1
|
Samarska A, Wiche O. Phytoextraction Options. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024. [PMID: 39217584 DOI: 10.1007/10_2024_263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Wastewaters often contain an array of economically valuable elements, including elements considered critical raw materials and elements for fertilizer production. Plant-based treatment approaches in constructed wetlands, open ponds, or hydroponic systems represent an eco-friendly and economical way to remove potentially toxic metal(loid)s from wastewater (phytoextraction). Concomitantly, the element-enriched biomass represents an important secondary raw material for bioenergy generation and the recovery of raw materials from the harvested plant biomass (phytomining). At present, phytoextraction in constructed wetlands is still considered a nascent technology that still requires more fundamental and applied research before it can be commercially applied. This chapter discusses the different roles of plants in constructed wetlands during the phytoextraction of economically valuable elements. It sheds light on the utilization of plant biomass in the recovery of raw materials from wastewater streams. Here, we consider phytoextraction of the commonly studied water pollutants (N, P, Zn, Cd, Pb, Cr) and expand this concept to a group of rather exotic metal(loid)s (Ge, REE, PGM) highlighting the role of phytoextraction in the face of climate change and finite resources of high-tech metals.
Collapse
Affiliation(s)
- Alla Samarska
- Applied Geoecology Group, Faculty of Natural and Environmental Sciences, Zittau/Görlitz University of Applied Sciences, Zittau, Germany
| | - Oliver Wiche
- Applied Geoecology Group, Faculty of Natural and Environmental Sciences, Zittau/Görlitz University of Applied Sciences, Zittau, Germany.
| |
Collapse
|
2
|
Epihov DZ, Banwart SA, McGrath SP, Martin DP, Steeley IL, Cobbold V, Kantola IB, Masters MD, DeLucia EH, Beerling DJ. Iron Chelation in Soil: Scalable Biotechnology for Accelerating Carbon Dioxide Removal by Enhanced Rock Weathering. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11970-11987. [PMID: 38913808 PMCID: PMC11238546 DOI: 10.1021/acs.est.3c10146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Enhanced rock weathering (EW) is an emerging atmospheric carbon dioxide removal (CDR) strategy being scaled up by the commercial sector. Here, we combine multiomics analyses of belowground microbiomes, laboratory-based dissolution studies, and incubation investigations of soils from field EW trials to build the case for manipulating iron chelators in soil to increase EW efficiency and lower costs. Microbial siderophores are high-affinity, highly selective iron (Fe) chelators that enhance the uptake of Fe from soil minerals into cells. Applying RNA-seq metatranscriptomics and shotgun metagenomics to soils and basalt grains from EW field trials revealed that microbial communities on basalt grains significantly upregulate siderophore biosynthesis gene expression relative to microbiomes of the surrounding soil. Separate in vitro laboratory incubation studies showed that micromolar solutions of siderophores and high-affinity synthetic chelator (ethylenediamine-N,N'-bis-2-hydroxyphenylacetic acid, EDDHA) accelerate EW to increase CDR rates. Building on these findings, we develop a potential biotechnology pathway for accelerating EW using the synthetic Fe-chelator EDDHA that is commonly used in agronomy to alleviate the Fe deficiency in high pH soils. Incubation of EW field trial soils with potassium-EDDHA solutions increased potential CDR rates by up to 2.5-fold by promoting the abiotic dissolution of basalt and upregulating microbial siderophore production to further accelerate weathering reactions. Moreover, EDDHA may alleviate potential Fe limitation of crops due to rising soil pH with EW over time. Initial cost-benefit analysis suggests potassium-EDDHA could lower EW-CDR costs by up to U.S. $77 t CO2 ha-1 to improve EW's competitiveness relative to other CDR strategies.
Collapse
Affiliation(s)
- Dimitar Z Epihov
- Levehulme Centre for Climate Change Mitigation, School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K
| | - Steven A Banwart
- Global Food and Environment Institute, University of Leeds, Leeds LS2 9JT, U.K
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, U.K
| | - Steve P McGrath
- Sustainable Soils and Crops, Rothamsted Research, Harpenden AL5 2JQ, U.K
| | - David P Martin
- Levehulme Centre for Climate Change Mitigation, School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K
| | - Isabella L Steeley
- Levehulme Centre for Climate Change Mitigation, School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K
| | - Vicky Cobbold
- Levehulme Centre for Climate Change Mitigation, School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K
| | - Ilsa B Kantola
- Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Michael D Masters
- Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Evan H DeLucia
- Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - David J Beerling
- Levehulme Centre for Climate Change Mitigation, School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K
| |
Collapse
|
3
|
de Souza Rodrigues R, de Souza AQL, Feitoza MDO, Alves TCL, Barbosa AN, da Silva Santiago SRS, de Souza ADL. Biotechnological potential of actinomycetes in the 21st century: a brief review. Antonie Van Leeuwenhoek 2024; 117:82. [PMID: 38789815 DOI: 10.1007/s10482-024-01964-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 04/07/2024] [Indexed: 05/26/2024]
Abstract
This brief review aims to draw attention to the biotechnological potential of actinomycetes. Their main uses as sources of antibiotics and in agriculture would be enough not to neglect them; however, as we will see, their biotechnological application is much broader. Far from intending to exhaust this issue, we present a short survey of the research involving actinomycetes and their applications published in the last 23 years. We highlight a perspective for the discovery of new active ingredients or new applications for the known metabolites of these microorganisms that, for approximately 80 years, since the discovery of streptomycin, have been the main source of antibiotics. Based on the collected data, we organize the text to show how the cosmopolitanism of actinomycetes and the evolutionary biotic and abiotic ecological relationships of actinomycetes translate into the expression of metabolites in the environment and the richness of biosynthetic gene clusters, many of which remain silenced in traditional laboratory cultures. We also present the main strategies used in the twenty-first century to promote the expression of these silenced genes and obtain new secondary metabolites from known or new strains. Many of these metabolites have biological activities relevant to medicine, agriculture, and biotechnology industries, including candidates for new drugs or drug models against infectious and non-infectious diseases. Below, we present significant examples of the antimicrobial spectrum of actinomycetes, which is the most commonly investigated and best known, as well as their non-antimicrobial spectrum, which is becoming better known and increasingly explored.
Collapse
Affiliation(s)
- Rafael de Souza Rodrigues
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil.
- Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Av. General Rodrigo Octavio Jordão Ramos, 6200, Coroado I, Manaus, Amazonas, CEP 69.077-000, Brazil.
| | - Antonia Queiroz Lima de Souza
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
- Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Av. General Rodrigo Octavio Jordão Ramos, 6200, Coroado I, Manaus, Amazonas, CEP 69.077-000, Brazil
- Faculdade de Ciências Agrárias, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | | | | | - Anderson Nogueira Barbosa
- Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Av. General Rodrigo Octavio Jordão Ramos, 6200, Coroado I, Manaus, Amazonas, CEP 69.077-000, Brazil
| | - Sarah Raquel Silveira da Silva Santiago
- Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Av. General Rodrigo Octavio Jordão Ramos, 6200, Coroado I, Manaus, Amazonas, CEP 69.077-000, Brazil
| | - Afonso Duarte Leão de Souza
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
- Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Av. General Rodrigo Octavio Jordão Ramos, 6200, Coroado I, Manaus, Amazonas, CEP 69.077-000, Brazil
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| |
Collapse
|
4
|
Oyedoh OP, Yang W, Dhanasekaran D, Santoyo G, Glick BR, Babalola OO. Rare rhizo-Actinomycetes: A new source of agroactive metabolites. Biotechnol Adv 2023; 67:108205. [PMID: 37356598 DOI: 10.1016/j.biotechadv.2023.108205] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
Numerous biotic and abiotic stress in some geographical regions predisposed their agricultural matrix to challenges threatening plant productivity, health, and quality. In curbing these threats, different customary agrarian principles have been created through research and development, ranging from chemical inputs and genetic modification of crops to the recently trending smart agricultural technology. But the peculiarities associated with these methods have made agriculturists rely on plant rhizospheric microbiome services, particularly bacteria. Several bacterial resources like Proteobacteria, Firmicutes, Acidobacteria, and Actinomycetes (Streptomycetes) are prominent as bioinoculants or the application of their by-products in alleviating biotic/abiotic stress have been extensively studied, with a dearth in the application of rare Actinomycetes metabolites. Rare Actinomycetes are known for their colossal genome, containing well-preserved genes coding for prolific secondary metabolites with many agroactive functionalities that can revolutionize the agricultural industry. Therefore, the imperativeness of this review to express the occurrence and distributions of rare Actinomycetes diversity, plant and soil-associated habitats, successional track in the rhizosphere under diverse stress, and their agroactive metabolite characteristics and functionalities that can remediate the challenges associated with agricultural productivity.
Collapse
Affiliation(s)
- Oghoye Priscilla Oyedoh
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Wei Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dharumadurai Dhanasekaran
- Department of Microbiology, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico-Biolόgicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa.
| |
Collapse
|
5
|
Schwabe R, Dittrich C, Kadner J, Rudi Senges CH, Bandow JE, Tischler D, Schlömann M, Levicán G, Wiche O. Secondary metabolites released by the rhizosphere bacteria Arthrobacter oxydans and Kocuria rosea enhance plant availability and soil-plant transfer of germanium (Ge) and rare earth elements (REEs). CHEMOSPHERE 2021; 285:131466. [PMID: 34271468 DOI: 10.1016/j.chemosphere.2021.131466] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 05/02/2023]
Abstract
Here, we explore effects of metallophore-producing rhizobacteria on the plant availability of germanium (Ge) and rare earth elements (REEs). Five isolates of the four species Rhodococcus erythropolis, Arthrobacter oxydans, Kocuria rosea and Chryseobacterium koreense were characterized regarding their production of element-chelators using genome-mining, LC-MS/MS analysis and solid CAS-assay. Additionally, a soil elution experiment was conducted in order to identify isolates that increase solubility of Ge and REEs in soil solution. A. oxydans ATW2 and K. rosea ATW4 released desferrioxamine-, bacillibactin- and surfactin-like compounds that mobilized Ge and REEs as well as P, Fe, Si and Ca in soil. Subsequently, oat, rapeseed and reed canary grass were cultivated on soil and sand and treated with cells and iron depleted culture supernatants of A. oxydans ATW2 and K. rosea ATW4. Inoculation increased plant yield and shoot phosphorus (P), manganese (Mn), Ge and REE concentrations. However, effects of the inoculation varied substantially between the growth substrates and plant species. On sand, A. oxydans ATW2 increased accumulation of REEs in all plant species and root-shoot translocation in rapeseed, while K. rosea ATW4 enhanced REE accumulation in rapeseed only, without effects on other plant species. Sand-cultured oat plants showed increased Ge accumulation and root-shoot translocation in presence of A. oxydans ATW2 cells and K. rosea ATW4 supernatant; however, there was no effect on other plant species, irrespective the growth substrate used. In contrast, soil-cultured rapeseed showed enhanced REE accumulation in presence of cells of A. oxydans ATW2 while there were no effects on other plant species and Ge. The processes involved are not yet fully understood. Nevertheless, we demonstrated that chemical microbe-soil-plant relationships influence plant availability of nutrients together with Ge and REEs, which has major implications on our understanding of biogeochemical element cycling and development of sustainable bioremediation and biomining technologies.
Collapse
Affiliation(s)
- Ringo Schwabe
- Institute of Biosciences, TU Bergakademie Freiberg, Leipziger Straße 29, 09599, Freiberg, Germany; Laboratorio de Microbiología Básica y Aplicada, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo ÒHiggins, 3363, Santiago, Chile
| | - Christine Dittrich
- Institute of Biosciences, TU Bergakademie Freiberg, Leipziger Straße 29, 09599, Freiberg, Germany
| | - Julian Kadner
- Institute of Biosciences, TU Bergakademie Freiberg, Leipziger Straße 29, 09599, Freiberg, Germany
| | | | - Julia Elisabeth Bandow
- Applied Microbiology, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Dirk Tischler
- Microbial Biotechnology, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Michael Schlömann
- Institute of Biosciences, TU Bergakademie Freiberg, Leipziger Straße 29, 09599, Freiberg, Germany
| | - Gloria Levicán
- Laboratorio de Microbiología Básica y Aplicada, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo ÒHiggins, 3363, Santiago, Chile
| | - Oliver Wiche
- Institute of Biosciences, TU Bergakademie Freiberg, Leipziger Straße 29, 09599, Freiberg, Germany.
| |
Collapse
|
6
|
Isolation and characterization of arsenic-binding siderophores from Rhodococcus erythropolis S43: role of heterobactin B and other heterobactin variants. Appl Microbiol Biotechnol 2021; 105:1731-1744. [PMID: 33511442 DOI: 10.1007/s00253-021-11123-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/05/2021] [Accepted: 01/16/2021] [Indexed: 10/22/2022]
Abstract
Rhodococcus erythropolis S43 is an arsenic-tolerant actinobacterium isolated from an arsenic contaminated soil. It has been shown to produce siderophores when exposed to iron-depleting conditions. In this work, strain S43 was shown to have the putative heterobactin production cluster htbABCDEFGHIJ(K). To induce siderophore production, the strain was cultured in iron-depleted medium in presence and absence of sodium arsenite. The metabolites produced by S43 in the colorimetric CAS and As-mCAS assays, respectively, showed iron- and arsenic-binding properties reaching a chelating activity equivalent to 1.6 mM of desferroxamine B in the supernatant of the culture without arsenite. By solid-phase extraction and two subsequent HPLC separations from both cultures, several fractions were obtained, which contained CAS and As-mCAS activity and which were submitted to LC-MS analyses including fragmentation of the major peaks. The mixed-type siderophore heterobactin B occurred in all analyzed fractions, and the mass of the "Carrano heterobactin A" was detected as well. In addition, generation of a molecular network based on fragment spectra revealed the occurrence of several other compounds with heterobactin-like structures, among them a heterobactin B variant with an additional CH2O moiety. 1H NMR analyses obtained for preparations from the first HPLC step showed signals of heterobactin B and of "Carrano heterobactin A" with different relative amounts in all three samples. In summary, our results reveal that in R. erythropolis S43, a pool of heterobactin variants is responsible for the iron- and arsenic-binding activities. KEY POINTS: • Several heterobactin variants are the arsenic-binding compounds in Rhodococcus erythropolis S43. • Heterobactin B and the compound designated heterobactin A by Carrano are of importance. • In addition, other heterobactins with ornithine in the backbone exist, e.g., the new heterobactin C.
Collapse
|
7
|
Shiny Matilda C, Mannully ST, Rao VP, Shanthi C. Chromium binding Bacillus cereus VITSH1-a promising candidate for heavy metal clean up. Lett Appl Microbiol 2021; 72:517-525. [PMID: 33331052 DOI: 10.1111/lam.13441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 11/28/2022]
Abstract
Bacteria survive metal stress by several mechanisms and metal binding is one such mechanism which has been screened in the present study to investigate the survival strategies of metal resistant bacteria. The production of siderophores, a metal chelating agent, was detected by chrome azurol S agar assay. The changes in cell wall studied by analysing the peptidoglycan and teichoic acid content indicated an increase in the cell wall content. Evaluation of morphological and physiological alterations like cell size, granularity analysed by SEM and flow cytometry analysis revealed an increase in cell size and granularity respectively. The transformation of phosphates monitored by 31 P NMR analysis indicated the presence of inorganic phosphate. Based on the cell wall changes and the 31 P NMR analysis, the surface charge of the organism was studied by zeta potential which displayed a difference at pH7.
Collapse
Affiliation(s)
- C Shiny Matilda
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - S T Mannully
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - V P Rao
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - C Shanthi
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
8
|
Hofmann M, Heine T, Malik L, Hofmann S, Joffroy K, Senges CHR, Bandow JE, Tischler D. Screening for Microbial Metal-Chelating Siderophores for the Removal of Metal Ions from Solutions. Microorganisms 2021; 9:microorganisms9010111. [PMID: 33466508 PMCID: PMC7824959 DOI: 10.3390/microorganisms9010111] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 12/30/2020] [Indexed: 11/17/2022] Open
Abstract
To guarantee the supply of critical elements in the future, the development of new technologies is essential. Siderophores have high potential in the recovery and recycling of valuable metals due to their metal-chelating properties. Using the Chrome azurol S assay, 75 bacterial strains were screened to obtain a high-yield siderophore with the ability to complex valuable critical metal ions. The siderophore production of the four selected strains Nocardioides simplex 3E, Pseudomonas chlororaphis DSM 50083, Variovorax paradoxus EPS, and Rhodococcus erythropolis B7g was optimized, resulting in significantly increased siderophore production of N. simplex and R. erythropolis. Produced siderophore amounts and velocities were highly dependent on the carbon source. The genomes of N. simplex and P. chlororaphis were sequenced. Bioinformatical analyses revealed the occurrence of an achromobactin and a pyoverdine gene cluster in P. chlororaphis, a heterobactin and a requichelin gene cluster in R. erythropolis, and a desferrioxamine gene cluster in N. simplex. Finally, the results of the previous metal-binding screening were validated by a proof-of-concept development for the recovery of metal ions from aqueous solutions utilizing C18 columns functionalized with siderophores. We demonstrated the recovery of the critical metal ions V(III), Ga(III), and In(III) from mixed metal solutions with immobilized siderophores of N. simplex and R. erythropolis.
Collapse
Affiliation(s)
- Marika Hofmann
- Institute of Biosciences, TU Bergakademie Freiberg, 09599 Freiberg, Germany; (T.H.); (L.M.); (S.H.); (K.J.)
- Correspondence: (M.H.); (D.T.)
| | - Thomas Heine
- Institute of Biosciences, TU Bergakademie Freiberg, 09599 Freiberg, Germany; (T.H.); (L.M.); (S.H.); (K.J.)
| | - Luise Malik
- Institute of Biosciences, TU Bergakademie Freiberg, 09599 Freiberg, Germany; (T.H.); (L.M.); (S.H.); (K.J.)
| | - Sarah Hofmann
- Institute of Biosciences, TU Bergakademie Freiberg, 09599 Freiberg, Germany; (T.H.); (L.M.); (S.H.); (K.J.)
| | - Kristin Joffroy
- Institute of Biosciences, TU Bergakademie Freiberg, 09599 Freiberg, Germany; (T.H.); (L.M.); (S.H.); (K.J.)
| | - Christoph Helmut Rudi Senges
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, 44780 Bochum, Germany; (C.H.R.S.); (J.E.B.)
| | - Julia Elisabeth Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, 44780 Bochum, Germany; (C.H.R.S.); (J.E.B.)
| | - Dirk Tischler
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, 44780 Bochum, Germany
- Correspondence: (M.H.); (D.T.)
| |
Collapse
|
9
|
Cultivation dependent formation of siderophores by Gordonia rubripertincta CWB2. Microbiol Res 2020; 238:126481. [DOI: 10.1016/j.micres.2020.126481] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/31/2020] [Accepted: 04/15/2020] [Indexed: 11/24/2022]
|
10
|
Mügge C, Heine T, Baraibar AG, van Berkel WJH, Paul CE, Tischler D. Flavin-dependent N-hydroxylating enzymes: distribution and application. Appl Microbiol Biotechnol 2020; 104:6481-6499. [PMID: 32504128 PMCID: PMC7347517 DOI: 10.1007/s00253-020-10705-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/18/2020] [Accepted: 05/24/2020] [Indexed: 02/06/2023]
Abstract
Amino groups derived from naturally abundant amino acids or (di)amines can be used as "shuttles" in nature for oxygen transfer to provide intermediates or products comprising N-O functional groups such as N-hydroxy, oxazine, isoxazolidine, nitro, nitrone, oxime, C-, S-, or N-nitroso, and azoxy units. To this end, molecular oxygen is activated by flavin, heme, or metal cofactor-containing enzymes and transferred to initially obtain N-hydroxy compounds, which can be further functionalized. In this review, we focus on flavin-dependent N-hydroxylating enzymes, which play a major role in the production of secondary metabolites, such as siderophores or antimicrobial agents. Flavoprotein monooxygenases of higher organisms (among others, in humans) can interact with nitrogen-bearing secondary metabolites or are relevant with respect to detoxification metabolism and are thus of importance to understand potential medical applications. Many enzymes that catalyze N-hydroxylation reactions have specific substrate scopes and others are rather relaxed. The subsequent conversion towards various N-O or N-N comprising molecules is also described. Overall, flavin-dependent N-hydroxylating enzymes can accept amines, diamines, amino acids, amino sugars, and amino aromatic compounds and thus provide access to versatile families of compounds containing the N-O motif. Natural roles as well as synthetic applications are highlighted. Key points • N-O and N-N comprising natural and (semi)synthetic products are highlighted. • Flavin-based NMOs with respect to mechanism, structure, and phylogeny are reviewed. • Applications in natural product formation and synthetic approaches are provided. Graphical abstract .
Collapse
Affiliation(s)
- Carolin Mügge
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Thomas Heine
- Environmental Microbiology, Faculty of Chemistry and Physics, TU Bergakademie Freiberg, Leipziger Str. 29, 09599, Freiberg, Germany
| | - Alvaro Gomez Baraibar
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstr. 150, 44780, Bochum, Germany
- Rottendorf Pharma GmbH, Ostenfelder Str. 51-61, 59320, Ennigerloh, Germany
| | - Willem J H van Berkel
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Caroline E Paul
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, HZ 2629, Delft, The Netherlands
| | - Dirk Tischler
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstr. 150, 44780, Bochum, Germany.
| |
Collapse
|
11
|
Schwabe R, Senges CHR, Bandow JE, Heine T, Lehmann H, Wiche O, Schlömann M, Levicán G, Tischler D. Data on metal-chelating, -immobilisation and biosorption properties by Gordonia rubripertincta CWB2 in dependency on rare earth adaptation. Data Brief 2020; 31:105739. [PMID: 32490092 PMCID: PMC7262544 DOI: 10.1016/j.dib.2020.105739] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 05/15/2020] [Indexed: 12/04/2022] Open
Abstract
Recent studies have shown that the metal adaptation of Actinobacteria offers a rich source of metal inducible environmentally relevant bio-compounds and molecules. These interact through biosorption towards the unique cell walls or via metal chelating activity of metallophors with trace elements, heavy metals and even with lanthanides to overcome limitations and toxic concentrations. Herein, the purpose is to investigate the adaptation potential of Gordonia rubripertincta CWB2 in dependence of the rare earths and to determine if we can utilize promising metallophore metal affinities for metal separation from aquatic solutions. For details on data interpretation and applicability of siderophores we refer to the related article entitled "Cultivation dependent formation of siderophores by Gordonia rubripertincta CWB2" [1]. The respective workflow comprises a metal adaptation method to demonstrate effects on bacterial growth, pH, metallophore production, and metabolic change. All this was evaluated by LC-MS/MS and effects on biosorption of rare earths was verified by ICP-MS. Furthermore, we were able to carry out batch metal adsorption and desorption studies of metallophores entrapped in inorganic polymers of tetramethoxysilane (TMOS) to determine metal chelating capacities and selective enrichment effects from model solutions. The adaptation potential of strain CWB2 at increased erbium and manganese concentrations was verified by increased chelating activity on agar plates, in liquid assays and demonstrated by the successful enrichment of erbium by metallophore-functionalized TMOS-polymers from an aquatic model solution. Furthermore, the number of detected compounds in dependency of rare earths differ in spectral counts and diversity compared to the wild type. Finally, the biosorption of rare earths for the selected adaptation was increased significantly up to 2-fold compared to the wild-type. Overall a holistic approach to metal stress was utilised, integrating a bacterial erbium adaptation, metal chelating, biosorption of lanthanides and immobilization as well as enrichment of metals using metallophore functionalized inorganic TMOS polymers for separation of metals from aquatic model solutions.
Collapse
Affiliation(s)
- Ringo Schwabe
- Institute of Biosciences, Environmental Microbiology Group, TU Bergakademie Freiberg, Leipziger Straße 29, 09599 Freiberg, Germany
- Institute of Biosciences, Biology and Ecology Group, TU Bergakademie Freiberg, Leipziger Straße 29, 09599 Freiberg, Germany
| | - Christoph Helmut Rudi Senges
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Julia Elisabeth Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Thomas Heine
- Institute of Biosciences, Environmental Microbiology Group, TU Bergakademie Freiberg, Leipziger Straße 29, 09599 Freiberg, Germany
| | - Henry Lehmann
- Institute of Informatic, TU Bergakademie Freiberg, Bernhard-von-Cotta Straße 2, 09599 Freiberg, Germany
| | - Oliver Wiche
- Institute of Biosciences, Biology and Ecology Group, TU Bergakademie Freiberg, Leipziger Straße 29, 09599 Freiberg, Germany
| | - Michael Schlömann
- Institute of Biosciences, Environmental Microbiology Group, TU Bergakademie Freiberg, Leipziger Straße 29, 09599 Freiberg, Germany
| | - Gloria Levicán
- Laboratorio de Microbiología Básica y Aplicada, Facultad de Química y Biología, Universidad de Santiago, Chile
| | - Dirk Tischler
- Institute of Biosciences, Environmental Microbiology Group, TU Bergakademie Freiberg, Leipziger Straße 29, 09599 Freiberg, Germany
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| |
Collapse
|
12
|
Sheng M, Jia H, Zhang G, Zeng L, Zhang T, Long Y, Lan J, Hu Z, Zeng Z, Wang B, Liu H. Siderophore Production by Rhizosphere Biological Control Bacteria Brevibacillus brevis GZDF3 of Pinellia ternata and Its Antifungal Effects on Candida albicans. J Microbiol Biotechnol 2020; 30:689-699. [PMID: 32482934 PMCID: PMC9728291 DOI: 10.4014/jmb.1910.10066] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/18/2020] [Indexed: 12/15/2022]
Abstract
Brevibacillus brevis GZDF3 is a gram-positive, plant growth-promoting rhizosphere bacterium (PGPR) isolated from the rhizosphere soil of Pinellia ternata (an important herb in traditional Chinese medicine). The GZDF3 strain produces certain active compounds, such as siderophores, which are the final metabolite products of non-ribosomal peptide synthetase (NRPS) and independent non-ribosomal peptide synthetase (NIS) activity. With the present study, we attempted to investigate the siderophore production characteristics and conditions of Bacillus sp. GZDF3. The antibacterial activity of the siderophores on pathogenic fungi was also investigated. Optimal conditions for the synthesis of siderophores were determined by single factor method, using sucrose 15 g/l, asparagine 2 g/l, 32°C, and 48 h. The optimized sucrose asparagine medium significantly increased the production of siderophores, from 27.09% to 54.99%. Moreover, the effects of different kinds of metal ions on siderophore production were explored here. We found that Fe3+ and Cu2+ significantly inhibited the synthesis of siderophores. The preliminary separation and purification of siderophores by immobilized-metal affinity chromatography (IMAC) provides strong antibacterial activity against Candida albicans. The synergistic effect of siderophores and amphotericin B was also demonstrated. Our results have shown that the GZDF3 strain could produce a large amount of siderophores with strong antagonistic activity, which is helpful in the development of new biological control agents.
Collapse
Affiliation(s)
- Miaomiao Sheng
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang 550025, Guizhou, P.R. China
| | - Huake Jia
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang 550025, Guizhou, P.R. China
| | - Gongyou Zhang
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang 550025, Guizhou, P.R. China
| | - Lina Zeng
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang 550025, Guizhou, P.R. China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering, Guizhou Medical University, Guiyang 55005, Guizhou, P.R. China
| | - Tingting Zhang
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang 550025, Guizhou, P.R. China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering, Guizhou Medical University, Guiyang 55005, Guizhou, P.R. China
| | - Yaohang Long
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang 550025, Guizhou, P.R. China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering, Guizhou Medical University, Guiyang 55005, Guizhou, P.R. China
| | - Jing Lan
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang 550025, Guizhou, P.R. China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering, Guizhou Medical University, Guiyang 55005, Guizhou, P.R. China
| | - Zuquan Hu
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang 550025, Guizhou, P.R. China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering, Guizhou Medical University, Guiyang 55005, Guizhou, P.R. China
| | - Zhu Zeng
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang 550025, Guizhou, P.R. China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering, Guizhou Medical University, Guiyang 55005, Guizhou, P.R. China
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou, P.R. China
| | - Bing Wang
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang 550025, Guizhou, P.R. China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering, Guizhou Medical University, Guiyang 55005, Guizhou, P.R. China
| | - Hongmei Liu
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang 550025, Guizhou, P.R. China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering, Guizhou Medical University, Guiyang 55005, Guizhou, P.R. China
| |
Collapse
|
13
|
Rasheed A, Carvalho AAC, de Carvalho GGA, Ghous T, Nomura CS, Esposito BP. Chromium removal from aqueous solutions using new silica gel conjugates of desferrioxamine or diethylenetriaminepentaacetic acid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:15635-15644. [PMID: 32078726 DOI: 10.1007/s11356-020-08097-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Desferrioxamine (DFO) and diethylenetriaminepentaacetic acid (DTPA) conjugated with silica gel (IDFOSG and IDTPASG, respectively) were evaluated as adsorbents for chromium in aqueous solutions. Different parameters affecting adsorption such as pH, sorbent dosage, contact time, sample volume and potential of interfering ions have been optimized. The optimum pH for chromium binding was 4 for 100 mg of adsorbents at 5 min of table shaking with 5 mL sample volume of chromium solutions. Langmuir adsorption model described the removal of chromium ions. The adsorption capacity for chromium was 90% for IDFOSG and 83% for IDTPASG in single solutions, and at least 75% in multielemental solutions. Considering the removal efficacy, regeneration and stability, DFO-grafted silica gel was generally superior to its DTPA counterpart and may be applied to the removal of traces of chromium species from natural waters.
Collapse
Affiliation(s)
- Aamir Rasheed
- Department of Chemistry, University of Azad Jammu and Kashmir, Muzaffarabad, Azad Kashmir, 13100, Pakistan
| | | | | | - Tahseen Ghous
- Department of Chemistry, Mirpur University of Science & Technology (MUST), Mirpur, Azad Jammu and Kashmir, 10250, Pakistan
| | - Cassiana Seimi Nomura
- Department of Fundamental Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP, 05508-000, Brazil
| | - Breno Pannia Esposito
- Department of Fundamental Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
14
|
Eida AA, Bougouffa S, Alam I, Saad MM, Hirt H. Complete genome sequence of the endophytic bacterium Cellulosimicrobium sp. JZ28 isolated from the root endosphere of the perennial desert tussock grass Panicum turgidum. Arch Microbiol 2020; 202:1563-1569. [PMID: 32172289 DOI: 10.1007/s00203-020-01859-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/01/2020] [Accepted: 03/04/2020] [Indexed: 02/04/2023]
Abstract
Cellulosimicrobium sp. JZ28, a root endophytic bacterium from the desert plant Panicum turgidum, was previously identified as a plant growth-promoting bacterium. The genome of JZ28 consists of a 4378,193 bp circular chromosome and contains 3930 CDSs with an average GC content of 74.5%. Whole-genome sequencing analysis revealed that JZ28 was closely related to C. aquatile 3 bp. The genome harbors genes responsible for protection against oxidative, osmotic and salinity stresses, such as the production of osmoprotectants. It also contains genes with a role in the production of volatiles, such as hydrogen sulfide, which promote biotic and abiotic stress tolerance in plants. The presence of three copies of chitinase genes indicates a possible role of JZ28 as biocontrol agent against fungal pathogens, while a number of genes for the degradation of plant biopolymers indicates potential application in industrial processes. Genome sequencing and mining of culture-dependent collections of bacterial endophytes from desert plants provide new opportunities for biotechnological applications.
Collapse
Affiliation(s)
- Abdul Aziz Eida
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Salim Bougouffa
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- BioScience Core Lab, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Intikhab Alam
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Maged M Saad
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia.
| | - Heribert Hirt
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9, 1030, Vienna, Austria
| |
Collapse
|
15
|
Proença DN, Heine T, Senges CHR, Bandow JE, Morais PV, Tischler D. Bacterial Metabolites Produced Under Iron Limitation Kill Pinewood Nematode and Attract Caenorhabditis elegans. Front Microbiol 2019; 10:2166. [PMID: 31608025 PMCID: PMC6761702 DOI: 10.3389/fmicb.2019.02166] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/03/2019] [Indexed: 11/19/2022] Open
Abstract
Pine Wilt Disease (PWD) is caused by Bursaphelenchus xylophilus, the pinewood nematode, and affects several species of pine trees worldwide. The ecosystem of the Pinus pinaster trees was investigated as a source of bacteria producing metabolites affecting this ecosystem: P. pinaster trees as target-plant, nematode as disease effector and its insect-vector as shuttle. For example, metals and metal-carrying compounds contribute to the complex tree-ecosystems. This work aimed to detect novel secondary metabolites like metallophores and related molecules produced under iron limitation by PWD-associated bacteria and to test their activity on nematodes. After screening 357 bacterial strains from Portugal and United States, two promising metallophore-producing strains Erwinia sp. A41C3 and Rouxiella sp. Arv20#4.1 were chosen and investigated in more detail. The genomes of these strains were sequenced, analyzed, and used to detect genetic potential for secondary metabolite production. A combinatorial approach of liquid chromatography-coupled tandem mass spectrometry (LC-MS) linked to molecular networking was used to describe these compounds. Two major metabolites were detected by HPLC analyses and described. One HPLC fraction of strain Arv20#4.1 showed to be a hydroxamate-type siderophore with higher affinity for chelation of Cu. The HPLC fraction of strain A41C3 with highest metal affinity showed to be a catecholate-type siderophore with higher affinity for chelation of Fe. LC-MS allowed the identification of several desferrioxamines from strain Arv20#4.1, in special desferrioxamine E, but no hit was obtained in case of strain A41C3 which might indicate that it is something new. Bacteria and their culture supernatants showed ability to attract C. elegans. HPLC fractions of those supernatant-extracts of Erwinia strain A41C3, enriched with secondary metabolites such as siderophores, were able to kill pinewood nematode. These results suggest that metabolites secreted under iron limitation have potential to biocontrol B. xylophilus and for management of Pine Wilt Disease.
Collapse
Affiliation(s)
- Diogo Neves Proença
- Department of Life Sciences and Laboratory of Environmental Microbiology of CEMMPRE, University of Coimbra, Coimbra, Portugal
| | - Thomas Heine
- Environmental Microbiology, TU Bergakademie Freiberg, Freiberg, Germany
| | - Christoph H. R. Senges
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Julia E. Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Paula V. Morais
- Department of Life Sciences and Laboratory of Environmental Microbiology of CEMMPRE, University of Coimbra, Coimbra, Portugal
| | - Dirk Tischler
- Environmental Microbiology, TU Bergakademie Freiberg, Freiberg, Germany
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
16
|
Jain R, Fan S, Kaden P, Tsushima S, Foerstendorf H, Barthen R, Lehmann F, Pollmann K. Recovery of gallium from wafer fabrication industry wastewaters by Desferrioxamine B and E using reversed-phase chromatography approach. WATER RESEARCH 2019; 158:203-212. [PMID: 31035197 DOI: 10.1016/j.watres.2019.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/02/2019] [Accepted: 04/05/2019] [Indexed: 06/09/2023]
Abstract
Gallium (Ga) is a critical element in developing renewable energy generation and energy efficient systems. The supply of Ga is at risk and needed recycling technologies for its availability in future. This study demonstrated the recovery of Ga3+ from low gallium concentrated wafer fabrication industry wastewaters using the siderophores desferrioxamine B (DFOB) and desferrioxamine E (DFOE). The complexation of Ga3+ by DFOB and DFOE was through hydroxamate group as demonstrated by infrared spectroscopy, nuclear magnetic resonance and density functional theory calculations. The high selectivity of DFOB/E towards Ga3+ was observed due to the formation of highly stable complex. Indeed, due to the formation of such high stability complex, the DFOB and DFOE were able to successfully complex 100% Ga in the two different process water from wafer fabrication industry. For the recovery of the siderophores, a high rate of decomplexation of Ga (>90%) was achieved upon addition of 6 times excess of ethylenediaminetetraacetic acid (EDTA) at pH of 3.5. More than 95% of Ga-DFOB and Ga-DFOE complex were recovered with purity (% of Ga moles in comparison to total moles of metals) of 69.8 and 92.9%, respectively by application of a C18 reversed-phase chromatography column. This study, for the first time, demonstrated a technical solution to the recovery of Ga3+ from the low concentrated wastewater based on siderophores and reversed-phase chromatography. A German patent application had been filed for this technology.
Collapse
Affiliation(s)
- Rohan Jain
- Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Bautzner Landstrasse 400, 01328, Dresden, Germany.
| | - Siyuan Fan
- Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Peter Kaden
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Satoru Tsushima
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstrasse 400, 01328, Dresden, Germany; Laboratory for Advanced Nuclear Energy, Tokyo Institute of Technology, Meguro, Tokyo, 152-8550, Japan
| | - Harald Foerstendorf
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Robert Barthen
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Falk Lehmann
- Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Katrin Pollmann
- Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Bautzner Landstrasse 400, 01328, Dresden, Germany
| |
Collapse
|