Health, Oslo, Norway.
| |
Collapse
|
11
|
Liao Y, Zheng H, Wu L, He L, Wang Y, Ou Y, Yang H, Peng S, Chen F, Wang X, Zhao J. Cadmium cytotoxicity and possible mechanisms in human trophoblast HTR-8/SVneo cells. ENVIRONMENTAL TOXICOLOGY 2021; 36:1111-1124. [PMID: 33559965 DOI: 10.1002/tox.23110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/18/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
The accumulation of cadmium (Cd) in the human body through food chain can lead to adverse pregnancy outcomes. In this study, Cd cytotoxicity and its mechanisms in HTR-8/SVneo cells were investigated. Cd disrupted the cellular submicrostructure and inhibited the cell viability in a time- and dose-dependent manner. The levels of reactive oxygen species, malondialdehyde content, and the activities of glutathione peroxidase (GSH-Px) and total superoxode dismutase (T-SOD) were concentration-dependently increased by Cd. In addition, Cd dose-dependently inducedcell apoptosis and decreased cell migration and invasion capacities. Finally, Cd significantly upregulated all the genes related to oxidative stress (SOD1, ROS1, and HSPA6), inflammatory response, cell cycle, apoptosis, and migration and invasion. This study will provide insights into the prevention and treatment of pregnancy-related diseases caused by Cd intoxication.
Collapse
Affiliation(s)
- Ying Liao
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Hong Zheng
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Langbo Wu
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Lei He
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Yu Wang
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Yangsong Ou
- Department of Orthopedics and Traumatology of Traditional Chinese Medicine, Sichuan 2nd Hospital of Traditional Chinese Medicine, Chengdu, China
| | - Hongjun Yang
- Department of Rehabilitation Medicine, Sichuan 2nd Hospital of Traditional Chinese Medicine, Chengdu, China
| | - Shiqin Peng
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Fengwang Chen
- Department of Internal Medicine, Wuwei Traditional Chinese Medicine Hospital, Wuwei, China
| | - Xiaoyan Wang
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Jiayuan Zhao
- College of Life Science, Sichuan Normal University, Chengdu, China
| |
Collapse
|
12
|
Xu C, Liu Q, Liang J, Weng Z, Xu J, Jiang Z, Gu A. Urinary biomarkers of polycyclic aromatic hydrocarbons and their associations with liver function in adolescents. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 278:116842. [PMID: 33711626 DOI: 10.1016/j.envpol.2021.116842] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/25/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
Associations between polycyclic aromatic hydrocarbons (PAHs) and respiratory diseases have been widely studied, but the effects of PAH on liver toxicity in adolescents are unclear. Here, 3194 adolescents with NHANES data from 2003 to 2016 were selected. PAH exposure was assessed by measuring PAH metabolites in urine. The outcome variables were the levels of alanine aminotransferase (ALT), aspartate amino transferase (AST) and gamma-glutamyl transpeptidase (GGT). The association between PAH exposure and liver function was evaluated by the weighted quantile sum (WQS) and logistic regression, and the associations between PAHs and inflammation and blood lipids were evaluated by linear regression. Covariates were adjusted for age, ethnicity, BMI, physical activity, family income, cotinine, and urinary creatinine. The results showed that for females, mixed PAH exposure was related to an increased ALT level (OR = 2.33, 95% CI 1.15, 4.72), and 2-fluorene contributed the most (38.6%). Urinary 2-fluorene was positively associated with an elevated ALT level (OR = 2.19 95% 1.12, 4.27, p for trend = 0.004). Mechanistically, 2-fluorene can cause a 3.56% increase in the white blood cell count, a 6.99% increase in the triglyceride level, and 1.70% increase in the total cholesterol level. PAHs may have toxic effects, possibly mediated by inflammation and blood lipids, on the adolescent female liver. Additional confirmatory studies are needed.
Collapse
Affiliation(s)
- Cheng Xu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Qian Liu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Jingjia Liang
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Zhenkun Weng
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Jin Xu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China; Department of Maternal, Child, and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhaoyan Jiang
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, Tongji University School of Medicine, Shanghai, China.
| | - Aihua Gu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|