1
|
Tengku-Mazuki TA, Darham S, Convey P, Shaharuddin NA, Zulkharnain A, Khalil KA, Zahri KNM, Subramaniam K, Merican F, Gomez-Fuentes C, Ahmad SA. Effects of heavy metals on bacterial growth parameters in degradation of phenol by an Antarctic bacterial consortium. Braz J Microbiol 2024; 55:629-637. [PMID: 38110706 PMCID: PMC10920555 DOI: 10.1007/s42770-023-01215-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/25/2023] [Indexed: 12/20/2023] Open
Abstract
Antarctica has often been perceived as a pristine continent until the recent few decades as pollutants have been observed accruing in the Antarctic environment. Irresponsible human activities such as accidental oil spills, waste incineration and sewage disposal are among the primary anthropogenic sources of heavy metal contaminants in Antarctica. Natural sources including animal excrement, volcanism and geological weathering also contribute to the increase of heavy metals in the ecosystem. A microbial growth model is presented for the growth of a bacterial cell consortium used in the biodegradation of phenol in media containing different metal ions, namely arsenic (As), cadmium (Cd), aluminium (Al), nickel (Ni), silver (Ag), lead (Pb) and cobalt (Co). Bacterial growth was inhibited by these ions in the rank order of Al < As < Co < Pb < Ni < Cd < Ag. Greatest bacterial growth occurred in 1 ppm Al achieving an OD600 of 0.985 and lowest in 1 ppm Ag with an OD600 of 0.090. At a concentration of 1.0 ppm, Ag had a considerable effect on the bacterial consortium, inhibiting the degradation of phenol, whereas this concentration of the other metal ions tested had no effect on degradation. The biokinetic growth model developed supports the suitability of the bacterial consortium for use in phenol degradation.
Collapse
Affiliation(s)
- Tengku Athirrah Tengku-Mazuki
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Syazani Darham
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
- Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park, 2006, South Africa
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Las Palmeras 3425, Santiago, Chile
| | - Noor Azmi Shaharuddin
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Azham Zulkharnain
- Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-Ku, Saitama, 337-8570, Japan
| | - Khalilah Abdul Khalil
- School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, 45000 Section 2, Shah Alam, Selangor, Malaysia
| | - Khadijah Nabilah Mohd Zahri
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Kavilasni Subramaniam
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Faradina Merican
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
| | - Claudio Gomez-Fuentes
- Department of Chemical Engineering, Universidad de Magallanes, Avda. Bulnes 01855, Punta Arenas, Chile
- Center for Research and Antarctic Environmental Monitoring (CIMAA), Universidad de Magallanes, Avda, 01855, Bulnes, Chile
| | - Siti Aqlima Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Center for Research and Antarctic Environmental Monitoring (CIMAA), Universidad de Magallanes, Avda, 01855, Bulnes, Chile.
| |
Collapse
|
2
|
Sun W, Shahrajabian MH, Soleymani A. The Roles of Plant-Growth-Promoting Rhizobacteria (PGPR)-Based Biostimulants for Agricultural Production Systems. PLANTS (BASEL, SWITZERLAND) 2024; 13:613. [PMID: 38475460 DOI: 10.3390/plants13050613] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/17/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
The application of biostimulants has been proven to be an advantageous tool and an appropriate form of management towards the effective use of natural resources, food security, and the beneficial effects on plant growth and yield. Plant-growth-promoting rhizobacteria (PGPR) are microbes connected with plant roots that can increase plant growth by different methods such as producing plant hormones and molecules to improve plant growth or providing increased mineral nutrition. They can colonize all ecological niches of roots to all stages of crop development, and they can affect plant growth and development directly by modulating plant hormone levels and enhancing nutrient acquisition such as of potassium, phosphorus, nitrogen, and essential minerals, or indirectly via reducing the inhibitory impacts of different pathogens in the forms of biocontrol parameters. Many plant-associated species such as Pseudomonas, Acinetobacter, Streptomyces, Serratia, Arthrobacter, and Rhodococcus can increase plant growth by improving plant disease resistance, synthesizing growth-stimulating plant hormones, and suppressing pathogenic microorganisms. The application of biostimulants is both an environmentally friendly practice and a promising method that can enhance the sustainability of horticultural and agricultural production systems as well as promote the quantity and quality of foods. They can also reduce the global dependence on hazardous agricultural chemicals. Science Direct, Google Scholar, Springer Link, CAB Direct, Scopus, Springer Link, Taylor and Francis, Web of Science, and Wiley Online Library were checked, and the search was conducted on all manuscript sections in accordance with the terms Acinetobacter, Arthrobacter, Enterobacter, Ochrobactrum, Pseudomonas, Rhodococcus, Serratia, Streptomyces, Biostimulants, Plant growth promoting rhizobactera, and Stenotrophomonas. The aim of this manuscript is to survey the effects of plant-growth-promoting rhizobacteria by presenting case studies and successful paradigms in various agricultural and horticultural crops.
Collapse
Affiliation(s)
- Wenli Sun
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mohamad Hesam Shahrajabian
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ali Soleymani
- Department of Agronomy and Plant Breeding, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81551-39998, Iran
- Plant Improvement and Seed Production Research Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81551-39998, Iran
| |
Collapse
|
3
|
Sui X, Wang J, Zhao Z, Liu B, Liu M, Liu M, Shi C, Feng X, Fu Y, Shi D, Li S, Qi Q, Xian M, Zhao G. Phenolic compounds induce ferroptosis-like death by promoting hydroxyl radical generation in the Fenton reaction. Commun Biol 2024; 7:199. [PMID: 38368473 PMCID: PMC10874397 DOI: 10.1038/s42003-024-05903-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 02/08/2024] [Indexed: 02/19/2024] Open
Abstract
Phenolic compounds are industrially versatile chemicals, also the most ubiquitous pollutants. Recently, biosynthesis and biodegradation of phenols has attracted increasing attention, while phenols' toxicity is a major issue. Here, we evolved phloroglucinol-tolerant Escherichia coli strains via adaptive evolution, and three mutations (ΔsodB, ΔclpX and fetAB overexpression) prove of great assistance in the tolerance improvement. We discover that phloroglucinol complexes with iron and promotes the generation of hydroxyl radicals in Fenton reaction, which leads to reducing power depletion, lipid peroxidation, and ferroptosis-like cell death of E. coli. Besides phloroglucinol, various phenols can trigger ferroptosis-like death in diverse organisms, from bacteria to mammalian cells. Furthermore, repressing this ferroptosis-like death improves phloroglucinol production and phenol degradation by corresponding strains respectively, showing great application potential in microbial degradation or production of desired phenolic compounds, and phloroglucinol-induced ferroptosis suppresses tumor growth in mice, indicating phloroglucinol as a promising drug for cancer treatment.
Collapse
Affiliation(s)
- Xinyue Sui
- State Key Laboratory of Microbial Technology and Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Jichao Wang
- State Key Laboratory of Microbial Technology and Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Zhiqiang Zhao
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Bin Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Miaomiao Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Min Liu
- State Key Laboratory of Microbial Technology and Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Cong Shi
- State Key Laboratory of Microbial Technology and Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Xinjun Feng
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Yingxin Fu
- State Key Laboratory of Microbial Technology and Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Dayong Shi
- State Key Laboratory of Microbial Technology and Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Shengying Li
- State Key Laboratory of Microbial Technology and Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology and Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Mo Xian
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Guang Zhao
- State Key Laboratory of Microbial Technology and Institute of Microbial Technology, Shandong University, Qingdao, China.
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
4
|
Chawla M, Lavania M, Sahu N, Shekhar S, Singh N, More A, Iyer M, Kumar S, Singh K, Lal B. Culture-independent assessment of the indigenous microbial diversity of Raniganj coal bed methane block, Durgapur. Front Microbiol 2023; 14:1233605. [PMID: 37731928 PMCID: PMC10507629 DOI: 10.3389/fmicb.2023.1233605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/14/2023] [Indexed: 09/22/2023] Open
Abstract
It is widely acknowledged that conventional mining and extraction techniques have left many parts of the world with depleting coal reserves. A sustainable method for improving the recovery of natural gas from coalbeds involves enhancing the production of biogenic methane in coal mines. By taking a culture-independent approach, the diversity of the microbial community present in the formation water of an Indian reservoir was examined using 16S rRNA gene amplification in order to study the potential of microbial-enhanced coal bed methane (CBM) production from the deep thermogenic wells at a depth of 800-1200 m. Physicochemical characterization of formation water and coal samples was performed with the aim of understanding the in situ reservoir conditions that are most favorable for microbial CBM production. Microbial community analysis of formation water showed that bacteria were more abundant than archaea. Proteobacteria, Firmicutes, and Bacteroidetes were found as the most prevalent phyla in all the samples. These phyla play a crucial role in providing substrate for the process of methanogenesis by performing fermentative, hydrolytic, and syntrophic functions. Considerable variation in the abundance of microbial genera was observed amongst the selected CBM wells, potentially due to variable local geochemical conditions within the reservoir. The results of our study provide insights into the impact of geochemical factors on microbial distribution within the reservoir. Further, the study demonstrates lab-scale enhancement in methane production through nutrient amendment. It also focuses on understanding the microbial diversity of the Raniganj coalbed methane block using amplicon sequencing and further recognizing the potential of biogenic methane enhancement through microbial stimulation. The findings of the study will help as a reference for better strategization and implementation of on-site microbial stimulation for enhanced biogenic methane production in the future.
Collapse
Affiliation(s)
- Mansi Chawla
- Environmental and Industrial Biotechnology Division, The Energy and Resources Institute, New Delhi, India
| | - Meeta Lavania
- Environmental and Industrial Biotechnology Division, The Energy and Resources Institute, New Delhi, India
| | - Nishi Sahu
- Environmental and Industrial Biotechnology Division, The Energy and Resources Institute, New Delhi, India
| | | | - Nimmi Singh
- Environmental and Industrial Biotechnology Division, The Energy and Resources Institute, New Delhi, India
| | - Anand More
- Essar Oil and Gas Exploration and Production Limited, Durgapur, West Bengal, India
| | - Magesh Iyer
- Essar Oil and Gas Exploration and Production Limited, Durgapur, West Bengal, India
| | - Sanjay Kumar
- Essar Oil and Gas Exploration and Production Limited, Durgapur, West Bengal, India
| | | | - Banwari Lal
- Environmental and Industrial Biotechnology Division, The Energy and Resources Institute, New Delhi, India
| |
Collapse
|
5
|
Darham S, Zakaria NN, Zulkharnain A, Sabri S, Khalil KA, Merican F, Gomez-Fuentes C, Lim S, Ahmad SA. Antarctic heavy metal pollution and remediation efforts: state of the art of research and scientific publications. Braz J Microbiol 2023; 54:2011-2026. [PMID: 36973583 PMCID: PMC10485231 DOI: 10.1007/s42770-023-00949-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 03/09/2023] [Indexed: 03/29/2023] Open
Abstract
In Antarctica, human activities have been reported to be the major cause of the accumulation of heavy metal contaminants. A comprehensive bibliometric analysis of publications on heavy metal contamination in Antarctica from year 2000 to 2020 was performed to obtain an overview of the current landscape in this line of research. A total of 106 documents were obtained from Scopus, the largest citation database. Extracted data were analysed, and VOSviewer software was used to visualise trends. The result showed an increase in publications and citations in the past 20 years indicating the rising interest on heavy metal contamination in the Antarctic region. Based on the analysis of keywords, the publications largely discuss various types of heavy metals found in the Antarctic water and sediment. The analysis on subject areas detects multiple disciplines involved, wherein the environmental science was well-represented. The top countries and authors producing the most publication in this field were from Australia, China, Brazil and Chile. Numerous efforts have been exercised to investigate heavy metal pollution and its mitigation approaches in the region in the past decades. This paper not only is relevant for scholars to understand the development status and trends in this field but also offers clear insights on the future direction of Antarctic heavy metal contamination and remediation research.
Collapse
Affiliation(s)
- Syazani Darham
- Faculty of Biotechnology and Biomolecular Sciences, Department of Biochemistry, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Nur Nadhirah Zakaria
- Faculty of Biotechnology and Biomolecular Sciences, Department of Biochemistry, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Azham Zulkharnain
- Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-Ku, Saitama, 337-8570, Japan
| | - Suriana Sabri
- Faculty of Biotechnology and Biomolecular Sciences, Department of Microbiology, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Khalilah Abdul Khalil
- Faculty of Applied Sciences, School of Biology, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
| | - Faradina Merican
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Pulai Pinang, Malaysia
| | - Claudio Gomez-Fuentes
- Department of Chemical Engineering, Universidad de Magallanes, Avda. Bulnes 01855, Punta Arenas, Chile
- Center for Research and Antarctic Environmental Monitoring (CIMAA), Universidad de Magallanes, Avda. Bulnes 01855, Punta Arenas, Chile
| | - Sooa Lim
- Department of Pharmaceutical Engineering, Hoseo University, Asan-Si 31499, Chungnam, Republic of Korea
| | - Siti Aqlima Ahmad
- Faculty of Biotechnology and Biomolecular Sciences, Department of Biochemistry, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Center for Research and Antarctic Environmental Monitoring (CIMAA), Universidad de Magallanes, Avda. Bulnes 01855, Punta Arenas, Chile.
| |
Collapse
|
6
|
Ontiveros JF, Bullón J, Cárdenas A. Micellar enhanced ultrafiltration of phenol with dodecylpyridinium chloride and sodium dodecylbenzene sulfonate. J SURFACTANTS DETERG 2022. [DOI: 10.1002/jsde.12646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Jesús F. Ontiveros
- Laboratorio de Mezclado, Separación y Síntesis Industrial Ingeniería Química, Universidad de Los Andes Mérida Venezuela
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 UCCS—Unité de Catalyse et Chimie du Solide Lille France
| | - Johnny Bullón
- Laboratorio de Mezclado, Separación y Síntesis Industrial Ingeniería Química, Universidad de Los Andes Mérida Venezuela
- Laboratorio FIRP, Ingeniería Química Universidad de Los Andes Mérida Venezuela
| | - Antonio Cárdenas
- Laboratorio de Mezclado, Separación y Síntesis Industrial Ingeniería Química, Universidad de Los Andes Mérida Venezuela
- Laboratorio FIRP, Ingeniería Química Universidad de Los Andes Mérida Venezuela
| |
Collapse
|
7
|
Qu J, Zhao R, Chen Y, Li Y, Jin P, Zheng Z. Enhanced nitrogen removal from low-temperature wastewater by an iterative screening of cold-tolerant denitrifying bacteria. Bioprocess Biosyst Eng 2021; 45:381-390. [PMID: 34859268 DOI: 10.1007/s00449-021-02668-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/14/2021] [Indexed: 11/29/2022]
Abstract
The biological process to remove nitrogen in winter effluent is often seriously compromised due to the effect of low temperatures (< 13 °C) on the metabolic activity of microorganisms. In this study, a novel heterotrophic nitrifying-aerobic denitrifying bacterium with cold tolerance was isolated by iterative domestication and named Moraxella sp. LT-01. The LT-01 maintained almost 60% of its maximal growth activity at 10 °C. Under initial concentrations of 100 mg/L, the removal efficiencies of ammonium, nitrate, nitrite by LT-01 were 70.3%, 65.4%, 61.7% respectively for 72 h incubation at 10 °C. Nitrogen balance analysis showed that about 46% of TN was released as gases and 16% of TN was assimilated for cell growth. The biomarker genes involved in nitrification and denitrification pathways were identified by gene-specific PCR and revealed that the LT-01 has nitrite reductase (NirS) but not hydroxylamine reductase (HAO), which implies the involvement of other genes in the process. The study indicates that LT-01 has the potential for use in low-temperature regions for efficient sewage treatment.
Collapse
Affiliation(s)
- Jin Qu
- School of Environmental and Resource, Zhejiang A and F University, Hangzhou, 311300, China
| | - Ruojin Zhao
- Zhejiang Shuangliang Sunda Environment Co., LTD, Hangzhou, 310000, China
| | - Yinyan Chen
- Zhejiang Shuangliang Sunda Environment Co., LTD, Hangzhou, 310000, China
| | - Yiyi Li
- Zhejiang Shuangliang Sunda Environment Co., LTD, Hangzhou, 310000, China
| | - Peng Jin
- College of Agricultural and Food Sciences, Zhejiang A and F University, Hangzhou, 311300, China
| | - Zhanwang Zheng
- School of Environmental and Resource, Zhejiang A and F University, Hangzhou, 311300, China. .,Zhejiang Shuangliang Sunda Environment Co., LTD, Hangzhou, 310000, China.
| |
Collapse
|
8
|
Xie X, Liu J, Jiang Z, Li H, Ye M, Pan H, Zhu J, Song H. The conversion of the nutrient condition alter the phenol degradation pathway by Rhodococcus biphenylivorans B403: A comparative transcriptomic and proteomic approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:56152-56163. [PMID: 34046837 DOI: 10.1007/s11356-021-14374-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
Highly toxic phenol causes a threat to the ecosystem and human body. The development of bioremediation is a crucial issue in environmental protection. Herein, Rhodococcus biphenylivorans B403, which was isolated from the activated sludge of the sewage treatment plant, exhibited a good tolerance and removal efficiency to phenol. The degradation efficiency of phenol increased up to 62.27% in the oligotrophic inorganic medium (MM) containing 500-mg/L phenol at 18 h. R. biphenylivorans B403 cultured in the MM medium showed a higher phenol degradation efficiency than that in the eutrophic LB medium. On the basis of the transcriptomic and proteomic analysis, a total of 799 genes and 123 proteins showed significantly differential expression between two different culture conditions, especially involved in phenol degradation, carbon metabolism, and nitrogen metabolism. R. biphenylivorans B403 could alter the phenol degradation pathway by facing different culture conditions. During the phenol removal in the oligotrophic inorganic medium, muconate cycloisomerase, acetyl-CoA acyltransferase, and catechol 1,2-dioxygenase in the ortho-pathway for phenol degradation showed upregulation compared with those in the eutrophic organic medium. Our study provides novel insights into the possible pathway underlying the response of bacterium to environmental stress for phenol degradation.
Collapse
Affiliation(s)
- Xiaohang Xie
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
| | - Jiashu Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- Hubei Key Laboratory of Industrial Biotechnology, School of Life Science, Hubei University, Wuhan, 430062, China
| | - Zhengbing Jiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- Hubei Key Laboratory of Industrial Biotechnology, School of Life Science, Hubei University, Wuhan, 430062, China
| | - Huanan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- Hubei Key Laboratory of Industrial Biotechnology, School of Life Science, Hubei University, Wuhan, 430062, China
| | - Meng Ye
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
| | - Hong Pan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
| | - Jingwei Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
| | - Huiting Song
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China.
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
9
|
Poyntner C, Kutzner A, Margesin R. Biodegradation Potential and Putative Catabolic Genes of Culturable Bacteria from an Alpine Deciduous Forest Site. Microorganisms 2021; 9:1920. [PMID: 34576815 PMCID: PMC8471709 DOI: 10.3390/microorganisms9091920] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 12/18/2022] Open
Abstract
Microbiota from Alpine forest soils are key players in carbon cycling, which can be greatly affected by climate change. The aim of this study was to evaluate the degradation potential of culturable bacterial strains isolated from an alpine deciduous forest site. Fifty-five strains were studied with regard to their phylogenetic position, growth temperature range and degradation potential for organic compounds (microtiter scale screening for lignin sulfonic acid, catechol, phenol, bisphenol A) at low (5 °C) and moderate (20 °C) temperature. Additionally, the presence of putative catabolic genes (catechol-1,2-dioxygenase, multicomponent phenol hydroxylase, protocatechuate-3,4-dioxygenase) involved in the degradation of these organic compounds was determined through PCR. The results show the importance of the Proteobacteria phylum as its representatives did show good capabilities for biodegradation and good growth at -5 °C. Overall, 82% of strains were able to use at least one of the tested organic compounds as their sole carbon source. The presence of putative catabolic genes could be shown over a broad range of strains and in relation to their degradation abilities. Subsequently performed gene sequencing indicated horizontal gene transfer for catechol-1,2-dioxygenase and protocatechuate-3,4-dioxygenase. The results show the great benefit of combining molecular and culture-based techniques.
Collapse
Affiliation(s)
| | | | - Rosa Margesin
- Department of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria; (C.P.); (A.K.)
| |
Collapse
|
10
|
Lee GLY, Zakaria NN, Convey P, Futamata H, Zulkharnain A, Suzuki K, Abdul Khalil K, Shaharuddin NA, Alias SA, González-Rocha G, Ahmad SA. Statistical Optimisation of Phenol Degradation and Pathway Identification through Whole Genome Sequencing of the Cold-Adapted Antarctic Bacterium, Rhodococcus sp. Strain AQ5-07. Int J Mol Sci 2020; 21:ijms21249363. [PMID: 33316871 PMCID: PMC7764105 DOI: 10.3390/ijms21249363] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 11/16/2022] Open
Abstract
Study of the potential of Antarctic microorganisms for use in bioremediation is of increasing interest due to their adaptations to harsh environmental conditions and their metabolic potential in removing a wide variety of organic pollutants at low temperature. In this study, the psychrotolerant bacterium Rhodococcus sp. strain AQ5-07, originally isolated from soil from King George Island (South Shetland Islands, maritime Antarctic), was found to be capable of utilizing phenol as sole carbon and energy source. The bacterium achieved 92.91% degradation of 0.5 g/L phenol under conditions predicted by response surface methodology (RSM) within 84 h at 14.8 °C, pH 7.05, and 0.41 g/L ammonium sulphate. The assembled draft genome sequence (6.75 Mbp) of strain AQ5-07 was obtained through whole genome sequencing (WGS) using the Illumina Hiseq platform. The genome analysis identified a complete gene cluster containing catA, catB, catC, catR, pheR, pheA2, and pheA1. The genome harbours the complete enzyme systems required for phenol and catechol degradation while suggesting phenol degradation occurs via the β-ketoadipate pathway. Enzymatic assay using cell-free crude extract revealed catechol 1,2-dioxygenase activity while no catechol 2,3-dioxygenase activity was detected, supporting this suggestion. The genomic sequence data provide information on gene candidates responsible for phenol and catechol degradation by indigenous Antarctic bacteria and contribute to knowledge of microbial aromatic metabolism and genetic biodiversity in Antarctica.
Collapse
Affiliation(s)
- Gillian Li Yin Lee
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang UPM 43400, Selangor, Malaysia; (G.L.Y.L.); (N.N.Z.); (N.A.S.)
| | - Nur Nadhirah Zakaria
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang UPM 43400, Selangor, Malaysia; (G.L.Y.L.); (N.N.Z.); (N.A.S.)
| | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 0ET, UK;
| | - Hiroyuki Futamata
- Graduate School of Science and Technology, Shizuoka University, Hamamatsu 432-8561, Japan;
- Research Institute of Green Science and Technology, Shizuoka University, Suruga-ku, Shizuoka 422-8529, Japan;
| | - Azham Zulkharnain
- Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan;
| | - Kenshi Suzuki
- Research Institute of Green Science and Technology, Shizuoka University, Suruga-ku, Shizuoka 422-8529, Japan;
| | - Khalilah Abdul Khalil
- School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia;
| | - Noor Azmi Shaharuddin
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang UPM 43400, Selangor, Malaysia; (G.L.Y.L.); (N.N.Z.); (N.A.S.)
| | - Siti Aisyah Alias
- National Antarctic Research Centre, B303 Level 3, Block B, IPS Building, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
- Institute of Ocean and Earth Sciences, B303 Level 3, Block B, Universiti Malaya, Lembah Pantai, Kuala Lumpur 50603, Malaysia
| | - Gerardo González-Rocha
- Laboratorio de Investigacion en Agentes Antibacterianos, Facultad de Ciencias Biologicas, Universidad de Concepcion, Concepcion 4070386, Chile;
| | - Siti Aqlima Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang UPM 43400, Selangor, Malaysia; (G.L.Y.L.); (N.N.Z.); (N.A.S.)
- National Antarctic Research Centre, B303 Level 3, Block B, IPS Building, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
- Correspondence:
| |
Collapse
|
11
|
Filipowicz N, Momotko M, Boczkaj G, Cieśliński H. Determination of phenol biodegradation pathways in three psychrotolerant yeasts, Candida subhashii A01 1, Candida oregonensis B02 1 and Schizoblastosporion starkeyi-henricii L01 2, isolated from Rucianka peatland. Enzyme Microb Technol 2020; 141:109663. [PMID: 33051016 PMCID: PMC7474889 DOI: 10.1016/j.enzmictec.2020.109663] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/21/2020] [Accepted: 09/02/2020] [Indexed: 02/02/2023]
Abstract
In this study, three psychrotolerant phenol-degrading yeast strains Candida subhashii (strain A011), Candida oregonenis (strain B021) and Schizoblastosporion starkeyi-henricii (strain L012) isolated from Rucianka peatland were examined to determine which alternative metabolic pathway for phenol biodegradation is used by these microorganisms. All yeast strains were cultivated in minimal salt medium supplemented with phenol at 500, 750 and 1000 mg l-1 concentration with two ways of conducting phenol biodegradation experiments: with and without the starving step of yeast cells. For studied yeast strains, no catechol 2,3-dioxygenase activities were detected by enzymatic assay and no products of catechol meta-cleavage in yeast cultures supernatants (GC-MS analysis), were detected. The detection of catechol 1,2-dioxygenase activity and the presence of cis,cis-muconic acid in the analyzed samples revealed that all studied psychrotolerant yeast strains were able to metabolize phenol via the ortho-cleavage pathway. Therefore, they may be tested in terms of their use to develop biotechnology for the production of cis,cis-muconic acid, a substrate used in the production of plastics (PET) and other valuable goods.
Collapse
Affiliation(s)
- Natalia Filipowicz
- Department of Molecular Biotechnology and Microbiology, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Malwina Momotko
- Department of Process Engineering and Chemical Technology, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Grzegorz Boczkaj
- Department of Process Engineering and Chemical Technology, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Hubert Cieśliński
- Department of Molecular Biotechnology and Microbiology, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| |
Collapse
|
12
|
Augelletti F, Jousset A, Agathos SN, Stenuit B. Diversity Manipulation of Psychrophilic Bacterial Consortia for Improved Biological Treatment of Medium-Strength Wastewater at Low Temperature. Front Microbiol 2020; 11:1490. [PMID: 32793129 PMCID: PMC7393979 DOI: 10.3389/fmicb.2020.01490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/08/2020] [Indexed: 11/13/2022] Open
Abstract
Psychrophilic bacteria are valuable biocatalysts to develop robust bioaugmentation formulations for enhanced wastewater treatment at low temperatures or fluctuating temperature conditions. Here, using different biodiversity indices [based on species richness (SR), phylogenetic diversity (PD) and functional diversity (FD)], we studied the effects of microbial diversity of artificial bacterial consortia on the biomass gross yields (measured through OD600) and removal efficiency of soluble chemical oxygen demand (mg sCOD removed/mg sCOD introduced) in synthetic, medium-strength wastewater. We built artificial consortia out of one to six bacterial strains isolated at 4°C through combinatorial biodiversity experiments. Increasing species richness resulted in improved sCOD removal efficiency (i.e., 0.266 ± 0.146, 0.542 ± 0.155, 0.742 ± 0.136, 0.822 ± 0.019 for mono-, tri-, penta-and hexacultures, respectively) and higher biomass gross yields (i.e., 0.065 ± 0.052, 0.132 ± 0.046, 0.173 ± 0.049, 0.216 ± 0.019 for mono-, tri-, penta,- and hexacultures, respectively). This positive relationship between biodiversity, sCOD removal and biomass gross yield was also observed when considering metabolic profiling (functional diversity) or evolutionary relationships (phylogenetic diversity). The positive effect of biodiversity on sCOD removal efficiency could be attributed to the selection of a particular, best-performing species (i.e., Pedobacter sp.) as well as complementary use of carbon resources among consortia members (i.e., complementarity effects). Among the biodiversity indices, PD diversity metrics explained higher variation in sCOD removal than SR and FD diversity metrics. For a more effective bioaugmentation, our results stress the importance of using phylogenetically diverse consortia, with an increased degradation ability, instead of single pure cultures. Moreover, PD could be used as an assembly rule to guide the composition of mixed cultures for wastewater bioaugmentation under psychrophilic conditions.
Collapse
Affiliation(s)
- Floriana Augelletti
- Laboratory of Bioengineering, Earth and Life Institute, Catholic University of Louvain, Louvain-la-Neuve, Belgium
| | - Alexandre Jousset
- Ecology and Biodiversity Group, Institute of Environmental Biology, Utrecht University, Utrecht, Netherlands
| | - Spiros N Agathos
- Laboratory of Bioengineering, Earth and Life Institute, Catholic University of Louvain, Louvain-la-Neuve, Belgium
| | - Benoit Stenuit
- Joint Research Unit of Agropolymer Engineering and Emerging Technologies (IATE, UMR 1208), Polytech Montpellier, University of Montpellier, Montpellier, France
| |
Collapse
|
13
|
Hu X, Li D, Qiao Y, Song Q, Guan Z, Qiu K, Cao J, Huang L. Salt tolerance mechanism of a hydrocarbon-degrading strain: Salt tolerance mediated by accumulated betaine in cells. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122326. [PMID: 32092654 DOI: 10.1016/j.jhazmat.2020.122326] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/15/2020] [Accepted: 02/15/2020] [Indexed: 06/10/2023]
Abstract
Rhodococcus sp. HX-2 could degrade diesel oil in the presence of 1%-10 % NaCl. The compatible solute betaine accumulated in cells with increasing NaCl concentration, and this was found to be the main mechanism of resistance of HX-2 to high salt concentration. Exogenously added betaine can be transported into cells, which improved cell growth and the percentage degradation of diesel oil in the presence of high [NaCl] in solution and in soil. Scanning electron microscopy data suggested that addition of exogenous betaine facilitated salt tolerance by stimulating exopolysaccharide production. Fourier-transform infrared analysis suggested that surface hydroxyl, amide and phosphate groups may be related to tolerance of high-salt environments. Four betaine transporter-encoding genes (H0, H1, H3, H5) and the betaine producer gene betB were induced in Rhodococcus sp. HX-2 by NaCl stress. The maximal induction of H0, H1, H3 and H5 transcription depended on high salinity plus the presence of betaine. These results demonstrate that salt tolerance is mediated by accumulated betaine in Rhodococcus sp. HX-2 cells, and the potential of this strain for application in bioremediation of hydrocarbon pollution in saline environments.
Collapse
Affiliation(s)
- Xin Hu
- College of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin University of Technology, Tianjin, 300384, China
| | - Dahui Li
- College of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin University of Technology, Tianjin, 300384, China
| | - Yue Qiao
- College of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin University of Technology, Tianjin, 300384, China
| | - Qianqian Song
- College of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin University of Technology, Tianjin, 300384, China
| | - Zhiguo Guan
- College of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin University of Technology, Tianjin, 300384, China
| | - Kaixuan Qiu
- College of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin University of Technology, Tianjin, 300384, China
| | - Jiachang Cao
- College of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin University of Technology, Tianjin, 300384, China
| | - Lei Huang
- College of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin University of Technology, Tianjin, 300384, China.
| |
Collapse
|
14
|
Nogina T, Fomina M, Dumanskaya T, Zelena L, Khomenko L, Mikhalovsky S, Podgorskyi V, Gadd GM. A new Rhodococcus aetherivorans strain isolated from lubricant-contaminated soil as a prospective phenol-biodegrading agent. Appl Microbiol Biotechnol 2020; 104:3611-3625. [PMID: 32043191 PMCID: PMC7089913 DOI: 10.1007/s00253-020-10385-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/03/2020] [Accepted: 01/16/2020] [Indexed: 11/29/2022]
Abstract
Microbe-based decontamination of phenol-polluted environments has significant advantages over physical and chemical approaches by being relatively cheaper and ensuring complete phenol degradation. There is a need to search for commercially prospective bacterial strains that are resistant to phenol and other co-pollutants, e.g. oil hydrocarbons, in contaminated environments, and able to carry out efficient phenol biodegradation at a variable range of concentrations. This research characterizes the phenol-biodegrading ability of a new actinobacteria strain isolated from a lubricant-contaminated soil environment. Phenotypic and phylogenetic analyses showed that the novel strain UCM Ac-603 belonged to the species Rhodococcus aetherivorans, and phenol degrading ability was quantitatively characterized for the first time. R. aetherivorans UCM Ac-603 tolerated and assimilated phenol (100% of supplied concentration) and various hydrocarbons (56.2–94.4%) as sole carbon sources. Additional nutrient supplementation was not required for degradation and this organism could grow at a phenol concentration of 500 mg L−1 without inhibition. Complete phenol assimilation occurred after 4 days at an initial concentration of 1750 mg L−1 for freely-suspended cells and at 2000 mg L−1 for vermiculite-immobilized cells: 99.9% assimilation of phenol was possible from a total concentration of 3000 mg L−1 supplied at daily fractional phenol additions of 750 mg L−1 over 4 days. In terms of phenol degradation rates, R. aetherivorans UCM Ac-602 showed efficient phenol degradation over a wide range of initial concentrations with the rates (e.g. 35.7 mg L−1 h−1 at 500 mg L−1 phenol, and 18.2 mg L−1 h−1 at 1750 mg L−1 phenol) significantly exceeding (1.2–5 times) reported data for almost all other phenol-assimilating bacteria. Such efficient phenol degradation ability compared to currently known strains and other beneficial characteristics of R. aetherivorans UCM Ac-602 suggest it is a promising candidate for bioremediation of phenol-contaminated environments.
Collapse
Affiliation(s)
- Taisiya Nogina
- Zabolotny Institute of Microbiology and Virology of National Academy of Sciences of Ukraine, Zabolotny str., 154, Kyiv, 03143, Ukraine
| | - Marina Fomina
- Zabolotny Institute of Microbiology and Virology of National Academy of Sciences of Ukraine, Zabolotny str., 154, Kyiv, 03143, Ukraine
| | - Tatiana Dumanskaya
- Zabolotny Institute of Microbiology and Virology of National Academy of Sciences of Ukraine, Zabolotny str., 154, Kyiv, 03143, Ukraine
| | - Liubov Zelena
- Zabolotny Institute of Microbiology and Virology of National Academy of Sciences of Ukraine, Zabolotny str., 154, Kyiv, 03143, Ukraine
| | - Lyudmila Khomenko
- Zabolotny Institute of Microbiology and Virology of National Academy of Sciences of Ukraine, Zabolotny str., 154, Kyiv, 03143, Ukraine
| | - Sergey Mikhalovsky
- ANAMAD Ltd, Sussex Innovation Centre, Science Park Square, Falmer, Brighton, BN1 9SB, UK.,Chuiko Institute of Surface Chemistry, 17, General Naumov Street, Kyiv, 03164, Ukraine
| | - Valentin Podgorskyi
- Zabolotny Institute of Microbiology and Virology of National Academy of Sciences of Ukraine, Zabolotny str., 154, Kyiv, 03143, Ukraine
| | - Geoffrey Michael Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, Scotland, DD1 5EH, UK. .,State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, College of Chemical Engineering and Environment, China University of Petroleum, Beijing, 102249, China.
| |
Collapse
|
15
|
Abstract
Temperature is an important parameter in bioprocesses, influencing the structure and functionality of almost every biomolecule, as well as affecting metabolic reaction rates. In industrial biotechnology, the temperature is usually tightly controlled at an optimum value. Smart variation of the temperature to optimize the performance of a bioprocess brings about multiple complex and interconnected metabolic changes and is so far only rarely applied. Mathematical descriptions and models facilitate a reduction in complexity, as well as an understanding, of these interconnections. Starting in the 19th century with the “primal” temperature model of Svante Arrhenius, a variety of models have evolved over time to describe growth and enzymatic reaction rates as functions of temperature. Data-driven empirical approaches, as well as complex mechanistic models based on thermodynamic knowledge of biomolecular behavior at different temperatures, have been developed. Even though underlying biological mechanisms and mathematical models have been well-described, temperature as a control variable is only scarcely applied in bioprocess engineering, and as a conclusion, an exploitation strategy merging both in context has not yet been established. In this review, the most important models for physiological, biochemical, and physical properties governed by temperature are presented and discussed, along with application perspectives. As such, this review provides a toolset for future exploitation perspectives of temperature in bioprocess engineering.
Collapse
|
16
|
Muter O, Khroustalyova G, Rimkus A, Kalderis D, Ruchala J, Sibirny A, Rapoport A. Evaluation of the enhanced resistance of Ogataea (Hansenula) polymorpha to benzalkonium chloride as a resource for bioremediation technologies. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.08.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Safari M, Yakhchali B, Shariati J V. Comprehensive genomic analysis of an indigenous Pseudomonas pseudoalcaligenes degrading phenolic compounds. Sci Rep 2019; 9:12736. [PMID: 31484962 PMCID: PMC6726644 DOI: 10.1038/s41598-019-49048-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 08/15/2019] [Indexed: 11/09/2022] Open
Abstract
Environmental contamination with aromatic compounds is a universal challenge. Aromatic-degrading microorganisms isolated from the same or similar polluted environments seem to be more suitable for bioremediation. Moreover, microorganisms adapted to contaminated environments are able to use toxic compounds as the sole sources of carbon and energy. An indigenous strain of Pseudomonas, isolated from the Mahshahr Petrochemical plant in the Khuzestan province, southwest of Iran, was studied genetically. It was characterized as a novel Gram-negative, aerobic, halotolerant, rod-shaped bacterium designated Pseudomonas YKJ, which was resistant to chloramphenicol and ampicillin. Genome of the strain was completely sequenced using Illumina technology to identify its genetic characteristics. MLST analysis revealed that the YKJ strain belongs to the genus Pseudomonas indicating the highest sequence similarity with Pseudomonas pseudoalcaligenes strain CECT 5344 (99% identity). Core- and pan-genome analysis indicated that P. pseudoalcaligenes contains 1,671 core and 3,935 unique genes for coding DNA sequences. The metabolic and degradation pathways for aromatic pollutants were investigated using the NCBI and KEGG databases. Genomic and experimental analyses showed that the YKJ strain is able to degrade certain aromatic compounds including bisphenol A, phenol, benzoate, styrene, xylene, benzene and chlorobenzene. Moreover, antibiotic resistance and chemotaxis properties of the YKJ strain were found to be controlled by two-component regulatory systems.
Collapse
Affiliation(s)
- Maryam Safari
- Department of Energy and Environmental Biotechnology, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, I. R., Iran.,Department of Biology, Faculty of Science, Nour Danesh Institute of Higher Education, Isfahan Province, Meymeh, Danesh Blvd, I. R, Iran
| | - Bagher Yakhchali
- Department of Energy and Environmental Biotechnology, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, I. R., Iran.
| | - Vahid Shariati J
- Department of Plant Molecular Biotechnology, Institute of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, I. R., Iran
| |
Collapse
|
18
|
Eskandari F, Shahnavaz B, Mashreghi M. Optimization of complete RB-5 azo dye decolorization using novel cold-adapted and mesophilic bacterial consortia. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 241:91-98. [PMID: 30986666 DOI: 10.1016/j.jenvman.2019.03.125] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 03/25/2019] [Accepted: 03/29/2019] [Indexed: 06/09/2023]
Abstract
Azo dyes are an important group of recalcitrant xenobiotics, which are difficult to degrade and deteriorate in cold environments. In this study, two microbial consortia consisting of cold-adapted and mesophilic bacteria were developed for effective decolorization of Reactive Black-5 azo dye. These bacteria were isolated from textile wastewater and soil of a cold region. Identification of bacterial isolates using 16s rRNA gene analysis revealed that they belong to genus Pseudoarthrobacter, Gordonia, Stenotrophomonas, and Sphingomonas. Decolorization assay was performed for every strain at dye concentrations of 25, 50 and 100 mg/L and the consortia PsGo consisting of mesophilic bacteria and StSp consisting of cold-adapted bacteria were constructed accordingly. Results showed that the consortia PsGo and StSp were able to decolorize 54 and 34 percent of RB-5 (50 mg/L) during 7 days. To improve the dye removal efficiency of the consortia, several parameters including temperature, pH, carbon and nitrogen sources were optimized. Over longer periods, StSp consortium managed to completely decolorize RB-5 (50 mg/L) at optimized conditions of 25-30 °C, pH 9, and using glucose and NH4H2PO4 as carbon and nitrogen source respectively, whereas PsGo consortium decolorized RB-5 (50 mg/mL) completely at 37 °C, pH 11, and with lactose and NH4H2PO4 used as carbon and nitrogen sources. Kinetic of reactions for StSp and PsGo consortia were found to be 0.05 and 0.13 day-1 respectively, but became 0.71 and 0.9 day-1 after optimization. In general, cold ecosystems are good sources for the isolation of novel bacterial strains with a potential application, especially when used as consortia, in environmental biotechnology such as decolorization of RB-5.
Collapse
Affiliation(s)
- Fahimeh Eskandari
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Bahar Shahnavaz
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Institute of Applied Zoology, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Mansour Mashreghi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran
| |
Collapse
|
19
|
Sepehr S, Shahnavaz B, Asoodeh A, Karrabi M. Biodegradation of phenol by cold-tolerant bacteria isolated from alpine soils of Binaloud Mountains in Iran. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 54:367-379. [PMID: 30628541 DOI: 10.1080/10934529.2018.1553818] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 11/17/2018] [Accepted: 11/22/2018] [Indexed: 06/09/2023]
Abstract
Degradation of phenol is considered to be a challenge because of harsh environments in cold regions and ground waters. Molecular characterization of phenol degrading bacteria was investigated to gain an insight into the biodegradation in cold areas. The psychrotolerant and psychrophiles bacteria were isolated from alpine soils in the northeast of Iran. These strains belonged to Pseudomonas sp., Stenotrophomonas spp. and Shinella spp. based on analysis of the 16S rRNA gene. These strains were capable of the complete phenol degradation at a concentration of 200 mg L-1 at 20 °C. Moreover, the strains could degrade phenol at a concentration of 400 and 600 mg L-1 at a higher time. Effects of environmental factors were studied using one factor at a time (OFAT) approach for Pseudomonas sp.ATR208. When the bacterium was grown in a liquid medium with 600 mg L-1 of concentration supplemented with optimum carbon and nitrogen sources, more than 99% of phenol removal was obtained at 20 °C and 24 h. Therefore, the present study indicated the potential of the local cold tolerant bacteria in the phenol bioremediation.
Collapse
Affiliation(s)
- Shadi Sepehr
- a Department of Biology, Faculty of Science , Ferdowsi University of Mashhad , Mashhad , Iran
| | - Bahar Shahnavaz
- a Department of Biology, Faculty of Science , Ferdowsi University of Mashhad , Mashhad , Iran
- b Institute of Applied Zoology, Ferdowsi University of Mashhad , Mashhad , Iran
| | - Ahmad Asoodeh
- c Department of Chemistry, Faculty of Science , Ferdowsi University of Mashhad , Mashhad , Iran
| | - Mohsen Karrabi
- d Department of Civil Engineering, Faculty of Engineering , Ferdowsi University of Mashhad , Mashhad , Iran
| |
Collapse
|
20
|
|
21
|
Gu Q, Wu Q, Zhang J, Guo W, Ding Y, Wang J, Wu H, Sun M, Hou L, Wei X, Zhang Y. Isolation and Transcriptome Analysis of Phenol-Degrading Bacterium From Carbon-Sand Filters in a Full-Scale Drinking Water Treatment Plant. Front Microbiol 2018; 9:2162. [PMID: 30298058 PMCID: PMC6160575 DOI: 10.3389/fmicb.2018.02162] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/23/2018] [Indexed: 02/03/2023] Open
Abstract
Phenol is a typical organic contaminant in the environment. To date, the biodegradation of phenol by microorganisms remains the preferred method for its removal and remediation, but data on phenol removal by drinking water biofilters are lacking. In this study, we used high-throughput sequencing to investigate the microbial community structure in a carbon-sand biofilter. The results indicated that the predominant bacterial group was Bacilli, followed by Gammaproteobacteria, Clostridia, and Alphaproteobacteria. In addition, a strain was capable of degrading phenol at low concentrations of 500 μg/L within 100 min was isolated and identified as Rhodococcus sp. CS-1. Transcriptome analysis results showed that Rhodococcus sp. CS-1 was able to degrade phenol via both the catechol and protocatechuate branch of the β-ketoadipate pathway. Furthermore, some novel candidate biomarkers (copper oxidase, copper chaperone, and MarR/DeoR/TetR family transcriptional regulators) were successfully identified to be potentially involved in phenol biodegradation. This study indicates that carbon-sand filters have the potential for remediation of phenol. The application of native microorganisms to drinking water treatment system is an adaptive strategy in oligotrophic water environments.
Collapse
Affiliation(s)
- Qihui Gu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Jumei Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Weipeng Guo
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Yu Ding
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Juan Wang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Huiqing Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Ming Sun
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Luanfeng Hou
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Xianhu Wei
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Youxiong Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| |
Collapse
|
22
|
|
23
|
Mansouri A, Abbes C, Landoulsi A. Combined intervention of static magnetic field and growth rate of Microbacterium maritypicum CB7 for Benzo( a )Pyrene biodegradation. Microb Pathog 2017; 113:40-44. [DOI: 10.1016/j.micpath.2017.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 10/02/2017] [Accepted: 10/04/2017] [Indexed: 10/18/2022]
|
24
|
Filipowicz N, Momotko M, Boczkaj G, Pawlikowski T, Wanarska M, Cieśliński H. Isolation and Characterization of Phenol-Degrading Psychrotolerant Yeasts. WATER, AIR, AND SOIL POLLUTION 2017; 228:210. [PMID: 28603316 PMCID: PMC5440478 DOI: 10.1007/s11270-017-3391-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/09/2017] [Indexed: 06/07/2023]
Abstract
In this study, the potential of selected psychrotolerant yeast strains for phenol biodegradation was studied. From 39 strains isolated from soil and water samples from Rucianka peat bog, three psychrotolerant yeast strains, A011, B021, and L012, showed the ability to degrade phenol. The result shows that all three yeast strains could degrade phenol at 500 and 750 mg l-1 concentration, whereas strains A011 and L012 could degrade phenol at 1000 mg l-1 concentration. The time needed for degradation of each phenol concentration was no longer than 2 days. Strains A011, B021, and L012 were identified based on 26S rDNA and ITS sequence analysis as belonging to species Candida subhashii, Candida oregonensis, and Schizoblastosporion starkeyi-henricii, respectively.
Collapse
Affiliation(s)
- Natalia Filipowicz
- Department of Molecular Biotechnology and Microbiology, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Malwina Momotko
- Department of Chemical and Process Engineering, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Grzegorz Boczkaj
- Department of Chemical and Process Engineering, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Tomasz Pawlikowski
- Department of Molecular Biotechnology and Microbiology, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
- Fermentum Mobile Sp. z o.o. [Ltd.], 20 Podwale Przedmiejskie, 80-824 Gdańsk, Poland
| | - Marta Wanarska
- Department of Molecular Biotechnology and Microbiology, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Hubert Cieśliński
- Department of Molecular Biotechnology and Microbiology, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
25
|
Papazi A, Ioannou A, Symeonidi M, Doulis AG, Kotzabasis K. Bioenergetic strategy of microalgae for the biodegradation of tyrosol and hydroxytyrosol. ACTA ACUST UNITED AC 2017; 72:227-236. [DOI: 10.1515/znc-2016-0214] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/14/2017] [Indexed: 11/15/2022]
Abstract
Abstract
Olive mill wastewater has significant polluting properties due to its high phenolic content [mainly tyrosol (trs) and hydroxytyrosol (htrs)]. Growth kinetics and a series of fluorescence induction measurements for Scenedesmus obliquus cultures showed that microalgae can be tolerant of these phenolic compounds. Changes in the cellular energy reserves and concentration of the phenolic compounds adjust the “toxicity” of these compounds to the microalgae and are, therefore, the main parameters that affect biodegradation. Autotrophic growth conditions of microalgae and high concentrations of trs or htrs induce higher biodegradation compared with mixotrophic conditions and lower phenolic concentrations. When microalgae face trs and htrs simultaneously, biodegradation begins from htrs, the more energetically demanding compound. All these lead to the conviction that microalgae have a “rational” management of cellular energy balance. Low toxicity levels lead to higher growth and lower biodegradation, whereas higher toxicity levels lead to lower growth and higher biodegradation. The selection of appropriate conditions (compatible to the bioenergetic strategies of microalgae) seems to be the key for a successful biodegradation of a series of toxic compounds, thus paving the way for future biotechnological applications for solving complicated pollution problems, like the detoxification of olive mill wastewater.
Collapse
Affiliation(s)
- Aikaterini Papazi
- Department of Biology, University of Crete, Voutes University Campus , GR-70013 Heraklion , Greece
- Laboratory of Plant Biotechnology and Genomic Resources, Institute for Olive Tree, Subtropical Plants and Viticulture, Hellenic Agricultural Organization DEMETER , GR-71003, Heraklion , Greece
| | - Andreas Ioannou
- Department of Biology, University of Crete, Voutes University Campus , GR-70013 Heraklion , Greece
| | - Myrto Symeonidi
- Department of Biology, University of Crete, Voutes University Campus , GR-70013 Heraklion , Greece
| | - Andreas G. Doulis
- Laboratory of Plant Biotechnology and Genomic Resources, Institute for Olive Tree, Subtropical Plants and Viticulture, Hellenic Agricultural Organization DEMETER , GR-71003, Heraklion , Greece
| | - Kiriakos Kotzabasis
- Department of Biology, University of Crete, Voutes University Campus, GR-70013 Heraklion , Crete , Greece , Tel.: +30-2810-394059, Fax: +30-2810-394408
| |
Collapse
|
26
|
Mašínová T, Bahnmann BD, Větrovský T, Tomšovský M, Merunková K, Baldrian P. Drivers of yeast community composition in the litter and soil of a temperate forest. FEMS Microbiol Ecol 2016; 93:fiw223. [PMID: 27789535 DOI: 10.1093/femsec/fiw223] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/08/2016] [Accepted: 10/26/2016] [Indexed: 01/09/2023] Open
Abstract
Fungi represent a group of soil microorganisms fulfilling important ecological functions. Although several studies have shown that yeasts represent a significant proportion of fungal communities, our current knowledge is based mainly on cultivation experiments. In this study, we used amplicon sequencing of environmental DNA to describe the composition of yeast communities in European temperate forest and to identify the potential biotic and abiotic drivers of community assembly. Based on the analysis of ITS2 PCR amplicons, yeasts represented a substantial proportion of fungal communities ranging from 0.4 to 14.3% of fungal sequences in soil and 0.2 to 9.9% in litter. The species richness at individual sites was 28 ± 9 in soil and 31 ± 11 in litter. The basidiomycetous yeasts dominated over ascomycetous ones. In litter, yeast communities differed significantly among beech-, oak- and spruce-dominated stands. Drivers of community assembly are probably more complex in soils and comprise the effects of environmental conditions and vegetation.
Collapse
Affiliation(s)
- Tereza Mašínová
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Vídeňská 1083, 14220 Praha 4, Czech Republic
| | - Barbara Doreen Bahnmann
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Vídeňská 1083, 14220 Praha 4, Czech Republic
| | - Tomáš Větrovský
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Vídeňská 1083, 14220 Praha 4, Czech Republic
| | - Michal Tomšovský
- Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - Kristina Merunková
- Department of Botany and Zoology, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Petr Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Vídeňská 1083, 14220 Praha 4, Czech Republic
| |
Collapse
|
27
|
The influence of different modes of bioreactor operation on the efficiency of phenol degradation by Rhodococcus UKMP-5M. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2016. [DOI: 10.1007/s12210-016-0567-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Seel W, Derichs J, Lipski A. Increased Biomass Production by Mesophilic Food-Associated Bacteria through Lowering the Growth Temperature from 30°C to 10°C. Appl Environ Microbiol 2016; 82:3754-3764. [PMID: 27084015 PMCID: PMC4907174 DOI: 10.1128/aem.00211-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 04/11/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Five isolates from chilled food and refrigerator inner surfaces and closely related reference strains of the species Escherichia coli, Listeria monocytogenes, Staphylococcus xylosus, Bacillus cereus, Pedobacter nutrimenti, and Pedobacter panaciterrae were tested for the effect of growth temperature (30°C and 10°C) on biomass formation. Growth was monitored via optical density, and biomass formation was measured at the early stationary phase based on the following parameters in complex and defined media: viable cell count, total cell count, cell dry weight, whole-cell protein content, and cell morphology. According to the lack of growth at 1°C, all strains were assigned to the thermal class of mesophiles. Glucose and ammonium consumption related to cell yield were analyzed in defined media. Except for the protein content, temperature had a significant (t test, P < 0.05) effect on all biomass formation parameters for each strain. The results show a significant difference between the isolates and the related reference strains. Isolates achieved an increase in biomass production between 20% and 110% at the 10°C temperature, which is 15 to 25°C lower than their maximum growth rate temperatures. In contrast, reference strains showed a maximum increase of only about 25%, and some reference strains showed no increase or a decrease of approximately 25%. As expected, growth rates for all strains were higher at 30°C than at 10°C, while biomass production for isolates was higher at 10°C than at 30°C. In contrast, the reference strains showed similar growth yields at the two temperatures. This also demonstrates for mesophilic bacterial strains more efficient nutrient assimilation during growth at low temperatures. Until now, this characteristic was attributed only to psychrophilic microorganisms. IMPORTANCE For several psychrophilic species, increased biomass formation was described at temperatures lower than optimum growth temperatures, which are defined by the highest growth rate. This work shows increased biomass formation at low growth temperatures for mesophilic isolates. A comparison with closely related reference strains from culture collections showed a significantly smaller increase or no increase in biomass formation. This indicates a loss of specific adaptive mechanisms (e.g., cold adaptation) for mesophiles during long-term cultivation. The increased biomass production for mesophiles under low-temperature conditions opens new avenues for a more efficient biotechnological transformation of nutrients to microbial biomass. These findings may also be important for risk assessment of cooled foods since risk potential is often correlated with the cell numbers present in food samples.
Collapse
Affiliation(s)
- Waldemar Seel
- Rheinische Friedrich-Wilhelms-Universität Bonn, Institut für Ernährungs- und Lebensmittelwissenschaften, Abteilung Lebensmittelmikrobiologie und -hygiene, Bonn, Germany
| | - Julia Derichs
- Rheinische Friedrich-Wilhelms-Universität Bonn, Institut für Ernährungs- und Lebensmittelwissenschaften, Abteilung Lebensmittelmikrobiologie und -hygiene, Bonn, Germany
| | - André Lipski
- Rheinische Friedrich-Wilhelms-Universität Bonn, Institut für Ernährungs- und Lebensmittelwissenschaften, Abteilung Lebensmittelmikrobiologie und -hygiene, Bonn, Germany
| |
Collapse
|
29
|
Jiang Y, Yang K, Wang H, Shang Y, Yang X. Characteristics of phenol degradation in saline conditions of a halophilic strain JS3 isolated from industrial activated sludge. MARINE POLLUTION BULLETIN 2015; 99:230-234. [PMID: 26187399 DOI: 10.1016/j.marpolbul.2015.07.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 07/06/2015] [Accepted: 07/09/2015] [Indexed: 06/04/2023]
Abstract
Several halophilic bacteria have been reported to degrade phenol. However, there are a few works about salt-tolerant fungi which can utilize phenol as sole source of carbon. In this study, a halophilic strain JS3 which could degrade phenol with high efficiency was separated and identified. The effect of initial phenol concentration on phenol biodegradation was investigated and optimal pH, temperature, as well as salt-tolerance were evaluated. The isolate could degrade less than 800 mg/L phenol completely in 72 h. It grew well when pH, temperature, and salinity were at values of 4.0-9.0, 30-40°C, and 0-7%, respectively. The optimal pH, temperature and salinity were 6.0, 35°C and 0%. More than 99% of 500 mg/L phenol was degraded in the optimal condition within 24h. The tolerance of wide range of pH, temperature and salinity indicated that strain JS3 was effective for phenol removal in hypersaline wastewaters.
Collapse
Affiliation(s)
- Yu Jiang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Kai Yang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China.
| | - Yu Shang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Xiaojun Yang
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China
| |
Collapse
|
30
|
From mesophilic to thermophilic digestion: the transitions of anaerobic bacterial, archaeal, and fungal community structures in sludge and manure samples. Appl Microbiol Biotechnol 2015; 99:10271-82. [DOI: 10.1007/s00253-015-6866-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/16/2015] [Accepted: 07/18/2015] [Indexed: 11/25/2022]
|
31
|
Nallanchakravarthula S, Mahmood S, Alström S, Finlay RD. Influence of soil type, cultivar and Verticillium dahliae on the structure of the root and rhizosphere soil fungal microbiome of strawberry. PLoS One 2014; 9:e111455. [PMID: 25347069 PMCID: PMC4210224 DOI: 10.1371/journal.pone.0111455] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 10/02/2014] [Indexed: 12/31/2022] Open
Abstract
Sustainable management of crop productivity and health necessitates improved understanding of the ways in which rhizosphere microbial populations interact with each other, with plant roots and their abiotic environment. In this study we examined the effects of different soils and cultivars, and the presence of a soil-borne fungal pathogen, Verticillium dahliae, on the fungal microbiome of the rhizosphere soil and roots of strawberry plants, using high-throughput pyrosequencing. Fungal communities of the roots of two cultivars, Honeoye and Florence, were statistically distinct from those in the rhizosphere soil of the same plants, with little overlap. Roots of plants growing in two contrasting field soils had high relative abundance of Leptodontidium sp. C2 BESC 319 g whereas rhizosphere soil was characterised by high relative abundance of Trichosporon dulcitum or Cryptococcus terreus, depending upon the soil type. Differences between different cultivars were not as clear. Inoculation with the pathogen V. dahliae had a significant influence on community structure, generally decreasing the number of rhizosphere soil- and root-inhabiting fungi. Leptodontidium sp. C2 BESC 319 g was the dominant fungus responding positively to inoculation with V. dahliae. The results suggest that 1) plant roots select microorganisms from the wider rhizosphere pool, 2) that both rhizosphere soil and root inhabiting fungal communities are influenced by V. dahliae and 3) that soil type has a stronger influence on both of these communities than cultivar.
Collapse
Affiliation(s)
- Srivathsa Nallanchakravarthula
- Uppsala BioCenter, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- * E-mail:
| | - Shahid Mahmood
- Uppsala BioCenter, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sadhna Alström
- Uppsala BioCenter, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Roger D. Finlay
- Uppsala BioCenter, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
32
|
Dao L, Grigoryeva T, Laikov A, Devjatijarov R, Ilinskaya O. Full-scale bioreactor pretreatment of highly toxic wastewater from styrene and propylene oxide production. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 108:195-202. [PMID: 25086231 DOI: 10.1016/j.ecoenv.2014.07.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/09/2014] [Accepted: 07/11/2014] [Indexed: 06/03/2023]
Abstract
The wastewater originating from simultaneous production of styrene and propylene oxide (SPO) is classified as highly polluted with chemical oxygen demand level in the range 5965 to 9137mgL(-1)-as well as highly toxic. The dilution factor providing for a 10 percent toxic effect of wastewater samples in a test with Paramecium caudatum was 8.0-9.5. Biological approach for pretreatment and detoxification of the wastewater under full-scale bioreactor conditions was investigated. The number of suspended microorganisms and the clean up efficiency were increased up to 5.5-6.58×10(8)CFUmL(-1) and 88 percent, respectively during the bioreactor's operation. Isolates in the Citrobacter, Burkholderia, Pseudomonas, and Paracoccus genera were dominant in the mature suspended, as well as the immobilized microbial community of the bioreactor. The most dominant representatives were tested for their ability to biodegrade the major components of the SPO wastewater and evidence of their role in the treatment process was demonstrated. The investigated pretreatment process allowed the wastewater to be detoxified for conventional treatment with activated sludge and was closely related to the maturation of the bioreactor's microbial community.
Collapse
Affiliation(s)
- Linh Dao
- Department of Microbiology, Kazan (Volga Region) Federal University, 420008 Kazan, Russian Federation.
| | - Tatiana Grigoryeva
- Department of Microbiology, Kazan (Volga Region) Federal University, 420008 Kazan, Russian Federation
| | - Alexander Laikov
- Department of Microbiology, Kazan (Volga Region) Federal University, 420008 Kazan, Russian Federation
| | - Ruslan Devjatijarov
- Department of Microbiology, Kazan (Volga Region) Federal University, 420008 Kazan, Russian Federation
| | - Olga Ilinskaya
- Department of Microbiology, Kazan (Volga Region) Federal University, 420008 Kazan, Russian Federation
| |
Collapse
|
33
|
Křiklavová L, Truhlář M, Škodováa P, Lederer T, Jirků V. Effects of a static magnetic field on phenol degradation effectiveness and Rhodococcus erythropolis growth and respiration in a fed-batch reactor. BIORESOURCE TECHNOLOGY 2014; 167:510-513. [PMID: 25013934 DOI: 10.1016/j.biortech.2014.06.060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/17/2014] [Accepted: 06/18/2014] [Indexed: 06/03/2023]
Abstract
The aim of this study was to evaluate the impact of short-term repeated exposure to a static magnetic field (induction 370 mT) on the Rhodococcus erythropolis cells. Specifically, it was ascertained the magnetic field's potential to influence degradation of a phenol substrate, cell growth and respiration activity (oxygen consumption) during substrate biodegradation. The experiment took place over 3 days, with R. erythropolis exposed to the magnetic field for the first day. During the experiment, different recirculation rates between the reactor and the magnetic contactor has been tested. Use of the magnetic field at higher recirculation rates (residence time in contactor was less than 7 min) stimulated substrate (phenol) oxidation by around 34%; which, in turn, promoted R. erythropolis growth by around 28% by shortening the lag- and exponential-phases and increasing bacterial respiration activity by around 10%.
Collapse
Affiliation(s)
- Lucie Křiklavová
- Institute for Nanomaterials, Advanced Technology and Innovation, Technical University of Liberec, Studentská 2, 461 17 Liberec 1, Czech Republic.
| | - Martin Truhlář
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentská 2, 461 17 Liberec 1, Czech Republic.
| | - Petra Škodováa
- Institute for Nanomaterials, Advanced Technology and Innovation, Technical University of Liberec, Studentská 2, 461 17 Liberec 1, Czech Republic; Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentská 2, 461 17 Liberec 1, Czech Republic.
| | - Tomáš Lederer
- Institute for Nanomaterials, Advanced Technology and Innovation, Technical University of Liberec, Studentská 2, 461 17 Liberec 1, Czech Republic.
| | - Vladimír Jirků
- Department of Biotechnology, Institute of Chemical Technology, Prague, Technická 5, 166 28 Praha 6, Czech Republic.
| |
Collapse
|
34
|
Importance of soil organic matter for the diversity of microorganisms involved in the degradation of organic pollutants. ISME JOURNAL 2014; 8:1289-300. [PMID: 24430482 DOI: 10.1038/ismej.2013.233] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 11/15/2013] [Accepted: 11/26/2013] [Indexed: 11/09/2022]
Abstract
Many organic pollutants are readily degradable by microorganisms in soil, but the importance of soil organic matter for their transformation by specific microbial taxa is unknown. In this study, sorption and microbial degradation of phenol and 2,4-dichlorophenol (DCP) were characterized in three soil variants, generated by different long-term fertilization regimes. Compared with a non-fertilized control (NIL), a mineral-fertilized NPK variant showed 19% and a farmyard manure treated FYM variant 46% more soil organic carbon (SOC). Phenol sorption declined with overall increasing SOC because of altered affinities to the clay fraction (soil particles <2 mm in diameter). In contrast, DCP sorption correlated positively with particulate soil organic matter (present in the soil particle fractions of 63-2000 μm). Stable isotope probing identified Rhodococcus, Arthrobacter (both Actinobacteria) and Cryptococcus (Basidiomycota) as the main degraders of phenol. Rhodococcus and Cryptococcus were not affected by SOC, but the participation of Arthrobacter declined in NPK and even more in FYM. (14)C-DCP was hardly metabolized in the NIL variant, more efficiently in FYM and most in NPK. In NPK, Burkholderia was the main degrader and in FYM Variovorax. This study demonstrates a strong effect of SOC on the partitioning of organic pollutants to soil particle size fractions and indicates the profound consequences that this process could have for the diversity of bacteria involved in their degradation.
Collapse
|
35
|
Krastanov A, Alexieva Z, Yemendzhiev H. Microbial degradation of phenol and phenolic derivatives. Eng Life Sci 2013. [DOI: 10.1002/elsc.201100227] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Albert Krastanov
- Department of Biotechnology; University of Food Technologies; Plovdiv; Bulgaria
| | - Zlatka Alexieva
- Institute of Microbiology; Bulgarian Academy of Sciences; Sofia; Bulgaria
| | - Husein Yemendzhiev
- Department of Water Technology; University “Prof. Asen Zlatarov”; Burgas; Bulgaria
| |
Collapse
|
36
|
Heneberg P, Řezáč M. Two Trichosporon species isolated from Central-European mygalomorph spiders (Araneae: Mygalomorphae). Antonie van Leeuwenhoek 2012. [DOI: 10.1007/s10482-012-9853-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Paisio CE, Talano MA, González PS, Busto VD, Talou JR, Agostini E. Isolation and characterization of a Rhodococcus strain with phenol-degrading ability and its potential use for tannery effluent biotreatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2012; 19:3430-3439. [PMID: 22528990 DOI: 10.1007/s11356-012-0870-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 03/12/2012] [Indexed: 05/31/2023]
Abstract
INTRODUCTION Wastewater derived from leather production may contain phenols, which are highly toxic, and their degradation could be possible through bioremediation technologies. MATERIALS, METHODS AND RESULTS In the present work, microbial degradation of phenol was studied using a tolerant bacterial strain, named CS1, isolated from tannery sediments. This strain was able to survive in the presence of phenol at concentrations of up to 1,000 mg/L. On the basis of morphological and biochemical properties, 16S rRNA gene sequencing, and phylogenetic analysis, the isolated strain was identified as Rhodococcus sp. Phenol removal was evaluated at a lab-scale in Erlenmeyer flasks and at a bioreactor scale in a stirred tank reactor. Rhodococcus sp. CS1 was able to completely remove phenol in a range of 200 to 1,000 mg/L in mineral medium at 30 ± 2 °C and pH 7 as optimal conditions. In the stirred tank bioreactor, we studied the effect of some parameters, such as agitation (200-600 rpm) and aeration (1-3 vvm), on growth and phenol removal efficiency. Faster phenol biodegradation was obtained in the bioreactor than in Erlenmeyer flasks, and maximum phenol removal was achieved at 400 rpm and 1 vvm in only 12 h. Furthermore, Rhodococcus sp. CS1 strain was able to grow and completely degrade phenols from tannery effluents after 9 h of incubation. CONCLUSION Based on these results, Rhodococcus sp. CS1 could be an appropriate microorganism for bioremediation of tannery effluents or other phenol-containing wastewaters.
Collapse
Affiliation(s)
- Cintia E Paisio
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, CP 5800 Río Cuarto (Córdoba), Argentina
| | | | | | | | | | | |
Collapse
|
38
|
Isolation and Characterization of the Phenol Degradation Bacterium Diaphorobacter P2 Strain from Coking Wastewater. ACTA ACUST UNITED AC 2012. [DOI: 10.4028/www.scientific.net/amr.550-553.2296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A aerobic bacterium strain P2 isolated from coking wastewater, was able to utilize phenol, o-cresol and pyridine as its sole carbon and energy source. The morphological properties and the phylogenetic analysis based on 16S rDNA sequences showed strain P2 belonged to the genus Diaphorobacter sp.. The optimum biodegradation of phenol was 37°C, pH 7.0-9.0 and 0.25% NaCl , respectively. The growth arrearage period was prolonged with the phenol concentration. The growth of Diaphorobacter P2 and phenol-degradation were inhibited completely by 50 μmol/L metal ions, such as Cu2 +, Ni2+, Cd2+ or Cr6+. Orthogonal experiment indicated the order of metal toxicity to biodegradation of P2 was Zn2+>Mn2+>Pb2+ under various heavy-metal compounds. The phenol biodegradation in coking wastewater supplemented with 2/3 beef extract peptone medium was degraded fully in 3 days, indicating that nutrient solution was beneficial for P2 growth and phenol degradation in wastewater. Those results suggest that the Diaphorobacter P2 has potential for treatment of coking wastewater.
Collapse
|
39
|
Nor Suhaila Y, Ramanan RN, Rosfarizan M, Abdul Latif I, Ariff AB. Optimization of parameters for improvement of phenol degradation by Rhodococcus UKMP-5M using response surface methodology. ANN MICROBIOL 2012. [DOI: 10.1007/s13213-012-0496-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
40
|
Arif NM, Ahmad SA, Syed MA, Shukor MY. Isolation and characterization of a phenol-degradingRhodococcussp. strain AQ5NOL 2 KCTC 11961BP. J Basic Microbiol 2012; 53:9-19. [DOI: 10.1002/jobm.201100120] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 11/03/2011] [Indexed: 11/09/2022]
Affiliation(s)
- N. M. Arif
- Department of Biochemistry; Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia; UPM 43400 Serdang, Selangor; Malaysia
| | - S. A. Ahmad
- Department of Biochemistry; Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia; UPM 43400 Serdang, Selangor; Malaysia
| | - M. A. Syed
- Department of Biochemistry; Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia; UPM 43400 Serdang, Selangor; Malaysia
| | - M. Y. Shukor
- Department of Biochemistry; Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia; UPM 43400 Serdang, Selangor; Malaysia
| |
Collapse
|
41
|
Abstract
In this study, a scientific method which can be used to improve nitrification process at low temperature in the sewage treatment plant was introduced. The activated sludge samples were taken from aeration tank of the sewage treatment plant when the outside temperature was below 0°C (water temperature below 12 °C). Five kinds of nitrobacteria strains with cold-resistance and higher activity of ammonia degradation were isolated from aeration tanks. The physiological properties showed the five strains were identified into Sphingobacteriaceae、Rhodanobacter sp.、Pseudomonas sp.、Pandoraea sp. and Perlucidibaca piscinae. All of the strains could convert ammonia-nitrogen or NO2- into NO3- in the medium at 10°C. The ammonia and nitrate removal efficiency could be reached 80.9% and 80.3% respectively. Comparing to the unvaccinated one, the removal efficiency can be increased by 50%, which proved the isolated nitrobacteria could be applied to biological nitrification process of sewage treatment at low-temperature.
Collapse
|
42
|
Liu H, Yu QJ, Wang G, Ye F, Cong Y. Biodegradation of phenol at high concentration by a novel yeast Trichosporon montevideense PHE1. Process Biochem 2011. [DOI: 10.1016/j.procbio.2011.04.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
43
|
Mantzouridou F, Tsimidou MZ. Microbiological quality and biophenol content of hot air-dried Thassos cv. table olives upon storage. EUR J LIPID SCI TECH 2011. [DOI: 10.1002/ejlt.201000453] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Gupta V, Jain P, Gaur R, Lowry M, Jaroli D, Chauhan U. Bioremediation of Petroleum oil Contaminated Soil and Water. ACTA ACUST UNITED AC 2011. [DOI: 10.3923/rjet.2011.1.26] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
45
|
Gao D, Liu L, Liang H, Wu WM. Aerobic granular sludge: characterization, mechanism of granulation and application to wastewater treatment. Crit Rev Biotechnol 2010; 31:137-52. [DOI: 10.3109/07388551.2010.497961] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
46
|
Abstract
Low temperature environments are numerous on Earth and have been successfully colonized by cold-loving organisms termed psychrophiles. Cold-adapted microorganisms can be used as cell factories for the production of unstable compounds as well as for bioremediation of polluted cold soils and wastewaters. Furthermore, their biomolecules, mainly proteins and enzymes characterized by a high catalytic activity and pronounced heat-lability, have already found useful applications in various domains such as molecular biology, medical research, industrial food or feed technologies, detergents or cosmetics.
Collapse
Affiliation(s)
- Rosa Margesin
- Institute of Microbiology, University of Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
47
|
|
48
|
Onstott TC, McGown DJ, Bakermans C, Ruskeeniemi T, Ahonen L, Telling J, Soffientino B, Pfiffner SM, Sherwood-Lollar B, Frape S, Stotler R, Johnson EJ, Vishnivetskaya TA, Rothmel R, Pratt LM. Microbial communities in subpermafrost saline fracture water at the Lupin Au mine, Nunavut, Canada. MICROBIAL ECOLOGY 2009; 58:786-807. [PMID: 19568805 DOI: 10.1007/s00248-009-9553-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2009] [Accepted: 06/06/2009] [Indexed: 05/22/2023]
Abstract
We report the first investigation of a deep subpermafrost microbial ecosystem, a terrestrial analog for the Martian subsurface. Our multidisciplinary team analyzed fracture water collected at 890 and 1,130 m depths beneath a 540-m-thick permafrost layer at the Lupin Au mine (Nunavut, Canada). 14C, 3H, and noble gas isotope analyses suggest that the Na-Ca-Cl, suboxic, fracture water represents a mixture of geologically ancient brine, approximately25-kyr-old, meteoric water and a minor modern talik-water component. Microbial planktonic concentrations were approximately10(3) cells mL(-1). Analysis of the 16S rRNA gene from extracted DNA and enrichment cultures revealed 42 unique operational taxonomic units in 11 genera with Desulfosporosinus, Halothiobacillus, and Pseudomonas representing the most prominent phylotypes and failed to detect Archaea. The abundance of terminally branched and midchain-branched saturated fatty acids (5 to 15 mol%) was consistent with the abundance of Gram-positive bacteria in the clone libraries. Geochemical data, the ubiquinone (UQ) abundance (3 to 11 mol%), and the presence of both aerobic and anaerobic bacteria indicated that the environment was suboxic, not anoxic. Stable sulfur isotope analyses of the fracture water detected the presence of microbial sulfate reduction, and analyses of the vein-filling pyrite indicated that it was in isotopic equilibrium with the dissolved sulfide. Free energy calculations revealed that sulfate reduction and sulfide oxidation via denitrification and not methanogenesis were the most thermodynamically viable consistent with the principal metabolisms inferred from the 16S rRNA community composition and with CH4 isotopic compositions. The sulfate-reducing bacteria most likely colonized the subsurface during the Pleistocene or earlier, whereas aerobic bacteria may have entered the fracture water networks either during deglaciation prior to permafrost formation 9,000 years ago or from the nearby talik through the hydrologic gradient created during mine dewatering. Although the absence of methanogens from this subsurface ecosystem is somewhat surprising, it may be attributable to an energy bottleneck that restricts their migration from surface permafrost deposits where they are frequently reported. These results have implications for the biological origin of CH4 on Mars.
Collapse
Affiliation(s)
- T C Onstott
- Department of Geosciences, Princeton University, Princeton, 08544, NJ 08544, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Dos Santos VL, Monteiro ADS, Braga DT, Santoro MM. Phenol degradation by Aureobasidium pullulans FE13 isolated from industrial effluents. JOURNAL OF HAZARDOUS MATERIALS 2009; 161:1413-1420. [PMID: 18541369 DOI: 10.1016/j.jhazmat.2008.04.112] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 04/28/2008] [Accepted: 04/29/2008] [Indexed: 05/26/2023]
Abstract
The degradation of phenol (2-30 mM) by free cells and by alginate-immobilized cells of Aureobasidium pullulans FE13 isolated from stainless steel effluents was studied in batch cultures with saline solution not supplemented with nutrients or yeast extract. The rate at which the immobilized cells degrade phenol was similar to the rate at which the suspended cells could degrade phenol, for a concentration of up to 16 mM of phenol. The maximum phenol volumetric degradation rate for 16 mM phenol was found to be 18.35 mg l(-1)h(-1) in the assays with free cells and 20.45 mg l(-1)h(-1) in the assays with alginate-immobilized cells, 18 mM phenol and cellular concentration of 0.176 g/l. At concentrations higher than this, an inhibitory effect was observed, resulting in the lowering of the phenol degradation rates. The immobilization was detrimental to the catechol 1,2-dioxygenase activity. However, the immobilized cells remained viable for a longer period, increasing the efficiency of phenol degradation. The yeast showed catechol 1,2-dioxygenase activity only after growth in the phenol, which was induced at phenol concentrations as low as 0.05 mM and up to 25 mM at 45 h of incubation at 30 degrees C. Phenol concentrations higher than 6mM were inhibitory to the enzyme. Addition of glucose, lactate, succinate, and benzoate reduced the rate at which phenol is consumed by cells. Our results suggest that inoculants based on immobilized cells of A. pullulans FE13 has potential application in the biodegradation of phenol and possibly in the degradation of other related aromatic compounds.
Collapse
Affiliation(s)
- Vera Lúcia Dos Santos
- Department of Microbiology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte-MG, C.P. 486, 31270-901, Brazil.
| | | | | | | |
Collapse
|
50
|
Stable isotope probing reveals Trichosporon yeast to be active in situ in soil phenol metabolism. ISME JOURNAL 2008; 3:477-85. [PMID: 19092862 DOI: 10.1038/ismej.2008.122] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The aim of this study was to extend the results of our previous stable isotope probing (SIP) investigation: we identified a soil fungus involved in phenol biodegradation at an agricultural field site. DNA extracts from our previous study were examined using fungi-specific PCR amplification of the 18S-28S internal transcribed spacer (ITS) region. We prepared an 80-member clone library using PCR-amplified, (13)C-labeled DNA derived from field soil that received 12 daily doses of (13)C-phenol. Restriction-fragment-length-polymorphism screening and DNA sequencing revealed a dominant clone (41% of the clone library), the ITS sequence of which corresponded to that of the fungal genus Trichosporon. We successfully grew and isolated a white, filamentous fungus from site soil samples after plating soil dilutions on mineral salts agar containing 250 p.p.m. phenol. Restreaking on both yeast extract-peptone-galactose and Sabouraud dextrose agar plates led to further purification of the fungus, the morphological characteristics of which matched those of the genus Trichosporon. The ITS sequence of our isolated fungus was identical to that of a clone from our SIP-based library, confirming it to be Trichosporon multisporum. High-performance liquid chromatography and turbidometeric analyses showed that the culture was able to metabolize and grow on 200 p.p.m. phenol in an aqueous mineral salts medium within 24 h at room temperature. Gas chromatography-mass spectrometry analysis of (13)CO(2) respiration from laboratory soil incubations demonstrated accelerated phenol mineralization in treatments inoculated with T. multisporum. These findings show that T. multisporum actively degraded phenol in our field-based, soil experiments.
Collapse
|