1
|
Holmes TC, Popp NM, Hintz CF, Dobrzycki I, Schmitz CJ, Schwichtenberg KA, Gonzalez-Rothi EJ, Sundberg CW, Streeter KA. Sex differences in spontaneous respiratory recovery following chronic C2 hemisection. J Appl Physiol (1985) 2024; 137:166-180. [PMID: 38867665 PMCID: PMC11381122 DOI: 10.1152/japplphysiol.00040.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/10/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024] Open
Abstract
Respiratory deficits after C2 hemisection (C2Hx) have been well documented through single-sex investigations. Although ovarian sex hormones enable enhanced respiratory recovery observed in females 2 wk post-C2Hx, it remains unknown if sex impacts spontaneous respiratory recovery at chronic time points. We conducted a longitudinal study to provide a comprehensive sex-based characterization of respiratory neuromuscular recovery for 8 wk after C2Hx. We recorded ventilation and chronic diaphragm electromyography (EMG) output in awake, behaving animals, phrenic motor output in anesthetized animals, and performed diaphragm muscle histology in chronically injured male and female rodents. Our results show that females expressed a greater recovery of tidal volume and minute ventilation compared with males during subacute and chronic time points. Eupneic diaphragm EMG amplitude during wakefulness and phrenic motor amplitude are similar between sexes at all time points after injury. Our data also suggest that females have a greater reduction in ipsilateral diaphragm EMG amplitude during spontaneous deep breaths (e.g., sighs) compared with males. Finally, we show evidence for atrophy and remodeling of the fast, fatigable fibers ipsilateral to injury in females, but not in males. To our knowledge, the data presented here represent the first study to report sex-dependent differences in spontaneous respiratory recovery and diaphragm muscle morphology following chronic C2Hx. These data highlight the need to study both sexes to inform evidence-based therapeutic interventions in respiratory recovery after spinal cord injury (SCI).NEW & NOTEWORTHY In response to chronic C2 hemisection, female rodents display increased tidal volume during eupneic breathing compared with males. Females show a greater reduction in diaphragm electromyography (EMG) amplitude during spontaneous deep breaths (e.g., sighs) and atrophy and remodeling of fast, fatigable diaphragm fibers. Given that most rehabilitative interventions occur in the subacute to chronic stages of injury, these results highlight the importance of considering sex when developing and evaluating therapeutics after spinal cord injury.
Collapse
Affiliation(s)
- Taylor C Holmes
- Exercise and Rehabilitation Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin, United States
| | - Nicole M Popp
- Exercise and Rehabilitation Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin, United States
| | - Carley F Hintz
- Exercise and Rehabilitation Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin, United States
| | - Isabell Dobrzycki
- Exercise and Rehabilitation Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin, United States
- Athletic and Human Performance Research Center, Marquette University, Milwaukee, Wisconsin, United States
| | - Carolyn J Schmitz
- Exercise and Rehabilitation Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin, United States
| | - Kaylyn A Schwichtenberg
- Exercise and Rehabilitation Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin, United States
| | - Elisa J Gonzalez-Rothi
- Department of Physical Therapy, University of Florida, Gainesville, Florida, United States
| | - Christopher W Sundberg
- Exercise and Rehabilitation Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin, United States
- Athletic and Human Performance Research Center, Marquette University, Milwaukee, Wisconsin, United States
| | - Kristi A Streeter
- Exercise and Rehabilitation Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin, United States
| |
Collapse
|
2
|
Miller S, Lopez EJ, Grittner JML, Dougherty BJ. Low level CO 2 supplementation maintains isocapnia and reveals ventilatory long-term facilitation in rats. Respir Physiol Neurobiol 2024; 320:104185. [PMID: 37935342 PMCID: PMC10842720 DOI: 10.1016/j.resp.2023.104185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/09/2023]
Abstract
Acute, intermittent hypoxia (AIH) induces ventilatory long-term facilitation (vLTF) in awake, freely behaving rats under poikilocapnic and isocapnic experimental conditions. Establishing pre-clinical methods for vLTF induction that more closely align with successful protocols in humans and anesthetized rats would minimize dissonance in experimental findings and improve translational aspects of vLTF. Here, we tested several levels of low-dose CO2 supplementation during and after AIH to determine 1) the lowest amount of inspired CO2 that would maintain isocapnia in rats during a vLTF protocol, and 2) the net impact of supplemental CO2 on vLTF expression. Rats received one of four levels of inspired CO2 (0%, 0.5%, 1% or 2%) administered during AIH and for the 60 min following AIH to quantify vLTF. Our findings indicated that 2% inspired CO2 was sufficient to maintain isocapnia across the AIH protocol and reveal significant vLTF. These findings provide evidence-based support for using 2% supplemental CO2 during and after AIH when assessing vLTF in rats.
Collapse
Affiliation(s)
- Shawn Miller
- Division of Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Edgar Juarez Lopez
- Division of Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Jessica M L Grittner
- Division of Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, MN, USA; Graduate Program in Rehabilitation Science, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Brendan J Dougherty
- Division of Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, MN, USA.
| |
Collapse
|
3
|
Mille T, Bonilla A, Guillaud E, Bertrand SS, Menuet C, Cazalets JR. Muscarinic cholinergic modulation of cardiovascular variables in spinal cord injured rats. Exp Neurol 2023; 363:114369. [PMID: 36878399 DOI: 10.1016/j.expneurol.2023.114369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/16/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Abstract
Spinal cord injury (SCI) leads not only to major impairments in sensorimotor control but also to dramatic dysregulation of autonomic functions including major cardiovascular disturbances. Consequently, individuals with SCI endure daily episodic hypo/hypertension and are at increased risk for cardiovascular disease. Several studies have suggested that an intrinsic spinal coupling mechanism between motor and sympathetic neuronal networks exist and that propriospinal cholinergic neurons may be responsible for a synchronized activation of both somatic and sympathetic outputs. We therefore investigated in the present study, the effect of cholinergic muscarinic agonists on cardiovascular parameters in freely moving adult rats after SCI. Female Sprague-Dawley rats were implanted with radiotelemetry sensors for long-term in vivo monitoring of blood pressure (BP). From BP signal, we calculated heart rate (HR) and respiratory frequency. We first characterized the physiological changes occurring after a SCI performed at the T3-T4 level in our experimental model system. We then investigated the effects on BP, HR and respiration, of the muscarinic agonist oxotremorine using one variant that crossed the blood brain barrier (Oxo-S) and one that does not (Oxo-M) in both Pre- and Post-SCI animals. After SCI, both HR and respiratory frequency increased. BP values exhibited an immediate profound drop before progressively increasing over the three-week post-lesion period but remained below control values. A spectral analysis of BP signal revealed the disappearance of the low frequency component of BP (0.3-0.6 Hz) referred to as Mayer waves after SCI. In Post-SCI animals, central effects mediated by Oxo-S led to an increase in HR and MAP, a slowdown in respiratory frequency and to an increased power in the 0.3-0.6 Hz frequency band. This study unravels some of the mechanisms by which muscarinic activation of spinal neurons could contribute to partial restoration of BP after SCI.
Collapse
Affiliation(s)
- Théo Mille
- Université de Bordeaux, CNRS UMR 5287, INCIA, Zone nord, Bat 2, 2e étage, 146 rue Léo Saignat, 33076 Bordeaux cedex, France
| | - Aurélie Bonilla
- Université de Bordeaux, CNRS UMR 5287, INCIA, Zone nord, Bat 2, 2e étage, 146 rue Léo Saignat, 33076 Bordeaux cedex, France
| | - Etienne Guillaud
- Université de Bordeaux, CNRS UMR 5287, INCIA, Zone nord, Bat 2, 2e étage, 146 rue Léo Saignat, 33076 Bordeaux cedex, France
| | - Sandrine S Bertrand
- Université de Bordeaux, CNRS UMR 5287, INCIA, Zone nord, Bat 2, 2e étage, 146 rue Léo Saignat, 33076 Bordeaux cedex, France
| | - Clément Menuet
- Institut de Neurobiologie de la Méditerranée, INMED UMR 1249, INSERM, Aix-Marseille Université, Marseille, France
| | - Jean-René Cazalets
- Université de Bordeaux, CNRS UMR 5287, INCIA, Zone nord, Bat 2, 2e étage, 146 rue Léo Saignat, 33076 Bordeaux cedex, France.
| |
Collapse
|
4
|
Turner S, Sunshine MD, Chandran V, Smuder AJ, Fuller DD. Hyperbaric oxygen therapy after mid-cervical spinal contusion injury. J Neurotrauma 2022; 39:715-723. [PMID: 35152735 PMCID: PMC9081027 DOI: 10.1089/neu.2021.0412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hyperbaric oxygen (HBO) therapy is frequently used to treat peripheral wounds or decompression sickness. Evidence suggests that HBO therapy can provide neuroprotection and has an anti-inflammatory impact after neurological injury, including spinal cord injury (SCI). Our primary purpose was to conduct a genome-wide screening of mRNA expression changes in the injured spinal cord after HBO therapy. An mRNA gene array was used to evaluate samples taken from the contused region of the spinal cord following a lateralized mid-cervical contusion injury in adult female rats. HBO therapy consisted of daily, 1-h sessions (3.0 ATA, 100% O2) initiated on the day of SCI and continued for 10 days. Gene set enrichment analyses indicated that HBO upregulated genes in pathways associated with electron transport, mitochondrial function, and oxidative phosphorylation, and downregulated genes in pathways associated with inflammation (including cytokines and nuclear factor kappa B [NF-κB]) and apoptotic signaling. In a separate cohort, spinal cord histology was performed to verify whether the HBO treatment impacted neuronal cell counts or inflammatory markers. Compared with untreated rats, there were increased NeuN positive cells in the spinal cord of HBO-treated rats (p = 0.004). We conclude that HBO therapy, initiated shortly after SCI and continued for 10 days, can alter the molecular signature of the lesioned spinal cord in a manner consistent with a neuroprotective impact.
Collapse
Affiliation(s)
- Sara Turner
- University of Florida, Physical Therapy, Gainesville, Florida, United States
| | - Michael D. Sunshine
- University of Florida, 3463, Physical Therapy, 1149 South Newell Drive, L1-168, Gainesville, Florida, United States, 32601
- University of Florida
| | | | - Ashley J Smuder
- University of Florida, Applied Physiology and Kinesiology, Gainesville, Florida, United States
| | - David D Fuller
- University of Florida, Physical Therapy, 100 S. Newell Dr., PO Box 100154, Gainesville, Florida, United States, 32610
| |
Collapse
|
5
|
Malone IG, Kelly MN, Nosacka RL, Nash MA, Yue S, Xue W, Otto KJ, Dale EA. Closed-Loop, Cervical, Epidural Stimulation Elicits Respiratory Neuroplasticity after Spinal Cord Injury in Freely Behaving Rats. eNeuro 2022; 9:ENEURO.0426-21.2021. [PMID: 35058311 PMCID: PMC8856702 DOI: 10.1523/eneuro.0426-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/08/2021] [Accepted: 12/24/2021] [Indexed: 11/28/2022] Open
Abstract
Over half of all spinal cord injuries (SCIs) are cervical, which can lead to paralysis and respiratory compromise, causing significant morbidity and mortality. Effective treatments to restore breathing after severe upper cervical injury are lacking; thus, it is imperative to develop therapies to address this. Epidural stimulation has successfully restored motor function after SCI for stepping, standing, reaching, grasping, and postural control. We hypothesized that closed-loop stimulation triggered via healthy hemidiaphragm EMG activity has the potential to elicit functional neuroplasticity in spinal respiratory pathways after cervical SCI (cSCI). To test this, we delivered closed-loop, electrical, epidural stimulation (CLES) at the level of the phrenic motor nucleus (C4) for 3 d after C2 hemisection (C2HS) in freely behaving rats. A 2 × 2 Latin Square experimental design incorporated two treatments, C2HS injury and CLES therapy resulting in four groups of adult, female Sprague Dawley rats: C2HS + CLES (n = 8), C2HS (n = 6), intact + CLES (n = 6), intact (n = 6). In stimulated groups, CLES was delivered for 12-20 h/d for 3 d. After C2HS, 3 d of CLES robustly facilitated the slope of stimulus-response curves of ipsilesional spinal motor evoked potentials (sMEPs) versus nonstimulated controls. To our knowledge, this is the first demonstration of CLES eliciting respiratory neuroplasticity after C2HS in freely behaving animals. These findings suggest CLES as a promising future therapy to address respiratory deficiency associated with cSCI.
Collapse
Affiliation(s)
- Ian G Malone
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL 32611
| | - Mia N Kelly
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL 32611
- Department of Physical Therapy, University of Florida, Gainesville, FL 32611
| | - Rachel L Nosacka
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32611
| | - Marissa A Nash
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32611
| | - Sijia Yue
- Department of Biostatistics, University of Florida, Gainesville, FL 32611
| | - Wei Xue
- Department of Biostatistics, University of Florida, Gainesville, FL 32611
| | - Kevin J Otto
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL 32611
- McKnight Brain Institute, University of Florida, Gainesville, FL 32611
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611
- Department of Neurology, University of Florida, Gainesville, FL 32611
- Department of Neuroscience, University of Florida, Gainesville, FL 32611
| | - Erica A Dale
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL 32611
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32611
- McKnight Brain Institute, University of Florida, Gainesville, FL 32611
| |
Collapse
|
6
|
Malone IG, Nosacka RL, Nash MA, Otto KJ, Dale EA. Electrical epidural stimulation of the cervical spinal cord: implications for spinal respiratory neuroplasticity after spinal cord injury. J Neurophysiol 2021; 126:607-626. [PMID: 34232771 PMCID: PMC8409953 DOI: 10.1152/jn.00625.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 06/07/2021] [Accepted: 06/27/2021] [Indexed: 01/15/2023] Open
Abstract
Traumatic cervical spinal cord injury (cSCI) can lead to damage of bulbospinal pathways to the respiratory motor nuclei and consequent life-threatening respiratory insufficiency due to respiratory muscle paralysis/paresis. Reports of electrical epidural stimulation (EES) of the lumbosacral spinal cord to enable locomotor function after SCI are encouraging, with some evidence of facilitating neural plasticity. Here, we detail the development and success of EES in recovering locomotor function, with consideration of stimulation parameters and safety measures to develop effective EES protocols. EES is just beginning to be applied in other motor, sensory, and autonomic systems; however, there has only been moderate success in preclinical studies aimed at improving breathing function after cSCI. Thus, we explore the rationale for applying EES to the cervical spinal cord, targeting the phrenic motor nucleus for the restoration of breathing. We also suggest cellular/molecular mechanisms by which EES may induce respiratory plasticity, including a brief examination of sex-related differences in these mechanisms. Finally, we suggest that more attention be paid to the effects of specific electrical parameters that have been used in the development of EES protocols and how that can impact the safety and efficacy for those receiving this therapy. Ultimately, we aim to inform readers about the potential benefits of EES in the phrenic motor system and encourage future studies in this area.
Collapse
Affiliation(s)
- Ian G Malone
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida
- Breathing Research and Therapeutics Center (BREATHE), University of Florida, Gainesville, Florida
| | - Rachel L Nosacka
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Marissa A Nash
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Kevin J Otto
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida
- Breathing Research and Therapeutics Center (BREATHE), University of Florida, Gainesville, Florida
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida
- Department of Neuroscience, University of Florida, Gainesville, Florida
- Department of Neurology, University of Florida, Gainesville, Florida
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Erica A Dale
- Breathing Research and Therapeutics Center (BREATHE), University of Florida, Gainesville, Florida
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
- Department of Neuroscience, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
| |
Collapse
|
7
|
Barok R, Grittner JML, Dougherty BJ. The long-term impact of ovariectomy on ventilation and expression of phrenic long-term facilitation in female rats. Exp Physiol 2021; 106:2002-2012. [PMID: 34180081 PMCID: PMC8410681 DOI: 10.1113/ep089546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/18/2021] [Indexed: 01/04/2023]
Abstract
NEW FINDINGS What is the central question of this study? Would ovariectomy cause prolonged changes in ventilation and sustained loss of acute, intermittent hypoxia-induced neuroplasticity or would these outcomes be restored with time? What is the main finding and its importance? Our main findings demonstrate that ovariectomy elicits minimal alteration in overall breathing function but impairs acute, intermittent hypoxia-induced plasticity for ≤ 12 weeks. ABSTRACT Sex hormones are necessary to enable respiratory neuroplasticity, including phrenic long-term facilitation (pLTF), a form of respiratory motor plasticity elicited by acute, intermittent hypoxia (AIH). Female rats exhibit a progressive increase in phrenic nerve amplitude after AIH characteristic of pLTF only during pro-oestrus, the stage of the oestrous cycle notable for elevated circulating oestradiol levels. Removal of the ovaries [ovariectomy (OVX)], the primary source of circulating oestradiol, also eliminates AIH-induced pLTF after 1 week. Ovariectomy is used routinely as a model to examine the impact of sex hormones on CNS structure and function, but the long-term impact of OVX is rarely examined. Extra-ovarian sites of oestradiol synthesis, including multiple CNS sites, have been identified and might possess the capacity to restore oestradiol levels, in part, over time, impacting respiratory function and the expression of respiratory neuroplasticity. We examined both ventilation in awake, freely behaving female rats, using barometric plethysmography, and the expression of AIH-induced pLTF in anaesthetized, ventilated female rats 2 and 12 weeks after OVX and compared them with age-matched ovarian-intact female rats. Our findings indicate that chronic OVX had little impact on baseline breathing or in the response to respiratory challenge (10% O2 , 5% CO2 , balance N2 ) during plethysmography. However, OVX rats at both 2 and 12 weeks demonstrated a persistent loss of AIH-induced pLTF relative to control animals (P < 0.01), suggesting that other sources of oestradiol synthesis were insufficient to restore pLTF. These data are consistent with our previous work indicating that oestradiol plays a key role in expression of AIH-induced respiratory neuroplasticity.
Collapse
Affiliation(s)
- Rebecca Barok
- Rehabilitation Science Graduate Program, Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Jessica M L Grittner
- Rehabilitation Science Graduate Program, Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Brendan J Dougherty
- Divisions of Physical Therapy and Rehabilitation Science, Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
8
|
Gonzalez-Rothi EJ, Lee KZ. Intermittent hypoxia and respiratory recovery in pre-clinical rodent models of incomplete cervical spinal cord injury. Exp Neurol 2021; 342:113751. [PMID: 33974878 DOI: 10.1016/j.expneurol.2021.113751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/24/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
Impaired respiratory function is a common and devastating consequence of cervical spinal cord injury. Accordingly, the development of safe and effective treatments to restore breathing function is critical. Acute intermittent hypoxia has emerged as a promising therapeutic strategy to treat respiratory insufficiency in individuals with spinal cord injury. Since the original report by Bach and Mitchell (1996) concerning long-term facilitation of phrenic motor output elicited by brief, episodic exposure to reduced oxygen, a series of studies in animal models have led to the realization that acute intermittent hypoxia may have tremendous potential for inducing neuroplasticity and functional recovery in the injured spinal cord. Advances in our understanding of the neurobiology of acute intermittent hypoxia have prompted us to begin to explore its effects in human clinical studies. Here, we review the basic neurobiology of the control of breathing and the pathophysiology and respiratory consequences of two common experimental models of incomplete cervical spinal cord injury (i.e., high cervical hemisection and mid-cervical contusion). We then discuss the impact of acute intermittent hypoxia on respiratory motor function in these models: work that has laid the foundation for translation of this promising therapeutic strategy to clinical populations. Lastly, we examine the limitations of these animal models and intermittent hypoxia and discuss how future work in animal models may further advance the translation and therapeutic efficacy of this treatment.
Collapse
Affiliation(s)
- Elisa J Gonzalez-Rothi
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Kun-Ze Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan; Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
9
|
Autonomous control of ventilation through closed-loop adaptive respiratory pacing. Sci Rep 2020; 10:21903. [PMID: 33318547 PMCID: PMC7736353 DOI: 10.1038/s41598-020-78834-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023] Open
Abstract
Mechanical ventilation is the standard treatment when volitional breathing is insufficient, but drawbacks include muscle atrophy, alveolar damage, and reduced mobility. Respiratory pacing is an alternative approach using electrical stimulation-induced diaphragm contraction to ventilate the lung. Oxygenation and acid-base homeostasis are maintained by matching ventilation to metabolic needs; however, current pacing technology requires manual tuning and does not respond to dynamic user-specific metabolic demand, thus requiring re-tuning of stimulation parameters as physiological changes occur. Here, we describe respiratory pacing using a closed-loop adaptive controller that can self-adjust in real-time to meet metabolic needs. The controller uses an adaptive Pattern Generator Pattern Shaper (PG/PS) architecture that autonomously generates a desired ventilatory pattern in response to dynamic changes in arterial CO2 levels and, based on a learning algorithm, modulates stimulation intensity and respiratory cycle duration to evoke this ventilatory pattern. In vivo experiments in rats with respiratory depression and in those with a paralyzed hemidiaphragm confirmed that the controller can adapt and control ventilation to ameliorate hypoventilation and restore normocapnia regardless of the cause of respiratory dysfunction. This novel closed-loop bioelectronic controller advances the state-of-art in respiratory pacing by demonstrating the ability to automatically personalize stimulation patterns and adapt to achieve adequate ventilation.
Collapse
|
10
|
McFarlane K, Otto TE, Bailey WM, Veldhorst AK, Donahue RR, Taylor BK, Gensel JC. Effect of Sex on Motor Function, Lesion Size, and Neuropathic Pain after Contusion Spinal Cord Injury in Mice. J Neurotrauma 2020; 37:1983-1990. [PMID: 32597310 PMCID: PMC7470221 DOI: 10.1089/neu.2019.6931] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Spinal cord injury (SCI) causes neurodegeneration, impairs locomotor function, and impacts the quality of life particularly in those individuals in whom neuropathic pain develops. Whether the time course of neurodegeneration, locomotor impairment, or neuropathic pain varies with sex, however, remains understudied. Therefore, the objective of this study in male and female C57BL/6 mice was to evaluate the following outcomes for six weeks after a 75-kdyn thoracic contusion SCI: locomotor function using the Basso Mouse Scale (BMS); spinal cord tissue sparing and rostral-caudal lesion length; and mechanical allodynia and heat hyperalgesia using hindpaw application of Von Frey filaments or radiant heat stimuli, respectively. Although motor function was largely similar between sexes, all of the males, but only half of the females, recovered plantar stepping. Rostral-caudal lesion length was shorter in females than in males. Mechanical allodynia and heat hyperalgesia after SCI developed in all animals, regardless of sex; there were no differences in pain outcomes between sexes. We conclude that contusion SCI yields subtle sex differences in mice depending on the outcome measure but no significant differences in behavioral signs of neuropathic pain.
Collapse
Affiliation(s)
- Katelyn McFarlane
- Spinal Cord and Brain Injury Research Center and Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Taylor E Otto
- Spinal Cord and Brain Injury Research Center and Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - William M Bailey
- Spinal Cord and Brain Injury Research Center and Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Amy K Veldhorst
- Spinal Cord and Brain Injury Research Center and Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Renée R Donahue
- Spinal Cord and Brain Injury Research Center and Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Bradley K Taylor
- Department of Anesthesia and Perioperative Medicine, Pittsburgh Center for Pain Research, and Pittsburgh Project to End Opioid Misuse, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - John C Gensel
- Spinal Cord and Brain Injury Research Center and Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
11
|
Siu R, Abbas JJ, Hillen BK, Gomes J, Coxe S, Castelli J, Renaud S, Jung R. Restoring Ventilatory Control Using an Adaptive Bioelectronic System. J Neurotrauma 2019; 36:3363-3377. [PMID: 31146654 DOI: 10.1089/neu.2018.6358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ventilatory pacing by electrical stimulation of the phrenic nerve or of the diaphragm has been shown to enhance quality of life compared to mechanical ventilation. However, commercially available ventilatory pacing devices require initial manual specification of stimulation parameters and frequent adjustment to achieve and maintain suitable ventilation over long periods of time. Here, we have developed an adaptive, closed-loop, neuromorphic, pattern-shaping controller capable of automatically determining a suitable stimulation pattern and adapting it to maintain a desired breath-volume profile on a breath-by-breath basis. The system adapts the pattern of stimulation parameters based on the error between the measured volume sampled every 40 ms and a desired breath volume profile. In vivo studies in anesthetized male Sprague-Dawley rats without and with spinal cord injury by spinal hemisection at C2 indicated that the controller was capable of automatically adapting stimulation parameters to attain a desired volume profile. Despite diaphragm hemiparesis, the controller was able to achieve a desired volume in the injured animals that did not differ from the tidal volume observed before injury (p = 0.39). Closed-loop adaptive pacing partially mitigated hypoventilation as indicated by reduction of end-tidal CO2 values during pacing. The closed-loop controller was developed and parametrized in a computational testbed before in vivo assessment. This bioelectronic technology could serve as an individualized and autonomous respiratory pacing approach for support or recovery from ventilatory deficiency.
Collapse
Affiliation(s)
- Ricardo Siu
- Department of Biomedical Engineering, Florida International University, Miami, Florida
| | - James J Abbas
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona
| | - Brian K Hillen
- Department of Biomedical Engineering, Florida International University, Miami, Florida
| | - Jefferson Gomes
- Department of Biomedical Engineering, Florida International University, Miami, Florida
| | - Stefany Coxe
- Department of Psychology, Florida International University, Miami, Florida
| | - Jonathan Castelli
- Université de Bordeaux, INP Bordeaux, IMS CNRS UMR 5218, Bordeaux, France
| | - Sylvie Renaud
- Université de Bordeaux, INP Bordeaux, IMS CNRS UMR 5218, Bordeaux, France
| | - Ranu Jung
- Department of Biomedical Engineering, Florida International University, Miami, Florida
| |
Collapse
|
12
|
McIntosh D, Dougherty BJ. Development of ventilatory long-term facilitation is dependent on estrous cycle stage in adult female rats. Respir Physiol Neurobiol 2019; 264:1-7. [PMID: 30898577 DOI: 10.1016/j.resp.2019.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 11/16/2022]
Abstract
Ventilatory long-term facilitation (vLTF) is a form of respiratory plasticity characterized by a progressive and sustained increase in minute ventilation over time following acute, intermittent hypoxia (AIH). Though vLTF has been repeatedly demonstrated in adult males (rats and humans), few studies have assessed vLTF in adult females and no studies have explored differential expression of vLTF across the normal female estrous cycle. We recently reported that AIH-induced plasticity of phrenic motor output (phrenic long-term facilitation, pLTF), a phenotypically similar form of respiratory plasticity presenting as a sustained increase in phrenic nerve amplitude, develops in adult female rats only during the proestrus stage of the estrous cycle, notable for high levels of serum estrogen. Here, we tested the hypothesis that AIH-induced vLTF would also be estrous-stage dependent; developing in female rats during proestrus, but not estrus. Barometric plethysmography in adult (4-5 months), normally cycling female rats revealed a progressive increase in minute ventilation for 60 min following AIH (5 × 5 min episodes; 10% O2) during proestrus indicative of vLTF, while estrus rats showed no changes in minute ventilation over the same time period. The development of vLTF in proestrus rats was driven by changes in tidal volume production versus respiratory frequency consistent with prior studies. These data are the first to investigate differential vLTF expression across the estrous cycle in adult female rats and highlight the importance of female estrous cycle stage as a critical physiological variable to consider in studies of AIH-induced plasticity.
Collapse
Affiliation(s)
- Danielle McIntosh
- University of Minnesota Medical School, Department of Rehabilitation Medicine, Divisions of Physical Therapy and Rehabilitation Science, 420 Delaware Street S.E. (MMC 388), Minneapolis, MN 55455, United States
| | - Brendan J Dougherty
- University of Minnesota Medical School, Department of Rehabilitation Medicine, Divisions of Physical Therapy and Rehabilitation Science, 420 Delaware Street S.E. (MMC 388), Minneapolis, MN 55455, United States.
| |
Collapse
|
13
|
Fogarty MJ, Sieck GC. Evolution and Functional Differentiation of the Diaphragm Muscle of Mammals. Compr Physiol 2019; 9:715-766. [PMID: 30873594 PMCID: PMC7082849 DOI: 10.1002/cphy.c180012] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Symmorphosis is a concept of economy of biological design, whereby structural properties are matched to functional demands. According to symmorphosis, biological structures are never over designed to exceed functional demands. Based on this concept, the evolution of the diaphragm muscle (DIAm) in mammals is a tale of two structures, a membrane that separates and partitions the primitive coelomic cavity into separate abdominal and thoracic cavities and a muscle that serves as a pump to generate intra-abdominal (Pab ) and intrathoracic (Pth ) pressures. The DIAm partition evolved in reptiles from folds of the pleural and peritoneal membranes that was driven by the biological advantage of separating organs in the larger coelomic cavity into separate thoracic and abdominal cavities, especially with the evolution of aspiration breathing. The DIAm pump evolved from the advantage afforded by more effective generation of both a negative Pth for ventilation of the lungs and a positive Pab for venous return of blood to the heart and expulsive behaviors such as airway clearance, defecation, micturition, and child birth. © 2019 American Physiological Society. Compr Physiol 9:715-766, 2019.
Collapse
Affiliation(s)
- Matthew J Fogarty
- Mayo Clinic, Department of Physiology & Biomedical Engineering, Rochester, Minnesota, USA
| | - Gary C Sieck
- Mayo Clinic, Department of Physiology & Biomedical Engineering, Rochester, Minnesota, USA
| |
Collapse
|
14
|
Warren PM, Alilain WJ. Plasticity Induced Recovery of Breathing Occurs at Chronic Stages after Cervical Contusion. J Neurotrauma 2019; 36:1985-1999. [PMID: 30565484 DOI: 10.1089/neu.2018.6186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Severe midcervical contusion injury causes profound deficits throughout the respiratory motor system that last from acute to chronic time points post-injury. We use chondroitinase ABC (ChABC) to digest chondroitin sulphate proteoglycans within the extracellular matrix (ECM) surrounding the respiratory system at both acute and chronic time points post-injury to explore whether augmentation of plasticity can recover normal motor function. We demonstrate that, regardless of time post-injury or treatment application, the lesion cavity remains consistent, showing little regeneration or neuroprotection within our model. Through electromyography (EMG) recordings of multiple inspiratory muscles, however, we show that application of the enzyme at chronic time points post-injury initiates the recovery of normal breathing in previously paralyzed respiratory muscles. This reduced the need for compensatory activity throughout the motor system. Application of ChABC at acute time points recovered only modest amounts of respiratory function. To further understand this effect, we assessed the anatomical mechanism of this recovery. Increased EMG activity in previously paralyzed muscles was brought about by activation of spared bulbospinal pathways through the site of injury and/or sprouting of spared serotonergic fibers from the contralateral side of the cord. Accordingly, we demonstrate that alterations to the ECM and augmentation of plasticity at chronic time points post-cervical contusion can cause functional recovery of the respiratory motor system and reveal mechanistic evidence of the pathways that govern this effect.
Collapse
Affiliation(s)
- Philippa Mary Warren
- 1 Department of Neurosciences, MetroHealth Medical Centre, Case Western Reserve University, Cleveland, Ohio.,2 King's College London, Regeneration Group, The Wolfson Centre for Age-Related Diseases, Guy's Campus, London Bridge, London, United Kingdom
| | - Warren Joseph Alilain
- 1 Department of Neurosciences, MetroHealth Medical Centre, Case Western Reserve University, Cleveland, Ohio.,3 Department of Neuroscience, Spinal Cord and Brain Injury Research Centre, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
15
|
Javadi-Paydar M, Nguyen JD, Kerr TM, Grant Y, Vandewater SA, Cole M, Taffe MA. Effects of Δ9-THC and cannabidiol vapor inhalation in male and female rats. Psychopharmacology (Berl) 2018; 235:2541-2557. [PMID: 29907926 PMCID: PMC6699758 DOI: 10.1007/s00213-018-4946-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/07/2018] [Indexed: 12/13/2022]
Abstract
RATIONALE Previous studies report sex differences in some, but not all, responses to cannabinoids in rats. The majority of studies use parenteral injection; however, most human use is via smoke inhalation and, increasingly, vapor inhalation. OBJECTIVES To compare thermoregulatory and locomotor responses to inhaled ∆9-tetrahydrocannabinol (THC), cannabidiol (CBD), and their combination using an e-cigarette-based model in male and female rats METHODS: Male and female Wistar rats were implanted with radiotelemetry devices for the assessment of body temperature and locomotor activity. Animals were then exposed to THC or CBD vapor using a propylene glycol (PG) vehicle. THC dose was adjusted via the concentration in the vehicle (12.5-200 mg/mL) and the CBD (100, 400 mg/mL) dose was also adjusted by varying the inhalation duration (10-40 min). Anti-nociception was evaluated using a tail-withdrawal assay following vapor inhalation. Plasma samples obtained following inhalation in different groups of rats were compared for THC content. RESULTS THC inhalation reduced body temperature and increased tail-withdrawal latency in both sexes equivalently and in a concentration-dependent manner. Female temperature, activity, and tail-withdrawal responses to THC did not differ between estrus and diestrus. CBD inhalation alone induced modest hypothermia and suppressed locomotor activity in both males and females. Co-administration of THC with CBD, in a 1:4 ratio, significantly decreased temperature and activity in an approximately additive manner and to similar extent in each sex. Plasma THC varied with the concentration in the PG vehicle but did not differ across rat sex. CONCLUSION In summary, the inhalation of THC or CBD, alone and in combination, produces approximately equivalent effects in male and female rats. This confirms the efficacy of the e-cigarette-based method of THC delivery in female rats.
Collapse
Affiliation(s)
| | - Jacques D. Nguyen
- Department of Neuroscience; The Scripps Research Institute; La Jolla, CA, USA
| | - Tony M. Kerr
- Department of Neuroscience; The Scripps Research Institute; La Jolla, CA, USA
| | - Yanabel Grant
- Department of Neuroscience; The Scripps Research Institute; La Jolla, CA, USA
| | | | - Maury Cole
- La Jolla Alcohol Research, Inc; La Jolla CA, USA
| | - Michael A. Taffe
- Department of Neuroscience; The Scripps Research Institute; La Jolla, CA, USA
| |
Collapse
|
16
|
Warren PM, Campanaro C, Jacono FJ, Alilain WJ. Mid-cervical spinal cord contusion causes robust deficits in respiratory parameters and pattern variability. Exp Neurol 2018; 306:122-131. [PMID: 29653187 PMCID: PMC6333202 DOI: 10.1016/j.expneurol.2018.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/24/2018] [Accepted: 04/06/2018] [Indexed: 02/08/2023]
Abstract
Mid-cervical spinal cord contusion disrupts both the pathways and motoneurons vital to the activity of inspiratory muscles. The present study was designed to determine if a rat contusion model could result in a measurable deficit to both ventilatory and respiratory motor function under “normal” breathing conditions at acute to chronic stages post trauma. Through whole body plethysmography and electromyography we assessed respiratory output from three days to twelve weeks after a cervical level 3 (C3) contusion. Contused animals showed significant deficits in both tidal and minute volumes which were sustained from acute to chronic time points. We also examined the degree to which the contusion injury impacted ventilatory pattern variability through assessment of Mutual Information and Sample Entropy. Mid-cervical contusion significantly and robustly decreased the variability of ventilatory patterns. The enduring deficit to the respiratory motor system caused by contusion was further confirmed through electromyography recordings in multiple respiratory muscles. When isolated via a lesion, these contused pathways were insufficient to maintain respiratory activity at all time points post injury. Collectively these data illustrate that, counter to the prevailing literature, a profound and lasting ventilatory and respiratory motor deficit may be modelled and measured through multiple physiological assessments at all time points after cervical contusion injury.
Collapse
Affiliation(s)
- Philippa M Warren
- Department of Neurosciences, MetroHealth Medical Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Cara Campanaro
- Division of Pulmonary Critical Care and Sleep Medicine and Louis Stokes VA Medical Center, Department of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Frank J Jacono
- Division of Pulmonary Critical Care and Sleep Medicine and Louis Stokes VA Medical Center, Department of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Warren J Alilain
- Department of Neurosciences, MetroHealth Medical Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Spinal Cord and Brain Injury Research Centre, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
17
|
Cornelison RC, Gonzalez-Rothi EJ, Porvasnik SL, Wellman SM, Park JH, Fuller DD, Schmidt CE. Injectable hydrogels of optimized acellular nerve for injection in the injured spinal cord. Biomed Mater 2018; 13:034110. [PMID: 29380749 PMCID: PMC5911159 DOI: 10.1088/1748-605x/aaab82] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Spinal cord injury (SCI) affects a quarter million individuals in the United States, and there is currently no clinical treatment. Both fresh and acellular peripheral nerve grafts can induce spinal axon regeneration and support functional recovery in experimental injury models. Nonetheless, a scaffold that can be injected into a spinal contusion would be far less invasive to apply. We aimed to develop the first injectable acellular nerve graft for promoting repair after contusion SCI. APPROACH We report a method to enzymatically solubilize optimized acellular (OA) nerve-a decellularized peripheral nerve graft developed in our laboratory and currently used clinically-to obtain an injectable solution that undergoes thermal gelation under physiological conditions. We quantified multiple physical and compositional properties of this novel material as well as tested its efficacy at acute and chronic time points following cervical contusion SCI. MAIN RESULTS This injectable optimized acellular (iOA) nerve graft retains native chemical cues such as collagens and glycosaminoglycans. By varying hydrogel concentration, the rheological properties and compressive modulus of iOA were similar to that previous reported for rat central nervous tissue. iOA solution was compatible with rat Schwann cells in culture, and hydrogel injection into a rat cervical contusion model significantly reduced the ratio of M1:M2 macrophages after one week, favoring regenerative phenotypes (p < 0.05). Furthermore, while iOA treatment did not affect locomotor or respiratory recovery over an eight week period, the percentage of axonal coverage increased at the distal tissue interface (p < 0.05), suggesting enhanced axonal extension within this region. SIGNIFICANCE Our data indicate that this novel injectable form of acellular nerve grafts is amenable for use after contusion SCI and may bolster a simultaneous therapy by acutely modulating the inflammatory milieu and supporting axonal growth.
Collapse
Affiliation(s)
- R. Chase Cornelison
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611
| | | | - Stacy L. Porvasnik
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611
| | - Steven M. Wellman
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611
| | - James H. Park
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611
| | - David D. Fuller
- Department of Physical Therapy, University of Florida, Gainesville, FL 32611
| | - Christine E. Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611
| |
Collapse
|
18
|
Wen MH, Lee KZ. Diaphragm and Intercostal Muscle Activity after Mid-Cervical Spinal Cord Contusion in the Rat. J Neurotrauma 2018; 35:533-547. [DOI: 10.1089/neu.2017.5128] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Ming-Han Wen
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Kun-Ze Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Center for Neuroscience, National Sun Yat-sen University, Kaohsiung, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, Kaohsiung, Taiwan
| |
Collapse
|
19
|
Gonzalez-Rothi EJ, Streeter KA, Hanna MH, Stamas AC, Reier PJ, Baekey DM, Fuller DD. High-frequency epidural stimulation across the respiratory cycle evokes phrenic short-term potentiation after incomplete cervical spinal cord injury. J Neurophysiol 2017; 118:2344-2357. [PMID: 28615341 DOI: 10.1152/jn.00913.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 06/13/2017] [Accepted: 06/14/2017] [Indexed: 01/15/2023] Open
Abstract
C2 spinal hemilesion (C2Hx) paralyzes the ipsilateral diaphragm, but recovery is possible through activation of "crossed spinal" synaptic inputs to ipsilateral phrenic motoneurons. We tested the hypothesis that high-frequency epidural stimulation (HF-ES) would potentiate ipsilateral phrenic output after subacute and chronic C2Hx. HF-ES (300 Hz) was applied to the ventrolateral C4 or T2 spinal cord ipsilateral to C2Hx in anesthetized and mechanically ventilated adult rats. Stimulus duration was 60 s, and currents ranged from 100 to 1,000 µA. Bilateral phrenic nerve activity and ipsilateral hypoglossal (XII) nerve activity were recorded before and after HF-ES. Higher T2 stimulus currents potentiated ipsilateral phasic inspiratory activity at both 2 and 12 wk post-C2Hx, whereas higher stimulus currents delivered at C4 potentiated ipsilateral phasic phrenic activity only at 12 wk (P = 0.028). Meanwhile, tonic output in the ipsilateral phrenic nerve reached 500% of baseline values at the high currents with no difference between 2 and 12 wk. HF-ES did not trigger inspiratory burst-frequency changes. Similar responses occurred following T2 HF-ES. Increases in contralateral phrenic and XII nerve output were induced by C4 and T2 HF-ES at higher currents, but the relative magnitude of these changes was small compared with the ipsilateral phrenic response. We conclude that following incomplete cervical spinal cord injury, HF-ES of the ventrolateral midcervical or thoracic spinal cord can potentiate efferent phrenic motor output with little impact on inspiratory burst frequency. However, the substantial increases in tonic output indicate that the uninterrupted 60-s stimulation paradigm used is unlikely to be useful for respiratory muscle activation after spinal injury.NEW & NOTEWORTHY Previous studies reported that high-frequency epidural stimulation (HF-ES) activates the diaphragm following acute spinal transection. This study examined HF-ES and phrenic motor output following subacute and chronic incomplete cervical spinal cord injury. Short-term potentiation of phrenic bursting following HF-ES illustrates the potential for spinal stimulation to induce respiratory neuroplasticity. Increased tonic phrenic output indicates that alternatives to the continuous stimulation paradigm used in this study will be required for respiratory muscle activation after spinal cord injury.
Collapse
Affiliation(s)
- Elisa J Gonzalez-Rothi
- McKnight Brain Institute, Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, Florida;
| | - Kristi A Streeter
- McKnight Brain Institute, Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, Florida
| | - Marie H Hanna
- McKnight Brain Institute, Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, Florida
| | - Anna C Stamas
- McKnight Brain Institute, Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, Florida
| | - Paul J Reier
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida; and
| | - David M Baekey
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - David D Fuller
- McKnight Brain Institute, Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, Florida
| |
Collapse
|
20
|
Nongenomic Actions of 17-β Estradiol Restore Respiratory Neuroplasticity in Young Ovariectomized Female Rats. J Neurosci 2017; 37:6648-6660. [PMID: 28592693 DOI: 10.1523/jneurosci.0433-17.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/18/2017] [Accepted: 05/05/2017] [Indexed: 12/31/2022] Open
Abstract
Gonadal steroids modulate CNS plasticity, including phrenic long-term facilitation (pLTF), a form of spinal respiratory neuroplasticity resulting in increased phrenic nerve motor output following exposure to acute intermittent hypoxia (aIH; three 5 min episodes, 10.5% O2). Despite the importance of respiratory system neuroplasticity, and its dependence on estrogen in males, little is known about pLTF expression or mechanisms of estrogen signaling in females. Here, we tested the hypotheses that (1) pLTF expression in young, gonadally intact female rats would be expressed during estrous cycle stages in which 17β-estradiol (E2) is naturally high (e.g., proestrus vs estrus), (2) pLTF would be absent in ovariectomized (OVX) rats and in physiological conditions in which serum progesterone, but not E2, is elevated (e.g., lactating rats, 3-10 d postpartum), and (3) acute E2 administration would be sufficient to restore pLTF in OVX rats. Recordings of phrenic nerve activity in female Sprague Dawley rats (3-4 months) revealed a direct correlation between serum E2 levels and pLTF expression in cycling female rats. pLTF was abolished with OVX, but was re-established by acute E2 replacement (3 h, intraperitoneal). To identify underlying E2 signaling mechanisms, we intrathecally applied BSA-conjugated E2 over the spinal phrenic motor nucleus and found that pLTF expression was restored within 15 min, suggesting nongenomic E2 effects at membrane estrogen receptors. These data are the first to investigate the role of ovarian E2 in young cycling females, and to identify a role for nongenomic estrogen signaling in any form of respiratory system neuroplasticity.SIGNIFICANCE STATEMENT Exposure to acute intermittent hypoxia induces phrenic long-term facilitation (pLTF), a form of spinal respiratory motor plasticity that improves breathing in models of spinal cord injury. Although pathways leading to pLTF are well studied in males and estradiol (E2) is known to be required, it has seldom been investigated in females, and underlying mechanisms of E2 signaling are unknown in either sex. We found that while ovariectomy abolished pLTF, it could be restored by acute systemic E2, or by intraspinal application of the membrane-impermeable E2 (BSA-conjugated E2; 15 min). The ability of nongenomic estrogen signaling within the cervical spinal cord to recover respiratory neuroplasticity in disorders of respiratory insufficiency suggests that membrane estrogen receptors may represent novel therapeutic targets to restore breathing in both sexes.
Collapse
|
21
|
Daily acute intermittent hypoxia improves breathing function with acute and chronic spinal injury via distinct mechanisms. Respir Physiol Neurobiol 2017; 256:50-57. [PMID: 28549897 DOI: 10.1016/j.resp.2017.05.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 03/22/2017] [Accepted: 05/10/2017] [Indexed: 01/23/2023]
Abstract
Daily acute intermittent hypoxia (dAIH) elicits respiratory plasticity, enhancing respiratory motor output and restoring breathing capacity after incomplete cervical spinal injuries (cSCI). We hypothesized that dAIH-induced functional recovery of breathing capacity would occur after both acute (2 weeks) and chronic (8 weeks) cSCI, but through distinct cellular mechanisms. Specifically, we hypothesized that dAIH-induced breathing recovery would occur through serotonin-independent mechanisms 2wks post C2 cervical hemisection (C2Hs), versus serotonin-dependent mechanisms 8wks post C2Hs. In two independent studies, dAIH or sham (normoxia) was initiated 1 week (Study 1) or 7 weeks (Study 2) post-C2Hs to test our hypothesis. Rats were pre-treated with intra-peritoneal vehicle or methysergide, a broad-spectrum serotonin receptor antagonist, to determine the role of serotonin signaling in dAIH-induced functional recovery. Our data support the hypothesis that dAIH-induced recovery of breathing capacity transitions from a serotonin-independent mechanism with acute C2Hs to a serotonin-dependent mechanism with chronic C2Hs. An understanding of shifting mechanisms giving rise to dAIH-induced respiratory motor plasticity is vital for clinical translation of dAIH as a therapeutic modality.
Collapse
|
22
|
Ghali MGZ. The bulbospinal network controlling the phrenic motor system: Laterality and course of descending projections. Neurosci Res 2017; 121:7-17. [PMID: 28389264 DOI: 10.1016/j.neures.2017.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/06/2017] [Indexed: 11/17/2022]
Abstract
The respiratory rhythm is generated by the parafacial respiratory group, Bötzinger complex, and pre-Bötzinger complex and relayed to pre-motor neurons, which in turn project to and control respiratory motor outputs in the brainstem and spinal cord. The phrenic nucleus is one such target, containing phrenic motoneurons (PhMNs), which supply the diaphragm, the primary inspiratory muscle in mammals. While some investigators have demonstrated both ipsi- and contralateral bulbophrenic projections, there exists controversy regarding the relative physiological contribution of each to phasic and tonic drive to PhMNs and at which levels decussations occur. Following C1- or C2 spinal cord hemisection-induced silencing of the ipsilateral phrenic/diaphragm activity, respiratory stressor-induced, as well as spontaneous, recovery of crossed phrenic activity is observed, suggesting an important contribution of pathways crossing below the level of injury in driving phrenic motor output. The precise mechanisms underlying this recovery are debated. In this review, we seek to present a comprehensive discussion of the organization of the bulbospinal network controlling PhMNs, a thorough appreciation of which is necessary for understanding neural respiratory control, accurate interpretation of studies investigating respiratory recovery following spinal cord injury, and targeted development of therapies for respiratory neurorehabilitation in patients sustaining high cervical cord injury.
Collapse
Affiliation(s)
- Michael George Zaki Ghali
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| |
Collapse
|
23
|
Kloefkorn HE, Pettengill TR, Turner SMF, Streeter KA, Gonzalez-Rothi EJ, Fuller DD, Allen KD. Automated Gait Analysis Through Hues and Areas (AGATHA): A Method to Characterize the Spatiotemporal Pattern of Rat Gait. Ann Biomed Eng 2017; 45:711-725. [PMID: 27554674 PMCID: PMC5323432 DOI: 10.1007/s10439-016-1717-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/18/2016] [Indexed: 12/23/2022]
Abstract
While rodent gait analysis can quantify the behavioral consequences of disease, significant methodological differences exist between analysis platforms and little validation has been performed to understand or mitigate these sources of variance. By providing the algorithms used to quantify gait, open-source gait analysis software can be validated and used to explore methodological differences. Our group is introducing, for the first time, a fully-automated, open-source method for the characterization of rodent spatiotemporal gait patterns, termed Automated Gait Analysis Through Hues and Areas (AGATHA). This study describes how AGATHA identifies gait events, validates AGATHA relative to manual digitization methods, and utilizes AGATHA to detect gait compensations in orthopaedic and spinal cord injury models. To validate AGATHA against manual digitization, results from videos of rodent gait, recorded at 1000 frames per second (fps), were compared. To assess one common source of variance (the effects of video frame rate), these 1000 fps videos were re-sampled to mimic several lower fps and compared again. While spatial variables were indistinguishable between AGATHA and manual digitization, low video frame rates resulted in temporal errors for both methods. At frame rates over 125 fps, AGATHA achieved a comparable accuracy and precision to manual digitization for all gait variables. Moreover, AGATHA detected unique gait changes in each injury model. These data demonstrate AGATHA is an accurate and precise platform for the analysis of rodent spatiotemporal gait patterns.
Collapse
Affiliation(s)
- Heidi E Kloefkorn
- J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Biomedical Sciences Building, JG56, Gainesville, FL, 32610, USA
| | - Travis R Pettengill
- J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Biomedical Sciences Building, JG56, Gainesville, FL, 32610, USA
| | - Sara M F Turner
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Kristi A Streeter
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | | | - David D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Kyle D Allen
- J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Biomedical Sciences Building, JG56, Gainesville, FL, 32610, USA.
| |
Collapse
|
24
|
Vagal Control of Breathing Pattern after Midcervical Contusion in Rats. J Neurotrauma 2017; 34:734-745. [DOI: 10.1089/neu.2016.4645] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
25
|
Abstract
The cervical spine is the most common site of traumatic vertebral column injuries. Respiratory insufficiency constitutes a significant proportion of the morbidity burden and is the most common cause of mortality in these patients. In seeking to enhance our capacity to treat specifically the respiratory dysfunction following spinal cord injury, investigators have studied the "crossed phrenic phenomenon", wherein contraction of a hemidiaphragm paralyzed by a complete hemisection of the ipsilateral cervical spinal cord above the phrenic nucleus can be induced by respiratory stressors and recovers spontaneously over time. Strengthening of latent contralateral projections to the phrenic nucleus and sprouting of new descending axons have been proposed as mechanisms contributing to the observed recovery. We have recently demonstrated recovery of spontaneous crossed phrenic activity occurring over minutes to hours in C1-hemisected unanesthetized decerebrate rats. The specific neurochemical and molecular pathways underlying crossed phrenic activity following injury require further clarification. A thorough understanding of these is necessary in order to develop targeted therapies for respiratory neurorehabilitation following spinal trauma. Animal studies provide preliminary evidence for the utility of neuropharmacological manipulation of serotonergic and adenosinergic pathways, nerve grafts, olfactory ensheathing cells, intraspinal microstimulation and a possible role for dorsal rhizotomy in recovering phrenic activity following spinal cord injury.
Collapse
|
26
|
Chakrabarti M, Das A, Samantaray S, Smith JA, Banik NL, Haque A, Ray SK. Molecular mechanisms of estrogen for neuroprotection in spinal cord injury and traumatic brain injury. Rev Neurosci 2016; 27:271-81. [DOI: 10.1515/revneuro-2015-0032] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 08/27/2015] [Indexed: 01/18/2023]
Abstract
AbstractEstrogen (EST) is a steroid hormone that exhibits several important physiological roles in the human body. During the last few decades, EST has been well recognized as an important neuroprotective agent in a variety of neurological disorders in the central nervous system (CNS), such as spinal cord injury (SCI), traumatic brain injury (TBI), Alzheimer’s disease, and multiple sclerosis. The exact molecular mechanisms of EST-mediated neuroprotection in the CNS remain unclear due to heterogeneity of cell populations that express EST receptors (ERs) in the CNS as well as in the innate and adaptive immune system. Recent investigations suggest that EST protects the CNS from injury by suppressing pro-inflammatory pathways, oxidative stress, and cell death, while promoting neurogenesis, angiogenesis, and neurotrophic support. In this review, we have described the currently known molecular mechanisms of EST-mediated neuroprotection and neuroregeneration in SCI and TBI. At the same time, we have emphasized on the recent in vitro and in vivo findings from our and other laboratories, implying potential clinical benefits of EST in the treatment of SCI and TBI.
Collapse
Affiliation(s)
- Mrinmay Chakrabarti
- 1Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29209, USA
| | - Arabinda Das
- 2Department of Neurosurgery and Neurology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Supriti Samantaray
- 2Department of Neurosurgery and Neurology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Joshua A. Smith
- 2Department of Neurosurgery and Neurology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Naren L. Banik
- 2Department of Neurosurgery and Neurology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Azizul Haque
- 3Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Swapan K. Ray
- 1Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29209, USA
| |
Collapse
|
27
|
Gonzalez-Rothi EJ, Armstrong GT, Cerreta AJ, Fitzpatrick GM, Reier PJ, Lane MA, Judge AR, Fuller DD. Forelimb muscle plasticity following unilateral cervical spinal cord injury. Muscle Nerve 2016; 53:475-8. [PMID: 26662579 PMCID: PMC4733411 DOI: 10.1002/mus.25007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2015] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Motor dysfunction and muscle atrophy are well documented in the lower extremity after spinal cord injury. However, the extent and time course of myoplastic changes in forelimb musculature is not clear. METHODS Forelimb muscle morphology and fiber type were evaluated after high cervical hemilesion injury in rats. RESULTS There was significant atrophy of the ipsilateral extensor carpi radialis longus (ECRL) muscle at 2 weeks postinjury, which was subsequently reversed at 8 weeks postinjury. The triceps muscle showed minimal evidence of atrophy after spinal injury. No significant changes in fiber type were observed. CONCLUSIONS These findings indicate a robust capacity for spontaneous myoplasticity after C2 hemisection injury but highlight differential capacity for plasticity within the forelimb muscles.
Collapse
Affiliation(s)
- Elisa J. Gonzalez-Rothi
- Department of Physical Therapy, College of Public Health and Health Professions, McKnight Brain Institute, University of Florida, P.O. Box 100154, 100 S. Newell Drive, Gainesville, FL 32610, USA
| | - Gregory T. Armstrong
- Department of Physical Therapy, College of Public Health and Health Professions, McKnight Brain Institute, University of Florida, P.O. Box 100154, 100 S. Newell Drive, Gainesville, FL 32610, USA
| | - Anthony J. Cerreta
- Department of Physical Therapy, College of Public Health and Health Professions, McKnight Brain Institute, University of Florida, P.O. Box 100154, 100 S. Newell Drive, Gainesville, FL 32610, USA
| | - Garrett M. Fitzpatrick
- Department of Physical Therapy, College of Public Health and Health Professions, McKnight Brain Institute, University of Florida, P.O. Box 100154, 100 S. Newell Drive, Gainesville, FL 32610, USA
| | - Paul J. Reier
- Department of Neuroscience, College of Medicine, McKnight Brain Institute, University of Florida, P.O. Box 100154, 100 S. Newell Drive, Gainesville, FL 32610, USA
| | - Michael A. Lane
- Department of Neuroscience, College of Medicine, McKnight Brain Institute, University of Florida, P.O. Box 100154, 100 S. Newell Drive, Gainesville, FL 32610, USA
| | - Andrew R. Judge
- Department of Physical Therapy, College of Public Health and Health Professions, McKnight Brain Institute, University of Florida, P.O. Box 100154, 100 S. Newell Drive, Gainesville, FL 32610, USA
| | - David D. Fuller
- Department of Physical Therapy, College of Public Health and Health Professions, McKnight Brain Institute, University of Florida, P.O. Box 100154, 100 S. Newell Drive, Gainesville, FL 32610, USA
| |
Collapse
|
28
|
Hsu SH, Lee KZ. Effects of serotonergic agents on respiratory recovery after cervical spinal injury. J Appl Physiol (1985) 2015; 119:1075-87. [DOI: 10.1152/japplphysiol.00329.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 09/07/2015] [Indexed: 12/18/2022] Open
Abstract
Unilateral cervical spinal cord hemisection (i.e., C2Hx) usually interrupts the bulbospinal respiratory pathways and results in respiratory impairment. It has been demonstrated that activation of the serotonin system can promote locomotor recovery after spinal cord injury. The present study was designed to investigate whether serotonergic activation can improve respiratory function during the chronic injury state. Bilateral diaphragm electromyogram and tidal volume were measured in anesthetized and spontaneously breathing adult rats at 8 wk post-C2Hx or C2laminectomy. A bolus intravenous injection of a serotonin precursor [5-hydroxytryptophan (5-HTP), 10 mg/kg], a serotonin reuptake inhibitor (fluoxetine, 10 mg/kg), or a potent agonist for serotonin 2A receptors (TCB-2, 0.05 mg/kg) was used to activate the serotonergic system. Present results demonstrated that 5-HTP and TCB-2, but not fluoxetine, significantly increased the inspiratory activity of the diaphragm electromyogram ipsilateral to the lesion for at least 30 min in C2Hx animals, but not in animals that received sham surgery. However, the tidal volume was not increased after administration of 5-HTP or TCB-2, indicating that the enhancement of ipsilateral diaphragm activity is not associated with improvement of the tidal volume. These results suggest that exogenous activation of the serotonergic system can specifically enhance the ipsilateral diaphragmatic motor outputs, but this approach may not be sufficient to improve respiratory functional recovery following chronic cervical spinal injury.
Collapse
Affiliation(s)
- Shih-Hui Hsu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Kun-Ze Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Center for Neuroscience, National Sun Yat-sen University, Kaohsiung, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan; and
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, Kaohsiung, Taiwan
| |
Collapse
|
29
|
Ghali MGZ, Marchenko V. Dynamic changes in phrenic motor output following high cervical hemisection in the decerebrate rat. Exp Neurol 2015; 271:379-89. [DOI: 10.1016/j.expneurol.2015.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 05/29/2015] [Accepted: 06/03/2015] [Indexed: 11/16/2022]
|
30
|
Sankari A, Bascom AT, Riehani A, Badr MS. Tetraplegia is associated with enhanced peripheral chemoreflex sensitivity and ventilatory long-term facilitation. J Appl Physiol (1985) 2015; 119:1183-93. [PMID: 26272316 DOI: 10.1152/japplphysiol.00088.2015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 08/06/2015] [Indexed: 11/22/2022] Open
Abstract
Cardiorespiratory plasticity induced by acute intermittent hypoxia (AIH) may contribute to recovery following spinal cord injury (SCI). We hypothesized that patients with cervical SCI would demonstrate higher minute ventilation (V̇e) following AIH compared with subjects with thoracic SCI and able-bodied subjects who served as controls. Twenty-four volunteers (8 with cervical SCI, 8 with thoracic SCI, and 8 able-bodied) underwent an AIH protocol during wakefulness. Each subject experienced 15 episodes of isocapnic hypoxia using mixed gases of 100% nitrogen (N2), 8% O2, and 40% CO2 to achieve oxygen saturation ≤90% followed by room air (RA). Measurements were obtained before, during, and 40 min after AIH to obtain ventilation and heart rate variability data [R-R interval (RRI) and low-frequency/high-frequency power (LF/HF)]. AIH results were compared with those of sham studies conducted in RA during the same time period. Individuals with cervical SCI had higher V̇e after AIH compared with able-bodied controls (117.9 ± 23.2% vs. 97.9 ± 11.2%, P < 0.05). RRI decreased during hypoxia in all individuals (those with cervical SCI, from 1,009.3 ± 65.0 ms to 750.2 ± 65.0 ms; those with thoracic SCI, from 945.2 ± 65.0 ms to 674.9 ± 65.0 ms; and those who were able-bodied, from 949 ± 75.0 to 682.2 ± 69.5 ms; P < 0.05). LH/HF increased during recovery in individuals with thoracic SCI and those who were able-bodied (0.54 ± 0.22 vs. 1.34 ± 0.22 and 0.67 ± 0.23 vs. 1.82 ± 0.23, respectively; P < 0.05) but remained unchanged in the group with cervical SCI. Our conclusion is that patients with cervical SCI demonstrate ventilatory long-term facilitation following AIH compared with able-bodied controls. Heart rate responses to hypoxia are acutely present in patients with cervical SCI but are absent during posthypoxic recovery.
Collapse
Affiliation(s)
- Abdulghani Sankari
- John D. Dingell VA Medical Center, Detroit, Michigan; Wayne State University, Detroit, Michigan; and
| | - Amy T Bascom
- John D. Dingell VA Medical Center, Detroit, Michigan; Wayne State University, Detroit, Michigan; and
| | | | - M Safwan Badr
- John D. Dingell VA Medical Center, Detroit, Michigan; Wayne State University, Detroit, Michigan; and
| |
Collapse
|
31
|
Gonzalez-Rothi EJ, Rombola AM, Rousseau CA, Mercier LM, Fitzpatrick GM, Reier PJ, Fuller DD, Lane MA. Spinal interneurons and forelimb plasticity after incomplete cervical spinal cord injury in adult rats. J Neurotrauma 2015; 32:893-907. [PMID: 25625912 DOI: 10.1089/neu.2014.3718] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Cervical spinal cord injury (cSCI) disrupts bulbospinal projections to motoneurons controlling the upper limbs, resulting in significant functional impairments. Ongoing clinical and experimental research has revealed several lines of evidence for functional neuroplasticity and recovery of upper extremity function after SCI. The underlying neural substrates, however, have not been thoroughly characterized. The goals of the present study were to map the intraspinal motor circuitry associated with a defined upper extremity muscle, and evaluate chronic changes in the distribution of this circuit following incomplete cSCI. Injured animals received a high cervical (C2) lateral hemisection (Hx), which compromises supraspinal input to ipsilateral spinal motoneurons controlling the upper extremities (forelimb) in the adult rat. A battery of behavioral tests was used to characterize the time course and extent of forelimb motor recovery over a 16 week period post-injury. A retrograde transneuronal tracer - pseudorabies virus - was used to define the motor and pre-motor circuitry controlling the extensor carpi radialis longus (ECRL) muscle in spinal intact and injured animals. In the spinal intact rat, labeling was observed unilaterally within the ECRL motoneuron pool and within spinal interneurons bilaterally distributed within the dorsal horn and intermediate gray matter. No changes in labeling were observed 16 weeks post-injury, despite a moderate degree of recovery of forelimb motor function. These results suggest that recovery of the forelimb function assessed following C2Hx injury does not involve recruitment of new interneurons into the ipsilateral ECRL motor pathway. However, the functional significance of these existing interneurons to motor recovery requires further exploration.
Collapse
Affiliation(s)
- Elisa Janine Gonzalez-Rothi
- 1 Department of Physical Therapy, College of Public Health and Health Professions, McKnight Brain Institute, University of Florida , Gainesville, Florida
| | - Angela M Rombola
- 2 Department of Neuroscience, College of Medicine, McKnight Brain Institute, University of Florida , Gainesville, Florida
| | - Celeste A Rousseau
- 2 Department of Neuroscience, College of Medicine, McKnight Brain Institute, University of Florida , Gainesville, Florida
| | - Lynne M Mercier
- 2 Department of Neuroscience, College of Medicine, McKnight Brain Institute, University of Florida , Gainesville, Florida
| | - Garrett M Fitzpatrick
- 1 Department of Physical Therapy, College of Public Health and Health Professions, McKnight Brain Institute, University of Florida , Gainesville, Florida
| | - Paul J Reier
- 2 Department of Neuroscience, College of Medicine, McKnight Brain Institute, University of Florida , Gainesville, Florida
| | - David D Fuller
- 1 Department of Physical Therapy, College of Public Health and Health Professions, McKnight Brain Institute, University of Florida , Gainesville, Florida
| | - Michael A Lane
- 2 Department of Neuroscience, College of Medicine, McKnight Brain Institute, University of Florida , Gainesville, Florida
| |
Collapse
|
32
|
Imagita H, Nishikawa A, Sakata S, Nishii Y, Minematsu A, Moriyama H, Kanemura N, Shindo H. Tidal volume and diaphragm muscle activity in rats with cervical spinal cord injury. J Phys Ther Sci 2015; 27:791-4. [PMID: 25931732 PMCID: PMC4395716 DOI: 10.1589/jpts.27.791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 10/24/2014] [Indexed: 11/25/2022] Open
Abstract
[Purpose] The purpose of this study was to make an experimental model of cervical spinal
cord injury (CSCI) using Wistar rats, in order to analyze the influence of CSCI on the
respiratory function. [Subjects] Thirty-two male 12-week-old Wistar rats were used.
[Methods] The CSCI was made at the levels from C3 to C7, and we performed
pneumotachography and electromyography (EMG) on the diaphragm. Computed tomography was
used to determine the level of spinal cord damage. [Results] After the operation, the
tidal volume of the rats with a C3 level injury decreased to approximately 22.3% of its
pre-injury value. In addition, in the same rats, the diaphragmatic electromyogram activity
decreased remarkably. Compared with before CSCI, the tidal volume decreased to 78.6% of
its pre-injury value in CSCI at the C5 level, and it decreased to 94.1% of its pre-injury
value in CSCI at the C7 level. [Conclusion] In the rats that sustained a CSCI in this
study, the group of respiratory muscles that receive innervation from the thoracic spinal
cord was paralyzed. Therefore, the EMG signal of the diaphragm increased. These results
demonstrate that there is a relationship between respiratory function and the level of
CSCI.
Collapse
Affiliation(s)
| | - Akira Nishikawa
- Graduate School of Health Sciences, Kio University, Japan ; Department of Sports Health Management, Faculty of Business Information, Jobu University, Japan
| | - Susumu Sakata
- Graduate School of Health Sciences, Kio University, Japan
| | - Yasue Nishii
- Graduate School of Health Sciences, Kio University, Japan
| | | | - Hideki Moriyama
- Department of Physical Therapy, Faculty of Health Sciences, Kobe University, Japan
| | - Naohiko Kanemura
- Department of Physical Therapy, Faculty of Health Sciences, Saitama Prefectural University, Japan
| | - Hanae Shindo
- Graduate School of Health Sciences, Kio University, Japan ; Department of Physical Therapy, Keihan Life Support Company, Japan
| |
Collapse
|
33
|
Xu Y, Rui J, Zhao X, Xiao C, Bao Q, Li J, Lao J. Effect of isolated unilateral diaphragmatic paralysis on ventilation and exercise performance in rats. Respir Physiol Neurobiol 2014; 196:25-32. [DOI: 10.1016/j.resp.2014.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 02/10/2014] [Accepted: 02/11/2014] [Indexed: 10/25/2022]
|
34
|
Warren PM, Alilain WJ. The challenges of respiratory motor system recovery following cervical spinal cord injury. PROGRESS IN BRAIN RESEARCH 2014; 212:173-220. [DOI: 10.1016/b978-0-444-63488-7.00010-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
35
|
Dougherty BJ, Lee KZ, Lane MA, Reier PJ, Fuller DD. Contribution of the spontaneous crossed-phrenic phenomenon to inspiratory tidal volume in spontaneously breathing rats. J Appl Physiol (1985) 2011; 112:96-105. [PMID: 22033536 DOI: 10.1152/japplphysiol.00690.2011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Spinal cord hemisection at C2 (C2HS) severs bulbospinal inputs to ipsilateral phrenic motoneurons causing transient hemidiaphragm paralysis. The spontaneous crossed-phrenic phenomenon (sCPP) describes the spontaneous recovery of ipsilateral phrenic bursting following C2HS. We reasoned that the immediate (next breath) changes in tidal volume (V(T)) induced by ipsilateral phrenicotomy during spontaneous breathing would provide a quantitative measure of the contribution of the sCPP to postinjury V(T). Using this approach, we tested the hypothesis that the sCPP makes more substantial contributions to V(T) when respiratory drive is increased. Pneumotachography was used to measure V(T) in anesthetized, spontaneously breathing adult male rats at intervals following C2HS. A progressive increase in V(T) (ml/breath) occurred over an 8 wk period following C2HS during both poikilocapnic baseline breathing and hypercapnic respiratory challenge (7% inspired CO(2)). The sCPP did not impact baseline breathing at 1-3 days postinjury since V(T) was unchanged after ipsilateral phrenicotomy. However, by 2 wk post-C2HS, baseline phrenicotomy caused a 16 ± 2% decline in V(T); a comparable 16 ± 4% decline occurred at 8 wk. Contrary to our hypothesis, the phrenicotomy-induced declines in V(T) (%) during hypercapnic respiratory stimulation did not differ from the baseline response at any postinjury time point (all P > 0.11). We conclude that by 2 wk post-C2HS the sCPP makes a meaningful contribution to V(T) that is similar across different levels of respiratory drive.
Collapse
Affiliation(s)
- Brendan J Dougherty
- Department of Physical Therapy, McKnight Brain Institute, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | | | | | | | | |
Collapse
|
36
|
Kachadroka S, Hall AM, Niedzielko TL, Chongthammakun S, Floyd CL. Effect of endogenous androgens on 17beta-estradiol-mediated protection after spinal cord injury in male rats. J Neurotrauma 2010; 27:611-26. [PMID: 20001688 DOI: 10.1089/neu.2009.1069] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Several groups have recently shown that 17beta-estradiol is protective in spinal cord injury (SCI). Testosterone can be aromatized to 17beta-estradiol and may increase estrogen-mediated protection. Alternatively, testosterone has been shown to increase excitotoxicity in models of central nervous system (CNS) injury. These experiments test the hypothesis that endogenous testosterone in male rats alters 17beta-estradiol-mediated protection by evaluating a delayed administration over a clinically relevant dose range and manipulating testicular-derived testosterone. Adult male Sprague Dawley rats were either gonadectomized or left gonad-intact prior to SCI. SCI was produced by a midthoracic crush injury. At 30 min post SCI, animals received a subcutaneous pellet of 0.0, 0.05, 0.5, or 5.0 mg of 17beta-estradiol, released over 21 days. Hindlimb locomotion was analyzed weekly in the open field. Spinal cords were collected and analyzed for cell death, expression of Bcl-family proteins, and white-matter sparing. Post-SCI administration of the 0.5- or 5.0-mg pellet improved hindlimb locomotion, reduced urinary bladder size, increased neuronal survival, reduced apoptosis, improved the Bax/Bcl-xL protein ratio, and increased white-matter sparing. In the absence of endogenous testicular-derived androgens, SCI induced greater apoptosis, yet 17beta-estradiol administration reduced apoptosis to the same extent in gonadectomized and gonad-intact male rats. These data suggest that delayed post-SCI administration of a clinically relevant dose of 17beta-estradiol is protective in male rats, and endogenous androgens do not alter estrogen-mediated protection. These data suggest that 17beta-estradiol is an effective therapeutic intervention for reducing secondary damage after SCI in males, which could be readily translated to clinical trials.
Collapse
Affiliation(s)
- Supatra Kachadroka
- Department of Physical Medicine and Rehabilitation, Center for Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, Alhabama 35249, USA
| | | | | | | | | |
Collapse
|
37
|
Lee KZ, Sandhu MS, Dougherty BJ, Reier PJ, Fuller DD. Influence of vagal afferents on supraspinal and spinal respiratory activity following cervical spinal cord injury in rats. J Appl Physiol (1985) 2010; 109:377-87. [PMID: 20507963 DOI: 10.1152/japplphysiol.01429.2009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
C(2) spinal hemisection (C2HS) interrupts ipsilateral bulbospinal pathways and induces compensatory increases in contralateral spinal and possibly supraspinal respiratory output. Our first purpose was to test the hypothesis that after C2HS contralateral respiratory motor outputs become resistant to vagal inhibitory inputs associated with lung inflation. Bilateral phrenic and contralateral hypoglossal (XII) neurograms were recorded in anesthetized and ventilated rats. In uninjured (control) rats, lung inflation induced by positive end-expired pressure (PEEP; 3-9 cmH(2)O) robustly inhibited both phrenic and XII bursting. At 2 wk post-C2HS, PEEP evoked a complex response associated with phrenic bursts of both reduced and augmented amplitude, but with no overall change in the mean burst amplitude. PEEP-induced inhibition of XII bursting was still present but was attenuated relative to controls. However, by 8 wk post-C2HS PEEP-induced inhibition of both phrenic and XII output were similar to that in controls. Our second purpose was to test the hypothesis that vagal afferents inhibit ipsilateral phrenic bursting, thereby limiting the incidence of the spontaneous crossed phrenic phenomenon in vagal-intact rats. Bilateral vagotomy greatly enhanced ipsilateral phrenic bursting, which was either weak or absent in vagal-intact rats at both 2 and 8 wk post-C2HS. We conclude that 1) compensatory increases in contralateral phrenic and XII output after C2HS blunt the inhibitory influence of vagal afferents during lung inflation and 2) vagal afferents robustly inhibit ipsilateral phrenic bursting. These vagotomy data appear to explain the variability in the literature regarding the onset of the spontaneous crossed phrenic phenomenon in spontaneously breathing (vagal intact) vs. ventilated (vagotomized) preparations.
Collapse
Affiliation(s)
- Kun-Ze Lee
- Univ. of Florida, Coll. of Public Health and Health Professions, McKnight Brain Inst., Dept. of Physical Therapy, PO Box 100154, 100 Newell Dr., Gainesville, FL 32610, USA.
| | | | | | | | | |
Collapse
|
38
|
Hormonal influences on lung function and response to environmental agents: lessons from animal models of respiratory disease. Ann Am Thorac Soc 2010; 6:588-95. [PMID: 19934354 DOI: 10.1513/pats.200904-020rm] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Numerous studies in humans and experimental animals have identified considerable sex differences in respiratory physiology and in the response of the lung to environmental agents. These differences appear to be mediated, at least in part, by sex hormones and their nuclear receptors. Moreover, animal models are increasingly used to study pathogenic mechanisms and test potential therapies for a variety of human lung diseases, many of which appear to be influenced by sex and sex hormones. In this article, data are summarized from studies of lung function and disease in which sex differences have been observed. Specific attention is paid to animal models of acute lung injury, nonallergic and allergic lung inflammation, and lung fibrosis. It is anticipated that continued investigation of the role of sex and sex hormones in animal models will provide valuable insight into the pathogenesis and potential treatments for a variety of acute and chronic human lung diseases.
Collapse
|
39
|
Sandhu M, Dougherty B, Lane M, Bolser D, Kirkwood P, Reier P, Fuller D. Respiratory recovery following high cervical hemisection. Respir Physiol Neurobiol 2009; 169:94-101. [PMID: 19560562 PMCID: PMC2783827 DOI: 10.1016/j.resp.2009.06.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 06/09/2009] [Accepted: 06/19/2009] [Indexed: 01/16/2023]
Abstract
In this paper we review respiratory recovery following C2 spinal cord hemisection (C2HS) and introduce evidence for ipsilateral (IL) and contralateral (CL) phrenic motor neuron (PhrMN) synchrony post-C2HS. Rats have rapid, shallow breathing after C2HS but ventilation ( logical or (E)) is maintained. logical or (E) deficits occur during hypercapnic challenge reflecting reduced tidal volume (VT), but modest recovery occurs by 12 wks post-injury. IL PhrMN activity recovers in a time-dependent manner after C2HS, and neuroanatomical evidence suggests that this may involve both mono- and polysynaptic pathways. Accordingly, we used cross-correlation to examine IL and CL PhrMN synchrony after C2HS. Uninjured rats showed correlogram peaks consistent with synchronous activity and common synaptic input. Correlogram peaks were absent at 2 wks post-C2HS, but by 12 wks 50% of rats showed peaks occurring with a 1.1+/-0.19ms lag from zero on the abscissa. These data are consistent with prolonged conduction time to IL (vs. CL) PhrMNs and the possibility of polysynaptic inputs to IL PhrMNs after chronic C2HS.
Collapse
Affiliation(s)
- M.S. Sandhu
- Department of Physical Therapy College of Public Health and Health Professions McKnight Brain Institute University of Florida P.O. Box 100154, 100 S. Newell Drive Gainesville, FL 32610, USA
| | - B.J. Dougherty
- Department of Physical Therapy College of Public Health and Health Professions McKnight Brain Institute University of Florida P.O. Box 100154, 100 S. Newell Drive Gainesville, FL 32610, USA
- Department of Neuroscience College of Medicine McKnight Brain Institute University of Florida PO Box 100244 100 Newell Dr Gainesville FL 32610−0244, USA
| | - M.A. Lane
- Department of Neuroscience College of Medicine McKnight Brain Institute University of Florida PO Box 100244 100 Newell Dr Gainesville FL 32610−0244, USA
| | - D.C. Bolser
- Department of Physiological Sciences College of Veterinary Medicine PO Box 100144, 1600 SW Archer Rd Gainesville, FL 32610−0144, USA
| | - P.A. Kirkwood
- Sobell Dept for Motor Neuroscience and Movement Disorders UCL Institute of Neurology Queen Square, London WC1N 3BG United Kingdom
| | - P.J. Reier
- Department of Neuroscience College of Medicine McKnight Brain Institute University of Florida PO Box 100244 100 Newell Dr Gainesville FL 32610−0244, USA
| | - D.D. Fuller
- Department of Physical Therapy College of Public Health and Health Professions McKnight Brain Institute University of Florida P.O. Box 100154, 100 S. Newell Drive Gainesville, FL 32610, USA
| |
Collapse
|
40
|
Fuller DD, Sandhu MS, Doperalski NJ, Lane MA, White TE, Bishop MD, Reier PJ. Graded unilateral cervical spinal cord injury and respiratory motor recovery. Respir Physiol Neurobiol 2008; 165:245-53. [PMID: 19150658 DOI: 10.1016/j.resp.2008.12.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 12/16/2008] [Accepted: 12/17/2008] [Indexed: 10/21/2022]
Abstract
We examined the potential contribution of ventromedial (VM) tissue sparing to respiratory recovery following chronic (1 mo) unilateral C2 spinal cord injury (SCI) in rats. Preserved white matter ipsilateral to the injury was quantitatively expressed relative to contralateral white matter. The ipsilateral-to-contralateral white matter ratio was 0 after complete C2 hemisection (C2HS) and 0.23+/-0.04 with minimal VM sparing. Inspiratory (breath min(-1)) and phrenic frequency (burst min(-1)), measured by plethysmography (conscious rats) and phrenic neurograms (anesthetized rats) respectively, were both lower with minimal VM sparing (p<0.05 vs. C2HS). Tidal volume also was greater in minimal VM sparing rats during a hypercapnic challenge (p<0.05 vs. C2HS). In other C2 hemilesioned rats with more extensive VM matter sparing (ipsilateral-to-contralateral white matter ratio=0.55+/-0.05), respiratory deficits were indicated at 1 mo post-injury by reduced ventilation during hypercapnic challenge (p<0.05 vs. uninjured). Anterograde (ventral respiratory column-to-spinal cord) neuroanatomical tracing studies showed that descending respiratory projections from the brainstem are present in VM tissue. We conclude that even relatively minimal sparing of VM tissue after C2 hemilesion can alter respiratory outcomes. In addition, respiratory deficits can emerge in the adult rat after high cervical SCI even when relatively extensive VM sparing occurs.
Collapse
Affiliation(s)
- D D Fuller
- Department of Physical Therapy, College of Public Health and Health Professions, McKnight Brain Institute, University of Florida, P.O. Box 100154, 100 S. Newell Drive, Gainesville, FL 32610, USA.
| | | | | | | | | | | | | |
Collapse
|