1
|
Kim HJ. Nonpharmacological Treatment for Nontuberculous Mycobacterial Pulmonary Disease. Tuberc Respir Dis (Seoul) 2024; 87:451-457. [PMID: 38659390 PMCID: PMC11468441 DOI: 10.4046/trd.2024.0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024] Open
Abstract
Nontuberculous mycobacterial pulmonary disease (NTM-PD) results from the exposure of susceptible hosts to a diverse group of environmental mycobacteria. The emphasis on nonpharmacological strategies is motivated by the widespread presence of NTM in various environments, and the inconsistent success rates of pharmacological treatments. Modifiable factors contributing to NTM-PD development include impaired airway clearance, low body mass index, gastroesophageal reflux disease, and exposure to NTM habitats. This suggests that lifestyle and environmental modifications could affect disease development and progression. The review highlights several modalities that can modify the risk factors. Airway clearance techniques, informed by the "gel-on-brush" model of the bronchial epithelium, aim to enhance mucociliary clearance, and have the potential to alleviate symptoms and improve lung function. The impact of nutritional status is also examined, with a lower body mass index linked to an increased risk and progression of NTM-PD, indicating the importance of targeted nutritional support. Additionally, the theoretical and epidemiological links between gastroesophageal reflux disease and NTM-PD advocate careful management of reflux episodes. Understanding the risk of NTM transmission through environmental exposure to contaminated water and soil is also crucial. Strategies to mitigate this risk, including effective water management and minimizing soil contact, are presented as vital preventive measures. The review supports the inclusion of nonpharmacological treatments within a comprehensive NTM-PD management strategy, alongside conventional pharmacological therapies. This integrated approach seeks to improve the overall understanding and handling of NTM-PD.
Collapse
Affiliation(s)
- Hyung-Jun Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Okuda K, Gentzsch M. Pulmonary Ionocytes: What Are They Transporting and Which Way? Am J Respir Crit Care Med 2024; 210:705-707. [PMID: 38701428 PMCID: PMC11418888 DOI: 10.1164/rccm.202404-0727ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/03/2024] [Indexed: 05/05/2024] Open
Affiliation(s)
- Kenichi Okuda
- Marsico Lung Institute/Cystic Fibrosis Research Center
- Department of Medicine The University of North Carolina at Chapel Hill Chapel Hill, North Carolina
| | - Martina Gentzsch
- Marsico Lung Institute/Cystic Fibrosis Research Center
- Department of Pediatrics The University of North Carolina at Chapel Hill Chapel Hill, North Carolina
| |
Collapse
|
3
|
Liu X, Li Z, Shan J, Wang F, Li Z, Luo S, Wu J. PM 2.5 Exposure Inhibits Transepithelial Anion Short-circuit Current by Downregulating P2Y2 Receptor/CFTR Pathway. Int J Med Sci 2024; 21:1929-1944. [PMID: 39113893 PMCID: PMC11302563 DOI: 10.7150/ijms.96777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/06/2024] [Indexed: 08/10/2024] Open
Abstract
Fine particulate matter (PM2.5) can damage airway epithelial barriers. The anion transport system plays a crucial role in airway epithelial barriers. However, the detrimental effect and mechanism of PM2.5 on the anion transport system are still unclear. In this study, airway epithelial cells and ovalbumin (OVA)-induced asthmatic mice were used. In transwell model, the adenosine triphosphate (ATP)-induced transepithelial anion short-circuit current (Isc) and airway surface liquid (ASL) significantly decreased after PM2.5 exposure. In addition, PM2.5 exposure decreased the expression levels of P2Y2R, CFTR and cytoplasmic free-calcium, but ATP can increase the expressions of these proteins. PM2.5 exposure increased the levels of Th2-related cytokines of bronchoalveolar lavage fluid, lung inflammation, collagen deposition and hyperplasisa of goblet cells. Interestingly, the administration of ATP showed an inhibitory effect on lung inflammation induced by PM2.5. Together, our study reveals that PM2.5 impairs the ATP-induced transepithelial anion Isc through downregulating P2Y2R/CFTR pathway, and this process may participate in aggravating airway hyperresponsiveness and airway inflammation. These findings may provide important insights on PM2.5-mediated airway epithelial injury.
Collapse
Affiliation(s)
- Xiaolong Liu
- Second Department of Elderly Respiratory, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, China
| | - Zhangwen Li
- School of Medicine, South China University of Technology, Guangzhou, 510000, China
| | - Jiajie Shan
- School of Medicine, South China University of Technology, Guangzhou, 510000, China
| | - Fang Wang
- Second Department of Elderly Respiratory, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, 510000, China
| | - Zhongpeng Li
- Second Department of Elderly Respiratory, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, China
| | - Shaohua Luo
- Second Department of Elderly Respiratory, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, China
| | - Jian Wu
- Second Department of Elderly Respiratory, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, 510000, China
| |
Collapse
|
4
|
Gao W, Kanagarajah KR, Graham E, Soon K, Veres T, Moraes TJ, Bear CE, Veldhuizen RA, Wong AP, Günther A. Collagen Tubular Airway-on-Chip for Extended Epithelial Culture and Investigation of Ventilation Dynamics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309270. [PMID: 38431940 DOI: 10.1002/smll.202309270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/07/2024] [Indexed: 03/05/2024]
Abstract
The lower respiratory tract is a hierarchical network of compliant tubular structures that are made from extracellular matrix proteins with a wall lined by an epithelium. While microfluidic airway-on-a-chip models incorporate the effects of shear and stretch on the epithelium, week-long air-liquid-interface culture at physiological shear stresses, the circular cross-section, and compliance of native airway walls have yet to be recapitulated. To overcome these limitations, a collagen tube-based airway model is presented. The lumen is lined with a confluent epithelium during two-week continuous perfusion with warm, humid air while presenting culture medium from the outside and compensating for evaporation. The model recapitulates human small airways in extracellular matrix composition and mechanical microenvironment, allowing for the first time dynamic studies of elastocapillary phenomena associated with regular breathing and mechanical ventilation, as well as their impacts on the epithelium. A case study reveales increasing damage to the epithelium during repetitive collapse and reopening cycles as opposed to overdistension, suggesting expiratory flow resistance to reduce atelectasis. The model is expected to promote systematic comparisons between different clinically used ventilation strategies and, more broadly, to enhance human organ-on-a-chip platforms for a variety of tubular tissues.
Collapse
Affiliation(s)
- Wuyang Gao
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Kayshani R Kanagarajah
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, PGCRL Research Tower, Toronto, Ontario, M5G 0A4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Emma Graham
- Department of Physiology and Pharmacology, University of Western Ontario, 1151 Richmond St, London, Ontario, N6A 3K7, Canada
- Lawson Health Research Institute, London Health Sciences Centre, 750 Base Line Rd E, London, Ontario, N6C 2R5, Canada
| | - Kayla Soon
- National Research Council Canada, 75 Bd de Mortagne, Boucherville, Quebec, J4B 6Y4, Canada
| | - Teodor Veres
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
- National Research Council Canada, 75 Bd de Mortagne, Boucherville, Quebec, J4B 6Y4, Canada
| | - Theo J Moraes
- Department of Paediatrics, University of Toronto, 555 University Avenue, Toronto, Ontario, M5G 1×8, Canada
| | - Christine E Bear
- Program in Molecular Medicine, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1 × 8, Canada
- Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Ruud A Veldhuizen
- Department of Physiology and Pharmacology, University of Western Ontario, 1151 Richmond St, London, Ontario, N6A 3K7, Canada
- Lawson Health Research Institute, London Health Sciences Centre, 750 Base Line Rd E, London, Ontario, N6C 2R5, Canada
- Department of Medicine, University of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 5C1, Canada
| | - Amy P Wong
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, PGCRL Research Tower, Toronto, Ontario, M5G 0A4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Axel Günther
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada
| |
Collapse
|
5
|
Bartley J, Hankin R. A nasal airflow oscillation device targeting nasal congestion: a preliminary report. Eur Arch Otorhinolaryngol 2024; 281:2743-2747. [PMID: 38436754 PMCID: PMC11024000 DOI: 10.1007/s00405-024-08576-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
PURPOSE Upper respiratory tract complaints are common in the general population. A safe, non-pharmacologic treatment would be an attractive option for many patients either as an alternative to existing therapies, or as a complementary therapy. This study assessed the acceptability, safety and possible efficacy of a nasal airflow oscillation device in a group of people suffering chronic nasal congestion. METHODS Subjects with a known history of nasal congestion, but without fixed anatomical obstruction, participated in a prospective clinical study. Efficacy was assessed using peak nasal inspiratory flow (NPIF) and a 10-point visual analogue scale (VAS) administered before and after the oscillation device had been worn for twenty minutes. RESULTS Twenty-one subjects (mean age 37 years; 43% female) were enrolled in the study. After treatment with the small nasal airflow oscillation device for twenty minutes, average NPIF increased significantly from 84.8 L/minute to 99.0 L/minute (p < 0.05). There was a corresponding significant reduction in the VAS score for nasal congestion (p < 0.05). Similar significant improvements were also seen for the immediate sensation of nasal drainage, sinonasal pressure and overall sinonasal symptoms (p < 0.05). There was no change in the sense of smell (p = 0.37). Subjects rated ease of use highly; average = 9.1 (Range 7-10). CONCLUSION Treatment of nasal congestion with the nasal airflow oscillation device was found to result in significant improvement in NPIF after twenty minutes of use. Initial patient-reported outcomes improved significantly, and the treatment was safe and highly acceptable. TRIAL REGISTRATION Public clinical trial registration: Universal Trial Number (U1111-1259-0704). Australian New Zealand clinical trials registration: ACTRN12623001307695.
Collapse
Affiliation(s)
- Jim Bartley
- Department of Otolaryngology - Head and Neck Surgery, Manukau Superclinic, 901 Great South Road, Manukau City Centre, Auckland, 2104, New Zealand.
| | - Robin Hankin
- Computer and Mathematical Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK
| |
Collapse
|
6
|
Hamida El Naser Y, Karayel D. Modeling the effects of external oscillations on mucus clearance in obstructed airways. Biomech Model Mechanobiol 2024; 23:335-348. [PMID: 37861917 DOI: 10.1007/s10237-023-01778-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/30/2023] [Indexed: 10/21/2023]
Abstract
Various therapeutic methods are employed to facilitate the clearance of secretions accumulated in the respiratory tracts of individuals with lower respiratory tract disorders. High-frequency chest wall oscillation (HFCWO) device, designed to apply variable amplitude and frequency vibrations to the individuals' chests, stands out among these therapies. In this study, the effectiveness of this treatment method was investigated numerically using computational fluid dynamics (CFD) on the generated mucus-obstructed bronchial geometry. The conducted analyses compared the effects of vibrations acting in the axial, radial, and tangential directions on the clearance of mucus, which exhibits non-Newtonian flow behavior with shear-thinning properties. Simultaneously, the effects of changes in vibration amplitude and frequency, pressure differentials, fluid properties, and ciliary movements on the flow were separately examined and interpreted. The findings demonstrate that ciliary movements are insufficient in mucus-accumulated airways, applied vibrations enhance mucus clearance, and potential improvements in flow are quite sensitive to boundary conditions.
Collapse
Affiliation(s)
- Yusuf Hamida El Naser
- Mechatronics Engineering, Faculty of Technology, Sakarya University of Applied Sciences, Sakarya, Turkey.
| | - Durmuş Karayel
- Mechatronics Engineering, Faculty of Technology, Sakarya University of Applied Sciences, Sakarya, Turkey.
| |
Collapse
|
7
|
Berkiten G, Şengiz Erhan S, Çelik C, Tutar B, Atar Y, Aksungur E, Sari H, Uyar Y. An assessment of the effects of adenoid hypertrophy on mucociliary clearance and nasal cytology in children. Int J Pediatr Otorhinolaryngol 2023; 174:111718. [PMID: 37722297 DOI: 10.1016/j.ijporl.2023.111718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/31/2023] [Accepted: 09/06/2023] [Indexed: 09/20/2023]
Abstract
AIM/OBJECTIVE The aim of this study was to demonstrate the benefits of the systematic use of nasal cytology and mucociliary clearance in the diagnostic workup of nasal disorders in children with adenoid hypertrophy (AH) to reach a well-defined diagnosis, establish a rational therapeutic approach, avert from complications, and develop the patient's life quality. MATERIALS/METHODS In this prospective study, a total of 61 pediatric patients (aged 5-12 years) were evaluated. The case group consisted of 31 children with AH symptoms, while the control group comprised 30 children without AH symptoms.Exclusions included previous adenoidectomy/adenotonsillectomy, cardiovascular/neurological diseases, acute/allergic rhinitis, genetic disorders (e.g., Down syndrome), and immunodeficiency. The control group consisted of children without nasal obstruction symptoms and without AH, who admitted for various reasons. Medical history, examinations, fiberoptic nasopharyngoscopy, cephalometric evaluations, AST, and nasal cytology were conducted. RESULTS At the end of the study, a significant increase in the mucociliary clearance time was observed in the group with AH compared to the control group (p < 0.05). Although AH may disrupt MCC, there is no correlation between the size of the hypertrophy and MCC time.When the distribution of cells in the nasal cytology is evaluated, no difference was detected between the AH group and control groups. CONCLUSION Nasal mucociliary clearance has been found to be decreased, particularly in the presence of significant AH.
Collapse
Affiliation(s)
- Güler Berkiten
- University of Health Sciences, Prof. Dr. Cemil Tascioglu City Hospital, Department of Otorhinolaryngology, Istanbul, Turkey
| | - Selma Şengiz Erhan
- University of Health Sciences, Prof. Dr. Cemil Tascioglu City Hospital, Department of Pathology, Istanbul, Turkey
| | - Cem Çelik
- University of Health Sciences, Prof. Dr. Cemil Tascioglu City Hospital, Department of Otorhinolaryngology, Istanbul, Turkey
| | - Belgin Tutar
- University of Health Sciences, Prof. Dr. Cemil Tascioglu City Hospital, Department of Otorhinolaryngology, Istanbul, Turkey
| | - Yavuz Atar
- Uskudar University, Department of Otorhinolaryngology, Istanbul, Turkey
| | - Elif Aksungur
- Iğdır Dr.Nevruz Erez State Hospital, Department of Otorhinolaryngology, Iğdır, Turkey
| | - Hüseyin Sari
- University of Health Sciences, Prof. Dr. Cemil Tascioglu City Hospital, Department of Otorhinolaryngology, Istanbul, Turkey
| | - Yavuz Uyar
- University of Health Sciences, Prof. Dr. Cemil Tascioglu City Hospital, Department of Otorhinolaryngology, Istanbul, Turkey
| |
Collapse
|
8
|
Harris E, Easter M, Ren J, Krick S, Barnes J, Rowe SM. An ex vivo rat trachea model reveals abnormal airway physiology and a gland secretion defect in cystic fibrosis. PLoS One 2023; 18:e0293367. [PMID: 37874846 PMCID: PMC10597513 DOI: 10.1371/journal.pone.0293367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023] Open
Abstract
Cystic fibrosis (CF) is a genetic disease hallmarked by aberrant ion transport that results in delayed mucus clearance, chronic infection, and progressive lung function decline. Several animal models have been developed to study the airway anatomy and mucus physiology in CF, but they are costly and difficult to maintain, making them less accessible for many applications. A more available CFTR-/- rat model has been developed and characterized to develop CF airway abnormalities, but consistent dosing of pharmacologic agents and longitudinal evaluation remain a challenge. In this study, we report the development and characterization of a novel ex vivo trachea model that utilizes both wild type (WT) and CFTR-/- rat tracheae cultured on a porcine gelatin matrix. Here we show that the ex vivo tracheae remain viable for weeks, maintain a CF disease phenotype that can be readily quantified, and respond to stimulation of mucus and fluid secretion by cholinergic stimulation. Furthermore, we show that ex vivo tracheae may be used for well-controlled pharmacological treatments, which are difficult to perform on freshly excised trachea or in vivo models with this degree of scrutiny. With improved interrogation possible with a durable trachea, we also established firm evidence of a gland secretion defect in CFTR-/- rat tracheae compared to WT controls. Finally, we demonstrate that the ex vivo tracheae can be used to generate high mucus protein yields for subsequent studies, which are currently limited by in vivo mucus collection techniques. Overall, this study suggests that the ex vivo trachea model is an effective, easy to set up culture model to study airway and mucus physiology.
Collapse
Affiliation(s)
- Elex Harris
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, United States of America
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Molly Easter
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Janna Ren
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Stefanie Krick
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, United States of America
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Jarrod Barnes
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, United States of America
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Steven M. Rowe
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, United States of America
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
- Departments of Pediatrics and Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| |
Collapse
|
9
|
Herrero-Cortina B, Spinou A, Oliveira A, O'Neill B, Jácome C, Dal Corso S, Poncin W, Muñoz G, Inal-Ince D, Alcaraz-Serrano V, Reychler G, Bellofiore A, Posthumus A, Chalmers JD, Lee AL. Airway clearance techniques and exercise in people with bronchiectasis: two different coins. Eur Respir J 2023; 62:2300741. [PMID: 37827549 DOI: 10.1183/13993003.00741-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/30/2023] [Indexed: 10/14/2023]
Affiliation(s)
- Beatriz Herrero-Cortina
- Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) Aragón, Zaragoza, Spain
- Universidad San Jorge, Zaragoza, Spain
| | - Arietta Spinou
- School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
- King's Centre for Lung Health, King's College London, London, UK
| | - Ana Oliveira
- School of Rehabilitation Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- West Park Healthcare Centre, Toronto, ON, Canada
- Lab3R - Respiratory Research and Rehabilitation Laboratory, School of Health Sciences, University of Aveiro (ESSUA), Aveiro, Portugal
- iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Brenda O'Neill
- School of Health Sciences, Ulster University, Coleraine, UK
| | - Cristina Jácome
- CINTESIS@RISE, MEDCIDS, Faculty of Medicine of University of Porto, Porto, Portugal
| | - Simone Dal Corso
- Graduate Program in Rehabilitation Sciences, Universidade Nove de Julho, São Paulo, Brazil
- Department of Allergy, Immunology and Respiratory Medicine, Monash University, Melbourne, Australia
| | - William Poncin
- Institut de recherche expérimentale et clinique (IREC), pôle de Pneumologie, ORL et Dermatologie, Université Catholique de Louvain, Brussels, Belgium
- Service de Pneumologie, Cliniques universitaires Saint-Luc, Brussels, Belgium
- Secteur de Kinésithérapie et Ergothérapie, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Gerard Muñoz
- Department of Pneumology, Dr Josep Trueta University Hospital, Bronchiectasis Group, Girona Biomedical Research Institute, Girona, Spain
- Department of Physical Therapy, EUSES & ENTI, University of Girona and University of Barcelona, Girona, Spain
| | - Deniz Inal-Ince
- Hacettepe University, Faculty of Physical Therapy and Rehabilitation, Ankara, Turkey
| | - Victoria Alcaraz-Serrano
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Blanquerna School of Health Science, Ramon Llull University, Barcelona, Spain
| | - Gregory Reychler
- Institut de recherche expérimentale et clinique (IREC), pôle de Pneumologie, ORL et Dermatologie, Université Catholique de Louvain, Brussels, Belgium
- Service de Pneumologie, Cliniques universitaires Saint-Luc, Brussels, Belgium
- Secteur de Kinésithérapie et Ergothérapie, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Angela Bellofiore
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Healthcare Professions Department, Milan, Italy
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Internal Medicine Department, Respiratory Unit and Cystic Fibrosis Adult Centre, Milan, Italy
| | | | - James D Chalmers
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, Dundee, UK
| | - Annemarie L Lee
- Department of Physiotherapy, Faculty of Medicine, Nursing and Health Sciences, Monash University, Frankston, Australia
- Institute for Breathing and Sleep, Austin Health, Heidelberg, Australia
| |
Collapse
|
10
|
Tiwari B, Usmani AY, Bodduluri S, Bhatt SP, Raghav V. Influence of Pulsatility and Inflow Waveforms on Tracheal Airflow Dynamics in Healthy Older Adults. J Biomech Eng 2023; 145:101009. [PMID: 37382648 PMCID: PMC10405280 DOI: 10.1115/1.4062851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
Tracheal collapsibility is a dynamic process altering local airflow dynamics. Patient-specific simulation is a powerful technique to explore the physiological and pathological characteristics of human airways. One of the key considerations in implementing airway computations is choosing the right inlet boundary conditions that can act as a surrogate model for understanding realistic airflow simulations. To this end, we numerically examine airflow patterns under the influence of different profiles, i.e., flat, parabolic, and Womersley, and compare these with a realistic inlet obtained from experiments. Simulations are performed in ten patient-specific cases with normal and rapid breathing rates during the inhalation phase of the respiration cycle. At normal breathing, velocity and vorticity contours reveal primary flow structures on the sagittal plane that impart strength to cross-plane vortices. Rapid breathing, however, encounters small recirculation zones. Quantitative flow metrics are evaluated using time-averaged wall shear stress (TAWSS) and oscillatory shear index (OSI). Overall, the flow metrics encountered in a real velocity profile are in close agreement with parabolic and Womersley profiles for normal conditions, however, the Womersley inlet alone conforms to a realistic profile under rapid breathing conditions.
Collapse
Affiliation(s)
- Bipin Tiwari
- Department of Aerospace Engineering, Auburn University, Auburn, AL 36849
| | - Abdullah Y. Usmani
- Department of Aerospace Engineering, Auburn University, Auburn, AL 36849
| | - Sandeep Bodduluri
- Division of Pulmonary, Allergy, and Critical Care Medicine, The University of Alabama at Birmingham, Birmingham, AL 35233; UAB Lung Imaging Lab, The University of Alabama at Birmingham, Birmingham, AL 35294
| | - Surya P. Bhatt
- Division of Pulmonary, Allergy, and Critical Care Medicine, The University of Alabama at Birmingham, Birmingham, AL 35233; UAB Lung Imaging Lab, The University of Alabama at Birmingham, Birmingham, AL 35294
| | - Vrishank Raghav
- Department of Aerospace Engineering, Auburn University, 211 Davis Hall, Auburn, AL 36849
| |
Collapse
|
11
|
Vinod A, Tadmor R, Katoshevski D, Gutmark EJ. Gels That Serve as Mucus Simulants: A Review. Gels 2023; 9:555. [PMID: 37504435 PMCID: PMC10379079 DOI: 10.3390/gels9070555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/29/2023] Open
Abstract
Mucus is a critical part of the human body's immune system that traps and carries away various particulates such as anthropogenic pollutants, pollen, viruses, etc. Various synthetic hydrogels have been developed to mimic mucus, using different polymers as their backbones. Common to these simulants is a three-dimensional gel network that is physically crosslinked and is capable of loosely entrapping water within. Two of the challenges in mimicking mucus using synthetic hydrogels include the need to mimic the rheological properties of the mucus and its ability to capture particulates (its adhesion mechanism). In this paper, we review the existing mucus simulants and discuss their rheological, adhesive, and tribological properties. We show that most, but not all, simulants indeed mimic the rheological properties of the mucus; like mucus, most hydrogel mucus simulants reviewed here demonstrated a higher storage modulus than its loss modulus, and their values are in the range of that found in mucus. However, only one mimics the adhesive properties of the mucus (which are critical for the ability of mucus to capture particulates), Polyvinyl alcohol-Borax hydrogel.
Collapse
Affiliation(s)
- Appu Vinod
- Department of Mechanical Engineering, Ben Gurion University, Beer Sheva 84105, Israel
| | - Rafael Tadmor
- Department of Mechanical Engineering, Ben Gurion University, Beer Sheva 84105, Israel
| | - David Katoshevski
- Department of Civil and Environmental Engineering, Ben Gurion University, Beer Sheva 84105, Israel
| | - Ephraim J Gutmark
- Department of Aerospace Engineering & Engineering Mechanics, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
12
|
Sedaghat MH, Behnia M, Abouali O. Nanoparticle Diffusion in Respiratory Mucus Influenced by Mucociliary Clearance: A Review of Mathematical Modeling. J Aerosol Med Pulm Drug Deliv 2023. [PMID: 37184652 DOI: 10.1089/jamp.2022.0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Background: Inhalation and deposition of particles in human airways have attracted considerable attention due to importance of particulate pollutants, transmission of infectious diseases, and therapeutic delivery of drugs at targeted areas. We summarize current state-of-the art research in particle deposition on airway surface liquid (ASL) influenced by mucociliary clearance (MCC) by identifying areas that need further investigation. Methodology: We aim to review focus on governing and constitutive equations describing MCC geometry followed by description of mathematical modeling of ciliary forces, mucus rheology properties, and numerical approaches to solve modified time-dependent Navier-Stokes equations. We also review mathematical modeling of particle deposition in ASL influenced by MCC, particle transport in ASL in terms of Eulerian and Lagrangian approaches, and discuss the corresponding mass transport issues in this layer. Whenever required, numerical predictions are contrasted with the pertinent experimental data. Results: Results indicate that mean mucus and periciliary liquid velocities are strongly influenced by mucus rheological characteristics as well as ciliary abnormalities. However, most of the currently available literature on mucus fiber spacing, ciliary beat frequency, and particle surface chemistry is based on particle deposition on ASL by considering a fixed value of ASL velocity. The effects of real ASL flow regimes on particle deposition in this layer are limited. In addition, no other study is available on modeling nonhomogeneous and viscoelastic characteristics of mucus layer on ASL drug delivery. Conclusion: Simplification of assumptions on governing equations of drug delivery in ASL influenced by MCC leads to imposing some limitations on numerical results.
Collapse
Affiliation(s)
- Mohammad Hadi Sedaghat
- Department of Mechanical Engineering, Technical and Vocational University (TVU), Tehran, Iran
| | - Mehrdad Behnia
- University of Central Florida School of Medicine, Orlando, Florida, USA
| | - Omid Abouali
- Department of Civil and Architectural Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
- School of Mechanical Engineering, Shiraz University, Shiraz, Iran
| |
Collapse
|
13
|
Roqué-Figuls M, Giné-Garriga M, Granados Rugeles C, Perrotta C, Vilaró J. Chest physiotherapy for acute bronchiolitis in paediatric patients between 0 and 24 months old. Cochrane Database Syst Rev 2023; 4:CD004873. [PMID: 37010196 PMCID: PMC10070603 DOI: 10.1002/14651858.cd004873.pub6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
BACKGROUND Acute bronchiolitis is the leading cause of medical emergencies during winter months in infants younger than 24 months old. Chest physiotherapy is sometimes used to assist infants in the clearance of secretions in order to decrease ventilatory effort. This is an update of a Cochrane Review first published in 2005 and updated in 2006, 2012, and 2016. OBJECTIVES To determine the efficacy of chest physiotherapy in infants younger than 24 months old with acute bronchiolitis. A secondary objective was to determine the efficacy of different techniques of chest physiotherapy (vibration and percussion, passive exhalation, or instrumental). SEARCH METHODS We searched CENTRAL, MEDLINE, Embase, CINAHL, LILACS, Web of Science, PEDro (October 2011 to 20 April 2022), and two trials registers (5 April 2022). SELECTION CRITERIA Randomised controlled trials (RCTs) in which chest physiotherapy was compared to control (conventional medical care with no physiotherapy intervention) or other respiratory physiotherapy techniques in infants younger than 24 months old with bronchiolitis. DATA COLLECTION AND ANALYSIS We used standard methodological procedures expected by Cochrane. MAIN RESULTS Our update of the searches dated 20 April 2022 identified five new RCTs with 430 participants. We included a total of 17 RCTs (1679 participants) comparing chest physiotherapy with no intervention or comparing different types of physiotherapy. Five trials (246 participants) assessed percussion and vibration techniques plus postural drainage (conventional chest physiotherapy), and 12 trials (1433 participants) assessed different passive flow-oriented expiratory techniques, of which three trials (628 participants) assessed forced expiratory techniques, and nine trials (805 participants) assessed slow expiratory techniques. In the slow expiratory subgroup, two trials (78 participants) compared the technique with instrumental physiotherapy techniques, and two recent trials (116 participants) combined slow expiratory techniques with rhinopharyngeal retrograde technique (RRT). One trial used RRT alone as the main component of the physiotherapy intervention. Clinical severity was mild in one trial, severe in four trials, moderate in six trials, and mild to moderate in five trials. One study did not report clinical severity. Two trials were performed on non-hospitalised participants. Overall risk of bias was high in six trials, unclear in five, and low in six trials. The analyses showed no effects of conventional techniques on change in bronchiolitis severity status, respiratory parameters, hours with oxygen supplementation, or length of hospital stay (5 trials, 246 participants). Regarding instrumental techniques (2 trials, 80 participants), one trial observed similar results in bronchiolitis severity status when comparing slow expiration to instrumental techniques (mean difference 0.10, 95% confidence interval (C) -0.17 to 0.37). Forced passive expiratory techniques failed to show an effect on bronchiolitis severity in time to recovery (2 trials, 509 participants; high-certainty evidence) and time to clinical stability (1 trial, 99 participants; high-certainty evidence) in infants with severe bronchiolitis. Important adverse effects were reported with the use of forced expiratory techniques. Regarding slow expiratory techniques, a mild to moderate improvement was observed in bronchiolitis severity score (standardised mean difference -0.43, 95% CI -0.73 to -0.13; I2 = 55%; 7 trials, 434 participants; low-certainty evidence). Also, in one trial an improvement in time to recovery was observed with the use of slow expiratory techniques. No benefit was observed in length of hospital stay, except for one trial which showed a one-day reduction. No effects were shown or reported for other clinical outcomes such as duration on oxygen supplementation, use of bronchodilators, or parents' impression of physiotherapy benefit. AUTHORS' CONCLUSIONS We found low-certainty evidence that passive slow expiratory technique may result in a mild to moderate improvement in bronchiolitis severity when compared to control. This evidence comes mostly from infants with moderately acute bronchiolitis treated in hospital. The evidence was limited with regard to infants with severe bronchiolitis and those with moderately severe bronchiolitis treated in ambulatory settings. We found high-certainty evidence that conventional techniques and forced expiratory techniques result in no difference in bronchiolitis severity or any other outcome. We found high-certainty evidence that forced expiratory techniques in infants with severe bronchiolitis do not improve their health status and can lead to severe adverse effects. Currently, the evidence regarding new physiotherapy techniques such as RRT or instrumental physiotherapy is scarce, and further trials are needed to determine their effects and potential for use in infants with moderate bronchiolitis, as well as the potential additional effect of RRT when combined with slow passive expiratory techniques. Finally, the effectiveness of combining chest physiotherapy with hypertonic saline should also be investigated.
Collapse
Affiliation(s)
- Marta Roqué-Figuls
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Maria Giné-Garriga
- Department of Physical Activity and Sport Sciences, Faculty of Psychology, Education and Sport Sciences (FPCEE) Blanquerna, Universitat Ramon Llull, Barcelona, Spain
| | - Claudia Granados Rugeles
- Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Carla Perrotta
- School of Public Health, University College Dublin, Dublin, Ireland
| | - Jordi Vilaró
- Blanquerna Faculty of Health Sciences. GRoW, Global Research on Wellbeing, Ramon Llull University, Barcelona, Spain
| |
Collapse
|
14
|
Crosby T, Adkins L, McWhorter A, Kunduk M, Dunham M. Computational fluid dynamics model of laryngotracheal stenosis and correlation to pulmonary function measures. Respir Physiol Neurobiol 2023; 312:104037. [PMID: 36842729 DOI: 10.1016/j.resp.2023.104037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 02/28/2023]
Abstract
3D models of airway lumens were created from CT scans of 19 patients with laryngotracheal stenosis. Computational fluid dynamics (CFD) simulations were completed for each, and results were compared to measured peak inspiratory flow rate, grade of lumen constriction, and measures of airway geometry. Results demonstrate flow resistance and shear stress correlate with degree of lumen constriction and absolute cross-sectional area as well as flow rate. Flow recirculation depends on airway constriction but does not vary with flow rate. Resistance and wall shear stress did not correlate well with functional measures. Flow recirculation did differ between subjects with higher functional measures and subjects with lower functional measures. This analysis provides mathematical models to predict airway resistance, wall shear stress, and flow reversal according lumen constriction and inspiratory flow rate. It suggests aerodynamic factors such as flow recirculation play a role in differences in functional performance between patients with similar airway measures.
Collapse
Affiliation(s)
- Tyler Crosby
- Louisiana State University Health Science Center, New Orleans - Department of Otolaryngology, Head and Neck Surgery, 533 Bolivar Street, Suite 566, New Orleans, LA 70112, USA; Department of Otolaryngology-Head and Neck Surgery, NYU Langone Health, New York, New York.
| | - Lacey Adkins
- Louisiana State University Health Science Center, New Orleans - Department of Otolaryngology, Head and Neck Surgery, 533 Bolivar Street, Suite 566, New Orleans, LA 70112, USA; Our Lady of the Lake Regional Medical Center, Voice Center, 4950 Essen Ln Ste 401, Baton Rouge, LA 70809, USA
| | - Andrew McWhorter
- Louisiana State University Health Science Center, New Orleans - Department of Otolaryngology, Head and Neck Surgery, 533 Bolivar Street, Suite 566, New Orleans, LA 70112, USA; Our Lady of the Lake Regional Medical Center, Voice Center, 4950 Essen Ln Ste 401, Baton Rouge, LA 70809, USA
| | - Melda Kunduk
- Our Lady of the Lake Regional Medical Center, Voice Center, 4950 Essen Ln Ste 401, Baton Rouge, LA 70809, USA; Louisiana State University Department of Communication Sciences and Disorders, Louisiana State University, 68 Hatcher Hall, Field House Drive, Baton Rouge, LA 70803, USA
| | - Michael Dunham
- Louisiana State University Health Science Center, New Orleans - Department of Otolaryngology, Head and Neck Surgery, 533 Bolivar Street, Suite 566, New Orleans, LA 70112, USA; Our Lady of the Lake Children's Hospital, 8200 Constanin Blvd, Floor 3, Baton Rouge, LA 70809, USA
| |
Collapse
|
15
|
Figueira MF, Ribeiro CMP, Button B. Mucus-targeting therapies of defective mucus clearance for cystic fibrosis: A short review. Curr Opin Pharmacol 2022; 65:102248. [PMID: 35689870 PMCID: PMC9891491 DOI: 10.1016/j.coph.2022.102248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/19/2022] [Accepted: 05/05/2022] [Indexed: 02/03/2023]
Abstract
In the lungs, defective CFTR associated with cystic fibrosis (CF) represents the nidus for abnormal mucus clearance in the airways and consequently a progressive lung disease. Defective CFTR-mediated Cl- secretion results in altered mucus properties, including concentration, viscoelasticity, and the ratio of the two mucins, MUC5B and MUC5AC. In the past decades, therapies targeting the CF mucus defect, directly or indirectly, have been developed; nevertheless, better treatments to prevent the disease progression are still needed. This review summarizes the existing knowledge on the defective mucus in CF disease and highlights it as a barrier to the development of future inhaled genetic therapies. The use of new mucus-targeting treatments is also discussed, focusing on their potential role to halt the progress of CF lung disease.
Collapse
Affiliation(s)
- Miriam Frankenthal Figueira
- Marsico Lung Institute/Cystic Fibrosis Center, University of North Carolina, Chapel Hill, NC 27599-7248, USA
| | - Carla M. P. Ribeiro
- Marsico Lung Institute/Cystic Fibrosis Center, University of North Carolina, Chapel Hill, NC 27599-7248, USA.,Department of Medicine, University of North Carolina, Chapel Hill, NC 27599-7248, USA.,Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599-7248, USA
| | - Brian Button
- Marsico Lung Institute/Cystic Fibrosis Center, University of North Carolina, Chapel Hill, NC 27599-7248, USA.,Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7248, USA
| |
Collapse
|
16
|
de la Guerra PA, Corvera Poiré E. Pulsatile parallel flow of air and a viscoelastic fluid with multiple characteristic times. An application to mucus in the trachea and the frequency of cough. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:314003. [PMID: 35561687 DOI: 10.1088/1361-648x/ac6fa7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
We study the dynamics of a binary fluid, where the two fluids are flowing parallel to each other in a cylindrical geometry, and driven by a pulsatile pressure gradient. One of the fluids is a low viscosity Newtonian fluid, the other one is viscoelastic. In order to be able to apply the model to different biofluids, we consider that the viscoelastic fluid has several characteristic times. We characterize the dynamics of the fluids as generalized Darcy's laws, with linear response functions to pulsatile pressure gradients, whose parameters are coupled for both fluids through the fluid-fluid boundary conditions. We apply our results to the dynamics of mucus and air in the trachea and find that the frequency that allows for a larger movement of the mucus, coincides with the experimental frequency of cough. This allows us to propose a plausible explanation for the frequency of cough in healthy individuals, a mechanical process to expel noxious substances from the respiratory system.
Collapse
Affiliation(s)
- Pablo Alberto de la Guerra
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - E Corvera Poiré
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- UBICS Institute of Complex Systems, Universitat de Barcelona, Martí i Franquès 1, Barcelona 08028, Spain
| |
Collapse
|
17
|
Coppolo DP, Schloss J, Suggett JA, Mitchell JP. Non-Pharmaceutical Techniques for Obstructive Airway Clearance Focusing on the Role of Oscillating Positive Expiratory Pressure (OPEP): A Narrative Review. Pulm Ther 2021; 8:1-41. [PMID: 34860355 PMCID: PMC8640712 DOI: 10.1007/s41030-021-00178-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/29/2021] [Indexed: 11/26/2022] Open
Abstract
Mucus secretion in the lungs is a natural process that protects the airways from inhaled insoluble particle accumulation by capture and removal via the mucociliary escalator. Diseases such as cystic fibrosis (CF) and associated bronchiectasis, as well as chronic obstructive pulmonary disease (COPD), result in mucus layer thickening, associated with high viscosity in CF, which can eventually lead to complete airway obstruction. These processes severely impair the delivery of inhaled medications to obstructed regions of the lungs, resulting in poorly controlled disease with associated increased morbidity and mortality. This narrative review article focuses on the use of non-pharmacological airway clearance therapies (ACTs) that promote mechanical movement from the obstructed airway. Particular attention is given to the evolving application of oscillating positive expiratory pressure (OPEP) therapy via a variety of devices. Advice is provided as to the features that appear to be the most effective at mucus mobilization.
Collapse
Affiliation(s)
| | | | | | - Jolyon P Mitchell
- Jolyon Mitchell Inhaler Consulting Services Inc., 1154 St. Anthony Road, London, ON, N6H 2R1, Canada.
| |
Collapse
|
18
|
Kolb P, Schundner A, Frick M, Gottschalk KE. In Vitro Measurements of Cellular Forces and their Importance in the Lung-From the Sub- to the Multicellular Scale. Life (Basel) 2021; 11:691. [PMID: 34357063 PMCID: PMC8307149 DOI: 10.3390/life11070691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023] Open
Abstract
Throughout life, the body is subjected to various mechanical forces on the organ, tissue, and cellular level. Mechanical stimuli are essential for organ development and function. One organ whose function depends on the tightly connected interplay between mechanical cell properties, biochemical signaling, and external forces is the lung. However, altered mechanical properties or excessive mechanical forces can also drive the onset and progression of severe pulmonary diseases. Characterizing the mechanical properties and forces that affect cell and tissue function is therefore necessary for understanding physiological and pathophysiological mechanisms. In recent years, multiple methods have been developed for cellular force measurements at multiple length scales, from subcellular forces to measuring the collective behavior of heterogeneous cellular networks. In this short review, we give a brief overview of the mechanical forces at play on the cellular level in the lung. We then focus on the technological aspects of measuring cellular forces at many length scales. We describe tools with a subcellular resolution and elaborate measurement techniques for collective multicellular units. Many of the technologies described are by no means restricted to lung research and have already been applied successfully to cells from various other tissues. However, integrating the knowledge gained from these multi-scale measurements in a unifying framework is still a major future challenge.
Collapse
Affiliation(s)
- Peter Kolb
- Institute of Experimental Physics, Ulm University, 89069 Ulm, Germany;
| | - Annika Schundner
- Institute of General Physiology, Ulm University, 89069 Ulm, Germany;
| | - Manfred Frick
- Institute of General Physiology, Ulm University, 89069 Ulm, Germany;
| | - Kay-E. Gottschalk
- Institute of Experimental Physics, Ulm University, 89069 Ulm, Germany;
| |
Collapse
|
19
|
Overeem NJ, Hamming PH(E, Tieke M, van der Vries E, Huskens J. Multivalent Affinity Profiling: Direct Visualization of the Superselective Binding of Influenza Viruses. ACS NANO 2021; 15:8525-8536. [PMID: 33978406 PMCID: PMC8158855 DOI: 10.1021/acsnano.1c00166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/05/2021] [Indexed: 05/23/2023]
Abstract
The influenza A virus (IAV) interacts with the glycocalyx of host cells through its surface proteins hemagglutinin (HA) and neuraminidase (NA). Quantitative biophysical measurements of these interactions may help to understand these interactions at the molecular level with the long-term aim to predict influenza infectivity and answer other biological questions. We developed a method, called multivalent affinity profiling (MAP), to measure virus binding profiles on receptor density gradients to determine the threshold receptor density, which is a quantitative measure of virus avidity toward a receptor. Here, we show that imaging of IAVs on receptor density gradients allows the direct visualization and efficient assessment of their superselective binding. We show how the multivalent binding of IAVs can be quantitatively assessed using MAP if the receptor density gradients are prepared around the threshold receptor density without crowding at the higher densities. The threshold receptor density increases strongly with increasing flow rate, showing that the superselective binding of IAV is influenced by shear force. This method of visualization and quantitative assessment of superselective binding allows not only comparative studies of IAV-receptor interactions, but also more fundamental studies of how superselectivity arises and is influenced by experimental conditions.
Collapse
Affiliation(s)
- Nico J. Overeem
- Department
of Molecules & Materials, MESA+ Institute for Nanotechnology,
Faculty of Science and Technology, University
of Twente, 7500 AE Enschede, The Netherlands
| | - P. H. (Erik) Hamming
- Department
of Molecules & Materials, MESA+ Institute for Nanotechnology,
Faculty of Science and Technology, University
of Twente, 7500 AE Enschede, The Netherlands
| | - Malte Tieke
- Division
of Virology, Department of Infectious Diseases and Immunology, Faculty
of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Erhard van der Vries
- Division
of Virology, Department of Infectious Diseases and Immunology, Faculty
of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
- Royal
GD, Arnsbergstraat 7, 7418 EZ, Deventer, The Netherlands
- Department
of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Jurriaan Huskens
- Department
of Molecules & Materials, MESA+ Institute for Nanotechnology,
Faculty of Science and Technology, University
of Twente, 7500 AE Enschede, The Netherlands
| |
Collapse
|
20
|
Kliment CR, Nguyen JMK, Kaltreider MJ, Lu Y, Claypool SM, Radder JE, Sciurba FC, Zhang Y, Gregory AD, Iglesias PA, Sidhaye VK, Robinson DN. Adenine nucleotide translocase regulates airway epithelial metabolism, surface hydration and ciliary function. J Cell Sci 2021; 134:jcs.257162. [PMID: 33526710 DOI: 10.1242/jcs.257162] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/13/2021] [Indexed: 01/10/2023] Open
Abstract
Airway hydration and ciliary function are critical to airway homeostasis and dysregulated in chronic obstructive pulmonary disease (COPD), which is impacted by cigarette smoking and has no therapeutic options. We utilized a high-copy cDNA library genetic selection approach in the amoeba Dictyostelium discoideum to identify genetic protectors to cigarette smoke. Members of the mitochondrial ADP/ATP transporter family adenine nucleotide translocase (ANT) are protective against cigarette smoke in Dictyostelium and human bronchial epithelial cells. Gene expression of ANT2 is reduced in lung tissue from COPD patients and in a mouse smoking model, and overexpression of ANT1 and ANT2 resulted in enhanced oxidative respiration and ATP flux. In addition to the presence of ANT proteins in the mitochondria, they reside at the plasma membrane in airway epithelial cells and regulate airway homeostasis. ANT2 overexpression stimulates airway surface hydration by ATP and maintains ciliary beating after exposure to cigarette smoke, both of which are key functions of the airway. Our study highlights a potential for upregulation of ANT proteins and/or of their agonists in the protection from dysfunctional mitochondrial metabolism, airway hydration and ciliary motility in COPD.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Corrine R Kliment
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA .,Department of Medicine, Division of Pulmonary and Critical Care, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Medicine, Division of Pulmonary and Critical Care, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Jennifer M K Nguyen
- Department of Medicine, Division of Pulmonary and Critical Care, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mary Jane Kaltreider
- Department of Medicine, Division of Pulmonary and Critical Care, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - YaWen Lu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Steven M Claypool
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Josiah E Radder
- Department of Medicine, Division of Pulmonary and Critical Care, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Frank C Sciurba
- Department of Medicine, Division of Pulmonary and Critical Care, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Yingze Zhang
- Department of Medicine, Division of Pulmonary and Critical Care, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Alyssa D Gregory
- Department of Medicine, Division of Pulmonary and Critical Care, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Pablo A Iglesias
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Venkataramana K Sidhaye
- Department of Medicine, Division of Pulmonary and Critical Care, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Environmental Health Sciences and Engineering, Johns Hopkins University School of Public Health, Baltimore, MD 21205, USA
| | - Douglas N Robinson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA .,Department of Medicine, Division of Pulmonary and Critical Care, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
21
|
Adivitiya, Kaushik MS, Chakraborty S, Veleri S, Kateriya S. Mucociliary Respiratory Epithelium Integrity in Molecular Defense and Susceptibility to Pulmonary Viral Infections. BIOLOGY 2021; 10:95. [PMID: 33572760 PMCID: PMC7911113 DOI: 10.3390/biology10020095] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 01/08/2023]
Abstract
Mucociliary defense, mediated by the ciliated and goblet cells, is fundamental to respiratory fitness. The concerted action of ciliary movement on the respiratory epithelial surface and the pathogen entrapment function of mucus help to maintain healthy airways. Consequently, genetic or acquired defects in lung defense elicit respiratory diseases and secondary microbial infections that inflict damage on pulmonary function and may even be fatal. Individuals living with chronic and acute respiratory diseases are more susceptible to develop severe coronavirus disease-19 (COVID-19) illness and hence should be proficiently managed. In light of the prevailing pandemic, we review the current understanding of the respiratory system and its molecular components with a major focus on the pathophysiology arising due to collapsed respiratory epithelium integrity such as abnormal ciliary movement, cilia loss and dysfunction, ciliated cell destruction, and changes in mucus rheology. The review includes protein interaction networks of coronavirus infection-manifested implications on the molecular machinery that regulates mucociliary clearance. We also provide an insight into the alteration of the transcriptional networks of genes in the nasopharynx associated with the mucociliary clearance apparatus in humans upon infection by severe acute respiratory syndrome coronavirus-2.
Collapse
Affiliation(s)
- Adivitiya
- Laboratory of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; (A.); (M.S.K.); (S.C.)
| | - Manish Singh Kaushik
- Laboratory of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; (A.); (M.S.K.); (S.C.)
| | - Soura Chakraborty
- Laboratory of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; (A.); (M.S.K.); (S.C.)
| | - Shobi Veleri
- Drug Safety Division, ICMR-National Institute of Nutrition, Hyderabad 500007, India;
| | - Suneel Kateriya
- Laboratory of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; (A.); (M.S.K.); (S.C.)
| |
Collapse
|
22
|
Patel M, Ashraf MS, Siddiqui AJ, Ashraf SA, Sachidanandan M, Snoussi M, Adnan M, Hadi S. Profiling and Role of Bioactive Molecules from Puntius sophore (Freshwater/Brackish Fish) Skin Mucus with Its Potent Antibacterial, Antiadhesion, and Antibiofilm Activities. Biomolecules 2020; 10:E920. [PMID: 32560562 PMCID: PMC7355610 DOI: 10.3390/biom10060920] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 12/19/2022] Open
Abstract
Epidermal fish mucus comprises of diverse bioactive metabolites which plays an immense role in defense mechanisms and other important cellular activities. Primarily, this study aims to screen the unexplored mucus extract of Puntius sophore(P. sophore) for its antagonistic potential against common pathogens, which are commonly implicated in foodborne and healthcare associated infections, with effects on their adhesion and biofilm formation. Profiling of the skin mucus was carried out by High Resolution-Liquid Chromatography Mass Spectrometry (HR-LCMS), followed by antibacterial activity and assessment of antibiofilm potency and efficacy on the development, formation, and texture of biofilms. Furthermore, bacterial cell damage, viability within the biofilm, checkerboard test, and cytotoxicity were also evaluated. As a result, P. sophore mucus extract was found to be effective against all tested strains. It also impedes the architecture of biofilm matrix by affecting the viability and integrity of bacterial cells within biofilms and reducing the total exopolysaccharide content. A synergy was observed between P. sophore mucus extract and gentamicin for Escherichia coli(E. coli), Pseudomonas aeruginosa(P. aeruginosa), and Bacillus subtilis(B. subtilis), whereas, an additive effect for Staphylococcus aureus(S. aureus). Thus, our findings represent the potent bioactivities of P. sophore mucus extract for the first time, which could be explored further as an alternative to antibiotics or chemically synthesized antibiofilm agents.
Collapse
Affiliation(s)
- Mitesh Patel
- Bapalal Vaidya Botanical Research Centre, Department of Biosciences, Veer Narmad South Gujarat University, Surat, Gujarat 395007, India;
| | - Mohammad Saquib Ashraf
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, Shaqra University, Al Dawadimi 17472, Saudi Arabia;
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail, Saudi Arabia; (A.J.S.); (M.S.)
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medial Sciences, University of Hail, P.O. Box 2440, Hail, Saudi Arabia;
| | - Manojkumar Sachidanandan
- Department of Oral Radiology, College of Dentistry, University of Hail, P.O. Box 2440, Hail, Saudi Arabia;
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail, Saudi Arabia; (A.J.S.); (M.S.)
- Laboratory of Bioresources: Integrative Biology and Valorization, (LR14-ES06), University of Monastir, Higher Institute of Biotechnology of Monastir, Avenue Tahar Haddad, BP 74, Monastir 5000, Tunisia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail, Saudi Arabia; (A.J.S.); (M.S.)
| | - Sibte Hadi
- School of Forensic and Applied Sciences, University of Central Lancashire, Preston PR1 2HE, UK
| |
Collapse
|
23
|
TMEM16A: An Alternative Approach to Restoring Airway Anion Secretion in Cystic Fibrosis? Int J Mol Sci 2020; 21:ijms21072386. [PMID: 32235608 PMCID: PMC7177896 DOI: 10.3390/ijms21072386] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/18/2022] Open
Abstract
The concept that increasing airway hydration leads to improvements in mucus clearance and lung function in cystic fibrosis has been clinically validated with osmotic agents such as hypertonic saline and more convincingly with cystic fibrosis transmembrane conductance regulator (CFTR) repair therapies. Although rapidly becoming the standard of care in cystic fibrosis (CF), current CFTR modulators do not treat all patients nor do they restore the rate of decline in lung function to normal levels. As such, novel approaches are still required to ensure all with CF have effective therapies. Although CFTR plays a fundamental role in the regulation of fluid secretion across the airway mucosa, there are other ion channels and transporters that represent viable targets for future therapeutics. In this review article we will summarise the current progress with CFTR-independent approaches to restoring mucosal hydration, including epithelial sodium channel (ENaC) blockade and modulators of SLC26A9. A particular emphasis is given to modulation of the airway epithelial calcium-activated chloride channel (CaCC), TMEM16A, as there is controversy regarding whether it should be positively or negatively modulated. This is discussed in light of a recent report describing for the first time bona fide TMEM16A potentiators and their positive effects upon epithelial fluid secretion and mucus clearance.
Collapse
|
24
|
Particle transport and deposition correlation with near-wall flow characteristic under inspiratory airflow in lung airways. Comput Biol Med 2020; 120:103703. [PMID: 32217283 DOI: 10.1016/j.compbiomed.2020.103703] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/26/2020] [Accepted: 03/11/2020] [Indexed: 02/04/2023]
Abstract
Exposure of lung airways to detrimental suspended aerosols in the environment increases the vulnerability of the respiratory and cardiovascular systems. In addition, recent developments in therapeutic inhalation devices magnify the importance of particle transport. In this manuscript, particle transport and deposition patterns in the upper tracheobronchial (TB) tree were studied where the inertial forces are considerable for microparticles. Wall shear stress divergence (WSSdiv) is proposed as a wall-based parameter that can predict particle deposition patterns. WSSdiv is proportional to near-wall normal velocity and can quantify the strength of flow towards and away from the wall. Computational fluid dynamics (CFD) simulations were performed to quantify airflow velocity and WSS vectors for steady inhalation in one case-control and unsteady inhalation in six subject-specific airway trees. Turbulent flow simulation was performed for the steady case using large eddy simulation to study the effect of turbulence. Magnetic resonance velocimetry (MRV) measurements were used to validate the case-control CFD simulation. Inertial particle transport was modeled by solving the Maxey-Riley equation in a Lagrangian framework. Deposition percentage (DP) was quantified for the case-control model over five particle sizes. DP was found to be proportional to particle size in agreement with previous studies in the literature. A normalized deposition concentration (DC) was defined to characterize localized deposition. A relatively strong correlation (Pearson value > 0.7) was found between DC and positive WSSdiv for physiologically relevant Stokes (St) numbers. Additionally, a regional analysis was performed after dividing the lungs into smaller areas. A spatial integral of positive WSSdiv over each division was shown to maintain a very strong correlation (Pearson value > 0.9) with cumulative spatial DC or regional dosimetry. The conclusions were generalized to a larger population in which two healthy and four asthmatic patients were investigated. This study shows that WSSdiv could be used to predict the qualitative surface deposition and relative regional dosimetry without the need to solve a particle transport problem.
Collapse
|
25
|
Simões FB, Quaresma MC, Clarke LA, Silva IA, Pankonien I, Railean V, Kmit A, Amaral MD. TMEM16A chloride channel does not drive mucus production. Life Sci Alliance 2019; 2:2/6/e201900462. [PMID: 31732694 PMCID: PMC6859295 DOI: 10.26508/lsa.201900462] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/29/2019] [Accepted: 11/06/2019] [Indexed: 01/07/2023] Open
Abstract
Despite being essential for airway hydration, TMEM16A is not required for mucus (MUC5AC) production. Cell proliferation is the main driver for TMEM16A up-regulation during inflammation. Airway mucus obstruction is the main cause of morbidity in cystic fibrosis, a disease caused by mutations in the CFTR Cl− channel. Activation of non-CFTR Cl− channels such as TMEM16A can likely compensate for defective CFTR. However, TMEM16A was recently described as a key driver in mucus production/secretion. Here, we have examined whether indeed there is a causal relationship between TMEM16A and MUC5AC production, the main component of respiratory mucus. Our data show that TMEM16A and MUC5AC are inversely correlated during differentiation of human airway cells. Furthermore, we show for the first time that the IL-4–induced TMEM16A up-regulation is proliferation-dependent, which is supported by the correlation found between TMEM16A and Ki-67 proliferation marker during wound healing. Consistently, the notch signaling activator DLL4 increases MUC5AC levels without inducing changes neither in TMEM16A nor in Ki-67 expression. Moreover, TMEM16A inhibition decreased airway surface liquid height. Altogether, our findings demonstrate that up-regulation of TMEM16A and MUC5AC is only circumstantial under cell proliferation, but with no causal relationship between them. Thus, although essential for airway hydration, TMEM16A is not required for MUC5AC production.
Collapse
Affiliation(s)
- Filipa B Simões
- University of Lisboa, Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| | - Margarida C Quaresma
- University of Lisboa, Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| | - Luka A Clarke
- University of Lisboa, Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| | - Iris Al Silva
- University of Lisboa, Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| | - Ines Pankonien
- University of Lisboa, Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| | - Violeta Railean
- University of Lisboa, Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| | - Arthur Kmit
- University of Lisboa, Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| | - Margarida D Amaral
- University of Lisboa, Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| |
Collapse
|
26
|
Salati H, Bartley J, White DE. Nasal saline irrigation - A review of current anatomical, clinical and computational modelling approaches. Respir Physiol Neurobiol 2019; 273:103320. [PMID: 31689534 DOI: 10.1016/j.resp.2019.103320] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/14/2019] [Accepted: 10/11/2019] [Indexed: 11/28/2022]
Abstract
Nasal saline irrigation is frequently utilised in allergic rhinitis and rhinosinusitis management, and after nasal and sinus surgery. Anatomical modelling, clinical and computational studies guide treatment optimisation. This review offers a comprehensive summary of the modelling methodologies used in previous nasal irrigation studies by undertaking a systematic analysis of anatomical, clinical and computational investigations that assessed nasal saline irrigation using Medline, EMBASE, and Cochrane Review databases. Both procedural and assessment methods were reviewed. It was found that all twenty-four publications reviewed did not discuss the influence of the nasal cycle on internasal geometry and nasal resistance. Cadaver studies misrepresent in vivo nasal geometry. Irrigation pressure and shear forces, which could influence mucociliary transport and postoperative cleaning, were not evaluated. Previous studies focus on irrigation coverage and have not considered the nasal cycle which influences unilateral nasal resistance and thus pressure/ flow relationships and may also increase nasal air-locking. New computational fluid dynamic models could better inform nasal irrigation clinical practice.
Collapse
Affiliation(s)
- Hana Salati
- BioDesign Lab, School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand.
| | - Jim Bartley
- Department of Surgery, University of Auckland, Auckland, New Zealand.
| | - David E White
- BioDesign Lab, School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand.
| |
Collapse
|
27
|
Marozkina N, Bosch J, Cotton C, Smith L, Seckler J, Zaman K, Rehman S, Periasamy A, Gaston H, Altawallbeh G, Davis M, Jones DR, Schilz R, Randell SH, Gaston B. Cyclic compression increases F508 Del CFTR expression in ciliated human airway epithelium. Am J Physiol Lung Cell Mol Physiol 2019; 317:L247-L258. [PMID: 31116581 DOI: 10.1152/ajplung.00020.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The mechanisms by which transepithelial pressure changes observed during exercise and airway clearance can benefit lung health are challenging to study. Here, we have studied 117 mature, fully ciliated airway epithelial cell filters grown at air-liquid interface grown from 10 cystic fibrosis (CF) and 19 control subjects. These were exposed to cyclic increases in apical air pressure of 15 cmH2O for varying times. We measured the effect on proteins relevant to lung health, with a focus on the CF transmembrane regulator (CFTR). Immunoflourescence and immunoblot data were concordant in demonstrating that air pressure increased F508Del CFTR expression and maturation. This effect was in part dependent on the presence of cilia, on Ca2+ influx, and on formation of nitrogen oxides. These data provide a mechanosensory mechanism by which changes in luminal air pressure, like those observed during exercise and airway clearance, can affect epithelial protein expression and benefit patients with diseases of the airways.
Collapse
Affiliation(s)
- Nadzeya Marozkina
- Pediatric Pulmonology Division, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Jürgen Bosch
- Pediatric Pulmonology Division, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Calvin Cotton
- Pediatric Pulmonology Division, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Laura Smith
- Pediatric Pulmonology Division, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - James Seckler
- Pediatric Pulmonology Division, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Khalequz Zaman
- Pediatric Pulmonology Division, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Shagufta Rehman
- W. M. Keck Center for Cellular Imaging, Department of Biology, University of Virginia, Charlottesville, Virginia
| | - Ammasi Periasamy
- W. M. Keck Center for Cellular Imaging, Department of Biology, University of Virginia, Charlottesville, Virginia
| | | | - Ghaith Altawallbeh
- Pediatric Pulmonology Division, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Michael Davis
- Department of Pediatrics, Division of Pulmonary Medicine, Children's Hospital of Richmond at Virginia Commonwealth University, Richmond, Virginia
| | - David R Jones
- Thoracic Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Robert Schilz
- Pulmonology and Critical Care Medicine University Hospitals, Cleveland, Ohio
| | - Scott H Randell
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina
| | - Benjamin Gaston
- Pediatric Pulmonology Division, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio.,Pediatric Pulmonology Division, Rainbow Babies and Children's Hospital, Cleveland, Ohio
| |
Collapse
|
28
|
Andreotta PW, Arold S, Kenyon J, Spicer D, Woodman P, Berry E, Brogan T, Kong S, Okerholm P, Russell V, Clarke RW, Hava DL. Inhaled calcium salts inhibit tobacco smoke-induced inflammation by modulating expression of chemokines and cytokines. Pulm Pharmacol Ther 2018; 53:86-99. [PMID: 30359782 DOI: 10.1016/j.pupt.2018.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 09/20/2018] [Accepted: 10/20/2018] [Indexed: 11/24/2022]
Abstract
Tobacco smoke-induced lung inflammation in patients with chronic obstructive pulmonary disease (COPD) worsens with disease progression and acute exacerbations caused by respiratory infections. Chronic therapies to manage COPD center on bronchodilators to improve lung function and inhaled corticosteroids (ICS) to help reduce the risk of exacerbations. Novel therapies are needed that reduce the underlying inflammation associated with COPD and the inflammation resulting from respiratory infections that worsen disease. The lung is lined with airway surface liquid (ASL), a rheologically active material that provides an innate defense for the airway against inhaled particulate and is continuously cleared from the airways by mucociliary clearance. The rheological properties of the ASL can be altered by changes in airway hydration and by cations, such as calcium, that interact with electronegative glycoproteins. The effect of inhaled salts on inflammation resulting from tobacco smoke exposure was studied to determine if cations could be used to alter the properties of the ASL and reduce inflammation. Inhaled calcium salts, but not sodium or magnesium salts, reduced cellular inflammation and key chemokines and cytokines that were induced by tobacco smoke exposure. Similar anti-inflammatory effects of calcium salts were observed using in vitro cultures of human monocyte derived macrophages and human bronchial epithelial cells. The data suggest that inhaled calcium salts may act broadly on both biophysical and biological pathways to reduce pulmonary inflammation.
Collapse
Affiliation(s)
| | - Steve Arold
- Pulmatrix Inc., 99 Hayden Ave, Suite 390, Lexington, MA 02421, USA
| | - Jennifer Kenyon
- Pulmatrix Inc., 99 Hayden Ave, Suite 390, Lexington, MA 02421, USA
| | - Diane Spicer
- Argenta Discovery, 8-9 Spire Green Centre, Harlow, Essex, United Kingdom
| | - Paul Woodman
- Argenta Discovery, 8-9 Spire Green Centre, Harlow, Essex, United Kingdom
| | - Elizabeth Berry
- Pulmatrix Inc., 99 Hayden Ave, Suite 390, Lexington, MA 02421, USA
| | - Tim Brogan
- Pulmatrix Inc., 99 Hayden Ave, Suite 390, Lexington, MA 02421, USA
| | - Sophanna Kong
- Pulmatrix Inc., 99 Hayden Ave, Suite 390, Lexington, MA 02421, USA
| | - Pamela Okerholm
- Pulmatrix Inc., 99 Hayden Ave, Suite 390, Lexington, MA 02421, USA
| | - Vince Russell
- Argenta Discovery, 8-9 Spire Green Centre, Harlow, Essex, United Kingdom
| | - Robert W Clarke
- Pulmatrix Inc., 99 Hayden Ave, Suite 390, Lexington, MA 02421, USA
| | - David L Hava
- Pulmatrix Inc., 99 Hayden Ave, Suite 390, Lexington, MA 02421, USA.
| |
Collapse
|
29
|
Modeling Host-Pathogen Interactions in the Context of the Microenvironment: Three-Dimensional Cell Culture Comes of Age. Infect Immun 2018; 86:IAI.00282-18. [PMID: 30181350 DOI: 10.1128/iai.00282-18] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Tissues and organs provide the structural and biochemical landscapes upon which microbial pathogens and commensals function to regulate health and disease. While flat two-dimensional (2-D) monolayers composed of a single cell type have provided important insight into understanding host-pathogen interactions and infectious disease mechanisms, these reductionist models lack many essential features present in the native host microenvironment that are known to regulate infection, including three-dimensional (3-D) architecture, multicellular complexity, commensal microbiota, gas exchange and nutrient gradients, and physiologically relevant biomechanical forces (e.g., fluid shear, stretch, compression). A major challenge in tissue engineering for infectious disease research is recreating this dynamic 3-D microenvironment (biological, chemical, and physical/mechanical) to more accurately model the initiation and progression of host-pathogen interactions in the laboratory. Here we review selected 3-D models of human intestinal mucosa, which represent a major portal of entry for infectious pathogens and an important niche for commensal microbiota. We highlight seminal studies that have used these models to interrogate host-pathogen interactions and infectious disease mechanisms, and we present this literature in the appropriate historical context. Models discussed include 3-D organotypic cultures engineered in the rotating wall vessel (RWV) bioreactor, extracellular matrix (ECM)-embedded/organoid models, and organ-on-a-chip (OAC) models. Collectively, these technologies provide a more physiologically relevant and predictive framework for investigating infectious disease mechanisms and antimicrobial therapies at the intersection of the host, microbe, and their local microenvironments.
Collapse
|
30
|
Goñi-Viguria R, Yoldi-Arzoz E, Casajús-Sola L, Aquerreta-Larraya T, Fernández-Sangil P, Guzmán-Unamuno E, Moyano-Berardo BM. Respiratory physiotherapy in intensive care unit: Bibliographic review. ENFERMERIA INTENSIVA 2018; 29:168-181. [PMID: 29910086 DOI: 10.1016/j.enfi.2018.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 02/05/2018] [Accepted: 03/09/2018] [Indexed: 11/19/2022]
Abstract
INTRODUCTION AND AIMS Patients in intensive care unit are susceptible to complications due to different causes (underlying disease, immobilisation, infection risk…) The current main intervention in order to prevent these complications is respiratory physiotherapy, a common practice for nurses on a daily basis. Therefore, we decided to carry out this bibliographic review to describe the most efficient respiratory physiotherapy methods for the prevention and treatment of lung complications in patients in intensive care, taking into account the differences between intubated and non-intubated patients. METHODOLOGY The bibliographic narrative review was carried out on literature available in Pubmed, Cinahl and Cochrane Library. The established limits were language, evidence over the last 15 years and age. RESULTS Techniques involving lung expansion, cough, vibration, percussion, postural drainage, incentive inspirometry and oscillatory and non-oscillatory systems are controversial regarding their efficacy as respiratory physiotherapy methods. However, non-invasive mechanical ventilation shows clear benefits. In the case of intubated patients, manual hyperinflation and secretion aspirations are highly efficient methods for the prevention of the potential complications mentioned above. In this case, other RP methods showed no clear efficiency when used individually. DISCUSSION AND CONCLUSIONS Non-invasive mechanical ventilation (for non-intubated patients) and manual hyperinflation (for intubated patients) proved to be the respiratory physiotherapy methods with the best results. The other techniques are more controversial and the results are not so clear. In both types of patients this literature review suggests that combined therapy is the most efficient.
Collapse
Affiliation(s)
- R Goñi-Viguria
- Unidad de Cuidados Intensivos, Clínica Universidad de Navarra, Pamplona, España.
| | - E Yoldi-Arzoz
- Unidad de Cuidados Intensivos, Clínica Universidad de Navarra, Pamplona, España
| | - L Casajús-Sola
- Unidad de Cuidados Intensivos, Clínica Universidad de Navarra, Pamplona, España
| | - T Aquerreta-Larraya
- Unidad de Cuidados Intensivos, Clínica Universidad de Navarra, Pamplona, España
| | - P Fernández-Sangil
- Unidad de Cuidados Intensivos, Clínica Universidad de Navarra, Pamplona, España
| | - E Guzmán-Unamuno
- Unidad de Cuidados Intensivos, Clínica Universidad de Navarra, Pamplona, España
| | - B M Moyano-Berardo
- Unidad de Cuidados Intensivos, Clínica Universidad de Navarra, Pamplona, España
| |
Collapse
|
31
|
Workflow for the Targeted and Untargeted Detection of Small Metabolites in Fish Skin Mucus. FISHES 2018. [DOI: 10.3390/fishes3020021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
32
|
Peabody JE, Shei RJ, Bermingham BM, Phillips SE, Turner B, Rowe SM, Solomon GM. Seeing cilia: imaging modalities for ciliary motion and clinical connections. Am J Physiol Lung Cell Mol Physiol 2018; 314:L909-L921. [PMID: 29493257 DOI: 10.1152/ajplung.00556.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The respiratory tract is lined with multiciliated epithelial cells that function to move mucus and trapped particles via the mucociliary transport apparatus. Genetic and acquired ciliopathies result in diminished mucociliary clearance, contributing to disease pathogenesis. Recent innovations in imaging technology have advanced our understanding of ciliary motion in health and disease states. Application of imaging modalities including transmission electron microscopy, high-speed video microscopy, and micron-optical coherence tomography could improve diagnostics and be applied for precision medicine. In this review, we provide an overview of ciliary motion, imaging modalities, and ciliopathic diseases of the respiratory system including primary ciliary dyskinesia, cystic fibrosis, chronic obstructive pulmonary disease, and idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Jacelyn E Peabody
- Department of Medicine, University of Alabama at Birmingham, Alabama.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham , Birmingham, Alabama
| | - Ren-Jay Shei
- Department of Medicine, University of Alabama at Birmingham, Alabama.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham , Birmingham, Alabama
| | | | - Scott E Phillips
- Department of Medicine, University of Alabama at Birmingham, Alabama
| | - Brett Turner
- Departments of Pediatrics and Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Alabama
| | - Steven M Rowe
- Department of Medicine, University of Alabama at Birmingham, Alabama.,Departments of Pediatrics and Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Alabama.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham , Birmingham, Alabama
| | - George M Solomon
- Department of Medicine, University of Alabama at Birmingham, Alabama.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
33
|
Spatiotemporal organization of cilia drives multiscale mucus swirls in model human bronchial epithelium. Sci Rep 2018; 8:2447. [PMID: 29402960 PMCID: PMC5799192 DOI: 10.1038/s41598-018-20882-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 01/25/2018] [Indexed: 12/04/2022] Open
Abstract
Mucociliary clearance is a biomechanical mechanism of airway protection. It consists of the active transport along the bronchial tree of the mucus, a fluid propelled by the coordinated beating of a myriad of cilia on the epithelial surface of the respiratory tract. The physics of mucus transport is poorly understood because it involves complex phenomena such as long-range hydrodynamic interactions, active collective ciliary motion, and the complex rheology of mucus. We propose a quantitative physical analysis of the ciliary activity and mucus transport on a large panel of human bronchial cultures from control subjects, patients with asthma and chronic obstructive pulmonary disease obtained from endobronchial biopsies. Here we report on the existence of multiple ciliary domains with sizes ranging from the tens of a micron to the centimeter, where ciliary beats present a circular orientational order. These domains are associated with circular mucus flow patterns, whose size scales with the average cilia density. In these domains, we find that the radial increase of the ciliated cell density coupled with the increase in the orientational order of ciliary beats result in a net local force proportional to the mucus velocity. We propose a phenomenological physical model that supports our results.
Collapse
|
34
|
White DE, Nates RJ, Bartley J. Model identifies causes of nasal drying during pressurised breathing. Respir Physiol Neurobiol 2017; 243:97-100. [PMID: 28606767 DOI: 10.1016/j.resp.2017.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 04/25/2017] [Accepted: 06/07/2017] [Indexed: 11/19/2022]
Abstract
Patients nasally breathing pressurised air frequently experience symptoms suggestive of upper airway drying. While supplementary humidification is often used for symptom relief, the cause(s) of nasal drying symptoms remains speculative. Recent investigations have found augmented air pressure affects airway surface liquid (ASL) supply and inter-nasal airflow apportionment. However the influence these two factors have on ASL hydration is unknown. The purpose of this study is to determine how ASL supply and airflow apportionment affect ASL hydration status for both ambient and pressurised air breathing conditions. This is done by modifying and adapting a nasal air-conditioning and ASL supply model. Model predictions of change in inter-nasal airflow apportionment closely follow in-vivo results and demonstrate for the first time abnormal ASL dehydration occurring during augmented pressure breathing. This work quantitatively establishes why patients nasal breathing pressurised air frequently report adverse airway drying symptoms. The findings from this investigation demonstrate that both nasal airways simultaneously experience severe ASL dehydration during pressurised breathing.
Collapse
Affiliation(s)
- David E White
- BioDesign Lab, School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand.
| | - Roy J Nates
- BioDesign Lab, School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand.
| | - Jim Bartley
- Department of Surgery, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
35
|
Aali M, Caldwell A, House K, Zhou J, Chappe V, Lehmann C. Iron chelation as novel treatment for lung inflammation in cystic fibrosis. Med Hypotheses 2017; 104:86-88. [PMID: 28673599 DOI: 10.1016/j.mehy.2017.05.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 05/21/2017] [Indexed: 11/19/2022]
Abstract
Cystic fibrosis (CF) is an autosomal recessive genetic disorder that results in defective cystic fibrosis transmembrane conductance regulator (CFTR) protein expression and function in various tissues. The leading cause of CF mortality and morbidity is the progressive destruction of the lungs due to recurrent infections and chronic inflammation. CFTR defect also affects immune cells, including neutrophils, resulting in ineffective, severe and persistent inflammatory response. Since unopposed recruitment of neutrophils significantly contributes to lung tissue damage through the generation of reactive oxygen species (ROS), we hypothesize that the administration of iron chelators could serve as a novel treatment to attenuate chronic inflammation in CF lungs since iron is significantly involved in ROS production by neutrophils. Ideally, the iron chelator should sequester host iron effectively, prevent bacterial access to chelator-bound iron and penetrates lung tissues efficiently, e.g. by inhalational route of administration.
Collapse
Affiliation(s)
- Maral Aali
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Canada; Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, Canada
| | - Alexa Caldwell
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Canada
| | - Kelsey House
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Canada
| | - Juan Zhou
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, Canada
| | - Valerie Chappe
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Canada
| | - Christian Lehmann
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Canada; Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, Canada.
| |
Collapse
|
36
|
Donnelley M, Morgan KS, Awadalla M, Farrow NR, Hall C, Parsons DW. High-resolution mucociliary transport measurement in live excised large animal trachea using synchrotron X-ray imaging. Respir Res 2017; 18:95. [PMID: 28511651 PMCID: PMC5434541 DOI: 10.1186/s12931-017-0573-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/03/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Australian Synchrotron Imaging and Medical Beamline (IMBL) was designed as the world's widest synchrotron X-ray beam, enabling both clinical imaging and therapeutic applications for humans as well as the imaging of large animal models. Our group is developing methods for imaging the airways of newly developed CF animal models that display human-like lung disease, such as the CF pig, and we expect that the IMBL can be utilised to image airways in animals of this size. METHODS This study utilised samples of excised tracheal tissue to assess the feasibility, logistics and protocols required for airway imaging in large animal models such as pigs and sheep at the IMBL. We designed an image processing algorithm to automatically track and quantify the tracheal mucociliary transport (MCT) behaviour of 103 μm diameter high refractive index (HRI) glass bead marker particles deposited onto the surface of freshly-excised normal sheep and pig tracheae, and assessed the effects of airway rehydrating aerosols. RESULTS We successfully accessed and used scavenged tracheal tissue, identified the minimum bead size that is visible using our chosen imaging setup, verified that MCT could be visualised, and that our automated tracking algorithm could quantify particle motion. The imaging sequences show particles propelled by cilia, against gravity, up the airway surface, within a well-defined range of clearance speeds and with examples of 'clumping' behaviour that is consistent with the in vivo capture and mucus-driven transport of particles. CONCLUSION This study demonstrated that the wide beam at the IMBL is suitable for imaging MCT in ex vivo tissue samples. We are now transitioning to in vivo imaging of MCT in live pigs, utilising higher X-ray energies and shorter exposures to minimise motion blur.
Collapse
Affiliation(s)
- Martin Donnelley
- Robinson Research Institute, University of Adelaide, Adelaide, SA, 5001, Australia. .,Respiratory and Sleep Medicine, Women's and Children's Hospital, 72 King William Road, North Adelaide, SA, 5006, Australia. .,Adelaide Medical School, University of Adelaide, Adelaide, SA, 5001, Australia.
| | - Kaye S Morgan
- School of Physics and Astronomy, Monash University, Clayton, Vic, 3800, Australia.,Institute for Advanced Study, Technische Universität München, Munich, Germany
| | - Maged Awadalla
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5001, Australia
| | - Nigel R Farrow
- Robinson Research Institute, University of Adelaide, Adelaide, SA, 5001, Australia.,Respiratory and Sleep Medicine, Women's and Children's Hospital, 72 King William Road, North Adelaide, SA, 5006, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, SA, 5001, Australia
| | - Chris Hall
- Imaging and Medical Beamline, Australian Synchrotron, Clayton, Vic, 3800, Australia
| | - David W Parsons
- Robinson Research Institute, University of Adelaide, Adelaide, SA, 5001, Australia.,Respiratory and Sleep Medicine, Women's and Children's Hospital, 72 King William Road, North Adelaide, SA, 5006, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, SA, 5001, Australia
| |
Collapse
|
37
|
Blackmon RL, Kreda SM, Sears PR, Chapman BS, Hill DB, Tracy JB, Ostrowski LE, Oldenburg AL. Direct monitoring of pulmonary disease treatment biomarkers using plasmonic gold nanorods with diffusion-sensitive OCT. NANOSCALE 2017; 9:4907-4917. [PMID: 28358158 PMCID: PMC5473168 DOI: 10.1039/c7nr00376e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The solid concentration of pulmonary mucus (wt%) is critical to respiratory health. In patients with respiratory disease, such as Cystic Fibrosis (CF) and Chronic Obstructive Pulmonary Disorder (COPD), mucus hydration is impaired, resulting in high wt%. Mucus with high wt% is a hallmark of pulmonary disease that leads to obstructed airways, inflammation, and infection. Methods to measure mucus hydration in situ and in real-time are needed for drug development and personalized therapy. We employed plasmonic gold nanorod (GNR) biosensors that intermittently collide with macromolecules comprising the mucus mesh as they self-diffuse, such that GNR translational diffusion (DT) is sensitive to wt%. GNRs are attractive candidates for bioprobes due to their anisotropic optical scattering that makes them easily distinguishable from native tissue using polarization-sensitive OCT. Using principles of heterodyne dynamic light scattering, we developed diffusion-sensitive optical coherence tomography (DS-OCT) to spatially-resolve changing DT in real-time. DS-OCT enables, for the first time, direct monitoring of changes in nanoparticle diffusion rates that are sensitive to nanoporosity with spatial and temporal resolutions of 4.7 μm and 0.2 s. DS-OCT therefore enables us to measure spatially-resolved changes in mucus wt% over time. In this study, we demonstrate the applicability of DS-OCT on well-differentiated primary human bronchial epithelial cells during a clinical mucus-hydrating therapy, hypertonic saline treatment (HST), to reveal, for the first time, mucus mixing, cellular secretions, and mucus hydration on the micrometer scale that translate to long-term therapeutic effects.
Collapse
Affiliation(s)
- R L Blackmon
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, NC 27599-3255, USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Bustamante-Marin XM, Ostrowski LE. Cilia and Mucociliary Clearance. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a028241. [PMID: 27864314 DOI: 10.1101/cshperspect.a028241] [Citation(s) in RCA: 384] [Impact Index Per Article: 54.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mucociliary clearance (MCC) is the primary innate defense mechanism of the lung. The functional components are the protective mucous layer, the airway surface liquid layer, and the cilia on the surface of ciliated cells. The cilia are specialized organelles that beat in metachronal waves to propel pathogens and inhaled particles trapped in the mucous layer out of the airways. In health this clearance mechanism is effective, but in patients with primary cilia dyskinesia (PCD) the cilia are abnormal, resulting in deficient MCC and chronic lung disease. This demonstrates the critical importance of the cilia for human health. In this review, we summarize the current knowledge of the components of the MCC apparatus, focusing on the role of cilia in MCC.
Collapse
Affiliation(s)
- Ximena M Bustamante-Marin
- Marsico Lung Institute, Cystic Fibrosis and Pulmonary Diseases Research and Treatment Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Lawrence E Ostrowski
- Marsico Lung Institute, Cystic Fibrosis and Pulmonary Diseases Research and Treatment Center, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
39
|
Dwyer TJ, Zainuldin R, Daviskas E, Bye PTP, Alison JA. Effects of treadmill exercise versus Flutter® on respiratory flow and sputum properties in adults with cystic fibrosis: a randomised, controlled, cross-over trial. BMC Pulm Med 2017; 17:14. [PMID: 28077104 PMCID: PMC5225514 DOI: 10.1186/s12890-016-0360-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 12/23/2016] [Indexed: 11/10/2022] Open
Abstract
Background Treadmill exercise and airway clearance with the Flutter® device have previously been shown to improve mucus clearance mechanisms in people with cystic fibrosis (CF) but have not been compared. It is therefore not known if treadmill exercise is an adequate form of airway clearance that could replace established airway clearance techniques, such as the Flutter®. The aim of this study was to evaluate respiratory flow, sputum properties and subjective responses of treadmill exercise and Flutter® therapy, compared to resting breathing (control). Methods Twenty-four adults with mild to severe CF lung disease (FEV1 28–86% predicted) completed a three-day randomised, controlled, cross-over study. Interventions consisted of 20 min of resting breathing (control), treadmill exercise at 60% of the participant’s peak oxygen consumption and Flutter® therapy. Respiratory flow was measured during the interventions. Sputum properties (solids content and mechanical impedance) and subjective responses (ease of expectoration and sense of chest congestion) were measured before, immediately after the interventions and after 20 min of recovery. Results Treadmill exercise and Flutter® resulted in similar significant increases in peak expiratory flow, but only Flutter® created an expiratory airflow bias (i.e. peak expiratory flow was at least 10% higher than peak inspiratory flow). Treadmill exercise and Flutter® therapy resulted in similar significant reductions in sputum mechanical impedance, but only treadmill exercise caused a transient increase in sputum hydration. Treadmill exercise improved ease of expectoration and Flutter® therapy improved subjective sense of chest congestion. Conclusions A single bout of treadmill exercise and Flutter® therapy were equally effective in augmenting mucus clearance mechanisms in adults with CF. Only longer term studies, however, will determine if exercise alone is an adequate form of airway clearance therapy that could replace other airway clearance techniques. Trial registration Australian and New Zealand Clinical Trials Registry, Registration number #ACTRN12609000168257, Retrospectively registered (Date submitted to registry 26/2/2009, First participant enrolled 27/2/2009, Date registered 6/4/2009). Electronic supplementary material The online version of this article (doi:10.1186/s12890-016-0360-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tiffany J Dwyer
- Discipline of Physiotherapy, Faculty of Health Sciences, University of Sydney, Sydney, Australia. .,Department of Respiratory Medicine, Royal Prince Alfred Hospital, Sydney, Australia. .,Central Clinical School, Sydney Medical School, University of Sydney, Sydney, Australia.
| | - Rahizan Zainuldin
- Discipline of Physiotherapy, Faculty of Health Sciences, University of Sydney, Sydney, Australia.,Rehabilitation Department, Ng Teng Fong General Hospital, Jurong Health Services, Jurong East, Singapore.,Health and Social Sciences, Academic Programme, Singapore Institute of Technology, Jurong East, Singapore
| | - Evangelia Daviskas
- Department of Respiratory Medicine, Royal Prince Alfred Hospital, Sydney, Australia
| | - Peter T P Bye
- Department of Respiratory Medicine, Royal Prince Alfred Hospital, Sydney, Australia.,Central Clinical School, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Jennifer A Alison
- Discipline of Physiotherapy, Faculty of Health Sciences, University of Sydney, Sydney, Australia.,Department of Physiotherapy, Royal Prince Alfred Hospital, Sydney, Australia
| |
Collapse
|
40
|
Abstract
This review describes a framework for providing a personalised approach to selecting the most appropriate airway clearance technique (ACT) for each patient. It is based on a synthesis of the physiological evidence that supports the modulation of ventilation and expiratory airflow as a means of assisting airway clearance. Possession of a strong understanding of the physiological basis for ACTs will enable clinicians to decide which ACT best aligns with the individual patient's pathology in diseases with anatomical bronchiectasis and mucus hypersecretion.The physiological underpinning of postural drainage is that by placing a patient in various positions, gravity enhances mobilisation of secretions. Newer ACTs are based on two other physiological premises: the ability to ventilate behind obstructed regions of the lung and the capacity to achieve the minimum expiratory airflow bias necessary to mobilise secretions. After reviewing each ACT to determine if it utilises both ventilation and expiratory flow, these physiological concepts are assessed against the clinical evidence to provide a mechanism for the effectiveness of each ACT. This article provides the clinical rationale necessary to determine the most appropriate ACT for each patient, thereby improving care.
Collapse
Affiliation(s)
- Maggie McIlwaine
- Dept of Physiotherapy, University of British Columbia, Vancouver, BC, Canada
| | - Judy Bradley
- Centre for Experimental Medicine, Queens University Belfast, Belfast, UK
| | - J Stuart Elborn
- Centre for Experimental Medicine, Queens University Belfast, Belfast, UK
- National Heart and Lung Institute, Imperial College and Royal Brompton Hospital, London, UK
| | - Fidelma Moran
- School of Health Sciences, Ulster University, Newtownabbey, UK
| |
Collapse
|
41
|
Baaske R, Richter M, Möller N, Ziesemer S, Eiffler I, Müller C, Hildebrandt JP. ATP Release from Human Airway Epithelial Cells Exposed to Staphylococcus aureus Alpha-Toxin. Toxins (Basel) 2016; 8:toxins8120365. [PMID: 27929417 PMCID: PMC5198559 DOI: 10.3390/toxins8120365] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 11/20/2022] Open
Abstract
Airway epithelial cells reduce cytosolic ATP content in response to treatment with S. aureus alpha-toxin (hemolysin A, Hla). This study was undertaken to investigate whether this is due to attenuated ATP generation or to release of ATP from the cytosol and extracellular ATP degradation by ecto-enzymes. Exposure of cells to rHla did result in mitochondrial calcium uptake and a moderate decline in mitochondrial membrane potential, indicating that ATP regeneration may have been attenuated. In addition, ATP may have left the cells through transmembrane pores formed by the toxin or through endogenous release channels (e.g., pannexins) activated by cellular stress imposed on the cells by toxin exposure. Exposure of cells to an alpha-toxin mutant (H35L), which attaches to the host cell membrane but does not form transmembrane pores, did not induce ATP release from the cells. The Hla-mediated ATP-release was completely blocked by IB201, a cyclodextrin-inhibitor of the alpha-toxin pore, but was not at all affected by inhibitors of pannexin channels. These results indicate that, while exposure of cells to rHla may somewhat reduce ATP production and cellular ATP content, a portion of the remaining ATP is released to the extracellular space and degraded by ecto-enzymes. The release of ATP from the cells may occur directly through the transmembrane pores formed by alpha-toxin.
Collapse
Affiliation(s)
- Romina Baaske
- Animal Physiology and Biochemistry, Ernst Moritz Arndt-University, Felix Hausdorff-Strasse 1, B.10.06, D-17489 Greifswald, Germany.
| | - Mandy Richter
- Animal Physiology and Biochemistry, Ernst Moritz Arndt-University, Felix Hausdorff-Strasse 1, B.10.06, D-17489 Greifswald, Germany.
| | - Nils Möller
- Animal Physiology and Biochemistry, Ernst Moritz Arndt-University, Felix Hausdorff-Strasse 1, B.10.06, D-17489 Greifswald, Germany.
| | - Sabine Ziesemer
- Animal Physiology and Biochemistry, Ernst Moritz Arndt-University, Felix Hausdorff-Strasse 1, B.10.06, D-17489 Greifswald, Germany.
| | - Ina Eiffler
- Animal Physiology and Biochemistry, Ernst Moritz Arndt-University, Felix Hausdorff-Strasse 1, B.10.06, D-17489 Greifswald, Germany.
| | - Christian Müller
- Animal Physiology and Biochemistry, Ernst Moritz Arndt-University, Felix Hausdorff-Strasse 1, B.10.06, D-17489 Greifswald, Germany.
| | - Jan-Peter Hildebrandt
- Animal Physiology and Biochemistry, Ernst Moritz Arndt-University, Felix Hausdorff-Strasse 1, B.10.06, D-17489 Greifswald, Germany.
| |
Collapse
|
42
|
Yaghi A, Dolovich MB. Airway Epithelial Cell Cilia and Obstructive Lung Disease. Cells 2016; 5:cells5040040. [PMID: 27845721 PMCID: PMC5187524 DOI: 10.3390/cells5040040] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/27/2016] [Accepted: 11/07/2016] [Indexed: 11/16/2022] Open
Abstract
Airway epithelium is the first line of defense against exposure of the airway and lung to various inflammatory stimuli. Ciliary beating of airway epithelial cells constitutes an important part of the mucociliary transport apparatus. To be effective in transporting secretions out of the lung, the mucociliary transport apparatus must exhibit a cohesive beating of all ciliated epithelial cells that line the upper and lower respiratory tract. Cilia function can be modulated by exposures to endogenous and exogenous factors and by the viscosity of the mucus lining the epithelium. Cilia function is impaired in lung diseases such as COPD and asthma, and pharmacologic agents can modulate cilia function and mucus viscosity. Cilia beating is reduced in COPD, however, more research is needed to determine the structural-functional regulation of ciliary beating via all signaling pathways and how this might relate to the initiation or progression of obstructive lung diseases. Additionally, genotypes and how these can influence phenotypes and epithelial cell cilia function and structure should be taken into consideration in future investigations.
Collapse
Affiliation(s)
- Asma Yaghi
- Firestone Research Aerosol Laboratory, Fontbonne Bldg. Room F132, Hamilton, ON L8N 4A6, Canada.
- St. Joseph's Healthcare, Firestone Institute for Respiratory Health, 50 Charlton Ave East, FIRH Room T2135, Hamilton, ON L8N 4A6, Canada.
| | - Myrna B Dolovich
- Firestone Research Aerosol Laboratory, Fontbonne Bldg. Room F132, Hamilton, ON L8N 4A6, Canada.
- Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada.
- St. Joseph's Healthcare, Firestone Institute for Respiratory Health, 50 Charlton Ave East, FIRH Room T2135, Hamilton, ON L8N 4A6, Canada.
| |
Collapse
|
43
|
Alterations in nasal mucociliary activity in polycystic ovary syndrome. Eur J Obstet Gynecol Reprod Biol 2016; 207:169-172. [PMID: 27865940 DOI: 10.1016/j.ejogrb.2016.10.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 09/08/2016] [Accepted: 10/18/2016] [Indexed: 01/10/2023]
Abstract
OBJECTIVES Polycystic ovary syndrome (PCOS) is a common endocrine disorder in women of reproductive age. It can affect various organ systems, and respiratory mucosa has been reported as being hormone responsive. STUDY DESIGN A case-control study consisting of 50 women with PCOS and 30 control subjects matched for age and body mass index was conducted, in order to investigate nasal mucociliary clearance time (NMCT) in patients with PCOS. Serum basal hormonal-biochemical parameters and NMCT were evaluated on menstrual cycle days 2-5 for all participants. RESULTS The mean NMCT in PCOS and control groups was 10.45±2.88 and 6.92±1.78, respectively (p=0.0001). A significant positive correlation was found between NMCT and duration of disease (r=0.52; p=0.001), serum total testosterone level (r=0.28; p=0.04), and luteinizing hormone/follicle stimulating hormone (r=0.29; p=0.04). CONCLUSIONS Our findings indicate that PCOS is associated with altered NMCT. Prolonged NMCT predisposes patients to respiratory tract and middle ear infections, and clinicians should be aware of this.
Collapse
|
44
|
Pelleg A, Schulman ES, Barnes PJ. Extracellular Adenosine 5'-Triphosphate in Obstructive Airway Diseases. Chest 2016; 150:908-915. [PMID: 27568579 DOI: 10.1016/j.chest.2016.06.045] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/15/2016] [Accepted: 06/16/2016] [Indexed: 02/06/2023] Open
Abstract
In recent years, numerous studies have generated data supporting the hypothesis that extracellular adenosine 5'-triphosphate (ATP) plays a major role in obstructive airway diseases. Studies in animal models and human subjects have shown that increased amounts of extracellular ATP are found in the lungs of patients with COPD and asthma and that ATP has effects on multiple cell types in the lungs, resulting in increased inflammation, induction of bronchoconstriction, and cough. These effects of ATP are mediated by cell surface P2 purinergic receptors and involve other endogenous inflammatory agents. Recent clinical trials reported promising treatment with P2X3R antagonists for the alleviation of chronic cough. The purpose of this review was to describe these studies and outline some of the remaining questions, as well as the potential clinical implications, associated with the pharmacologic manipulation of ATP signaling in the lungs.
Collapse
Affiliation(s)
- Amir Pelleg
- College of Medicine, Department of Medicine, Drexel University, Philadelphia, PA.
| | - Edward S Schulman
- College of Medicine, Department of Medicine, Drexel University, Philadelphia, PA
| | - Peter J Barnes
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|
45
|
Ghosh A, Boucher RC, Tarran R. Airway hydration and COPD. Cell Mol Life Sci 2015; 72:3637-52. [PMID: 26068443 PMCID: PMC4567929 DOI: 10.1007/s00018-015-1946-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/26/2015] [Accepted: 06/01/2015] [Indexed: 02/07/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the prevalent causes of worldwide mortality and encompasses two major clinical phenotypes, i.e., chronic bronchitis (CB) and emphysema. The most common cause of COPD is chronic tobacco inhalation. Research focused on the chronic bronchitic phenotype of COPD has identified several pathological processes that drive disease initiation and progression. For example, the lung's mucociliary clearance (MCC) system performs the critical task of clearing inhaled pathogens and toxic materials from the lung. MCC efficiency is dependent on: (1) the ability of apical plasma membrane ion channels such as the cystic fibrosis transmembrane conductance regulator (CFTR) and the epithelial Na(+) channel (ENaC) to maintain airway hydration; (2) ciliary beating; and (3) appropriate rates of mucin secretion. Each of these components is impaired in CB and likely contributes to the mucus stasis/accumulation seen in CB patients. This review highlights the cellular components responsible for maintaining MCC and how this process is disrupted following tobacco exposure and with CB. We shall also discuss existing therapeutic strategies for the treatment of chronic bronchitis and how components of the MCC can be used as biomarkers for the evaluation of tobacco or tobacco-like-product exposure.
Collapse
Affiliation(s)
- Arunava Ghosh
- Cystic Fibrosis Center/Marsico Lung Institute and the Department of Cell Biology and Physiology, The University of North Carolina, 7102 Marsico Hall, Chapel Hill, NC, 27599-7248, USA
| | - R C Boucher
- Cystic Fibrosis Center/Marsico Lung Institute and the Department of Cell Biology and Physiology, The University of North Carolina, 7102 Marsico Hall, Chapel Hill, NC, 27599-7248, USA
| | - Robert Tarran
- Cystic Fibrosis Center/Marsico Lung Institute and the Department of Cell Biology and Physiology, The University of North Carolina, 7102 Marsico Hall, Chapel Hill, NC, 27599-7248, USA.
| |
Collapse
|
46
|
Evaluation of nasal mucociliary activity in patients with chronic renal failure. Eur Arch Otorhinolaryngol 2015; 273:1167-71. [DOI: 10.1007/s00405-015-3712-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 07/02/2015] [Indexed: 10/23/2022]
|
47
|
Hu Y, Bian S, Grotberg J, Filoche M, White J, Takayama S, Grotberg JB. A microfluidic model to study fluid dynamics of mucus plug rupture in small lung airways. BIOMICROFLUIDICS 2015; 9:044119. [PMID: 26392827 PMCID: PMC4570479 DOI: 10.1063/1.4928766] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/14/2015] [Indexed: 05/12/2023]
Abstract
Fluid dynamics of mucus plug rupture is important to understand mucus clearance in lung airways and potential effects of mucus plug rupture on epithelial cells at lung airway walls. We established a microfluidic model to study mucus plug rupture in a collapsed airway of the 12th generation. Mucus plugs were simulated using Carbopol 940 (C940) gels at concentrations of 0.15%, 0.2%, 0.25%, and 0.3%, which have non-Newtonian properties close to healthy and diseased lung mucus. The airway was modeled with a polydimethylsiloxane microfluidic channel. Plug motion was driven by pressurized air. Global strain rates and shear stress were defined to quantitatively describe plug deformation and rupture. Results show that a plug needs to overcome yield stress before deformation and rupture. The plug takes relatively long time to yield at the high Bingham number. Plug length shortening is the more significant deformation than shearing at gel concentration higher than 0.15%. Although strain rates increase dramatically at rupture, the transient shear stress drops due to the shear-thinning effect of the C940 gels. Dimensionless time-averaged shear stress, T xy , linearly increases from 3.7 to 5.6 times the Bingham number as the Bingham number varies from 0.018 to 0.1. The dimensionless time-averaged shear rate simply equals to T xy /2. In dimension, shear stress magnitude is about one order lower than the pressure drop, and one order higher than yield stress. Mucus with high yield stress leads to high shear stress, and therefore would be more likely to cause epithelial cell damage. Crackling sounds produced with plug rupture might be more detectable for gels with higher concentration.
Collapse
Affiliation(s)
| | - Shiyao Bian
- Department of Biomedical Engineering, The University of Michigan , Ann Arbor, Michigan 48109, USA
| | - John Grotberg
- The University of Illinois at Chicago , Chicago, Illinois 60607, USA
| | - Marcel Filoche
- Physique de la Matière Condensée, Ecole Polytechnique, CNRS , 91128 Palaiseau, France
| | - Joshua White
- Department of Biomedical Engineering, The University of Michigan , Ann Arbor, Michigan 48109, USA
| | - Shuichi Takayama
- Department of Biomedical Engineering, The University of Michigan , Ann Arbor, Michigan 48109, USA
| | - James B Grotberg
- Department of Biomedical Engineering, The University of Michigan , Ann Arbor, Michigan 48109, USA
| |
Collapse
|
48
|
Baseline Goblet Cell Mucin Secretion in the Airways Exceeds Stimulated Secretion over Extended Time Periods, and Is Sensitive to Shear Stress and Intracellular Mucin Stores. PLoS One 2015; 10:e0127267. [PMID: 26024524 PMCID: PMC4449158 DOI: 10.1371/journal.pone.0127267] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/13/2015] [Indexed: 12/22/2022] Open
Abstract
Airway mucin secretion studies have focused on goblet cell responses to exogenous agonists almost to the exclusion of baseline mucin secretion (BLMS). In human bronchial epithelial cell cultures (HBECCs), maximal agonist-stimulated secretion exceeds baseline by ~3-fold as measured over hour-long periods, but mucin stores are discharged completely and require 24 h for full restoration. Hence, over 24 h, total baseline exceeds agonist-induced secretion by several-fold. Studies with HBECCs and mouse tracheas showed that BLMS is highly sensitive to mechanical stresses. Harvesting three consecutive 1 h baseline luminal incubations with HBECCs yielded equal rates of BLMS; however, lengthening the middle period to 72 h decreased the respective rate significantly, suggesting a stimulation of BLMS by the gentle washes of HBECC luminal surfaces. BLMS declined exponentially after washing HBECCs (t1/2 = 2.75 h), to rates approaching zero. HBECCs exposed to low perfusion rates exhibited spike-like increases in BLMS when flow was jumped 5-fold: BLMS increased >4 fold, then decreased within 5 min to a stable plateau at 1.5–2-fold over control. Higher flow jumps induced proportionally higher BLMS increases. Inducing mucous hyperplasia in HBECCs increased mucin production, BLMS and agonist-induced secretion. Mouse tracheal BLMS was ~6-fold higher during perfusion, than when flow was stopped. Munc13-2 null mouse tracheas, with their defect of accumulated cellular mucins, exhibited similar BLMS as WT, contrary to predictions of lower values. Graded mucous metaplasia induced in WT and Munc13-2 null tracheas with IL-13, caused proportional increases in BLMS, suggesting that naïve Munc13-2 mouse BLMS is elevated by increased mucin stores. We conclude that BLMS is, [i] a major component of mucin secretion in the lung, [ii] sustained by the mechanical activity of a dynamic lung, [iii] proportional to levels of mucin stores, and [iv] regulated differentially from agonist-induced mucin secretion.
Collapse
|
49
|
Wheatley CM, Baker SE, Morgan MA, Martinez MG, Liu B, Rowe SM, Morgan WJ, Wong EC, Karpen SR, Snyder EM. Moderate intensity exercise mediates comparable increases in exhaled chloride as albuterol in individuals with cystic fibrosis. Respir Med 2015; 109:1001-11. [PMID: 26077038 DOI: 10.1016/j.rmed.2015.05.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/15/2015] [Accepted: 05/19/2015] [Indexed: 11/30/2022]
Abstract
RATIONALE Despite the demonstrated advantageous systemic changes in response to regular exercise for individuals with cystic fibrosis (CF), exercise is still viewed as an elective rather than a vital component of therapy, and it is likely that these benefits extend to and are partially mediated by exercise-induced changes in ion regulation. OBJECTIVE We sought to determine if exercise could provide comparable improvements in ion regulation in the CF lung as albuterol, measured using exhaled breath condensate (EBC) collection and nasal potential difference (NPD). METHODS Fourteen CF (13-42 yrs.) and sixteen healthy (18-42 yrs.) subjects completed a randomized crossover study of albuterol and submaximal exercise. EBC was collected at baseline, 30- and 60-min post-albuterol administration, and at baseline and during three separate 15 min cycling exercise bouts at low, moderate, and vigorous intensity (25, 50 and 65% of the maximum workload, respectively). NPD was performed at 30- and 80-min post albuterol or following moderate and vigorous intensity exercise. RESULTS CF subjects had lower EBC Cl(-), but no difference in EBC Na(+) at baseline when compared to healthy subjects. EBC Cl(-) increased four-fold with moderate exercise which was similar to that seen 60-min post albuterol administration for CF subjects. Neither exercise nor albuterol altered EBC Na(+). The change in NPD voltage with amiloride (ΔAmil) was greater and there was minimal Cl(-) secretion (ΔTCC) seen at baseline in the CF compared to the healthy subjects. ΔAmil was greater with both albuterol and exercise when compared to baseline within both CF and healthy groups, but there was no significant difference in the ΔTCC response with either treatment. CONCLUSION Both exercise and albuterol can alter ion regulation increasing Cl(-) secretion to a significant and similar degree in individuals with CF.
Collapse
Affiliation(s)
- Courtney M Wheatley
- Department of Pharmacy Practice & Science, University of Arizona, Tucson, AZ, USA; Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA.
| | - Sarah E Baker
- Department of Pharmacy Practice & Science, University of Arizona, Tucson, AZ, USA; Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA.
| | - Mary A Morgan
- Department of Pharmacy Practice & Science, University of Arizona, Tucson, AZ, USA.
| | - Marina G Martinez
- Department of Pharmacy Practice & Science, University of Arizona, Tucson, AZ, USA; Department of Neurology, University of Arizona, Tucson, AZ, USA.
| | - Bo Liu
- Department of Medicine, University of Alabama, Birmingham, AL, USA.
| | - Steven M Rowe
- Department of Medicine, University of Alabama, Birmingham, AL, USA.
| | - Wayne J Morgan
- Department of Pediatrics- Pulmonology, Allergy and Immunology, University of Arizona, Tucson, AZ, USA.
| | - Eric C Wong
- Department of Pharmacy Practice & Science, University of Arizona, Tucson, AZ, USA.
| | - Stephen R Karpen
- Department of Pharmacy Practice & Science, University of Arizona, Tucson, AZ, USA.
| | - Eric M Snyder
- Department of Kinesiology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
50
|
Sears PR, Yin WN, Ostrowski LE. Continuous mucociliary transport by primary human airway epithelial cells in vitro. Am J Physiol Lung Cell Mol Physiol 2015; 309:L99-108. [PMID: 25979076 DOI: 10.1152/ajplung.00024.2015] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 05/11/2015] [Indexed: 11/22/2022] Open
Abstract
Mucociliary clearance (MCC) is an important innate defense mechanism that continuously removes inhaled pathogens and particulates from the airways. Normal MCC is essential for maintaining a healthy respiratory system, and impaired MCC is a feature of many airway diseases, including both genetic (cystic fibrosis, primary ciliary dyskinesia) and acquired (chronic obstructive pulmonary disease, bronchiectasis) disorders. Research into the fundamental processes controlling MCC, therefore, has direct clinical application, but has been limited in part due to the difficulty of studying this complex multicomponent system in vitro. In this study, we have characterized a novel method that allows human airway epithelial cells to differentiate into a mucociliary epithelium that transports mucus in a continuous circular track. The mucociliary transport device allows the measurement and manipulation of all features of mucociliary transport in a controlled in vitro system. In this initial study, the effect of ciliary beat frequency and mucus concentration on the speed of mucociliary transport was investigated.
Collapse
Affiliation(s)
- Patrick R Sears
- Cystic Fibrosis/Pulmonary Research and Treatment Center, Marsico Lung Institute, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Wei-Ning Yin
- Cystic Fibrosis/Pulmonary Research and Treatment Center, Marsico Lung Institute, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Lawrence E Ostrowski
- Cystic Fibrosis/Pulmonary Research and Treatment Center, Marsico Lung Institute, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|