1
|
Kalia VC, Patel SKS, Gong C, Lee JK. Re-Emergence of Bacteriophages and Their Products as Antibacterial Agents: An Overview. Int J Mol Sci 2025; 26:1755. [PMID: 40004222 PMCID: PMC11855700 DOI: 10.3390/ijms26041755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/14/2025] [Accepted: 02/15/2025] [Indexed: 02/27/2025] Open
Abstract
Microbes possess diverse genetic and metabolic traits that help them withstand adverse conditions. Microbial pathogens cause significant economic losses and around 7.7 million human deaths annually. While antibiotics have historically been a lifesaving treatment, their effectiveness is declining due to antibiotic-resistant strains, prompting the exploration of bacterial predation as an alternative. Bacteriophages (BPhs) have reemerged as antibacterial agents, offering advantages over antibiotics, such as (i) high specificity, (ii) self-replication, and (iii) strong killing capacity. This review explores BPh- and enzyme-based antibacterial strategies for infectious disease treatment, discussing phage-antibiotic synergy, the risks of BPh resistance, and the role of quorum sensing in BPh therapy.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea;
| | - Sanjay K. S. Patel
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea;
| | - Chunjie Gong
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China;
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea;
| |
Collapse
|
2
|
Fatima R, Hynes AP. Temperate phage-antibiotic synergy is widespread-extending to Pseudomonas-but varies by phage, host strain, and antibiotic pairing. mBio 2025; 16:e0255924. [PMID: 39704503 PMCID: PMC11796409 DOI: 10.1128/mbio.02559-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/15/2024] [Indexed: 12/21/2024] Open
Abstract
Bacteriophages (phages) are bacterial-specific viruses that can be used alone or with antibiotics to reduce bacterial load. Most phages are unsuitable for therapy because they are "temperate" and can integrate into the host genome, forming a lysogen that is protected from subsequent phage infections. However, integrated phages can be awakened by stressors such as antibiotics. Supported by this interaction, here we explore the potential use of combined temperate phage and antibiotic against the multi-drug-resistant pathogen, Pseudomonas aeruginosa. In all, thirty-nine temperate phages were isolated from clinical strains, and a subset was screened for synergy with six antibiotics (ciprofloxacin, levofloxacin, meropenem, piperacillin, tobramycin, and polymyxin B), using checkerboard assays. Interestingly, our screen identified phages that can synergize with each antibiotic, despite their widely differing targets; however, these are highly phage-antibiotic and phage-host pairing specific. Screening across multiple clinical strains reveals that temperate phages can reduce the antibiotic minimum inhibitory concentration up to 32-fold, even in a resistant isolate, functionally re-sensitizing the bacterium to the antibiotic. Meropenem and tobramycin did not reduce the frequency of lysogens, suggesting a mechanism of action independent of the temperate nature of the phages. By contrast, ciprofloxacin and piperacillin were able to reduce the frequency of lysogeny, the former by inducing phages-as previously reported in E. coli. Curiously, synergy with piperacillin reduced lysogen survivors, but not by inducing the phages, suggesting an alternative mechanism for biasing the phage lysis-lysogeny equilibrium. Overall, our findings indicate that temperate phages can act as adjuvants in clinically relevant pathogens, even in the presence of antibiotic resistance, thereby drastically expanding their therapeutic potential. IMPORTANCE The recent discovery that otherwise therapeutically unusable temperate phages can potentiate the activity of antibiotics, resulting in a potent synergy, has only been tested in E. coli, and with a single model phage. Here, working with clinical isolates of Pseudomonas and phages from these isolates, we highlight the broad applicability of this synergy-across a variety of mechanisms but also highlight the limitations of predicting the phage, host, and antibiotic combinations that will synergize.
Collapse
Affiliation(s)
- Rabia Fatima
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Alexander P. Hynes
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
3
|
Gil-Gil T, Laborda P, Martínez JL, Hernando-Amado S. Use of adjuvants to improve antibiotic efficacy and reduce the burden of antimicrobial resistance. Expert Rev Anti Infect Ther 2025; 23:31-47. [PMID: 39670956 DOI: 10.1080/14787210.2024.2441891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/28/2024] [Accepted: 12/10/2024] [Indexed: 12/14/2024]
Abstract
INTRODUCTION The increase in antibiotic resistance, together with the absence of novel antibiotics, makes mandatory the introduction of novel strategies to optimize the use of existing antibiotics. Among these strategies, the use of molecules that increase their activity looks promising. AREAS COVERED Different categories of adjuvants have been reviewed. Anti-resistance adjuvants increase the activity of antibiotics by inhibiting antibiotic resistance determinants. Anti-virulence approaches focus on the infection process itself; reducing virulence in combination with an antibiotic can improve therapeutic efficacy. Combination of phages with antibiotics can also be useful, since they present different mechanisms of action and targets. Finally, combining antibiotics with adjuvants in the same molecule may serve to improve antibiotics' efficacy and to overcome potential problems of differential pharmacokinetics/pharmacodynamics. EXPERT OPINION The successful combination of inhibitors of β-lactamases with β-lactams has shown that adjuvants can improve the efficacy of current antibiotics. In this sense, novel anti-resistance adjuvants able to inhibit efflux pumps are still needed, as well as anti-virulence compounds that improve the efficacy of antibiotics by interfering with the infection process. Although adjuvants may present different pharmacodynamics/pharmacokinetics than antibiotics, conjugates containing both compounds can solve this problem. Finally, already approved drugs can be a promising source of antibiotic adjuvants.
Collapse
Affiliation(s)
- Teresa Gil-Gil
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Pablo Laborda
- Department of Clinical Microbiology 9301, Rigshospitalet, Copenhagen, Denmark
| | | | | |
Collapse
|
4
|
Nikolic I, Aleksic Sabo V, Gavric D, Knezevic P. Anti- Staphylococcus aureus Activity of Volatile Phytochemicals and Their Combinations with Conventional Antibiotics Against Methicillin-Susceptible S. aureus (MSSA) and Methicillin-Resistant S. aureus (MRSA) Strains. Antibiotics (Basel) 2024; 13:1030. [PMID: 39596725 PMCID: PMC11591321 DOI: 10.3390/antibiotics13111030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND MSSA and MRSA strains are challenging human pathogens that can develop resistance to antibiotics, highlighting the need for alternative antimicrobial agents. Plant metabolites, particularly volatile phytochemicals, may offer promising antimicrobial properties. The aim was to evaluate the antimicrobial and antibiofilm efficacy of various commercial volatile phytochemicals from the terpene and terpenoid groups against reference MSSA and MRSA strains, focusing on synergistic effects in both binary combinations and combinations with antibiotics. METHODS The microdilution method was used to determine the minimum inhibitory concentrations (MICs) for antibiotics and phytochemicals. The checkerboard method assessed synergistic interactions between phytochemicals and between phytochemicals and antibiotics, while the time-kill method was used to confirm these results. Biofilm quantification was performed using the microtiter plate method to evaluate the effects of phytochemicals, antibiotics, and their binary combinations on the eradication of 48-h-old biofilms. RESULTS Carvacrol and thymol demonstrated the strongest anti-staphylococcal activity, while other terpene compounds showed weaker effects. In binary combinations, carvacrol and thymol exhibited synergy against one MSSA strain (FICI = 0.50) and with tetracycline and chloramphenicol (FICI = 0.28-0.50). Synergy was also noted with streptomycin sulfate against one MRSA strain (FICI = 0.31-0.50) and with other antibiotics, including gentamicin (FICI = 0.25-0.50) and oxacillin (FICI = 0.44). Additionally, effective combinations achieved over 50% biofilm removal at both minimum inhibitory and sub-inhibitory concentrations. CONCLUSIONS Results showed that synergy varies based on strain sensitivity to chemical agents, highlighting their potential for personalized therapy. Despite the difficulty in removing preformed biofilms, the findings highlight the importance of combined treatments to enhance antibiotic effectiveness.
Collapse
Affiliation(s)
| | | | | | - Petar Knezevic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 3, 21000 Novi Sad, Serbia; (I.N.); (V.A.S.); (D.G.)
| |
Collapse
|
5
|
Martinho I, Braz M, Duarte J, Brás A, Oliveira V, Gomes NCM, Pereira C, Almeida A. The Potential of Phage Treatment to Inactivate Planktonic and Biofilm-Forming Pseudomonas aeruginosa. Microorganisms 2024; 12:1795. [PMID: 39338470 PMCID: PMC11433742 DOI: 10.3390/microorganisms12091795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Pseudomonas aeruginosa is a common cause of hospital-acquired infections and exhibits a strong resistance to antibiotics. An alternative treatment option for bacterial infections is the use of bacteriophages (or phages). In this study, two distinct phages, VB_PaD_phPA-G (phPA-G) and VB_PaN_phPA-Intesti (phPA-Intesti), were used as single suspensions or in a phage cocktail to inactivate the planktonic cells and biofilms of P. aeruginosa. Preliminary experiments in culture medium showed that phage phPA-Intesti (reductions of 4.5-4.9 log CFU/mL) outperformed phPA-G (reductions of 0.6-2.6 log CFU/mL) and the phage cocktail (reduction of 4.2 log CFU/mL). Phage phPA-Intesti caused a maximum reduction of 5.5 log CFU/cm2 in the P. aeruginosa biofilm in urine after 4 h of incubation. The combination of phage phPA-Intesti and ciprofloxacin did not improve the efficacy of bacterial inactivation nor reduce the development of resistant mutants. However, the development of resistant bacteria was lower in the combined treatment with the phage and the antibiotic compared to treatment with the antibiotic alone. This phage lacks known toxins, virulence, antibiotic resistance, and integrase genes. Overall, the results suggest that the use of phage phPA-Intesti could be a potential approach to control urinary tract infections (UTIs), namely those caused by biofilm-producing and multidrug-resistant strains of P. aeruginosa.
Collapse
Affiliation(s)
- Inês Martinho
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Márcia Braz
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - João Duarte
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ana Brás
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Vanessa Oliveira
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Newton C M Gomes
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Carla Pereira
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Adelaide Almeida
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
6
|
Subramanian A. Emerging roles of bacteriophage-based therapeutics in combating antibiotic resistance. Front Microbiol 2024; 15:1384164. [PMID: 39035437 PMCID: PMC11257900 DOI: 10.3389/fmicb.2024.1384164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/06/2024] [Indexed: 07/23/2024] Open
Abstract
Amid the growing challenge of antibiotic resistance on a global scale, there has been a notable resurgence in bacteriophage-based treatments, signaling a shift in our approach to managing infections. Bacteriophages (BPs), bacterial predators of nature, present a promising alternative for tackling infections caused by antibiotic-resistant pathogens. This review delves into the intricate relationship between bacteriophages and resistant bacteria, exploring various treatment strategies. Drawing upon both preclinical and clinical studies, the review highlights the effectiveness of bacteriophage therapy, particularly when integrated synergistically with conventional antibiotics. It discusses various treatment approaches for systemic and localized infections, demonstrating the adaptability of bacteriophage therapy across different clinical scenarios. Furthermore, the formulation and delivery of bacteriophages shed light on the various methods used to encapsulate and administer them effectively. It also acknowledges the challenge of bacterial resistance to bacteriophages and the ongoing efforts to overcome this hurdle. In addition, this review highlights the importance of the bacteriophage sensitivity profile (phagogram), which helps tailor treatment regimens to individual patients and specific pathogens. By surpassing the limitations of traditional antibiotics, bacteriophage-based therapies offer a personalized and potent solution against antibiotic resistance, promising to reshape the future of infectious disease management.
Collapse
|
7
|
Al-Anany AM, Fatima R, Nair G, Mayol JT, Hynes AP. Temperate phage-antibiotic synergy across antibiotic classes reveals new mechanism for preventing lysogeny. mBio 2024; 15:e0050424. [PMID: 38757974 PMCID: PMC11237771 DOI: 10.1128/mbio.00504-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
A recent demonstration of synergy between a temperate phage and the antibiotic ciprofloxacin suggested a scalable approach to exploiting temperate phages in therapy, termed temperate phage-antibiotic synergy, which specifically interacted with the lysis-lysogeny decision. To determine whether this would hold true across antibiotics, we challenged Escherichia coli with the phage HK97 and a set of 13 antibiotics spanning seven classes. As expected, given the conserved induction pathway, we observed synergy with classes of drugs known to induce an SOS response: a sulfa drug, other quinolones, and mitomycin C. While some β-lactams exhibited synergy, this appeared to be traditional phage-antibiotic synergy, with no effect on the lysis-lysogeny decision. Curiously, we observed a potent synergy with antibiotics not known to induce the SOS response: protein synthesis inhibitors gentamicin, kanamycin, tetracycline, and azithromycin. The synergy results in an eightfold reduction in the effective minimum inhibitory concentration of gentamicin, complete eradication of the bacteria, and, when administered at sub-optimal doses, drastically decreases the frequency of lysogens emerging from the combined challenge. However, lysogens exhibit no increased sensitivity to the antibiotic; synergy was maintained in the absence of RecA; and the antibiotic reduced the initial frequency of lysogeny rather than selecting against formed lysogens. Our results confirm that SOS-inducing antibiotics broadly result in temperate-phage-specific synergy, but that other antibiotics can interact with temperate phages specifically and result in synergy. This is the first report of a means of chemically blocking entry into lysogeny, providing a new means for manipulating the key lysis-lysogeny decision.IMPORTANCEThe lysis-lysogeny decision is made by most bacterial viruses (bacteriophages, phages), determining whether to kill their host or go dormant within it. With over half of the bacteria containing phages waiting to wake, this is one of the most important behaviors in all of biology. These phages are also considered unusable for therapy because of this behavior. In this paper, we show that many antibiotics bias this behavior to "wake" the dormant phages, forcing them to kill their host, but some also prevent dormancy in the first place. These will be important tools to study this critical decision point and may enable the therapeutic use of these phages.
Collapse
Affiliation(s)
- Amany M Al-Anany
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Rabia Fatima
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Gayatri Nair
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jordan T Mayol
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Alexander P Hynes
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
8
|
Vukovic D, Gostimirovic S, Cvetanovic J, Gavric D, Aleksic Sabo V, Todorovic D, Medic D, Knezevic P. Antibacterial Potential of Non-Tailed Icosahedral Phages Alone and in Combination with Antibiotics. Curr Microbiol 2024; 81:215. [PMID: 38849666 DOI: 10.1007/s00284-024-03705-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/13/2024] [Indexed: 06/09/2024]
Abstract
Non-tailed icosahedral phages belonging to families Fiersviridae (phages MS2 and Qbeta), Tectiviridae (PRD1) and Microviridae (phiX174) have not been considered in detail so far as potential antibacterial agents. The aim of the study was to examine various aspects of the applicability of these phages as antibacterial agents. Antibacterial potential of four phages was investigated via bacterial growth and biofilm formation inhibition, lytic spectra determination, and phage safety examination. The phage phiX174 was combined with different classes of antibiotics to evaluate potential synergistic interactions. In addition, the incidence of phiX174-insensitive mutants was analyzed. The results showed that only phiX174 out of four phages tested against their corresponding hosts inhibited bacterial growth for > 90% at different multiplicity of infection and that only this phage considerably prevented biofilm formation. Although all phages show the absence of potentially undesirable genes, they also have extremely narrow lytic spectra. The synergism was determined between phage phiX174 and ceftazidime, ceftriaxone, ciprofloxacin, macrolides, and chloramphenicol. It was shown that the simultaneous application of agents is more effective than successive treatment, where one agent is applied first. The analysis of the appearance of phiX174 bacteriophage-insensitive mutants showed that mutations occur with a frequency of 10-3. The examined non-tailed phages have a limited potential for use as antibacterial agents, primarily due to a very narrow lytic spectrum and the high frequency of resistant mutants appearance, but Microviridae can be considered in the future as biocontrol agents against susceptible strains of E. coli in combinations with conventional antimicrobial agents.
Collapse
Affiliation(s)
- Darija Vukovic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Sonja Gostimirovic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Jelena Cvetanovic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Damir Gavric
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Verica Aleksic Sabo
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | | | - Deana Medic
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Petar Knezevic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia.
| |
Collapse
|
9
|
Kraus S, Fletcher ML, Łapińska U, Chawla K, Baker E, Attrill EL, O'Neill P, Farbos A, Jeffries A, Galyov EE, Korbsrisate S, Barnes KB, Harding SV, Tsaneva-Atanasova K, Blaskovich MAT, Pagliara S. Phage-induced efflux down-regulation boosts antibiotic efficacy. PLoS Pathog 2024; 20:e1012361. [PMID: 38941361 PMCID: PMC11239113 DOI: 10.1371/journal.ppat.1012361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 07/11/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024] Open
Abstract
The interactions between a virus and its host vary in space and time and are affected by the presence of molecules that alter the physiology of either the host or the virus. Determining the molecular mechanisms at the basis of these interactions is paramount for predicting the fate of bacterial and phage populations and for designing rational phage-antibiotic therapies. We study the interactions between stationary phase Burkholderia thailandensis and the phage ΦBp-AMP1. Although heterogeneous genetic resistance to phage rapidly emerges in B. thailandensis, the presence of phage enhances the efficacy of three major antibiotic classes, the quinolones, the beta-lactams and the tetracyclines, but antagonizes tetrahydrofolate synthesis inhibitors. We discovered that enhanced antibiotic efficacy is facilitated by reduced antibiotic efflux in the presence of phage. This new phage-antibiotic therapy allows for eradication of stationary phase bacteria, whilst requiring reduced antibiotic concentrations, which is crucial for treating infections in sites where it is difficult to achieve high antibiotic concentrations.
Collapse
Affiliation(s)
- Samuel Kraus
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Megan L Fletcher
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Urszula Łapińska
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Krina Chawla
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Evan Baker
- Department of Mathematics and Living Systems Institute, University of Exeter, Exeter, Devon, United Kingdom
- EPSRC Hub for Quantitative Modelling in Healthcare, University of Exeter, Exeter, United Kingdom
| | - Erin L Attrill
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Paul O'Neill
- Biosciences, University of Exeter, Exeter, Devon, EX4 4QD, United Kingdom
| | - Audrey Farbos
- Biosciences, University of Exeter, Exeter, Devon, EX4 4QD, United Kingdom
| | - Aaron Jeffries
- Biosciences, University of Exeter, Exeter, Devon, EX4 4QD, United Kingdom
| | - Edouard E Galyov
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester, United Kingdom
| | - Sunee Korbsrisate
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok Thailand
| | - Kay B Barnes
- Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - Sarah V Harding
- Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - Krasimira Tsaneva-Atanasova
- Department of Mathematics and Living Systems Institute, University of Exeter, Exeter, Devon, United Kingdom
- EPSRC Hub for Quantitative Modelling in Healthcare, University of Exeter, Exeter, United Kingdom
| | - Mark A T Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Stefano Pagliara
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| |
Collapse
|
10
|
Hong Q, Chang RYK, Assafiri O, Morales S, Chan HK. Optimizing in vitro phage-ciprofloxacin combination formulation for respiratory therapy of multi-drug resistant Pseudomonas aeruginosa infections. Int J Pharm 2024; 652:123853. [PMID: 38280500 DOI: 10.1016/j.ijpharm.2024.123853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
Respiratory infection caused by multi-drug resistant (MDR) Pseudomonas aeruginosa is challenging to treat. In this study, we investigate the optimal dose of anti-pseudomonas phage PEV31 (103, 105, and 108 PFU/mL) combined with ciprofloxacin (ranging from 1/8× MIC to 8× MIC) to treat the MDR P. aeruginosa strain FADD1-PA001 using time-kill studies. We determined the impact of phage growth kinetics in the presence of ciprofloxacin through one-step growth analysis. Single treatments with either phage PEV31 or ciprofloxacin (except at 8× MIC) showed limited bactericidal efficiency, with bacterial regrowth observed at 48 h. The most effective treatments were PEV31 at multiplicity of infection (MOI) of 0.1 and 100 combined with ciprofloxacin at concentrations above 1× MIC, resulting in a >4 log10 reduction in bacterial counts. While the burst size of phage PEV31 was decreased with increasing ciprofloxacin concentration, robust antimicrobial effects were still maintained in the combination treatment. Aerosol samples collected from vibrating mesh nebulization of the combination formulation at phage MOI of 100 with 2× MIC effectively inhibited bacterial density. In summary, our combination treatments eradicated in vitro bacterial growth and sustained antimicrobial effects for 48 h. These results indicated the potential application of nebulization-based strategies for the combination treatment against MDR lung infections.
Collapse
Affiliation(s)
- Qixuan Hong
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Rachel Yoon Kyung Chang
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Omar Assafiri
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | | | - Hak-Kim Chan
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
11
|
Ipoutcha T, Racharaks R, Huttelmaier S, Wilson CJ, Ozer EA, Hartmann EM. A synthetic biology approach to assemble and reboot clinically relevant Pseudomonas aeruginosa tailed phages. Microbiol Spectr 2024; 12:e0289723. [PMID: 38294230 PMCID: PMC10913387 DOI: 10.1128/spectrum.02897-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/17/2023] [Indexed: 02/01/2024] Open
Abstract
The rise in the frequency of antibiotic resistance has made bacterial infections, specifically Pseudomonas aeruginosa, a cause for greater concern. Phage therapy is a promising solution that uses naturally isolated phages to treat bacterial infections. Ecological limitations, which stipulate a discrete host range and the inevitable evolution of resistance, may be overcome through a better understanding of phage biology and the utilization of engineered phages. In this study, we developed a synthetic biology approach to construct tailed phages that naturally target clinically relevant strains of Pseudomonas aeruginosa. As proof of concept, we successfully cloned and assembled the JG024 and DMS3 phage genomes in yeast using transformation-associated recombination cloning and rebooted these two phage genomes in two different strains of P. aeruginosa. We identified factors that affected phage reboot efficiency like the phage species or the presence of antiviral defense systems in the bacterial strain. We have successfully extended this method to two other phage species and observed that the method enables the reboot of phages that are naturally unable to infect the strain used for reboot. This research represents a critical step toward the construction of clinically relevant, engineered P. aeruginosa phages.IMPORTANCEPseudomonas aeruginosa is a bacterium responsible for severe infections and a common major complication in cystic fibrosis. The use of antibiotics to treat bacterial infections has become increasingly difficult as antibiotic resistance has become more prevalent. Phage therapy is an alternative solution that is already being used in some European countries, but its use is limited by the narrow host range due to the phage receptor specificity, the presence of antiviral defense systems in the bacterial strain, and the possible emergence of phage resistance. In this study, we demonstrate the use of a synthetic biology approach to construct and reboot clinically relevant P. aeruginosa tailed phages. This method enables a significant expansion of possibilities through the construction of engineered phages for therapy applications.
Collapse
Affiliation(s)
- Thomas Ipoutcha
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois, USA
| | - Ratanachat Racharaks
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois, USA
| | - Stefanie Huttelmaier
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois, USA
| | - Cole J. Wilson
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois, USA
| | - Egon A. Ozer
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Erica M. Hartmann
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
12
|
Rastegar S, Sabouri S, Tadjrobehkar O, Samareh A, Niaz H, Sanjari N, Hosseini-Nave H, Skurnik M. Characterization of bacteriophage vB_AbaS_SA1 and its synergistic effects with antibiotics against clinical multidrug-resistant Acinetobacter baumannii isolates. Pathog Dis 2024; 82:ftae028. [PMID: 39435653 PMCID: PMC11536755 DOI: 10.1093/femspd/ftae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/26/2024] [Accepted: 10/19/2024] [Indexed: 10/23/2024] Open
Abstract
Acinetobacter baumannii is a major cause of nosocomial infections globally. The increasing prevalence of multidrug-resistant (MDR) A. baumannii has become an important public health concern. To combat drug resistance, alternative methods such as phage therapy have been suggested. In total, 30 MDR A. baumannii strains were isolated from clinical specimens, and their antibiotic susceptibilities were determined. The Acinetobacter phage vB_AbaS_SA1, isolated from hospital sewage, was characterized. In addition to its plaque size, particle morphology, and host range, its genome sequence was determined and annotated. Finally, the antibacterial effects of phage alone, antibiotics alone, and phage/antibiotic combinations were assessed against the A. baumannii strains. Phage vB_AbaS_SA1 had siphovirus morphology, showed a latent period of 20 min, and a 250 PFU/cell (plaque forming unit/cell) burst size. When combined with antibiotics, vB_AbaS_SA1 (SA1) showed a significant phage-antibiotic synergy effect and reduced the overall effective concentration of antibiotics in time-kill assessments. The genome of SA1 is a linear double-stranded DNA of 50 108 bp in size with a guanine-cytosine (GC) content of 39.15%. Despite the potent antibacterial effect of SA1, it is necessary to perform additional research to completely elucidate the mechanisms of action and potential constraints associated with utilizing this bacteriophage.
Collapse
Affiliation(s)
- Sanaz Rastegar
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Medical Microbiology (Bacteriology and Virology), Afzalipour School of Medicine, Kerman, Iran
| | - Salehe Sabouri
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Omid Tadjrobehkar
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Medical Microbiology (Bacteriology and Virology), Afzalipour School of Medicine, Kerman, Iran
| | - Ali Samareh
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hira Niaz
- Department of Bacteriology and Immunology, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Nafise Sanjari
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein Hosseini-Nave
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Medical Microbiology (Bacteriology and Virology), Afzalipour School of Medicine, Kerman, Iran
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
13
|
Kulshrestha M, Tiwari M, Tiwari V. Bacteriophage therapy against ESKAPE bacterial pathogens: Current status, strategies, challenges, and future scope. Microb Pathog 2024; 186:106467. [PMID: 38036110 DOI: 10.1016/j.micpath.2023.106467] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/19/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023]
Abstract
The ESKAPE pathogens are the primary threat due to their constant spread of drug resistance worldwide. These pathogens are also regarded as opportunistic pathogens and could potentially cause nosocomial infections. Most of the ESKAPE pathogens have developed resistance to almost all the antibiotics that are used against them. Therefore, to deal with antimicrobial resistance, there is an urgent requirement for alternative non-antibiotic strategies to combat this rising issue of drug-resistant organisms. One of the promising alternatives to this scenario is implementing bacteriophage therapy. This under-explored mode of treatment in modern medicine has posed several concerns, such as preferable phages for the treatment, impact on the microbiome (or gut microflora), dose optimisation, safety, etc. The review will cover a rationale for phage therapy, clinical challenges, and propose phage therapy as an effective therapeutic against bacterial coinfections during pandemics. This review also addresses the expected uncertainties for administering the phage as a treatment against the ESKAPE pathogens and the advantages of using lytic phage over temperate, the immune response to phages, and phages in combinational therapies. The interaction between bacteria and bacteriophages in humans and countless animal models can also be used to design novel and futuristic therapeutics like personalised medicine or bacteriophages as anti-biofilm agents. Hence, this review explores different aspects of phage therapy and its potential to emerge as a frontline therapy against the ESKAPE bacterial pathogen.
Collapse
Affiliation(s)
- Mukta Kulshrestha
- Department of Biochemistry, Central University of Rajasthan, Ajmer, 305817, India
| | - Monalisa Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, 305817, India
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, 305817, India.
| |
Collapse
|
14
|
Mukhopadhyay S, Zhang P, To KKW, Liu Y, Bai C, Leung SSY. Sequential treatment effects on phage-antibiotic synergistic application against multi-drug-resistant Acinetobacter baumannii. Int J Antimicrob Agents 2023; 62:106951. [PMID: 37574030 DOI: 10.1016/j.ijantimicag.2023.106951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/05/2023] [Accepted: 08/05/2023] [Indexed: 08/15/2023]
Abstract
Bacteriophage (phage) therapy, exploiting phages which are the natural enemies of bacteria, has been re-introduced to treat multidrug-resistant (MDR) bacterial infections. However, some intrinsic drawbacks of phages are overshadowing their clinical use, particularly the narrow host spectrum and rapid emergence of resistance upon treatment. The use of phage-antibiotic combinations exhibiting synergistic bacterial killing [termed 'phage-antibiotic synergy' (PAS)] has therefore been proposed. It is well reported that the types and doses of phages and antibiotics are critical in achieving PAS. However, the impact of treatment order has received less research attention. As such, this study used an Acinetobacter baumannii phage vB_AbaM-IME-AB2 and colistin as a model PAS combination to elucidate the order effects in-vitro. While application of the phage 8 h before colistin treatment demonstrated the greatest antibacterial synergy, it failed to prevent the development of phage resistance. On the other hand, simultaneous application and antibiotic followed by phage application were able to suppress/delay the development of resistance effectively, and simultaneous application demonstrated superior antibacterial and antibiofilm activities. Further in-vivo investigation is required to confirm the impact of treatment order on PAS.
Collapse
Affiliation(s)
- Subhankar Mukhopadhyay
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region
| | - Pengfei Zhang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region
| | - Kenneth K W To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region
| | - Yannan Liu
- Emergency Medicine Clinical Research Centre, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Changqing Bai
- Department of Respiratory, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Guangdong, China
| | - Sharon S Y Leung
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region.
| |
Collapse
|
15
|
Grygorcewicz B, Gliźniewicz M, Olszewska P, Miłek D, Czajkowski A, Serwin N, Cecerska-Heryć E, Rakoczy R. Response Surface Methodology Application for Bacteriophage-Antibiotic Antibiofilm Activity Optimization. Microorganisms 2023; 11:2352. [PMID: 37764196 PMCID: PMC10536537 DOI: 10.3390/microorganisms11092352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Phage-antibiotic combination-based protocols are presently under heightened investigation. This paradigm extends to engagements with bacterial biofilms, necessitating novel computational approaches to comprehensively characterize and optimize the outcomes achievable via these combinations. This study aimed to explore the Response Surface Methodology (RSM) in optimizing the antibiofilm activity of bacteriophage-antibiotic combinations. We employ a combination of antibiotics (gentamicin, meropenem, amikacin, ceftazidime, fosfomycin, imipenem, and colistin) alongside the bacteriophage vB_AbaP_AGC01 to combat Acinetobacter baumannii biofilm. Based on the conducted biofilm challenge assays analyzed using the RSM, the optimal points of antibiofilm activity efficacy were effectively selected by applying this methodology, enabling the quantifiable mathematical representations. Subsequent optimization showed the synergistic potential of the anti-biofilm that arises when antibiotics are judiciously combined with the AGC01 bacteriophage, reducing biofilm biomass by up to 80% depending on the antibiotic used. The data suggest that the phage-imipenem combination demonstrates the highest efficacy, with an 88.74% reduction. Notably, the lower concentrations characterized by a high maximum reduction in biofilm biomass were observed in the phage-amikacin combination at cA = 0.00195 and cP = 0.38 as the option that required minimum resources. It is worth noting that only gentamicin antagonism between the phage and the antibiotic was detected.
Collapse
Affiliation(s)
- Bartłomiej Grygorcewicz
- Faculty of Pharmacy, Medical Biotechnology and Laboratory Medicine, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (M.G.); (P.O.); (D.M.); (A.C.); (N.S.); (E.C.-H.)
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland;
| | - Marta Gliźniewicz
- Faculty of Pharmacy, Medical Biotechnology and Laboratory Medicine, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (M.G.); (P.O.); (D.M.); (A.C.); (N.S.); (E.C.-H.)
| | - Patrycja Olszewska
- Faculty of Pharmacy, Medical Biotechnology and Laboratory Medicine, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (M.G.); (P.O.); (D.M.); (A.C.); (N.S.); (E.C.-H.)
| | - Dominika Miłek
- Faculty of Pharmacy, Medical Biotechnology and Laboratory Medicine, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (M.G.); (P.O.); (D.M.); (A.C.); (N.S.); (E.C.-H.)
| | - Artur Czajkowski
- Faculty of Pharmacy, Medical Biotechnology and Laboratory Medicine, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (M.G.); (P.O.); (D.M.); (A.C.); (N.S.); (E.C.-H.)
| | - Natalia Serwin
- Faculty of Pharmacy, Medical Biotechnology and Laboratory Medicine, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (M.G.); (P.O.); (D.M.); (A.C.); (N.S.); (E.C.-H.)
| | - Elżbieta Cecerska-Heryć
- Faculty of Pharmacy, Medical Biotechnology and Laboratory Medicine, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (M.G.); (P.O.); (D.M.); (A.C.); (N.S.); (E.C.-H.)
| | - Rafał Rakoczy
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland;
| |
Collapse
|
16
|
Bai J, Raustad N, Denoncourt J, van Opijnen T, Geisinger E. Genome-wide phage susceptibility analysis in Acinetobacter baumannii reveals capsule modulation strategies that determine phage infectivity. PLoS Pathog 2023; 19:e1010928. [PMID: 37289824 PMCID: PMC10249906 DOI: 10.1371/journal.ppat.1010928] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 04/27/2023] [Indexed: 06/10/2023] Open
Abstract
Phage have gained renewed interest as an adjunctive treatment for life-threatening infections with the resistant nosocomial pathogen Acinetobacter baumannii. Our understanding of how A. baumannii defends against phage remains limited, although this information could lead to improved antimicrobial therapies. To address this problem, we identified genome-wide determinants of phage susceptibility in A. baumannii using Tn-seq. These studies focused on the lytic phage Loki, which targets Acinetobacter by unknown mechanisms. We identified 41 candidate loci that increase susceptibility to Loki when disrupted, and 10 that decrease susceptibility. Combined with spontaneous resistance mapping, our results support the model that Loki uses the K3 capsule as an essential receptor, and that capsule modulation provides A. baumannii with strategies to control vulnerability to phage. A key center of this control is transcriptional regulation of capsule synthesis and phage virulence by the global regulator BfmRS. Mutations hyperactivating BfmRS simultaneously increase capsule levels, Loki adsorption, Loki replication, and host killing, while BfmRS-inactivating mutations have the opposite effect, reducing capsule and blocking Loki infection. We identified novel BfmRS-activating mutations, including knockouts of a T2 RNase protein and the disulfide formation enzyme DsbA, that hypersensitize bacteria to phage challenge. We further found that mutation of a glycosyltransferase known to alter capsule structure and bacterial virulence can also cause complete phage resistance. Finally, additional factors including lipooligosaccharide and Lon protease act independently of capsule modulation to interfere with Loki infection. This work demonstrates that regulatory and structural modulation of capsule, known to alter A. baumannii virulence, is also a major determinant of susceptibility to phage.
Collapse
Affiliation(s)
- Jinna Bai
- Department of Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Nicole Raustad
- Department of Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Jason Denoncourt
- Department of Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Tim van Opijnen
- Broad Institute of MIT and Harvard, CISID, Cambridge, Massachusetts, United States of America
| | - Edward Geisinger
- Department of Biology, Northeastern University, Boston, Massachusetts, United States of America
| |
Collapse
|
17
|
Martínez-Gallardo MJ, Villicaña C, Yocupicio-Monroy M, Alcaraz-Estrada SL, León-Félix J. Current knowledge in the use of bacteriophages to combat infections caused by Pseudomonas aeruginosa in cystic fibrosis. Folia Microbiol (Praha) 2023; 68:1-16. [PMID: 35931928 DOI: 10.1007/s12223-022-00990-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/02/2022] [Indexed: 11/04/2022]
Abstract
Pseudomonas aeruginosa (PA) is considered the first causal agent of morbidity and mortality in people with cystic fibrosis (CF) disease. Multi-resistant strains have emerged due to prolonged treatment with specific antibiotics, so new alternatives have been sought for their control. In this context, there is a renewed interest in therapies based on bacteriophages (phages) supported by several studies suggesting that therapy based on lytic phages and biofilm degraders may be promising for the treatment of lung infections in CF patients. However, there is little clinical data about phage studies in CF and the effectiveness and safety in patients with this disease has not been clear. Therefore, studies regarding on phage characterization, selection, and evaluation in vitro and in vivo models will provide reliable information for designing effective cocktails, either using mixed phages or in combination with antibiotics, making a great progress in clinical research. Hence, this review focuses on the most relevant and recent findings on the activity of lytic phages against PA strains isolated from CF patients and hospital environments, and discusses perspectives on the use of phage therapy on the treatment of PA in CF patients.
Collapse
Affiliation(s)
- María José Martínez-Gallardo
- Laboratory of Molecular Biology and Functional Genomics, Centro de Investigación en Alimentación y Desarrollo, Culiacán, Sinaloa, A.C. (CIAD), Mexico
| | - Claudia Villicaña
- CONACYT-Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Culiacán, Sinaloa, Mexico
| | - Martha Yocupicio-Monroy
- Postgraduate in Genomic Sciences, Universidad Autónoma de la Ciudad de México (UACM), Mexico City, Mexico
| | | | - Josefina León-Félix
- Laboratory of Molecular Biology and Functional Genomics, Centro de Investigación en Alimentación y Desarrollo, Culiacán, Sinaloa, A.C. (CIAD), Mexico.
| |
Collapse
|
18
|
Brigmon MM, Brigmon RL. Infectious Diseases Impact on Biomedical Devices and Materials. BIOMEDICAL MATERIALS & DEVICES (NEW YORK, N.Y.) 2022; 1:1-8. [PMID: 38625309 PMCID: PMC9616421 DOI: 10.1007/s44174-022-00035-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/01/2022] [Indexed: 11/07/2022]
Abstract
Infectious diseases and nosocomial infections may play a significant role in healthcare issues associated with biomedical materials and devices. Many current polymer materials employed are inadequate for resisting microbial growth. The increase in microbial antibiotic resistance is also a factor in problematic biomedical implants. In this work, the difficulty in diagnosing biomedical device-related infections is reviewed and how this leads to an increase in microbial antibiotic resistance. A conceptualization of device-related infection pathogenesis and current and future treatments is made. Within this conceptualization, we focus specifically on biofilm formation and the role of host immune and antimicrobial therapies. Using this framework, we describe how current and developing preventative strategies target infectious disease. In light of the significant increase in antimicrobial resistance, we also emphasize the need for parallel development of improved treatment strategies. We also review potential production methods for manufacturing specific nanostructured materials with antimicrobial functionality for implantable devices. Specific examples of both preventative and novel treatments and how they align with the improved care with biomedical devices are described.
Collapse
Affiliation(s)
- Matthew M. Brigmon
- Department of Infectious Diseases and Pulmonary Critical Care, Long School of Medicine, UT Health San Antonio, San Antonio, USA
| | - Robin L. Brigmon
- Savannah River National Laboratory, Bldg 999W, Aiken, SC 29808 USA
| |
Collapse
|
19
|
Xu W, Zhao Y, Qian C, Yao Z, Chen T, Wang L, Zhang Y, Chen L, Ye J, Zhou T. The identification of phage vB_1086 of multidrug-resistant Klebsiella pneumoniae and its synergistic effects with ceftriaxone. Microb Pathog 2022; 171:105722. [PMID: 35985450 DOI: 10.1016/j.micpath.2022.105722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 08/01/2022] [Accepted: 08/11/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND The continued rise of Klebsiella pneumoniae resistance to antibiotics is precipitating a medical crisis. Bacteriophages have been hailed as one possible therapeutic option to enhance the efficacy of antibiotics. This study describes the genomic characterization and biological property of a new bacteriophage vB_1086 and its potential for phage therapy application against Klebsiella pneumoniae. METHODS In our study, the double-layer agar plate method isolated a lytic bacteriophage named vB_1086. Besides, we analyzed its biological characteristics and genetic background. Then the antibacterial ability of the bacteriophage vB_1086 combined with antibiotics were analyzed by the combined checkerboard method. The impact on the formation of biofilms was analyzed by crystal violet staining method. RESULTS vB_1086 is a lytic bacteriophage with stable biological characteristics and clear genetic background, showing good antibacterial activity in combination with ceftriaxone, and the combination of phage and meropenem can effectively inhibit the formation of biofilm. Besides, the combination of bacteriophage and antimicrobials can effectively alleviate the generation of bacterial resistance and reduce the dosage of antimicrobials. CONCLUSION vB_1086 is a novel phage. To some extent, these results provide valuable information that phage vB_1086 can be combined with antibiotics to reduce the dosage of antimicrobials and alleviate the generation of bacterial resistance.
Collapse
Affiliation(s)
- Wenya Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China; Department of Clinical Laboratory, Women's Hospital School of Medicine Zhejiang University, Hangzhou, 310000, Zhejiang Province, China
| | - Yining Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Changrui Qian
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Zhuocheng Yao
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
| | - Tao Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Lingbo Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Ying Zhang
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
| | - Lijiang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Jianzhong Ye
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China.
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China.
| |
Collapse
|
20
|
Nikolic I, Vukovic D, Gavric D, Cvetanovic J, Aleksic Sabo V, Gostimirovic S, Narancic J, Knezevic P. An Optimized Checkerboard Method for Phage-Antibiotic Synergy Detection. Viruses 2022; 14:1542. [PMID: 35891522 PMCID: PMC9319746 DOI: 10.3390/v14071542] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 12/10/2022] Open
Abstract
Phage-antibiotic synergy is a promising therapeutic strategy, but there is no reliable method for synergism estimation. Although the time-kill curve assay is a gold standard, the method is not appropriate for fast and extensive screening of the synergy. The aim is to optimize the checkerboard method to determine phage-chemical agent interactions, to check its applicability by the time-kill curve method, and to examine whether the synergy can be obtained with both simultaneous and successive applications of these agents. In addition, the aim is to determine interactions of the Pseudomonas phage JG024 with ciprofloxacin, gentamicin, or ceftriaxone, as well as the Staphylococcus phage MSA6 and SES43300 with ciprofloxacin, gentamicin, and oxacillin. The results show that the optimized checkerboard method is reliable and that results correspond to those obtained by the time-kill curve. The synergy is detected with the phage JG024 and ciprofloxacin or ceftriaxone against Pseudomonas aeruginosa, and the phage SES43300 with ciprofloxacin against MRSA. The synergy was obtained after simultaneous applications, and in the case of P. aeruginosa, after application of the second agent with delay of one hour, indicating that simultaneous application is the best mode of synergy exploitation for therapy. The checkerboard method can be used for thorough clinical studies on synergy and in the future for personalized therapy when infections are caused by multiple resistant bacteria.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Petar Knezevic
- PK Laboratory, Department of Biology and Ecology, Faculty of Sciences, Trg Dositeja Obradovica 3, University of Novi Sad, 21000 Novi Sad, Serbia; (I.N.); (D.V.); (D.G.); (J.C.); (V.A.S.); (S.G.); (J.N.)
| |
Collapse
|
21
|
Benefits of Combined Phage–Antibiotic Therapy for the Control of Antibiotic-Resistant Bacteria: A Literature Review. Antibiotics (Basel) 2022; 11:antibiotics11070839. [PMID: 35884092 PMCID: PMC9311689 DOI: 10.3390/antibiotics11070839] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 01/27/2023] Open
Abstract
With the increase in bacterial resistance to antibiotics, more and more therapeutic failures are being reported worldwide. The market for antibiotics is now broken due to the high cost of developing new molecules. A promising solution to bacterial resistance is combined phage–antibiotic therapy, a century-old method that can potentiate existing antibiotics by prolonging or even restoring their activity against specific bacteria. The aim of this literature review was to provide an overview of different phage–antibiotic combinations and to describe the possible mechanisms of phage–antibiotic synergy.
Collapse
|
22
|
Gordillo Altamirano FL, Kostoulias X, Subedi D, Korneev D, Peleg AY, Barr JJ. Phage-antibiotic combination is a superior treatment against Acinetobacter baumannii in a preclinical study. EBioMedicine 2022; 80:104045. [PMID: 35537278 PMCID: PMC9097682 DOI: 10.1016/j.ebiom.2022.104045] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/30/2022] [Accepted: 04/22/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Clinical phage therapy is often delivered alongside antibiotics. However, the phenomenon of phage-antibiotic synergy has been mostly studied in vitro. Here, we assessed the in vivo bactericidal effect of a phage-antibiotic combination on Acinetobacter baumannii AB900 using phage øFG02, which binds to capsular polysaccharides and leads to antimicrobial resensitisation in vitro. METHODS We performed a two-stage preclinical study using a murine model of severe A. baumannii AB900 bacteraemia. In the first stage, with an endpoint of 11 h, mice (n = 4 per group) were treated with either PBS, ceftazidime, phage øFG02, or the combination of phage and ceftazidime. The second stage involved only the latter two groups (n = 5 per group), with a prolonged endpoint of 16 h. The primary outcome was the average bacterial burden from four body sites (blood, liver, kidney, and spleen). Bacterial colonies from phage-treated mice were retrieved and screened for phage-resistance. FINDINGS In the first stage, the bacterial burden (CFU/g of tissue) of the combination group (median: 4.55 × 105; interquartile range [IQR]: 2.79 × 105-2.81 × 106) was significantly lower than the PBS (median: 2.42 × 109; IQR: 1.97 × 109-3.48 × 109) and ceftazidime groups (median: 3.86 × 108; IQR: 2.15 × 108-6.35 × 108), but not the phage-only group (median: 1.28 × 107; IQR: 4.71 × 106-7.13 × 107). In the second stage, the combination treatment (median: 1.72 × 106; IQR: 5.11 × 105-4.00 × 106) outperformed the phage-only treatment (median: 7.46 × 107; IQR: 1.43 × 107-1.57 × 108). Phage-resistance emerged in 96% of animals receiving phages, and all the tested isolates (n = 11) had loss-of-function mutations in genes involved in capsule biosynthesis and increased sensitivity to ceftazidime. INTERPRETATION øFG02 reliably drives the in vivo evolution of A. baumannii AB900 towards a capsule-deficient, phage-resistant phenotype that is resensitised to ceftazidime. This mechanism highlights the clinical potential of using phage therapy to target A. baumannii and restore antibiotic activity. FUNDING National Health and Medical Research Council (Australia).
Collapse
Affiliation(s)
- Fernando L Gordillo Altamirano
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia; Centre to Impact AMR, Monash University, Clayton, Victoria, Australia; Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Xenia Kostoulias
- Centre to Impact AMR, Monash University, Clayton, Victoria, Australia; Infection Program, Department of Microbiology Monash University, Monash Biomedicine Discovery Institute, Clayton, Victoria, Australia
| | - Dinesh Subedi
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia; Centre to Impact AMR, Monash University, Clayton, Victoria, Australia
| | - Denis Korneev
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Faculty of Science, School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Anton Y Peleg
- Centre to Impact AMR, Monash University, Clayton, Victoria, Australia; Infection Program, Department of Microbiology Monash University, Monash Biomedicine Discovery Institute, Clayton, Victoria, Australia; Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia.
| | - Jeremy J Barr
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia; Centre to Impact AMR, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
23
|
MDR Pumps as Crossroads of Resistance: Antibiotics and Bacteriophages. Antibiotics (Basel) 2022; 11:antibiotics11060734. [PMID: 35740141 PMCID: PMC9220107 DOI: 10.3390/antibiotics11060734] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 01/27/2023] Open
Abstract
At present, antibiotic resistance represents a global problem in modern medicine. In the near future, humanity may face a situation where medicine will be powerless against resistant bacteria and a post-antibiotic era will come. The development of new antibiotics is either very expensive or ineffective due to rapidly developing bacterial resistance. The need to develop alternative approaches to the treatment of bacterial infections, such as phage therapy, is beyond doubt. The cornerstone of bacterial defense against antibiotics are multidrug resistance (MDR) pumps, which are involved in antibiotic resistance, toxin export, biofilm, and persister cell formation. MDR pumps are the primary non-specific defense of bacteria against antibiotics, while drug target modification, drug inactivation, target switching, and target sequestration are the second, specific line of their defense. All bacteria have MDR pumps, and bacteriophages have evolved along with them and use the bacteria’s need for MDR pumps to bind and penetrate into bacterial cells. The study and understanding of the mechanisms of the pumps and their contribution to the overall resistance and to the sensitivity to bacteriophages will allow us to either seriously delay the onset of the post-antibiotic era or even prevent it altogether due to phage-antibiotic synergy.
Collapse
|
24
|
Łusiak-Szelachowska M, Międzybrodzki R, Drulis-Kawa Z, Cater K, Knežević P, Winogradow C, Amaro K, Jończyk-Matysiak E, Weber-Dąbrowska B, Rękas J, Górski A. Bacteriophages and antibiotic interactions in clinical practice: what we have learned so far. J Biomed Sci 2022; 29:23. [PMID: 35354477 PMCID: PMC8969238 DOI: 10.1186/s12929-022-00806-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/24/2022] [Indexed: 01/04/2023] Open
Abstract
Bacteriophages (phages) may be used as an alternative to antibiotic therapy for combating infections caused by multidrug-resistant bacteria. In the last decades, there have been studies concerning the use of phages and antibiotics separately or in combination both in animal models as well as in humans. The phenomenon of phage–antibiotic synergy, in which antibiotics may induce the production of phages by bacterial hosts has been observed. The potential mechanisms of phage and antibiotic synergy was presented in this paper. Studies of a biofilm model showed that a combination of phages with antibiotics may increase removal of bacteria and sequential treatment, consisting of phage administration followed by an antibiotic, was most effective in eliminating biofilms. In vivo studies predominantly show the phenomenon of phage and antibiotic synergy. A few studies also describe antagonism or indifference between phages and antibiotics. Recent papers regarding the application of phages and antibiotics in patients with severe bacterial infections show the effectiveness of simultaneous treatment with both antimicrobials on the clinical outcome.
Collapse
Affiliation(s)
- Marzanna Łusiak-Szelachowska
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114, Wrocław, Poland.
| | - Ryszard Międzybrodzki
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114, Wrocław, Poland.,Phage Therapy Unit, Medical Center of the Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114, Wrocław, Poland.,Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, 02-006, Warsaw, Poland
| | - Zuzanna Drulis-Kawa
- Department of Pathogen Biology and Immunology, University of Wrocław, 51-148, Wrocław, Poland
| | - Kathryn Cater
- Rush University Medical Center, 1620 W. Harrison St., Chicago, IL, 60612, USA
| | - Petar Knežević
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21000, Novi Sad, Republic of Serbia
| | - Cyprian Winogradow
- Faculty of Life Sciences, University College London, London, WC1E 6BT, UK
| | | | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114, Wrocław, Poland
| | - Beata Weber-Dąbrowska
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114, Wrocław, Poland.,Phage Therapy Unit, Medical Center of the Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114, Wrocław, Poland
| | - Justyna Rękas
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114, Wrocław, Poland
| | - Andrzej Górski
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114, Wrocław, Poland.,Phage Therapy Unit, Medical Center of the Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114, Wrocław, Poland.,Infant Jesus Hospital, Medical University of Warsaw, 02-005, Warsaw, Poland
| |
Collapse
|
25
|
Abstract
Increasing antimicrobial resistance and medical device-related infections have led to a renewed interest in phage therapy as an alternative or adjunct to conventional antimicrobials. Expanded access and compassionate use cases have risen exponentially but have varied widely in approach, methodology, and clinical situations in which phage therapy might be considered. Large gaps in knowledge contribute to heterogeneity in approach and lack of consensus in many important clinical areas. The Antibacterial Resistance Leadership Group (ARLG) has convened a panel of experts in phage therapy, clinical microbiology, infectious diseases, and pharmacology, who worked with regulatory experts and a funding agency to identify questions based on a clinical framework and divided them into three themes: potential clinical situations in which phage therapy might be considered, laboratory testing, and pharmacokinetic considerations. Suggestions are provided as answers to a series of questions intended to inform clinicians considering experimental phage therapy for patients in their clinical practices.
Collapse
|
26
|
Manohar P, Madurantakam Royam M, Loh B, Bozdogan B, Nachimuthu R, Leptihn S. Synergistic Effects of Phage-Antibiotic Combinations against Citrobacter amalonaticus. ACS Infect Dis 2022; 8:59-65. [PMID: 34979073 DOI: 10.1021/acsinfecdis.1c00117] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Non-antibiotic alternative treatments to combat the increasing number of infections caused by multidrug resistant bacteria are urgently needed. In recent years, bacteriophages have reemerged to potentially replace or complement the role of antibiotics, as bacterial viruses have the ability to inactivate pathogens. This study aimed to evaluate the synergy of phage-antibiotic combinations. A Citrobacter amalonaticus isolate was used in this study together with the phage MRM57. Eight different antibiotics with different mechanisms of action were used in combination with the phage to study the impact of the combination treatment on the minimal inhibitory concentrations. We found that antibiotic concentration dependent synergism exists, albeit at different extents, with very low numbers of phages. This demonstrates the use of phages as an adjuvant with a sublethal concentration of antibiotics as an effective therapeutic strategy.
Collapse
Affiliation(s)
- Prasanth Manohar
- Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, Zhejiang University, Haining, Zhejiang 310027, P.R. China
- The Second Affiliated Hospital Zhejiang University (SAHZU), School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Madhav Madurantakam Royam
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632006, India
| | - Belinda Loh
- Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, Zhejiang University, Haining, Zhejiang 310027, P.R. China
| | - Bulent Bozdogan
- Medical Microbiology Department, Adnan Menderes University, 09010 Aydin, Turkey
| | - Ramesh Nachimuthu
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632006, India
| | - Sebastian Leptihn
- Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, Zhejiang University, Haining, Zhejiang 310027, P.R. China
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
- University of Edinburgh Medical School, Biomedical Sciences, College of Medicine & Veterinary Medicine, The University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, United Kingdom
| |
Collapse
|
27
|
Ma D, Li L, Han K, Wang L, Cao Y, Zhou Y, Chen H, Wang X. The antagonistic interactions between a polyvalent phage SaP7 and β-lactam antibiotics on combined therapies. Vet Microbiol 2022; 266:109332. [PMID: 35033842 DOI: 10.1016/j.vetmic.2022.109332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/27/2021] [Accepted: 01/02/2022] [Indexed: 01/21/2023]
Abstract
Phage therapy is a promising alternative antibiotic strategy to combat multidrug-resistant bacteria infections. Most studies focus on the synergistic effects, while the antagonistic interactions between phage and antibiotics is rarely studied. Here, we isolated and identified a novel polyvalent phage SaP7, which is capable of infecting multidrug-resistant Salmonella S7 and several E. coli strains. Morphology via electron microscopy showed that SaP7 belonged to the Myoviridae family. Genomic analysis revealed that the genome of SaP7 lacked any genes associated with antibiotic resistance, toxins, lysogeny, and virulence factors. We discovered the antagonism efficacy of SaP7 combined amoxicillin/potassium clavulanate (AMC) in counteracting Salmonella S7 in piglet-models by bacterial loads in feces and tissues. The consistent result as above between SaP7 and amoxicillin (AMX) was further verified in BALB/c mice-models. Furthermore, in vitro, plaque assay and minimum inhibitory concentration (MIC) determinations showed that AMX or AMC or cefepime (FEP) inhibited SaP7 plaque formation respectively and SaP7 decreased bacterial susceptibility of Salmonella S7 to AMX, AMC and FEP. And the negative interference of SaP7 with the bacteriostasis to Salmonella S7 of these three β-lactam antibiotics was observed in planktonic cultures via microtiter plates, but could not prevent the bacteriostasis of high titer of phage or high concentration of antibiotics. Finally, our research suggested that a polyvalent phage SaP7 existed antagonism with several β-lactam antibiotics. It is therefore crucial to fully and cautiously evaluate phage/antibiotic interactions and probable outcomes to avoid antagonistic impacts and failure of antibiotic and phage combination therapy.
Collapse
Affiliation(s)
- Dongxin Ma
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Lei Li
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Kaiou Han
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Leping Wang
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Yajie Cao
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Yuqing Zhou
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Huaijun Chen
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Xiaoye Wang
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
28
|
Han ML, Nang SC, Lin YW, Zhu Y, Yu HH, Wickremasinghe H, Barlow CK, Creek DJ, Crawford S, Rao G, Dai C, Barr JJ, Chan K, Turner Schooley R, Velkov T, Li J. Comparative metabolomics revealed key pathways associated with the synergistic killing of multidrug-resistant Klebsiella pneumoniae by a bacteriophage-polymyxin combination. Comput Struct Biotechnol J 2022; 20:485-495. [PMID: 35070170 PMCID: PMC8760530 DOI: 10.1016/j.csbj.2021.12.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 01/21/2023] Open
Abstract
Resistance to the last-line polymyxins is emerging in multidrug-resistant Klebsiella pneumoniae and phage therapy is a promising alternative. However, phage monotherapy often rapidly causes resistance and few studies have examined antibiotic-phage combinations against K. pneumoniae. Here, we investigated the combination of polymyxin B with a novel phage pK8 against an mcr-1-carrying polymyxin-resistant clinical isolate Kp II-503 (polymyxin B MIC, 8 mg/L). The phage genome was sequenced and bacterial metabolomes were analysed at 4 and 24 h following the treatment with polymyxin B (16 mg/L), phage pK8 (102 PFU/mL) and their combination. Minimal metabolic changes across 24 h were observed with polymyxin B alone; whereas a significant inhibition of the citrate cycle, pentose phosphate pathway, amino acid and nucleotide metabolism occurred with the phage-polymyxin combination at both 4 and 24 h, but with phage alone only at 4 h. The development of resistance to phage alone was associated with enhanced membrane lipid and decreased amino acid biosynthesis in Kp II-503. Notably, cAMP, cGMP and cCMP were significantly enriched (3.1–6.6 log2fold) by phage alone and the combination only at 4 h. This is the first systems pharmacology study to investigate the enhanced bacterial killing by polymyxin-phage combination and provides important mechanistic information on phage killing, resistance and antibiotic-phage combination in K. pneumoniae.
Collapse
|
29
|
Liu S, Zhao Y, Hayes A, Hon K, Zhang G, Bennett C, Hu H, Finnie J, Morales S, Shearwin L, Psaltis AJ, Shearwin K, Wormald P, Vreugde S. Overcoming bacteriophage insensitivity in Staphylococcus aureus using clindamycin and azithromycinat subinhibitory concentrations. Allergy 2021; 76:3446-3458. [PMID: 33930199 DOI: 10.1111/all.14883] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/02/2021] [Accepted: 03/18/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND Staphylococcus aureus is a pathogen of major concern in both acute infections and chronic conditions such as chronic rhinosinusitis (CRS). Bacteriophage (phage) therapy has recently regained interest for its potential to treat infections caused by antibiotic resistant strains including Methicillin Resistant Staphylococcus aureus (MRSA). However, bacteria can adapt and become resistant to phages. The aim of this study is to determine the potential for antibiotics to overcome phage resistance. METHODS The susceptibility of S. aureus clinical isolates (CIs) to phages J-Sa36, Sa83 and Sa87 alone or in combination with protein synthesis inhibitor (PSI) antibiotics clindamycin, azithromycin and erythromycin was assessed using plaque spot assays, minimum inhibitory concentration (MIC) assays, double layer spot assays and resazurin assays. The safety and efficacy of subinhibitory PSI antibiotics in combination with phage was tested in a Sprague Dawley rat model of sinusitis infected with a phage resistant S. aureus CI. RESULTS All three antibiotics at subinhibitory concentrations showed synergy when combined with all 3 phages against S. aureus CIs in planktonic and biofilm form and could sensitize phage-resistant S. aureus to promote phage infection. The combination of topical subinhibitory clindamycin or azithromycin and phage was safe and could eradicate S. aureus sinonasal biofilms in vivo. CONCLUSION Subinhibitory concentrations of PSI antibiotics could sensitize phage-resistant S. aureus and MRSA strains to phages in vitro and in vivo. This data supports the potential use of phage-PSI antibiotic combination therapies, in particular for difficult-to-treat infections with phage-resistant S. aureus and MRSA strains.
Collapse
Affiliation(s)
- Sha Liu
- Department of Surgery‐Otolaryngology Head and Neck Surgery Basil Hetzel Institute for Translational Health Research Central Adelaide Local Health Network Woodville South SA Australia
- Adelaide Medical School The University of Adelaide Adelaide SA Australia
| | - Yin Zhao
- Department of Surgery‐Otolaryngology Head and Neck Surgery Basil Hetzel Institute for Translational Health Research Central Adelaide Local Health Network Woodville South SA Australia
- Adelaide Medical School The University of Adelaide Adelaide SA Australia
- Department of Otolaryngology, Head and Neck Surgery The Second Hospital of Jilin University Changchun China
| | - Andrew Hayes
- Department of Surgery‐Otolaryngology Head and Neck Surgery Basil Hetzel Institute for Translational Health Research Central Adelaide Local Health Network Woodville South SA Australia
- Adelaide Medical School The University of Adelaide Adelaide SA Australia
| | - Karen Hon
- Department of Surgery‐Otolaryngology Head and Neck Surgery Basil Hetzel Institute for Translational Health Research Central Adelaide Local Health Network Woodville South SA Australia
- Adelaide Medical School The University of Adelaide Adelaide SA Australia
| | - Guimin Zhang
- Department of Surgery‐Otolaryngology Head and Neck Surgery Basil Hetzel Institute for Translational Health Research Central Adelaide Local Health Network Woodville South SA Australia
- Adelaide Medical School The University of Adelaide Adelaide SA Australia
- Department of Otolaryngology‐Head and Neck Surgery Tianjin First Center Hospital Tianjin China
| | - Catherine Bennett
- Department of Surgery‐Otolaryngology Head and Neck Surgery Basil Hetzel Institute for Translational Health Research Central Adelaide Local Health Network Woodville South SA Australia
- Adelaide Medical School The University of Adelaide Adelaide SA Australia
| | - Hua Hu
- Department of Surgery‐Otolaryngology Head and Neck Surgery Basil Hetzel Institute for Translational Health Research Central Adelaide Local Health Network Woodville South SA Australia
- Adelaide Medical School The University of Adelaide Adelaide SA Australia
- Department of Otolaryngology, Head and Neck Surgery Shanghai General Hospital Shanghai Jiaotong University Shanghai China
| | - John Finnie
- Discipline of Anatomy and Pathology Adelaide Medical School University of Adelaide Adelaide SA Australia
| | | | - Linda Shearwin
- Department of Molecular and Biomedical Science Adelaide University Adelaide SA Australia
| | - Alkis J. Psaltis
- Department of Surgery‐Otolaryngology Head and Neck Surgery Basil Hetzel Institute for Translational Health Research Central Adelaide Local Health Network Woodville South SA Australia
- Adelaide Medical School The University of Adelaide Adelaide SA Australia
| | - Keith Shearwin
- Department of Molecular and Biomedical Science Adelaide University Adelaide SA Australia
| | - Peter‐John Wormald
- Department of Surgery‐Otolaryngology Head and Neck Surgery Basil Hetzel Institute for Translational Health Research Central Adelaide Local Health Network Woodville South SA Australia
- Adelaide Medical School The University of Adelaide Adelaide SA Australia
| | - Sarah Vreugde
- Department of Surgery‐Otolaryngology Head and Neck Surgery Basil Hetzel Institute for Translational Health Research Central Adelaide Local Health Network Woodville South SA Australia
- Adelaide Medical School The University of Adelaide Adelaide SA Australia
| |
Collapse
|
30
|
Jung D, Gaudreau-Lapierre A, Alnahhas E, Asraoui S. Bacteriophage-Liposomes Complex, a Bi-therapy System to Target Streptococcus pneumonia and Biofilm: A Research Protocol. UNDERGRADUATE RESEARCH IN NATURAL AND CLINICAL SCIENCE AND TECHNOLOGY (URNCST) JOURNAL 2021; 5:1-10. [DOI: 10.26685/urncst.294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Introduction: Streptococcus pneumoniae is a gram-positive bacterium, which is the leading cause of death for young children, elderly population, and immunocompromised patients. Its ability to mutate and become resistant to some of the strongest antibiotics makes them difficult to treat and increases the risk of disease spread. Although the development of stronger antibiotics to treat such microbes may be an option, they potentially pose a dangerous threat to the body. As such, a viable treatment option to fight against antimicrobial resistance has yet been found.
Methods: The study focuses on utilizing a bi-therapy system to target S. pneumoniae in biofilm, which is the site of emerging antibiotic resistant mutants, by creating levofloxacin-liposomes carrying phages and testing them both in vitro and in vivo.
Anticipated results: Using bacteriophage therapy and applying bacteriophage-antibiotic synergy, it is hoped to augment the potency of the treatment while lowering its side-effects. The Cp-1 bacteriophage-liposomes complexes are expected to be specific to the S. pneumoniae to carry antibiotics to sites of infection.
Discussion: The therapy could ensure targeted bacterial lysis and site-directed delivery of low-dose drugs to decrease the toxicity effect of the antibiotics. Once the efficacy is established and is proven to be significant, its potency can be tested in BALB/cByJ mice models before bringing this therapy to animal trials then human clinical trials.
Conclusion: Bacteriophages are very attractive therapeutic agents that effectively target pathogenic bacteria, safe for the human body, and highly modifiable to combat newly emerging bacterial threats. In addition to its many benefits, the use of bacteriophages could significantly reduce healthcare costs. The potential use of bacteriophages-liposomes complexes could be translated to treat respiratory infections in humans after confirming its efficacy in vitro and in vivo studies.
Collapse
|
31
|
Evran S, Tayyarcan EK, Acar-Soykut E, Guven B, Durakli-Velioglu S, Boyaci IH. Investigation of phage and molasses interactions for the biocontrol of E. coli O157:H7. Can J Microbiol 2021; 68:1-11. [PMID: 34529921 DOI: 10.1139/cjm-2021-0211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Resistance to antibiotics is one of the most critical health problems in the world. Therefore, finding new treatment methods to be used as alternatives to antibiotics has become a priority for researchers. Similar to phages, certain products containing antimicrobial components, such as molasses, are widely used to eliminate resistant bacteria. Molasses has a strong antimicrobial effect on bacterial cells, and this effect is thought to be due to the breakdown of the cytoplasmic cell membrane and cell proteins of the polyphenols in molasses. In the present study, phage-molasses interactions were investigated to examine the effects of concomitant use. It was found that molasses samples increased the size of phage plaques by up to 3-fold, and MIC and 1/2 × MIC concentrations of molasses increased the burst size of phages. Although no synergistic effect was found between the phage and molasses, the antimicrobial activities of the components and the effect of molasses on phage activity were demonstrated.
Collapse
Affiliation(s)
- Sefika Evran
- Department of Food Engineering, Beytepe, Hacettepe University, Ankara, Turkey
| | | | - Esra Acar-Soykut
- Yeniçağa Yaşar Çelik Vocational School, Bolu Abant İzzet Baysal University, Bolu, Turkey
| | - Burcu Guven
- Department of Food Engineering, Beytepe, Hacettepe University, Ankara, Turkey
| | - Serap Durakli-Velioglu
- Department of Food Engineering, Faculty of Agriculture, Tekirdag Namik Kemal University, Tekirdağ, Turkey
| | - Ismail Hakki Boyaci
- Department of Food Engineering, Beytepe, Hacettepe University, Ankara, Turkey
| |
Collapse
|
32
|
Li X, He Y, Wang Z, Wei J, Hu T, Si J, Tao G, Zhang L, Xie L, Abdalla AE, Wang G, Li Y, Teng T. A combination therapy of Phages and Antibiotics: Two is better than one. Int J Biol Sci 2021; 17:3573-3582. [PMID: 34512166 PMCID: PMC8416725 DOI: 10.7150/ijbs.60551] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/01/2021] [Indexed: 12/15/2022] Open
Abstract
Emergence of antibiotic resistance presents a major setback to global health, and shortage of antibiotic pipelines has created an urgent need for development of alternative therapeutic strategies. Bacteriophage (phage) therapy is considered as a potential approach for treatment of the increasing number of antibiotic-resistant pathogens. Phage-antibiotic synergy (PAS) refers to sublethal concentrations of certain antibiotics that enhance release of progeny phages from bacterial cells. A combination of phages and antibiotics is a promising strategy to reduce the dose of antibiotics and the development of antibiotic resistance during treatment. In this review, we highlight the state-of-the-art advancements of PAS studies, including the analysis of bacterial-killing enhancement, bacterial resistance reduction, and anti-biofilm effect, at both in vitro and in vivo levels. A comprehensive review of the genetic and molecular mechanisms of phage antibiotic synergy is provided, and synthetic biology approaches used to engineer phages, and design novel therapies and diagnostic tools are discussed. In addition, the role of engineered phages in reducing pathogenicity of bacteria is explored.
Collapse
Affiliation(s)
- Xianghui Li
- Institute of Biomedical Informatics, school of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yuhua He
- Institute of Biomedical Informatics, school of Basic Medical Sciences, Henan University, Kaifeng 475004, China.,Henan International Joint Laboratory of Nuclear Protein Regulation, school of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Zhili Wang
- Institute of Biomedical Informatics, school of Basic Medical Sciences, Henan University, Kaifeng 475004, China.,Henan International Joint Laboratory of Nuclear Protein Regulation, school of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Jiacun Wei
- Institute of Biomedical Informatics, school of Basic Medical Sciences, Henan University, Kaifeng 475004, China.,Henan International Joint Laboratory of Nuclear Protein Regulation, school of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Tongxin Hu
- Institute of Biomedical Informatics, school of Basic Medical Sciences, Henan University, Kaifeng 475004, China.,Henan International Joint Laboratory of Nuclear Protein Regulation, school of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Jiangzhe Si
- Institute of Biomedical Informatics, school of Basic Medical Sciences, Henan University, Kaifeng 475004, China.,Henan International Joint Laboratory of Nuclear Protein Regulation, school of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Guangzhao Tao
- Institute of Biomedical Informatics, school of Basic Medical Sciences, Henan University, Kaifeng 475004, China.,Henan International Joint Laboratory of Nuclear Protein Regulation, school of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Lei Zhang
- Institute of Biomedical Informatics, school of Basic Medical Sciences, Henan University, Kaifeng 475004, China.,Henan International Joint Laboratory of Nuclear Protein Regulation, school of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Longxiang Xie
- Institute of Biomedical Informatics, school of Basic Medical Sciences, Henan University, Kaifeng 475004, China.,Henan International Joint Laboratory of Nuclear Protein Regulation, school of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Abualgasim Elgaili Abdalla
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 2014, Saudi Arabia
| | - Guoying Wang
- Institute of Biomedical Informatics, school of Basic Medical Sciences, Henan University, Kaifeng 475004, China.,Henan International Joint Laboratory of Nuclear Protein Regulation, school of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yanzhang Li
- Institute of Biomedical Informatics, school of Basic Medical Sciences, Henan University, Kaifeng 475004, China.,Henan International Joint Laboratory of Nuclear Protein Regulation, school of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Tieshan Teng
- Institute of Biomedical Informatics, school of Basic Medical Sciences, Henan University, Kaifeng 475004, China.,Henan International Joint Laboratory of Nuclear Protein Regulation, school of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
33
|
Temperate phage-antibiotic synergy eradicates bacteria through depletion of lysogens. Cell Rep 2021; 35:109172. [PMID: 34038739 DOI: 10.1016/j.celrep.2021.109172] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 03/13/2021] [Accepted: 05/04/2021] [Indexed: 01/02/2023] Open
Abstract
There is renewed interest in bacterial viruses (phages) as alternatives to antibiotics. All phage treatments to date have used virulent phages rather than temperate ones, as these can integrate into the genome of the bacterial host and lie dormant. However, temperate phages are abundant and easier to isolate. To make use of these entities, we leverage stressors known to awaken these dormant, integrated phages. Co-administration of the temperate phage HK97 with sub-inhibitory concentrations of the antibiotic ciprofloxacin results in bacterial eradication (≥8 log reduction) in vitro. This synergy is mechanistically distinct from phage-antibiotic-synergy described for virulent phages. Instead, the antibiotic specifically selects against bacteria in which the phage has integrated. As the interaction between temperate phages and stressors such as ciprofloxacin are known to be widespread, this approach may be broadly applicable and enable the use of temperate phages to combat bacterial infections.
Collapse
|
34
|
Loponte R, Pagnini U, Iovane G, Pisanelli G. Phage Therapy in Veterinary Medicine. Antibiotics (Basel) 2021; 10:antibiotics10040421. [PMID: 33920369 PMCID: PMC8069180 DOI: 10.3390/antibiotics10040421] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/04/2021] [Accepted: 04/08/2021] [Indexed: 01/10/2023] Open
Abstract
To overcome the obstacle of antimicrobial resistance, researchers are investigating the use of phage therapy as an alternative and/or supplementation to antibiotics to treat and prevent infections both in humans and in animals. In the first part of this review, we describe the unique biological characteristics of bacteriophages and the crucial aspects influencing the success of phage therapy. However, despite their efficacy and safety, there is still no specific legislation that regulates their use. In the second part of this review, we describe the comprehensive research done in the past and recent years to address the use of phage therapy for the treatment and prevention of bacterial disease affecting domestic animals as an alternative to antibiotic treatments. While in farm animals, phage therapy efficacy perspectives have been widely studied in vitro and in vivo, especially for zoonoses and diseases linked to economic losses (such as mastitis), in pets, studies are still few and rather recent.
Collapse
|
35
|
Pires DP, Costa AR, Pinto G, Meneses L, Azeredo J. Current challenges and future opportunities of phage therapy. FEMS Microbiol Rev 2021; 44:684-700. [PMID: 32472938 DOI: 10.1093/femsre/fuaa017] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/29/2020] [Indexed: 12/21/2022] Open
Abstract
Antibiotic resistance is a major public health challenge worldwide, whose implications for global health might be devastating if novel antibacterial strategies are not quickly developed. As natural predators of bacteria, (bacterio)phages may play an essential role in escaping such a dreadful future. The rising problem of antibiotic resistance has revived the interest in phage therapy and important developments have been achieved over the last years. But where do we stand today and what can we expect from phage therapy in the future? This is the question we set to answer in this review. Here, we scour the outcomes of human phage therapy clinical trials and case reports, and address the major barriers that stand in the way of using phages in clinical settings. We particularly address the potential of phage resistance to hinder phage therapy and discuss future avenues to explore the full capacity of phage therapy.
Collapse
Affiliation(s)
- Diana P Pires
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Ana Rita Costa
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, Netherlands
| | - Graça Pinto
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Luciana Meneses
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Joana Azeredo
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| |
Collapse
|
36
|
Schmalstig AA, Freidy S, Hanafin PO, Braunstein M, Rao GG. Reapproaching Old Treatments: Considerations for PK/PD Studies on Phage Therapy for Bacterial Respiratory Infections. Clin Pharmacol Ther 2021; 109:1443-1456. [PMID: 33615463 DOI: 10.1002/cpt.2214] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/03/2021] [Indexed: 02/06/2023]
Abstract
Antibiotic resistant bacterial respiratory infections are a significant global health burden, and new therapeutic strategies are needed to control the problem. For bacterial respiratory infections, this need is emphasized by the rise in antibiotic resistance and a lean drug development pipeline. Bacteriophage (phage) therapy is a promising alternative to antibiotics. Phage are viruses that infect and kill bacteria. Because phage and antibiotics differ in their bactericidal mechanisms, phage are a treatment option for antibiotic-resistant bacteria. Here, we review the history of phage therapy and highlight recent preclinical and clinical case reports of its use for treating antibiotic-resistant respiratory infections. The ability of phage to replicate while killing the bacteria is both a benefit for treatment and a challenge for pharmacokinetic (PK) and pharmacodynamic (PD) studies. In this review, we will discuss how the phage lifecycle and associated bidirectional interactions between phage and bacteria can impact treatment. We will also highlight PK/PD considerations for designing studies of phage therapy to optimize the efficacy and feasibility of the approach.
Collapse
Affiliation(s)
- Alan A Schmalstig
- Department of Microbiology and Immunology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Soha Freidy
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Patrick O Hanafin
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Miriam Braunstein
- Department of Microbiology and Immunology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Gauri G Rao
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
37
|
Characterization of a Novel Bacteriophage Henu2 and Evaluation of the Synergistic Antibacterial Activity of Phage-Antibiotics. Antibiotics (Basel) 2021; 10:antibiotics10020174. [PMID: 33572473 PMCID: PMC7916345 DOI: 10.3390/antibiotics10020174] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 12/14/2022] Open
Abstract
Staphylococcus aureus phage Henu2 was isolated from a sewage sample collected in Kaifeng, China, in 2017. In this study, Henu2, a linear double-stranded DNA virus, was sequenced and found to be 43,513 bp long with 35% G + C content and 63 putative open reading frames (ORFs). Phage Henu2 belongs to the family Siphoviridae and possesses an isometric head (63 nm in diameter). The latent time and burst size of Henu2 were approximately 20 min and 7.8 plaque forming unit (PFU)/infected cells. The Henu2 maintained infectivity over a wide range of temperature (10–60 °C) and pH values (4–12). Phylogenetic and comparative genomic analyses indicate that Staphylococcus aureus phage Henu2 should be a new member of the family of Siphoviridae class-II. In this paper, Phage Henu2 alone exhibited weak inhibitory activity on the growth of S. aureus. However, the combination of phage Henu2 and some antibiotics or oxides could effectively inhibit the growth of S. aureus, with a decrease of more than three logs within 24 h in vitro. These results provide useful information that phage Henu2 can be combined with antibiotics to increase the production of phage Henu2 and thus enhance the efficacy of bacterial killing.
Collapse
|
38
|
Davis CM, McCutcheon JG, Dennis JJ. Aztreonam Lysine Increases the Activity of Phages E79 and phiKZ against Pseudomonas aeruginosa PA01. Microorganisms 2021; 9:microorganisms9010152. [PMID: 33445453 PMCID: PMC7827458 DOI: 10.3390/microorganisms9010152] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 02/07/2023] Open
Abstract
Pseudomonas aeruginosa is a pernicious bacterial pathogen that is difficult to treat because of high levels of antibiotic resistance. A promising alternative treatment option for such bacteria is the application of bacteriophages; the correct combination of phages plus antibiotics can produce synergistic inhibitory effects. In this study, we describe morphological changes induced by sub-MIC levels of the antibiotic aztreonam lysine (AzLys) on P. aeruginosa PA01, which may in part explain the observed phage–antibiotic synergy (PAS). One-step growth curves for phage E79 showed increased adsorption rates, decreased infection latency, accelerated time to lysis and a minor reduction in burst size. Phage E79 plus AzLys PAS was also able to significantly reduce P. aeruginosa biofilm growth over 3-fold as compared to phage treatment alone. Sub-inhibitory AzLys-induced filamentation of P. aeruginosa cells resulted in loss of twitching motility and a reduction in swimming motility, likely due to a reduction in the number of polar Type IV pili and flagella, respectively, on the filamented cell surfaces. Phage phiKZ, which uses Type IV pili as a receptor, did not exhibit increased activity with AzLys at lower sub-inhibitory levels, but still produced phage–antibiotic synergistic killing with sub-inhibitory AzLys. A one-step growth curve indicates that phiKZ in the presence of AzLys also exhibits a decreased infection latency and moderately undergoes accelerated time to lysis. In contrast to prior PAS studies demonstrating that phages undergo delayed time to lysis with cell filamentation, these PAS results show that phages undergo accelerated time to lysis, which therefore suggests that PAS is dependent upon multiple factors, including the type of phages and antibiotics used, and the bacterial host being tested.
Collapse
|
39
|
Ng RN, Tai AS, Chang BJ, Stick SM, Kicic A. Overcoming Challenges to Make Bacteriophage Therapy Standard Clinical Treatment Practice for Cystic Fibrosis. Front Microbiol 2021; 11:593988. [PMID: 33505366 PMCID: PMC7829477 DOI: 10.3389/fmicb.2020.593988] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/08/2020] [Indexed: 12/17/2022] Open
Abstract
Individuals with cystic fibrosis (CF) are given antimicrobials as prophylaxis against bacterial lung infection, which contributes to the growing emergence of multidrug resistant (MDR) pathogens isolated. Pathogens such as Pseudomonas aeruginosa that are commonly isolated from individuals with CF are armed with an arsenal of protective and virulence mechanisms, complicating eradication and treatment strategies. While translation of phage therapy into standard care for CF has been explored, challenges such as the lack of an appropriate animal model demonstrating safety in vivo exist. In this review, we have discussed and provided some insights in the use of primary airway epithelial cells to represent the mucoenvironment of the CF lungs to demonstrate safety and efficacy of phage therapy. The combination of phage therapy and antimicrobials is gaining attention and has the potential to delay the onset of MDR infections. It is evident that efforts to translate phage therapy into standard clinical practice have gained traction in the past 5 years. Ultimately, collaboration, transparency in data publications and standardized policies are needed for clinical translation.
Collapse
Affiliation(s)
- Renee N. Ng
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Wal-yan Respiratory Research Center, Telethon Kids Institute, The University of Western Australia, Crawley, WA, Australia
| | - Anna S. Tai
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, WA, Australia
- Institute for Respiratory Health, School of Medicine, The University of Western Australia, Perth, WA, Australia
| | - Barbara J. Chang
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Stephen M. Stick
- Wal-yan Respiratory Research Center, Telethon Kids Institute, The University of Western Australia, Crawley, WA, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Perth, WA, Australia
- Center for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia and Harry Perkins Institute of Medical Research, Perth, WA, Australia
| | - Anthony Kicic
- Wal-yan Respiratory Research Center, Telethon Kids Institute, The University of Western Australia, Crawley, WA, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Perth, WA, Australia
- Center for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia and Harry Perkins Institute of Medical Research, Perth, WA, Australia
- Occupation and the Environment, School of Public Health, Curtin University, Perth, WA, Australia
| |
Collapse
|
40
|
Aleksić Sabo V, Škorić D, Jovanović-Šanta S, Nikolić I, János C, Knežević P. Synergistic activity of bile salts and their derivatives in combination with conventional antimicrobial agents against Acinetobacter baumannii. JOURNAL OF ETHNOPHARMACOLOGY 2021; 264:113266. [PMID: 32810621 DOI: 10.1016/j.jep.2020.113266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/03/2020] [Accepted: 08/08/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bile traditionally was used in wound healing, having erodent, antioxidant and antimicrobial potential. Acinetobacter baumannii is a frequent etiological agent of wound infections, exhibiting high level of resistance to conventional antibiotics. AIM OF THE STUDY To determine the effect of selected bile acid sodium salts and their 3-dehydro (i.e. 3-oxo) derivatives, as well as their combinations with commercial antibiotics against A. baumanniia, to confirm bile ethnopharmacological application in wound healing from aspect of microbiology. MATERIALS AND METHODS The sensitivity of reference and multidrug resistant (MDR) A. baumannii strains to bile salts, their derivatives and conventional antibiotics were examined by a microtiter plate method. The interaction of bile salts/derivatives and antibiotics was examined by a checkerboard method and time kill curve method. The interaction of bile salts with ciprofloxacin in terms of micelles formation was examined by DOSY NMR technique. RESULTS The bile salts sodium deoxycholate (Na-DCA) and sodium chenodeoxycholate (Na-CDCA), as well as their derivatives sodium 3-dehydro-deoxycholate (Na-3DH-DCA) and sodium 3-dehydro-chenodeoxycholate (Na-3DH-CDCA), potentiate antibiotic activity and resensitize A. baumannii. The bile salts and their derivatives enhance A. baumannii sensitivity to antibiotics, particularly those that should penetrate cell to exhibit activity. The sodium salts of bile acid derivatives, namely Na-3DH-DCA and Na-3DH-CDCA, showed synergy against both reference and MDR strain in combination with ciprofloxacin or gentamicin, while synergy with gentamicin was obtained in all combinations, regardless of bile salt type and bacterial strains. The synergy with Na-3DH-CDCA was further confirmed by the time-kill curve method, as bacterial number decreased after 12 h. NMR experiment revealed that this bile salt derivative and ciprofloxacin form co-aggregates when bile salts concentration was higher than critical micelle concentrations (CMC), which indicate the possibility that bile salts enhance ciprofloxacin cell penetration by membrane destabilization, contributing to the synergy. CONCLUSION The synergistic interactions between bile salts or derivatives with ciprofloxacin and particularly gentamicin represent a promising strategy for the treatment of A. baumannii wound infections.
Collapse
Affiliation(s)
- Verica Aleksić Sabo
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 3, 21 000, Novi Sad, Vojvodina, Serbia
| | - Dušan Škorić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 3, 21 000, Novi Sad, Vojvodina, Serbia
| | - Suzana Jovanović-Šanta
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 3, 21 000, Novi Sad, Vojvodina, Serbia
| | - Isidora Nikolić
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 3, 21 000, Novi Sad, Vojvodina, Serbia
| | - Csanádi János
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 3, 21 000, Novi Sad, Vojvodina, Serbia
| | - Petar Knežević
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 3, 21 000, Novi Sad, Vojvodina, Serbia.
| |
Collapse
|
41
|
Behzadi P, Baráth Z, Gajdács M. It's Not Easy Being Green: A Narrative Review on the Microbiology, Virulence and Therapeutic Prospects of Multidrug-Resistant Pseudomonas aeruginosa. Antibiotics (Basel) 2021; 10:42. [PMID: 33406652 PMCID: PMC7823828 DOI: 10.3390/antibiotics10010042] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 12/11/2022] Open
Abstract
Pseudomonas aeruginosa is the most frequent cause of infection among non-fermenting Gram-negative bacteria, predominantly affecting immunocompromised patients, but its pathogenic role should not be disregarded in immunocompetent patients. These pathogens present a concerning therapeutic challenge to clinicians, both in community and in hospital settings, due to their increasing prevalence of resistance, and this may lead to prolonged therapy, sequelae, and excess mortality in the affected patient population. The resistance mechanisms of P. aeruginosa may be classified into intrinsic and acquired resistance mechanisms. These mechanisms lead to occurrence of resistant strains against important antibiotics-relevant in the treatment of P. aeruginosa infections-such as β-lactams, quinolones, aminoglycosides, and colistin. The occurrence of a specific resistotype of P. aeruginosa, namely the emergence of carbapenem-resistant but cephalosporin-susceptible (Car-R/Ceph-S) strains, has received substantial attention from clinical microbiologists and infection control specialists; nevertheless, the available literature on this topic is still scarce. The aim of this present review paper is to provide a concise summary on the adaptability, virulence, and antibiotic resistance of P. aeruginosa to a readership of basic scientists and clinicians.
Collapse
Affiliation(s)
- Payam Behzadi
- Department of Microbiology, College of Basic Sciences, Shahr-e-Qods Branch, Islamic Azad University, Tehran 37541-374, Iran;
| | - Zoltán Baráth
- Department of Prosthodontics, Faculty of Dentistry, University of Szeged, Tisza Lajos körút 62-64, 6720 Szeged, Hungary;
| | - Márió Gajdács
- Institute of Medical Microbiology, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, 6720 Szeged, Hungary
| |
Collapse
|
42
|
Zhang Q, Wu W, Zhang J, Xia X. Merits of the 'good' viruses: the potential of virus-based therapeutics. Expert Opin Biol Ther 2020; 21:731-740. [PMID: 33322950 DOI: 10.1080/14712598.2021.1865304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Although viruses have generally been considered as pathogens ever since their discovery, recent research has revealed that they might assume a more important role in the survival and evolution of their hosts. Besides this, they also hold the potential as therapies for the treatment of infections, cancers, and other diseases, with several of them already commercially available on the market. In this review, we will focus on the use of different viruses for treating diseases.Areas covered: This is a comprehensive review of the application of viruses or virus-based strategies (including bacteriophages, oncolytic viruses, viral vector-based delivery, virus-like particles, and virosomes) for therapeutic purposes. The article provides an overview of the status quo of currently available virus-based therapeutics.Expert Opinion: The efficacy of virus-based therapies has been emphasized repeatedly in the clinical trials for virotherapy, gene delivery, and virus-like particles (VLPs), with multiple therapeutics approved and marketed. Compared with chemical and biological drugs, viruses represent a unique 'research niche.' As more virus-based therapeutics are moving down the pipeline, we shall expect to see a more diversified collection of related products being recognized and applied in clinical settings in the future.
Collapse
Affiliation(s)
- Qianyu Zhang
- Innovative Drug Research Centre (IDRC), Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, P. R. China
| | - Wen Wu
- Innovative Drug Research Centre (IDRC), Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, P. R. China
| | - Jinqiang Zhang
- Innovative Drug Research Centre (IDRC), Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, P. R. China
| | - Xuefeng Xia
- Innovative Drug Research Centre (IDRC), Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, P. R. China
| |
Collapse
|
43
|
Lin Y, Quan D, Chang RYK, Chow MYT, Wang Y, Li M, Morales S, Britton WJ, Kutter E, Li J, Chan HK. Synergistic activity of phage PEV20-ciprofloxacin combination powder formulation-A proof-of-principle study in a P. aeruginosa lung infection model. Eur J Pharm Biopharm 2020; 158:166-171. [PMID: 33253892 DOI: 10.1016/j.ejpb.2020.11.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/15/2020] [Accepted: 11/24/2020] [Indexed: 12/18/2022]
Abstract
Combination treatment using bacteriophage and antibiotics is potentially an advanced approach to combatting antimicrobial-resistant bacterial infections. We have recently developed an inhalable powder by co-spray drying Pseudomonas phage PEV20 with ciprofloxacin. The purpose of this study was to assess the in vivo effect of the powder using a neutropenic mouse model of acute lung infection. The synergistic activity of PEV20 and ciprofloxacin was investigated by infecting mice with P. aeruginosa, then administering freshly spray-dried single PEV20 (106 PFU/mg), single ciprofloxacin (0.33 mg/mg) or combined PEV20-ciprofloxacin treatment using a dry powder insufflator. Lung tissues were then harvested for colony counting and flow cytometry analysis at 24 h post-treatment. PEV20 and ciprofloxacin combination powder significantly reduced the bacterial load of clinical P. aeruginosa strain in mouse lungs by 5.9 log10 (p < 0.005). No obvious reduction in the bacterial load was observed when the animals were treated only with PEV20 or ciprofloxacin. Assessment of immunological responses in the lungs showed reduced inflammation associating with the bactericidal effect of the PEV20-ciprofloxacin powder. In conclusion, this study has demonstrated the synergistic potential of using the combination PEV20-ciprofloxacin powder for P. aeruginosa respiratory infections.
Collapse
Affiliation(s)
- Yu Lin
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Diana Quan
- Centenary Institute and Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Rachel Yoon Kyung Chang
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Michael Y T Chow
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Yuncheng Wang
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Mengyu Li
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | | | - Warwick J Britton
- Centenary Institute and Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | | | - Jian Li
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
44
|
Discovering the Molecular Determinants of Phaeobacter inhibens Susceptibility to Phaeobacter Phage MD18. mSphere 2020; 5:5/6/e00898-20. [PMID: 33148823 PMCID: PMC7643831 DOI: 10.1128/msphere.00898-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Bacteriophages have immense potential as antibiotic therapies and in genetic engineering. Understanding the mechanisms that bacteriophages implement to infect their hosts will allow researchers to manipulate these systems and adapt them to specific bacterial targets. In this study, we isolated a bacteriophage capable of infecting the marine alphaproteobacterium Phaeobacter inhibens and determined its mechanism of infection. Phaeobacter virus MD18, a novel species of bacteriophage isolated in Woods Hole, MA, exhibits potent lytic ability against P. inhibens and appears to be of the Siphoviridae morphotype. The genomic sequence of MD18 displayed significant similarity to another siphophage, the recently discovered Roseobacter phage DSS3P8, but genomic and phylogenetic analyses, assessing host range and a search of available metagenomes are all consistent with the conclusion that Phaeobacter phage MD18 is a novel lytic phage. We incubated MD18 with a library of barcoded P. inhibens transposon insertion mutants and identified 22 genes that appear to be required for phage predation of this host. Network analysis of these genes using genomic position, Gene Ontology (GO) term enrichment, and protein associations revealed that these genes are enriched for roles in assembly of a type IV pilus (T4P) and regulators of cellular morphology. Our results suggest that T4P serve as receptors for a novel marine virus that targets P. inhibens. IMPORTANCE Bacteriophages are useful nonantibiotic therapeutics for bacterial infections as well as threats to industries utilizing bacterial agents. This study identified Phaeobacter virus MD18, a phage antagonist of Phaeobacter inhibens, a bacterium with promising use as a probiotic for aquatic farming industries. Genomic analysis suggested that Phaeobacter phage MD18 has evolved to enhance its replication in P. inhibens by adopting favorable tRNA genes as well as through genomic sequence adaptation to resemble host codon usage. Lastly, a high-throughput analysis of P. inhibens transposon insertion mutants identified genes that modulate host susceptibility to phage MD18 and implicated the type IV pilus as the likely receptor recognized for adsorption. This study marks the first characterization of the relationship between P. inhibens and an environmentally sampled phage, which informs our understanding of natural threats to the bacterium and may promote the development of novel phage technologies for genetic manipulation of this host.
Collapse
|
45
|
Luong T, Salabarria AC, Roach DR. Phage Therapy in the Resistance Era: Where Do We Stand and Where Are We Going? Clin Ther 2020; 42:1659-1680. [DOI: 10.1016/j.clinthera.2020.07.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022]
|
46
|
Luscher A, Simonin J, Falconnet L, Valot B, Hocquet D, Chanson M, Resch G, Köhler T, van Delden C. Combined Bacteriophage and Antibiotic Treatment Prevents Pseudomonas aeruginosa Infection of Wild Type and cftr- Epithelial Cells. Front Microbiol 2020; 11:1947. [PMID: 32983005 PMCID: PMC7479825 DOI: 10.3389/fmicb.2020.01947] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/23/2020] [Indexed: 12/21/2022] Open
Abstract
With the increase of infections due to multidrug resistant bacterial pathogens and the shortage of antimicrobial molecules with novel targets, interest in bacteriophages as a therapeutic option has regained much attraction. Before the launch of future clinical trials, in vitro studies are required to better evaluate the efficacies and potential pitfalls of such therapies. Here we studied in an ex vivo human airway epithelial cell line model the efficacy of phage and ciprofloxacin alone and in combination to treat infection by Pseudomonas aeruginosa. The Calu-3 cell line and the isogenic CFTR knock down cell line (cftr-) infected apically with P. aeruginosa strain PAO1 showed a progressive reduction in transepithelial resistance during 24 h. Administration at 6 h p.i. of single phage, phage cocktails or ciprofloxacin alone prevented epithelial layer destruction at 24 h p.i. Bacterial regrowth, due to phage resistant mutants harboring mutations in LPS synthesis genes, occurred thereafter both in vitro and ex vivo. However, co-administration of two phages combined with ciprofloxacin efficiently prevented PAO1 regrowth and maintained epithelial cell integrity at 72 p.i. The phage/ciprofloxacin treatment did not induce an inflammatory response in the tested cell lines as determined by nanoString® gene expression analysis. We conclude that combination of phage and ciprofloxacin efficiently protects wild type and cftr- epithelial cells from infection by P. aeruginosa and emergence of phage resistant mutants without inducing an inflammatory response. Hence, phage-antibiotic combination should be a safe and promising anti-Pseudomonas therapy for future clinical trials potentially including cystic fibrosis patients.
Collapse
Affiliation(s)
- Alexandre Luscher
- Transplant Infectious Diseases Unit, Geneva University Hospitals, Geneva, Switzerland
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Juliette Simonin
- Department of Pediatrics, Gynecology and Obstetrics, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Léna Falconnet
- Transplant Infectious Diseases Unit, Geneva University Hospitals, Geneva, Switzerland
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Benoît Valot
- UMR CNRS 6249 Chrono-Environnement, University of Franche-Comté-Bourgogne, Besançon, France
- Bioinformatique et Big Data au Service de la Santé, UFR Santé, Université de Bourgogne Franche-Comté, Besançon, France
| | - Didier Hocquet
- UMR CNRS 6249 Chrono-Environnement, University of Franche-Comté-Bourgogne, Besançon, France
- Bioinformatique et Big Data au Service de la Santé, UFR Santé, Université de Bourgogne Franche-Comté, Besançon, France
- Department of Infection Control, University Hospital of Besançon, Besançon, France
| | - Marc Chanson
- Department of Pediatrics, Gynecology and Obstetrics, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Grégory Resch
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Thilo Köhler
- Transplant Infectious Diseases Unit, Geneva University Hospitals, Geneva, Switzerland
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Christian van Delden
- Transplant Infectious Diseases Unit, Geneva University Hospitals, Geneva, Switzerland
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
47
|
Transcriptomic determinants of the response of ST-111 Pseudomonas aeruginosa AG1 to ciprofloxacin identified by a top-down systems biology approach. Sci Rep 2020; 10:13717. [PMID: 32792590 PMCID: PMC7427096 DOI: 10.1038/s41598-020-70581-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that thrives in diverse environments and causes a variety of human infections. Pseudomonas aeruginosa AG1 (PaeAG1) is a high-risk sequence type 111 (ST-111) strain isolated from a Costa Rican hospital in 2010. PaeAG1 has both blaVIM-2 and blaIMP-18 genes encoding for metallo-β-lactamases, and it is resistant to β-lactams (including carbapenems), aminoglycosides, and fluoroquinolones. Ciprofloxacin (CIP) is an antibiotic commonly used to treat P. aeruginosa infections, and it is known to produce DNA damage, triggering a complex molecular response. In order to evaluate the effects of a sub-inhibitory CIP concentration on PaeAG1, growth curves using increasing CIP concentrations were compared. We then measured gene expression using RNA-Seq at three time points (0, 2.5 and 5 h) after CIP exposure to identify the transcriptomic determinants of the response (i.e. hub genes, gene clusters and enriched pathways). Changes in expression were determined using differential expression analysis and network analysis using a top–down systems biology approach. A hybrid model using database-based and co-expression analysis approaches was implemented to predict gene–gene interactions. We observed a reduction of the growth curve rate as the sub-inhibitory CIP concentrations were increased. In the transcriptomic analysis, we detected that over time CIP treatment resulted in the differential expression of 518 genes, showing a complex impact at the molecular level. The transcriptomic determinants were 14 hub genes, multiple gene clusters at different levels (associated to hub genes or as co-expression modules) and 15 enriched pathways. Down-regulation of genes implicated in several metabolism pathways, virulence elements and ribosomal activity was observed. In contrast, amino acid catabolism, RpoS factor, proteases, and phenazines genes were up-regulated. Remarkably, > 80 resident-phage genes were up-regulated after CIP treatment, which was validated at phenomic level using a phage plaque assay. Thus, reduction of the growth curve rate and increasing phage induction was evidenced as the CIP concentrations were increased. In summary, transcriptomic and network analyses, as well as the growth curves and phage plaque assays provide evidence that PaeAG1 presents a complex, concentration-dependent response to sub-inhibitory CIP exposure, showing pleiotropic effects at the systems level. Manipulation of these determinants, such as phage genes, could be used to gain more insights about the regulation of responses in PaeAG1 as well as the identification of possible therapeutic targets. To our knowledge, this is the first report of the transcriptomic analysis of CIP response in a ST-111 high-risk P. aeruginosa strain, in particular using a top-down systems biology approach.
Collapse
|
48
|
Phage-Antibiotic Synergy Is Driven by a Unique Combination of Antibacterial Mechanism of Action and Stoichiometry. mBio 2020; 11:mBio.01462-20. [PMID: 32753497 PMCID: PMC7407087 DOI: 10.1128/mbio.01462-20] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The continued rise in antibiotic resistance is precipitating a medical crisis. Bacteriophage (phage) has been hailed as one possible therapeutic option to augment the efficacy of antibiotics. However, only a few studies have addressed the synergistic relationship between phage and antibiotics. Here, we report a comprehensive analysis of phage-antibiotic interaction that evaluates synergism, additivism, and antagonism for all classes of antibiotics across clinically achievable stoichiometries. We combined an optically based real-time microtiter plate readout with a matrix-like heat map of treatment potencies to measure phage and antibiotic synergy (PAS), a process we term synography. Phage-antibiotic synography was performed against a pandemic drug-resistant clonal group of extraintestinal pathogenic Escherichia coli (ExPEC) with antibiotic levels blanketing the MIC across seven orders of viral titers. Our results suggest that, under certain conditions, phages provide an adjuvating effect by lowering the MIC for drug-resistant strains. Furthermore, synergistic and antagonistic interactions are highly dependent on the mechanism of bacterial inhibition by the class of antibiotic paired to the phage, and when synergism is observed, it suppresses the emergence of resistant cells. Host conditions that simulate the infection environment, including serum and urine, suppress PAS in a bacterial growth-dependent manner. Lastly, two different related phages that differed in their burst sizes produced drastically different synograms. Collectively, these data suggest lytic phages can resuscitate an ineffective antibiotic for previously resistant bacteria while also synergizing with antibiotics in a class-dependent manner, processes that may be dampened by lower bacterial growth rates found in host environments.IMPORTANCE Bacteriophage (phage) therapy is a promising approach to combat the rise of multidrug-resistant bacteria. Currently, the preferred clinical modality is to pair phage with an antibiotic, a practice thought to improve efficacy. However, antagonism between phage and antibiotics has been reported, the choice of phage and antibiotic is not often empirically determined, and the effect of the host factors on the effectiveness is unknown. Here, we interrogate phage-antibiotic interactions across antibiotics with different mechanisms of action. Our results suggest that phage can lower the working MIC for bacterial strains already resistant to the antibiotic, is dependent on the antibiotic class and stoichiometry of the pairing, and is dramatically influenced by the host microenvironment.
Collapse
|
49
|
Bacteriophages and Lysins as Possible Alternatives to Treat Antibiotic-Resistant Urinary Tract Infections. Antibiotics (Basel) 2020; 9:antibiotics9080466. [PMID: 32751681 PMCID: PMC7460213 DOI: 10.3390/antibiotics9080466] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 01/10/2023] Open
Abstract
Urinary tract infections represent a major public health problem as the rapid emergence of antibiotic-resistant strains among uropathogens is causing the failure of many current treatments. The use of bacteriophages (phages) and their derivatives to combat infectious diseases is an old approach that has been forgotten by the West for a long time, mostly due to the discovery and great success of antibiotics. In the present so-called “post-antibiotic era”, many researchers are turning their attention to the re-discovered phage therapy, as an effective alternative to antibiotics. Phage therapy includes the use of natural or engineered phages, as well as their purified lytic enzymes to destroy pathogenic strains. Many in vitro and in vivo studies have been conducted, and these have proved the great potential for this therapy against uropathogenic bacteria. Nevertheless, to date, the lack of appropriate clinical trials has hindered its widespread clinic application.
Collapse
|
50
|
Manohar P, Loh B, Athira S, Nachimuthu R, Hua X, Welburn SC, Leptihn S. Secondary Bacterial Infections During Pulmonary Viral Disease: Phage Therapeutics as Alternatives to Antibiotics? Front Microbiol 2020; 11:1434. [PMID: 32733404 PMCID: PMC7358648 DOI: 10.3389/fmicb.2020.01434] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/03/2020] [Indexed: 12/25/2022] Open
Abstract
Secondary bacterial infections manifest during or after a viral infection(s) and can lead to negative outcomes and sometimes fatal clinical complications. Research and development of clinical interventions is largely focused on the primary pathogen, with research on any secondary infection(s) being neglected. Here we highlight the impact of secondary bacterial infections and in particular those caused by antibiotic-resistant strains, on disease outcomes. We describe possible non-antibiotic treatment options, when small molecule drugs have no effect on the bacterial pathogen and explore the potential of phage therapy and phage-derived therapeutic proteins and strategies in treating secondary bacterial infections, including their application in combination with chemical antibiotics.
Collapse
Affiliation(s)
- Prasanth Manohar
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China.,The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Belinda Loh
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
| | - Sudarsanan Athira
- Antibiotic Resistance and Phage Therapy Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Ramesh Nachimuthu
- Antibiotic Resistance and Phage Therapy Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Susan C Welburn
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China.,Infection Medicine, Biomedical Sciences, Edinburgh Medical School, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| | - Sebastian Leptihn
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China.,Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Infection Medicine, Biomedical Sciences, Edinburgh Medical School, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|