1
|
Varga AG, Reid BT, Maletz SN, Dossat AM, Levitt ES. Opposing control of the respiratory brainstem on multiple timescales achieved by transmitter co-release from the locus coeruleus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.21.639476. [PMID: 40027822 PMCID: PMC11870594 DOI: 10.1101/2025.02.21.639476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The locus coeruleus (LC) provides widespread noradrenergic (NAergic) modulation throughout the brain to influence a wide range of functions, including breathing. Although both anatomical and physiological evidence supports the involvement of the LC in both the upstream integration and the downstream modulation of breathing, the circuitry behind the latter is unknown. Here, we show that NAergic LC neurons send projections to the Kӧlliker-Fuse nucleus (KF), a critical site in the control of breathing. Long duration activation of NAergic LC neuron terminals in pontine slices induces persistent inhibitory and excitatory NA currents or increases firing rate in postsynaptic KF neurons. Short stimulation on the other hand leads to the VGluT2-dependent release of glutamate that may be co-released with NA in a monosynaptic circuit. Together these results demonstrate that LC neurons can exert flexible, opposing effects on different timescales via glutamatergic and NAergic signaling onto a key respiratory brainstem nucleus.
Collapse
|
2
|
Linassi F, Troyas C, Kreuzer M, Spanò L, Burelli P, Schneider G, Zanatta P, Carron M. Effect of Ketamine on the Bispectral Index, Spectral Edge Frequency, and Surgical Pleth Index During Propofol-Remifentanil Anesthesia: An Observational Prospective Trial. Anesth Analg 2024:00000539-990000000-01018. [PMID: 39485729 DOI: 10.1213/ane.0000000000007255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
BACKGROUND Ketamine administration during stable propofol anesthesia is known to be associated with an increase in bispectral index (BIS) but a "deepening" in the level of hypnosis. This study aimed to evaluate the association between the effect-site concentration of ketamine (CeK) and 2 electroencephalogram (EEG)-derived parameters, the BIS and spectral edge frequency (SEF95), after the administration of a ketamine bolus. Secondary aims included investigating the BIS and SEF95 variations with time and changes in the surgical pleth index (SPI). METHODS We conducted an observational, prospective, single-center study analyzing intraoperative data from 14 adult female patients undergoing breast oncologic surgery. During stable propofol-remifentanil target-controlled infusion (TCI) anesthesia, a ketamine analgesic bolus was delivered with the target CeK set to 1 μg.mL-1 (Domino model) corresponding to a dose of 0.57 mg.kg-1 (interquartile range [IQR] 0.56-0.57 mg.kg-1). Once the CeK reached a value of 1 μg.mL-1, the target CeK was set to 0 μg.mL-1. We determined the median BIS, SEF95, and SPI trends with time and as a function of the modeled CeK. RESULTS BIS and SEF95 showed no significant change from when ketamine was administered to when CeK=1 μg.mL-1, but a significant increase was observed at lower CeKs. The maximum BIS was reached at 16.0 minutes [10.2-22.7 minutes] after CeK=1 μg.mL-1, at CeK=0.22 μg.mL-1 [0.12-0.41 μg.mL-1]. The peak SEF95 value was observed at 10.0 minutes [8.62-14.1 minutes] after CeK=1 μg.mL-1, at CeK=0.43 μg.mL-1 [0.25-0.50 μg.mL-1]. No significant association was found between CeK and the registered SPI values. CONCLUSIONS Our results show that BIS and SEF95, but not SPI, follow a CeK-dependent trend after administering a ketamine bolus. Interestingly, their peak values were not reached at CeK=1 μg.mL-1, but after several minutes after the drug infusion at CeKs in the 0.2 to 0.5 μg.mL-1 range. This may be explained by the specific pharmacodynamics of ketamine and its varying effects at different concentrations, as well as by the time delay associated with the calculation of the BIS.
Collapse
Affiliation(s)
- Federico Linassi
- From the Department of Pharmaceutical and Pharmacological Sciences, Università degli Studi di Padova, Padova, Italy
- Department of Anesthesiology and Critical Care, Treviso Regional Hospital, AULSS 2 Marca Trevigiana Piazzale Ospedale, Treviso, Italy
| | - Carla Troyas
- Department of Anesthesiology and Intensive Care, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, München, Germany
| | - Matthias Kreuzer
- Department of Anesthesiology and Intensive Care, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, München, Germany
| | - Leonardo Spanò
- Department of Medicine-DIMED, Section of Anesthesiology and Intensive Care, University of Padova, Padova, Italy
| | - Paolo Burelli
- Department of Anesthesiology and Critical Care, Treviso Regional Hospital, AULSS 2 Marca Trevigiana Piazzale Ospedale, Treviso, Italy
| | - Gerhard Schneider
- Department of Anesthesiology and Intensive Care, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, München, Germany
| | - Paolo Zanatta
- Department of Anesthesiology and Critical Care, Treviso Regional Hospital, AULSS 2 Marca Trevigiana Piazzale Ospedale, Treviso, Italy
| | - Michele Carron
- Department of Medicine-DIMED, Section of Anesthesiology and Intensive Care, University of Padova, Padova, Italy
| |
Collapse
|
3
|
Excitation of Putative Glutamatergic Neurons in the Rat Parabrachial Nucleus Region Reduces Delta Power during Dexmedetomidine but not Ketamine Anesthesia. Anesthesiology 2021; 135:633-648. [PMID: 34270686 DOI: 10.1097/aln.0000000000003883] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Parabrachial nucleus excitation reduces cortical delta oscillation (0.5 to 4 Hz) power and recovery time associated with anesthetics that enhance γ-aminobutyric acid type A receptor action. The effects of parabrachial nucleus excitation on anesthetics with other molecular targets, such as dexmedetomidine and ketamine, remain unknown. The hypothesis was that parabrachial nucleus excitation would cause arousal during dexmedetomidine and ketamine anesthesia. METHODS Designer Receptors Exclusively Activated by Designer Drugs were used to excite calcium/calmodulin-dependent protein kinase 2α-positive neurons in the parabrachial nucleus region of adult male rats without anesthesia (nine rats), with dexmedetomidine (low dose: 0.3 µg · kg-1 · min-1 for 45 min, eight rats; high dose: 4.5 µg · kg-1 · min-1 for 10 min, seven rats), or with ketamine (low dose: 2 mg · kg-1 · min-1 for 30 min, seven rats; high dose: 4 mg · kg-1 · min-1 for 15 min, eight rats). For control experiments (same rats and treatments), the Designer Receptors Exclusively Activated by Designer Drugs were not excited. The electroencephalogram and anesthesia recovery times were recorded and analyzed. RESULTS Parabrachial nucleus excitation reduced delta power in the prefrontal electroencephalogram with low-dose dexmedetomidine for the 150-min analyzed period, excepting two brief periods (peak median bootstrapped difference [clozapine-N-oxide - saline] during dexmedetomidine infusion = -6.06 [99% CI = -12.36 to -1.48] dB, P = 0.007). However, parabrachial nucleus excitation was less effective at reducing delta power with high-dose dexmedetomidine and low- and high-dose ketamine (peak median bootstrapped differences during high-dose [dexmedetomidine, ketamine] infusions = [-1.93, -0.87] dB, 99% CI = [-4.16 to -0.56, -1.62 to -0.18] dB, P = [0.006, 0.019]; low-dose ketamine had no statistically significant decreases during the infusion). Recovery time differences with parabrachial nucleus excitation were not statistically significant for dexmedetomidine (median difference for [low, high] dose = [1.63, 11.01] min, 95% CI = [-20.06 to 14.14, -20.84 to 23.67] min, P = [0.945, 0.297]) nor low-dose ketamine (median difference = 12.82 [95% CI: -3.20 to 39.58] min, P = 0.109) but were significantly longer for high-dose ketamine (median difference = 11.38 [95% CI: 1.81 to 24.67] min, P = 0.016). CONCLUSIONS These results suggest that the effectiveness of parabrachial nucleus excitation to change the neurophysiologic and behavioral effects of anesthesia depends on the anesthetic's molecular target. EDITOR’S PERSPECTIVE
Collapse
|
4
|
Varga AG, Maletz SN, Bateman JT, Reid BT, Levitt ES. Neurochemistry of the Kölliker-Fuse nucleus from a respiratory perspective. J Neurochem 2020; 156:16-37. [PMID: 32396650 DOI: 10.1111/jnc.15041] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/27/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022]
Abstract
The Kölliker-Fuse nucleus (KF) is a functionally distinct component of the parabrachial complex, located in the dorsolateral pons of mammals. The KF has a major role in respiration and upper airway control. A comprehensive understanding of the KF and its contributions to respiratory function and dysfunction requires an appreciation for its neurochemical characteristics. The goal of this review is to summarize the diverse neurochemical composition of the KF, focusing on the neurotransmitters, neuromodulators, and neuropeptides present. We also include a description of the receptors expressed on KF neurons and transporters involved in each system, as well as their putative roles in respiratory physiology. Finally, we provide a short section reviewing the literature regarding neurochemical changes in the KF in the context of respiratory dysfunction observed in SIDS and Rett syndrome. By over-viewing the current literature on the neurochemical composition of the KF, this review will serve to aid a wide range of topics in the future research into the neural control of respiration in health and disease.
Collapse
Affiliation(s)
- Adrienn G Varga
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA.,Department of Physical Therapy, Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL, USA
| | - Sebastian N Maletz
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Jordan T Bateman
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA.,Department of Physical Therapy, Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL, USA
| | - Brandon T Reid
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Erica S Levitt
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA.,Department of Physical Therapy, Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL, USA
| |
Collapse
|
5
|
Reimann HM, Niendorf T. The (Un)Conscious Mouse as a Model for Human Brain Functions: Key Principles of Anesthesia and Their Impact on Translational Neuroimaging. Front Syst Neurosci 2020; 14:8. [PMID: 32508601 PMCID: PMC7248373 DOI: 10.3389/fnsys.2020.00008] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/27/2020] [Indexed: 12/11/2022] Open
Abstract
In recent years, technical and procedural advances have brought functional magnetic resonance imaging (fMRI) to the field of murine neuroscience. Due to its unique capacity to measure functional activity non-invasively, across the entire brain, fMRI allows for the direct comparison of large-scale murine and human brain functions. This opens an avenue for bidirectional translational strategies to address fundamental questions ranging from neurological disorders to the nature of consciousness. The key challenges of murine fMRI are: (1) to generate and maintain functional brain states that approximate those of calm and relaxed human volunteers, while (2) preserving neurovascular coupling and physiological baseline conditions. Low-dose anesthetic protocols are commonly applied in murine functional brain studies to prevent stress and facilitate a calm and relaxed condition among animals. Yet, current mono-anesthesia has been shown to impair neural transmission and hemodynamic integrity. By linking the current state of murine electrophysiology, Ca2+ imaging and fMRI of anesthetic effects to findings from human studies, this systematic review proposes general principles to design, apply and monitor anesthetic protocols in a more sophisticated way. The further development of balanced multimodal anesthesia, combining two or more drugs with complementary modes of action helps to shape and maintain specific brain states and relevant aspects of murine physiology. Functional connectivity and its dynamic repertoire as assessed by fMRI can be used to make inferences about cortical states and provide additional information about whole-brain functional dynamics. Based on this, a simple and comprehensive functional neurosignature pattern can be determined for use in defining brain states and anesthetic depth in rest and in response to stimuli. Such a signature can be evaluated and shared between labs to indicate the brain state of a mouse during experiments, an important step toward translating findings across species.
Collapse
Affiliation(s)
- Henning M. Reimann
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrück Center for Molecular Medicine, Helmholtz Association of German Research Centers (HZ), Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrück Center for Molecular Medicine, Helmholtz Association of German Research Centers (HZ), Berlin, Germany
- Experimental and Clinical Research Center, A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
6
|
Abstract
Balanced general anesthesia, the most common management strategy used in anesthesia care, entails the administration of different drugs together to create the anesthetic state. Anesthesiologists developed this approach to avoid sole reliance on ether for general anesthesia maintenance. Balanced general anesthesia uses less of each drug than if the drug were administered alone, thereby increasing the likelihood of its desired effects and reducing the likelihood of its side effects. To manage nociception intraoperatively and pain postoperatively, the current practice of balanced general anesthesia relies almost exclusively on opioids. While opioids are the most effective antinociceptive agents, they have undesirable side effects. Moreover, overreliance on opioids has contributed to the opioid epidemic in the United States. Spurred by concern of opioid overuse, balanced general anesthesia strategies are now using more agents to create the anesthetic state. Under these approaches, called “multimodal general anesthesia,” the additional drugs may include agents with specific central nervous system targets such as dexmedetomidine and ones with less specific targets, such as magnesium. It is postulated that use of more agents at smaller doses further maximizes desired effects while minimizing side effects. Although this approach appears to maximize the benefit-to-side effect ratio, no rational strategy has been provided for choosing the drug combinations. Nociception induced by surgery is the primary reason for placing a patient in a state of general anesthesia. Hence, any rational strategy should focus on nociception control intraoperatively and pain control postoperatively. In this Special Article, we review the anatomy and physiology of the nociceptive and arousal circuits, and the mechanisms through which commonly used anesthetics and anesthetic adjuncts act in these systems. We propose a rational strategy for multimodal general anesthesia predicated on choosing a combination of agents that act at different targets in the nociceptive system to control nociception intraoperatively and pain postoperatively. Because these agents also decrease arousal, the doses of hypnotics and/or inhaled ethers needed to control unconsciousness are reduced. Effective use of this strategy requires simultaneous monitoring of antinociception and level of unconsciousness. We illustrate the application of this strategy by summarizing anesthetic management for 4 representative surgeries.
Collapse
|
7
|
Akeju O, Song AH, Hamilos AE, Pavone KJ, Flores FJ, Brown EN, Purdon PL. Electroencephalogram signatures of ketamine anesthesia-induced unconsciousness. Clin Neurophysiol 2016; 127:2414-22. [PMID: 27178861 DOI: 10.1016/j.clinph.2016.03.005] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/19/2016] [Accepted: 03/02/2016] [Indexed: 01/24/2023]
Abstract
OBJECTIVES Ketamine is an N-methyl-d-aspartate (NMDA) receptor antagonist commonly administered as a general anesthetic. However, neural circuit mechanisms to explain ketamine anesthesia-induced unconsciousness in humans are yet to be clearly defined. Disruption of frontal-parietal network connectivity has been proposed as a mechanism to explain this brain state. However, this mechanism was recently demonstrated at subanesthetic doses of ketamine in awake-patients. Therefore, we investigated whether there is an electroencephalogram (EEG) signature specific for ketamine anesthesia-induced unconsciousness. METHODS We retrospectively studied the EEG in 12 patients who received ketamine for the induction of general anesthesia. We analyzed the EEG dynamics using power spectral and coherence methods. RESULTS Following the administration of a bolus dose of ketamine to induce unconsciousness, we observed a "gamma burst" EEG pattern that consisted of alternating slow-delta (0.1-4Hz) and gamma (∼27-40Hz) oscillations. This pattern was also associated with increased theta oscillations (∼4-8Hz) and decreased alpha/beta oscillations (∼10-24Hz). CONCLUSIONS Ketamine anesthesia-induced unconsciousness is associated with a gamma burst EEG pattern. SIGNIFICANCE The EEG signature of ketamine anesthesia-induced unconsciousness may offer new insights into NMDA circuit mechanisms for unconsciousness.
Collapse
Affiliation(s)
- Oluwaseun Akeju
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Andrew H Song
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Allison E Hamilos
- Harvard Medical School, Boston, MA, USA; Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA; Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kara J Pavone
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Francisco J Flores
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emery N Brown
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA; Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Patrick L Purdon
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
8
|
Pavone KJ, Akeju O, Sampson AL, Ling K, Purdon PL, Brown EN. Nitrous oxide-induced slow and delta oscillations. Clin Neurophysiol 2016; 127:556-564. [PMID: 26118489 PMCID: PMC4675698 DOI: 10.1016/j.clinph.2015.06.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 06/02/2015] [Accepted: 06/03/2015] [Indexed: 01/24/2023]
Abstract
OBJECTIVES Switching from maintenance of general anesthesia with an ether anesthetic to maintenance with high-dose (concentration >50% and total gas flow rate >4 liters per minute) nitrous oxide is a common practice used to facilitate emergence from general anesthesia. The transition from the ether anesthetic to nitrous oxide is associated with a switch in the putative mechanisms and sites of anesthetic action. We investigated whether there is an electroencephalogram (EEG) marker of this transition. METHODS We retrospectively studied the ether anesthetic to nitrous oxide transition in 19 patients with EEG monitoring receiving general anesthesia using the ether anesthetic sevoflurane combined with oxygen and air. RESULTS Following the transition to nitrous oxide, the alpha (8-12 Hz) oscillations associated with sevoflurane dissipated within 3-12 min (median 6 min) and were replaced by highly coherent large-amplitude slow-delta (0.1-4 Hz) oscillations that persisted for 2-12 min (median 3 min). CONCLUSIONS Administration of high-dose nitrous oxide is associated with transient, large amplitude slow-delta oscillations. SIGNIFICANCE We postulate that these slow-delta oscillations may result from nitrous oxide-induced blockade of major excitatory inputs (NMDA glutamate projections) from the brainstem (parabrachial nucleus and medial pontine reticular formation) to the thalamus and cortex. This EEG signature of high-dose nitrous oxide may offer new insights into brain states during general anesthesia.
Collapse
Affiliation(s)
- Kara J Pavone
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Oluwaseun Akeju
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| | - Aaron L Sampson
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Kelly Ling
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Patrick L Purdon
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| | - Emery N Brown
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA, USA; Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA; Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
9
|
Díaz-Casares A, López-González MV, Peinado-Aragonés CA, González-Barón S, Dawid-Milner MS. Parabrachial complex glutamate receptors modulate the cardiorespiratory response evoked from hypothalamic defense area. Auton Neurosci 2012; 169:124-34. [PMID: 22748567 DOI: 10.1016/j.autneu.2012.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 05/14/2012] [Accepted: 06/06/2012] [Indexed: 02/06/2023]
Abstract
To characterize the possible role of glutamate in the interaction between Hypothalamic Defense Area (HDA) and Parabrachial complex (PBc) nuclei, cardiorespiratory changes were analyzed in response to electrical stimulation of the HDA (1 ms pulses, 30-50 μA given at 100 Hz for 5s) before and after the microinjection of the nonspecific glutamate receptor antagonist kynurenic acid (50 nl, 5 nmol), NMDA receptor antagonist MK-801 (50 nl, 50 nmol), non-NMDA receptor antagonist CNQX (50 nl, 50 nmol) or metabotropic glutamate receptor antagonist MCPG (50 nl, 5 nmol) within the PBc. HDA stimulation evoked an inspiratory facilitatory response, consisting of an increase in respiratory rate (p<0.001) due to a decrease in expiratory time (p<0.01). The respiratory response was accompanied by a pressor (p<0.001) and a tachycardic response (p<0.001). Kynurenic acid within the lateral parabrachial region (lPB) abolished the tachycardia (p<0.001) and decreased the magnitude of blood pressure response (p<0.001) to HDA stimulation. Similarly, the magnitude of the tachycardia and the pressor response was decreased after the microinjection of MK-801 (p<0.01 and p<0.001, respectively) and CNQX (p<0.05 in both cases) into the lPB. Kynurenic acid microinjection in this region produced an inhibition of the tachypnea (p<0.001) to HDA stimulation but the respiratory response persisted unchanged after MK-801 or CNQX microinjection into the lPB. Kynurenic acid within the medial parabrachial region (mPB) abolished the tachycardia (p<0.01) and decreased the magnitude of the pressor response (p<0.001) to HDA stimulation. MK-801 and CNQX microinjection in this region decreased the magnitude of the tachycardia (p<0.05, in both cases) and pressor response (p<0.05, in both cases). The respiratory response evoked by HDA stimulation was not changed after the microinjection of kynurenic acid, MK-801 or CNQX within the mPB. No changes were observed in the cardiorespiratory response evoked to HDA stimulation after MCPG microinjection within lPB and mPB. These results indicate that glutamate PBc receptors are involved in the cardiorespiratory response evoked from the HDA. The possible mechanisms involved in these interactions are discussed.
Collapse
Affiliation(s)
- A Díaz-Casares
- Departamento de Fisiología, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | | | | | | | | |
Collapse
|
10
|
Dong YL, Fukazawa Y, Wang W, Kamasawa N, Shigemoto R. Differential postsynaptic compartments in the laterocapsular division of the central nucleus of amygdala for afferents from the parabrachial nucleus and the basolateral nucleus in the rat. J Comp Neurol 2011; 518:4771-91. [PMID: 20963828 DOI: 10.1002/cne.22487] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neurons in the laterocapsular division of the central nucleus of the amygdala (CeC), which is known as the "nociceptive amygdala," receive glutamatergic inputs from the parabrachial nucleus (PB) and the basolateral nucleus of amygdala (BLA), which convey nociceptive information from the dorsal horn of the spinal cord and polymodal information from the thalamus and cortex, respectively. Here, we examined the ultrastructural properties of PB- and BLA-CeC synapses identified with EGFP-expressing lentivirus in rats. In addition, the density of synaptic AMPA receptors (AMPARs) on CeC neurons was studied by using highly sensitive SDS-digested freeze-fracture replica labeling (SDS-FRL). Afferents from the PB made asymmetrical synapses mainly on dendritic shafts (88%), whereas those from the BLA were on dendritic spines (81%). PB-CeC synapses in dendritic shafts were significantly larger (median 0.072 μm(2)) than BLA-CeC synapses in spines (median 0.058 μm(2); P = 0.02). The dendritic shafts that made synapses with PB fibers were also significantly larger than those that made synapses with BLA fibers, indicating that the PB fibers make synapses on more proximal parts of dendrites than the BLA fibers. SDS-FRL revealed that almost all excitatory postsynaptic sites have AMPARs in the CeC. The density of AMPAR-specific gold particles in individual synapses was significantly higher in spine synapses (median 510 particles/μm(2)) than in shaft synapses (median 427 particles/μm(2); P = 0.01). These results suggest that distinct synaptic impacts from PB- and BLA-CeC pathways contribute to the integration of nociceptive and polymodal information in the CeC.
Collapse
Affiliation(s)
- Yu-Lin Dong
- Division of Cerebral Structure, National Institute for Physiological Sciences, Okazaki, Japan.
| | | | | | | | | |
Collapse
|
11
|
Zakhary SM, Ayubcha D, Ansari F, Kamran K, Karim M, Leheste JR, Horowitz JM, Torres G. A behavioral and molecular analysis of ketamine in zebrafish. Synapse 2011; 65:160-7. [PMID: 20623473 DOI: 10.1002/syn.20830] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ketamine exerts powerful anesthetic, psychotic, and antidepressant effects in both healthy volunteers and clinically depressed patients. Although ketamine targets particular glutamate receptors, there is a dearth of evidence for additional, alternative molecular substrates for the behavioral actions of this N-methyl-D-aspartate (NMDA) receptor antagonist drug. Here, we provide behavioral and molecular evidence for the actions of ketamine using a new vertebrate model for psychiatric disorders: the zebrafish. Subanesthetic doses of ketamine produced a variety of abnormal behaviors in zebrafish that were qualitatively analogous to those previously measured in humans and rodents treated with drugs that produce transient psychosis. In addition, we revealed that the transcription factor Phox2b is a molecular substrate for the actions of ketamine, particularly during periods of hypoxic stress. Finally, we also show that SIRT1, a histone deacetylase widely recognized for its link to cell survival is also affected by hypoxia crises. These results establish a relevant assay system in which the effects of psychotomimetic drugs can rapidly be assessed, and provide a plausible and novel neuronal mechanism through which ketamine affects critical sensory circuits that monitor breathing behavior.
Collapse
Affiliation(s)
- Sherry M Zakhary
- Department of Neuroscience and Histology, New York College of Osteopathic Medicine of New York Institute of Technology, Old Westbury, New York 11568, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Teppema LJ, Dahan A. The Ventilatory Response to Hypoxia in Mammals: Mechanisms, Measurement, and Analysis. Physiol Rev 2010; 90:675-754. [DOI: 10.1152/physrev.00012.2009] [Citation(s) in RCA: 257] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The respiratory response to hypoxia in mammals develops from an inhibition of breathing movements in utero into a sustained increase in ventilation in the adult. This ventilatory response to hypoxia (HVR) in mammals is the subject of this review. The period immediately after birth contains a critical time window in which environmental factors can cause long-term changes in the structural and functional properties of the respiratory system, resulting in an altered HVR phenotype. Both neonatal chronic and chronic intermittent hypoxia, but also chronic hyperoxia, can induce such plastic changes, the nature of which depends on the time pattern and duration of the exposure (acute or chronic, episodic or not, etc.). At adult age, exposure to chronic hypoxic paradigms induces adjustments in the HVR that seem reversible when the respiratory system is fully matured. These changes are orchestrated by transcription factors of which hypoxia-inducible factor 1 has been identified as the master regulator. We discuss the mechanisms underlying the HVR and its adaptations to chronic changes in ambient oxygen concentration, with emphasis on the carotid bodies that contain oxygen sensors and initiate the response, and on the contribution of central neurotransmitters and brain stem regions. We also briefly summarize the techniques used in small animals and in humans to measure the HVR and discuss the specific difficulties encountered in its measurement and analysis.
Collapse
Affiliation(s)
- Luc J. Teppema
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Albert Dahan
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|