1
|
Flores K, Almeida C, Arriaza K, Pena E, El Alam S. mTOR in the Development of Hypoxic Pulmonary Hypertension Associated with Cardiometabolic Risk Factors. Int J Mol Sci 2024; 25:11023. [PMID: 39456805 PMCID: PMC11508063 DOI: 10.3390/ijms252011023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
The pathophysiology of pulmonary hypertension is complex and multifactorial. It is a disease characterized by increased pulmonary vascular resistance at the level due to sustained vasoconstriction and remodeling of the pulmonary arteries, which triggers an increase in the mean pulmonary artery pressure and subsequent right ventricular hypertrophy, which in some cases can cause right heart failure. Hypoxic pulmonary hypertension (HPH) is currently classified into Group 3 of the five different groups of pulmonary hypertensions, which are determined according to the cause of the disease. HPH mainly develops as a product of lung diseases, among the most prevalent causes of obstructive sleep apnea (OSA), chronic obstructive pulmonary disease (COPD), or hypobaric hypoxia due to exposure to high altitudes. Additionally, cardiometabolic risk factors converge on molecular mechanisms involving overactivation of the mammalian target of rapamycin (mTOR), which correspond to a central axis in the development of HPH. The aim of this review is to summarize the role of mTOR in the development of HPH associated with metabolic risk factors and its therapeutic alternatives, which will be discussed in this review.
Collapse
Affiliation(s)
| | | | - Karem Arriaza
- High Altitude Medicine Research Center (CEIMA), Arturo Prat University, Iquique 1110939, Chile; (K.F.); (C.A.); (E.P.); (S.E.A.)
| | | | | |
Collapse
|
2
|
Ghosh R, Fatahian AN, Rouzbehani OMT, Hathaway MA, Mosleh T, Vinod V, Vowles S, Stephens SL, Chung SLD, Cao ID, Jonnavithula A, Symons JD, Boudina S. Sequestosome 1 (p62) mitigates hypoxia-induced cardiac dysfunction by stabilizing hypoxia-inducible factor 1α and nuclear factor erythroid 2-related factor 2. Cardiovasc Res 2024; 120:531-547. [PMID: 38332738 PMCID: PMC11060490 DOI: 10.1093/cvr/cvae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 09/11/2023] [Accepted: 11/03/2023] [Indexed: 02/10/2024] Open
Abstract
AIMS Heart failure due to ischaemic heart disease (IHD) is a leading cause of mortality worldwide. A major contributing factor to IHD-induced cardiac damage is hypoxia. Sequestosome 1 (p62) is a multi-functional adaptor protein with pleiotropic roles in autophagy, proteostasis, inflammation, and cancer. Despite abundant expression in cardiomyocytes, the role of p62 in cardiac physiology is not well understood. We hypothesized that cardiomyocyte-specific p62 deletion evokes hypoxia-induced cardiac pathology by impairing hypoxia-inducible factor 1α (Hif-1α) and nuclear factor erythroid 2-related factor 2 (Nrf2) signalling. METHODS AND RESULTS Adult mice with germline deletion of cardiomyocyte p62 exhibited mild cardiac dysfunction under normoxic conditions. Transcriptomic analyses revealed a selective impairment in Nrf2 target genes in the hearts from these mice. Demonstrating the functional importance of this adaptor protein, adult mice with inducible depletion of cardiomyocyte p62 displayed hypoxia-induced contractile dysfunction, oxidative stress, and cell death. Mechanistically, p62-depleted hearts exhibit impaired Hif-1α and Nrf2 transcriptional activity. Because findings from these two murine models suggested a cardioprotective role for p62, mechanisms were evaluated using H9c2 cardiomyoblasts. Loss of p62 in H9c2 cells exposed to hypoxia reduced Hif-1α and Nrf2 protein levels. Further, the lack of p62 decreased Nrf2 protein expression, nuclear translocation, and transcriptional activity. Repressed Nrf2 activity associated with heightened Nrf2-Keap1 co-localization in p62-deficient cells, which was concurrent with increased Nrf2 ubiquitination facilitated by the E3 ligase Cullin 3, followed by proteasomal-mediated degradation. Substantiating our results, a gain of p62 in H9c2 cells stabilized Nrf2 and increased the transcriptional activity of Nrf2 downstream targets. CONCLUSION Cardiac p62 mitigates hypoxia-induced cardiac dysfunction by stabilizing Hif-1α and Nrf2.
Collapse
Affiliation(s)
- Rajeshwary Ghosh
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT 84112, USA
- Molecular Medicine Program (U2M2), University of Utah, Salt Lake City, UT 84112, USA
| | - Amir Nima Fatahian
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT 84112, USA
| | - Omid M T Rouzbehani
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT 84112, USA
| | - Marissa A Hathaway
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT 84112, USA
| | - Tariq Mosleh
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT 84112, USA
| | - Vishaka Vinod
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT 84112, USA
| | - Sidney Vowles
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT 84112, USA
| | - Sophie L Stephens
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT 84112, USA
| | - Siu-Lai Desmond Chung
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT 84112, USA
| | - Isaac D Cao
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT 84112, USA
| | - Anila Jonnavithula
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT 84112, USA
| | - J David Symons
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT 84112, USA
- Molecular Medicine Program (U2M2), University of Utah, Salt Lake City, UT 84112, USA
| | - Sihem Boudina
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT 84112, USA
- Molecular Medicine Program (U2M2), University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
3
|
Vardar Acar N, Özgül RK. A big picture of the mitochondria-mediated signals: From mitochondria to organism. Biochem Biophys Res Commun 2023; 678:45-61. [PMID: 37619311 DOI: 10.1016/j.bbrc.2023.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/02/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Mitochondria, well-known for years as the powerhouse and biosynthetic center of the cell, are dynamic signaling organelles beyond their energy production and biosynthesis functions. The metabolic functions of mitochondria, playing an important role in various biological events both in physiological and stress conditions, transform them into important cellular stress sensors. Mitochondria constantly communicate with the rest of the cell and even from other cells to the organism, transmitting stress signals including oxidative and reductive stress or adaptive signals such as mitohormesis. Mitochondrial signal transduction has a vital function in regulating integrity of human genome, organelles, cells, and ultimately organism.
Collapse
Affiliation(s)
- Neşe Vardar Acar
- Department of Pediatric Metabolism, Institute of Child Health, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - R Köksal Özgül
- Department of Pediatric Metabolism, Institute of Child Health, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
4
|
Cala-Garcia JD, Medina-Rincon GJ, Sierra-Salas PA, Rojano J, Romero F. The Role of Mitochondrial Dysfunction in Idiopathic Pulmonary Fibrosis: New Perspectives for a Challenging Disease. BIOLOGY 2023; 12:1237. [PMID: 37759636 PMCID: PMC10525741 DOI: 10.3390/biology12091237] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
Mitochondrial biology has always been a relevant field in chronic diseases such as fibrosis or cancer in different organs of the human body, not to mention the strong association between mitochondrial dysfunction and aging. With the development of new technologies and the emergence of new methodologies in the last few years, the role of mitochondria in pulmonary chronic diseases such as idiopathic pulmonary fibrosis (IPF) has taken an important position in the field. With this review, we will highlight the latest advances in mitochondrial research on pulmonary fibrosis, focusing on the role of the mitochondria in the aging lung, new proposals for mechanisms that support mitochondrial dysfunction as an important cause for IPF, mitochondrial dysfunction in different cell populations of the lung, and new proposals for treatment of the disease.
Collapse
Affiliation(s)
- Juan David Cala-Garcia
- Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
| | | | | | - Julio Rojano
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92161, USA
| | - Freddy Romero
- Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
| |
Collapse
|
5
|
Chang DM, Tung YC. Study Hypoxic Response under Cyclic Oxygen Gradients Generated in Microfluidic Devices Using Real-Time Fluorescence Imaging. BIOSENSORS 2022; 12:1031. [PMID: 36421149 PMCID: PMC9688408 DOI: 10.3390/bios12111031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Oxygen plays important roles in regulating various biological activities under physiological and pathological conditions. However, the response of cells facing temporal variation in oxygen microenvironments has seldom been studied due to technical limitations. In this paper, an integrated approach to studying hypoxic response under cyclic oxygen gradients is developed. In the experiments, a cell culture system based on a microfluidic device is constructed to generate cyclic oxygen gradients with desired periods by alternately introducing gases with specific compositions into the microfluidic channels next to the cell culture channel separated by thin channel walls. Observation of the hypoxic responses is performed using real-time fluorescence imaging of dyes sensitive to extra- and intracellular oxygen tensions as well as intracellular calcium concentrations. Cellular hypoxic responses of human aortic smooth muscle cells (AoSMCs) and lung carcinoma epithelium (A549) cells, including intracellular oxygen and calcium levels, are measured. The results show that the two types of cells have different hypoxic responses to the applied cyclic oxygen gradients. With the capability of real-time cellular response monitoring under cyclic oxygen gradients, the developed approach provides a useful scheme to investigate hypoxic responses in vitro under microenvironments mimicking various in vivo physiological and pathological conditions.
Collapse
Affiliation(s)
- Dao-Ming Chang
- Research Center for Applied Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Yi-Chung Tung
- Research Center for Applied Sciences, Academia Sinica, Taipei 115, Taiwan
- College of Engineering, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
6
|
Pak O, Nolte A, Knoepp F, Giordano L, Pecina P, Hüttemann M, Grossman LI, Weissmann N, Sommer N. Mitochondrial oxygen sensing of acute hypoxia in specialized cells - Is there a unifying mechanism? BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148911. [PMID: 35988811 DOI: 10.1016/j.bbabio.2022.148911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Acclimation to acute hypoxia through cardiorespiratory responses is mediated by specialized cells in the carotid body and pulmonary vasculature to optimize systemic arterial oxygenation and thus oxygen supply to the tissues. Acute oxygen sensing by these cells triggers hyperventilation and hypoxic pulmonary vasoconstriction which limits pulmonary blood flow through areas of low alveolar oxygen content. Oxygen sensing of acute hypoxia by specialized cells thus is a fundamental pre-requisite for aerobic life and maintains systemic oxygen supply. However, the primary oxygen sensing mechanism and the question of a common mechanism in different specialized oxygen sensing cells remains unresolved. Recent studies unraveled basic oxygen sensing mechanisms involving the mitochondrial cytochrome c oxidase subunit 4 isoform 2 that is essential for the hypoxia-induced release of mitochondrial reactive oxygen species and subsequent acute hypoxic responses in both, the carotid body and pulmonary vasculature. This review compares basic mitochondrial oxygen sensing mechanisms in the pulmonary vasculature and the carotid body.
Collapse
Affiliation(s)
- Oleg Pak
- Justus Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Anika Nolte
- Justus Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Fenja Knoepp
- Justus Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Luca Giordano
- Justus Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Petr Pecina
- Laboratory of Bioenergetics, Institute of Physiology CAS, Prague, Czech Republic
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Lawrence I Grossman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Norbert Weissmann
- Justus Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Natascha Sommer
- Justus Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany.
| |
Collapse
|
7
|
Mitochondrial Regulation of the Hypoxia-Inducible Factor in the Development of Pulmonary Hypertension. J Clin Med 2022; 11:jcm11175219. [PMID: 36079149 PMCID: PMC9457092 DOI: 10.3390/jcm11175219] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Pulmonary hypertension (PH) is a severe progressive lung disorder characterized by pulmonary vasoconstriction and vascular remodeling, culminating in right-sided heart failure and increased mortality. Data from animal models and human subjects demonstrated that hypoxia-inducible factor (HIF)-related signaling is essential in the progression of PH. This review summarizes the regulatory pathways and mechanisms of HIF-mediated signaling, emphasizing the role of mitochondria in HIF regulation and PH pathogenesis. We also try to determine the potential to therapeutically target the components of the HIF system for the management of PH.
Collapse
|
8
|
Hannemann J, Böger R. Dysregulation of the Nitric Oxide/Dimethylarginine Pathway in Hypoxic Pulmonary Vasoconstriction—Molecular Mechanisms and Clinical Significance. Front Med (Lausanne) 2022; 9:835481. [PMID: 35252268 PMCID: PMC8891573 DOI: 10.3389/fmed.2022.835481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/27/2022] [Indexed: 12/21/2022] Open
Abstract
The pulmonary circulation responds to hypoxia with vasoconstriction, a mechanism that helps to adapt to short-lived hypoxic episodes. When sustained, hypoxic pulmonary vasoconstriction (HPV) may become deleterious, causing right ventricular hypertrophy and failure, and contributing to morbidity and mortality in the late stages of several chronic pulmonary diseases. Nitric oxide (NO) is an important endothelial vasodilator. Its release is regulated, amongst other mechanisms, by the presence of endogenous inhibitors like asymmetric dimethylarginine (ADMA). Evidence has accumulated in recent years that elevated ADMA may be implicated in the pathogenesis of HPV and in its clinical sequelae, like pulmonary arterial hypertension (PAH). PAH is one phenotypic trait in experimental models with disrupted ADMA metabolism. In high altitude, elevation of ADMA occurs during long-term exposure to chronic or chronic intermittent hypobaric hypoxia; ADMA is significantly associated with high altitude pulmonary hypertension. High ADMA concentration was also reported in patients with chronic obstructive lung disease, obstructive sleep apnoea syndrome, and overlap syndrome, suggesting a pathophysiological role for ADMA-mediated impairment of endothelium-dependent, NO-mediated pulmonary vasodilation in these clinically relevant conditions. Improved understanding of the molecular (dys-)regulation of pathways controlling ADMA concentration may help to dissect the pathophysiology and find novel therapeutic options for these diseases.
Collapse
Affiliation(s)
- Juliane Hannemann
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and its Health Sequelae, Hamburg, Germany
| | - Rainer Böger
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and its Health Sequelae, Hamburg, Germany
- *Correspondence: Rainer Böger
| |
Collapse
|
9
|
Zhang R, Hausladen A, Qian Z, Liao X, Premont RT, Stamler JS. Hypoxic vasodilatory defect and pulmonary hypertension in mice lacking hemoglobin β-cysteine93 S-nitrosylation. JCI Insight 2021; 7:155234. [PMID: 34914637 PMCID: PMC8855790 DOI: 10.1172/jci.insight.155234] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/15/2021] [Indexed: 11/25/2022] Open
Abstract
Systemic hypoxia is characterized by peripheral vasodilation and pulmonary vasoconstriction. However, the system-wide mechanism for signaling hypoxia remains unknown. Accumulating evidence suggests that hemoglobin (Hb) in RBCs may serve as an O2 sensor and O2-responsive NO signal transducer to regulate systemic and pulmonary vascular tone, but this remains unexamined at the integrated system level. One residue invariant in mammalian Hbs, β-globin cysteine93 (βCys93), carries NO as vasorelaxant S-nitrosothiol (SNO) to autoregulate blood flow during O2 delivery. βCys93Ala mutant mice thus exhibit systemic hypoxia despite transporting O2 normally. Here, we show that βCys93Ala mutant mice had reduced S-nitrosohemoglobin (SNO-Hb) at baseline and upon targeted SNO repletion and that hypoxic vasodilation by RBCs was impaired in vitro and in vivo, recapitulating hypoxic pathophysiology. Notably, βCys93Ala mutant mice showed marked impairment of hypoxic peripheral vasodilation and developed signs of pulmonary hypertension with age. Mutant mice also died prematurely with cor pulmonale (pulmonary hypertension with right ventricular dysfunction) when living under low O2. Altogether, we identify a major role for RBC SNO in clinically relevant vasodilatory responses attributed previously to endothelial NO. We conclude that SNO-Hb transduces the integrated, system-wide response to hypoxia in the mammalian respiratory cycle, expanding a core physiological principle.
Collapse
Affiliation(s)
- Rongli Zhang
- Institute for Transformative Molecular Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, United States of America
| | - Alfred Hausladen
- Institute for Transformative Molecular Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, United States of America
| | - Zhaoxia Qian
- Institute for Transformative Molecular Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, United States of America
| | - Xudong Liao
- Cardiovascular Research Institute, Case Western Reserve University School of Medicine, Cleveland, United States of America
| | - Richard T Premont
- Institute for Transformative Molecular Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, United States of America
| | - Jonathan S Stamler
- Institute for Transformative Molecular Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, United States of America
| |
Collapse
|
10
|
Abstract
Oxygen (O2) is essential for life and therefore the supply of sufficient O2 to the tissues is a major physiological challenge. In mammals, a deficit of O2 (hypoxia) triggers rapid cardiorespiratory reflexes (e.g. hyperventilation and increased heart output) that within a few seconds increase the uptake of O2 by the lungs and its distribution throughout the body. The prototypical acute O2-sensing organ is the carotid body (CB), which contains sensory glomus cells expressing O2-regulated ion channels. In response to hypoxia, glomus cells depolarize and release transmitters which activate afferent fibers terminating at the brainstem respiratory and autonomic centers. In this review, we summarize the basic properties of CB chemoreceptor cells and the essential role played by their specialized mitochondria in acute O2 sensing and signaling. We focus on recent data supporting a "mitochondria-to-membrane signaling" model of CB chemosensory transduction. The possibility that the differential expression of specific subunit isoforms and enzymes could allow mitochondria to play a generalized adaptive O2-sensing and signaling role in a wide variety of cells is also discussed.
Collapse
Affiliation(s)
- José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Patricia Ortega-Sáenz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
11
|
Konjar Š, Pavšič M, Veldhoen M. Regulation of Oxygen Homeostasis at the Intestinal Epithelial Barrier Site. Int J Mol Sci 2021; 22:ijms22179170. [PMID: 34502078 PMCID: PMC8431628 DOI: 10.3390/ijms22179170] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/28/2021] [Accepted: 08/19/2021] [Indexed: 12/25/2022] Open
Abstract
The unique biology of the intestinal epithelial barrier is linked to a low baseline oxygen pressure (pO2), characterised by a high rate of metabolites circulating through the intestinal blood and the presence of a steep oxygen gradient across the epithelial surface. These characteristics require tight regulation of oxygen homeostasis, achieved in part by hypoxia-inducible factor (HIF)-dependent signalling. Furthermore, intestinal epithelial cells (IEC) possess metabolic identities that are reflected in changes in mitochondrial function. In recent years, it has become widely accepted that oxygen metabolism is key to homeostasis at the mucosae. In addition, the gut has a vast and diverse microbial population, the microbiota. Microbiome–gut communication represents a dynamic exchange of mediators produced by bacterial and intestinal metabolism. The microbiome contributes to the maintenance of the hypoxic environment, which is critical for nutrient absorption, intestinal barrier function, and innate and/or adaptive immune responses in the gastrointestinal tract. In this review, we focus on oxygen homeostasis at the epithelial barrier site, how it is regulated by hypoxia and the microbiome, and how oxygen homeostasis at the epithelium is regulated in health and disease.
Collapse
Affiliation(s)
- Špela Konjar
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
- Instituto de Medicina Molecular, João Lobo Antunes, Faculdade de Medicina de Lisboa, 1649-028 Lisbon, Portugal;
- Correspondence:
| | - Miha Pavšič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| | - Marc Veldhoen
- Instituto de Medicina Molecular, João Lobo Antunes, Faculdade de Medicina de Lisboa, 1649-028 Lisbon, Portugal;
| |
Collapse
|
12
|
Zhao Q, Song P, Zou MH. AMPK and Pulmonary Hypertension: Crossroads Between Vasoconstriction and Vascular Remodeling. Front Cell Dev Biol 2021; 9:691585. [PMID: 34169079 PMCID: PMC8217619 DOI: 10.3389/fcell.2021.691585] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/18/2021] [Indexed: 12/25/2022] Open
Abstract
Pulmonary hypertension (PH) is a debilitating and life-threatening disease characterized by increased blood pressure within the pulmonary arteries. Adenosine monophosphate-activated protein kinase (AMPK) is a heterotrimeric serine-threonine kinase that contributes to the regulation of metabolic and redox signaling pathways. It has key roles in the regulation of cell survival and proliferation. The role of AMPK in PH is controversial because both inhibition and activation of AMPK are preventive against PH development. Some clinical studies found that metformin, the first-line antidiabetic drug and the canonical AMPK activator, has therapeutic efficacy during treatment of early-stage PH. Other study findings suggest the use of metformin is preferentially beneficial for treatment of PH associated with heart failure with preserved ejection fraction (PH-HFpEF). In this review, we discuss the "AMPK paradox" and highlight the differential effects of AMPK on pulmonary vasoconstriction and pulmonary vascular remodeling. We also review the effects of AMPK activators and inhibitors on rescue of preexisting PH in animals and include a discussion of gender differences in the response to metformin in PH.
Collapse
Affiliation(s)
| | | | - Ming-Hui Zou
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
13
|
Miike H, Ohuchi H, Hayama Y, Isawa T, Sakaguchi H, Kurosaki K, Nakai M. Systemic Artery Vasoconstrictor Therapy in Fontan Patients with High Cardiac Output-Heart Failure: A Single-Center Experience. Pediatr Cardiol 2021; 42:700-706. [PMID: 33416919 DOI: 10.1007/s00246-020-02532-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 12/23/2020] [Indexed: 01/19/2023]
Abstract
Failed Fontan Patients with high cardiac output (CO) heart failure (HF) might have vasodilatory syndrome and markedly high mortality rates. The aim of this study was to review the clinical effects of vasoconstrictor therapy (VCT) for failed Fontan hemodynamics. We retrospectively reviewed 10 consecutive patients with Fontan failure (median age, 33 years) and high CO-HF who had received VCT. The hemodynamics were characterized by high central venous pressure (CVP: median, 16 mm Hg), low systolic blood pressure (median, 83 mm Hg), low systemic vascular resistance (median, 8.8 U·m2), high cardiac index (median, 4.6 L/min/m2), and low arterial oxygen saturation (median, 89%). VCT included intravenous noradrenaline infusion for five unstable patients, oral midodrine administration for nine stable patients, and both for four patients. After VCT introduction with a median interval of 1.7 months, the median systolic blood pressure (102 mm Hg, p = 0.004), arterial oxygen saturation (90%, p = 0.03), and systemic vascular resistance (12.1 U·m2, p = 0.13) increased without significant changes in CVP or cardiac index. After a median follow-up of 21 months, the number of readmissions per year decreased from 4 (1-11) to 1 (0-9) (p = 0.25), and there were no VCT-related complications; however, five patients (50%) developed hepatic encephalopathy, and six patients (60%) eventually died. VCT was safely introduced and could prevent the rapidly deteriorating Fontan hemodynamics. VCT could be an effective therapeutic strategy for failed Fontan patients with high CO-HF.
Collapse
Affiliation(s)
- Hikari Miike
- Departments of Pediatric Cardiology, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shinmachi, Suita, Osaka, 564-8565, Japan
| | - Hideo Ohuchi
- Departments of Pediatric Cardiology, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shinmachi, Suita, Osaka, 564-8565, Japan. .,Department of Adult Congenital Heart Disease, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shinmachi, Suita, Osaka, 564-8565, Japan.
| | - Yosuke Hayama
- Departments of Pediatric Cardiology, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shinmachi, Suita, Osaka, 564-8565, Japan
| | - Toru Isawa
- Departments of Pediatric Cardiology, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shinmachi, Suita, Osaka, 564-8565, Japan
| | - Heima Sakaguchi
- Departments of Pediatric Cardiology, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shinmachi, Suita, Osaka, 564-8565, Japan
| | - Kenichi Kurosaki
- Departments of Pediatric Cardiology, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shinmachi, Suita, Osaka, 564-8565, Japan
| | - Michikazu Nakai
- Center for Cerebral and Cardiovascular Center, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shinmachi, Suita, Osaka, 564-8565, Japan
| |
Collapse
|
14
|
Pulmonary Hypertension in Acute and Chronic High Altitude Maladaptation Disorders. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041692. [PMID: 33578749 PMCID: PMC7916528 DOI: 10.3390/ijerph18041692] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 12/13/2022]
Abstract
Alveolar hypoxia is the most prominent feature of high altitude environment with well-known consequences for the cardio-pulmonary system, including development of pulmonary hypertension. Pulmonary hypertension due to an exaggerated hypoxic pulmonary vasoconstriction contributes to high altitude pulmonary edema (HAPE), a life-threatening disorder, occurring at high altitudes in non-acclimatized healthy individuals. Despite a strong physiologic rationale for using vasodilators for prevention and treatment of HAPE, no systematic studies of their efficacy have been conducted to date. Calcium-channel blockers are currently recommended for drug prophylaxis in high-risk individuals with a clear history of recurrent HAPE based on the extensive clinical experience with nifedipine in HAPE prevention in susceptible individuals. Chronic exposure to hypoxia induces pulmonary vascular remodeling and development of pulmonary hypertension, which places an increased pressure load on the right ventricle leading to right heart failure. Further, pulmonary hypertension along with excessive erythrocytosis may complicate chronic mountain sickness, another high altitude maladaptation disorder. Importantly, other causes than hypoxia may potentially underlie and/or contribute to pulmonary hypertension at high altitude, such as chronic heart and lung diseases, thrombotic or embolic diseases. Extensive clinical experience with drugs in patients with pulmonary arterial hypertension suggests their potential for treatment of high altitude pulmonary hypertension. Small studies have demonstrated their efficacy in reducing pulmonary artery pressure in high altitude residents. However, no drugs have been approved to date for the therapy of chronic high altitude pulmonary hypertension. This work provides a literature review on the role of pulmonary hypertension in the pathogenesis of acute and chronic high altitude maladaptation disorders and summarizes current knowledge regarding potential treatment options.
Collapse
|
15
|
Abstract
The mitochondria, present in almost all eukaryotic cells, produce energy but also contribute to many other essential cellular functions. One of the unique characteristics of the mitochondria is that they have their own genome, which is only maternally transmitted via highly specific mechanisms that occur during gametogenesis and embryogenesis. The mature oocyte has the highest mitochondrial DNA copy number of any cell. This high mitochondrial mass is directly correlated to the capacity of the oocyte to support the early stages of embryo development in many species. Indeed, the subtle energetic and metabolic modifications that are necessary for each of the key steps of early embryonic development rely heavily on the oocyte’s mitochondrial load and activity. For example, epigenetic reprogramming depends on the metabolic cofactors produced by the mitochondrial metabolism, and the reactive oxygen species derived from the mitochondrial respiratory chain are essential for the regulation of cell signaling in the embryo. All these elements have also led scientists to consider the mitochondria as a potential biomarker of oocyte competence and embryo viability, as well as a key target for future potential therapies. However, more studies are needed to confirm these findings. This review article summarizes the past two decades of research that have led to the current understanding of mitochondrial functions in reproduction
Collapse
|
16
|
Jasiński T, Stefaniak J. COVID-19 and haemodynamic failure: a point of view on mechanisms and treatment. Anaesthesiol Intensive Ther 2020; 52:409-417. [PMID: 33327700 PMCID: PMC10183984 DOI: 10.5114/ait.2020.101813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 11/29/2020] [Indexed: 11/17/2022] Open
Abstract
The SARS-CoV-2-related disease has an undoubted impact on the healthcare system. In the treatment of severe COVID-19 cases, the main focus is on respiratory failure. However, available data suggest an important contribution of haemodynamic impairment in the course of this disease. SARS-CoV-2 may affect the circulatory system in various ways that are universal for septic conditions. Nonetheless, unique features of this pathogen, e.g. direct insult leading to myocarditis and renin-angiotensin-aldosterone axis dysregulation, must be taken into account. Although current recommendations on COVID-19 resemble previous septic shock guidelines, special attention to haemodynamic monitoring and treatment is necessary. Regarding treatment, one must take into account the potential profound hypovolaemia of severe COVID-19 patients. Pharmacological cardiovascular support should follow existing guidelines and practice. Interesting concepts of decatecholaminisation and the effect of vasopressors on pulmonary circulation are also presented in this review on COVID-19-related haemodynamic failure.
Collapse
Affiliation(s)
- Tomasz Jasiński
- Department of Anaesthesiology and Intensive Therapy, Medical University of Gdansk, Poland
| | | |
Collapse
|
17
|
Sallam NA, Laher I. Redox Signaling and Regional Heterogeneity of Endothelial Dysfunction in db/db Mice. Int J Mol Sci 2020; 21:ijms21176147. [PMID: 32858910 PMCID: PMC7504187 DOI: 10.3390/ijms21176147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/15/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022] Open
Abstract
The variable nature of vascular dysfunction in diabetes is not well understood. We explored the functional adaptation of different arteries in db/db mice in relation to increased severity and duration of diabetes. We compared endothelium-dependent and -independent vasodilation in the aortae, as well as the carotid and femoral arteries, of db/db mice at three ages in parallel with increased body weight, oxidative stress, and deterioration of glycemic control. Vascular responses to in vitro generation of reactive oxygen species (ROS) and expression of superoxide dismutase (SOD) isoforms were assessed. There was a progressive impairment of endothelium-dependent and -independent vasorelaxation in the aortae of db/db mice. The carotid artery was resistant to the effects of in vivo and in vitro induced oxidative stress, and it maintained unaltered vasodilatory responses, likely because the carotid artery relaxed in response to ROS. The femoral artery was more reliant on dilation mediated by endothelium-dependent hyperpolarizing factor(s), which was reduced in db/db mice at the earliest age examined and did not deteriorate with age. Substantial heterogeneity exists between the three arteries in signaling pathways and protein expression of SODs under physiological and diabetic conditions. A better understanding of vascular heterogeneity will help develop novel therapeutic approaches for targeted vascular treatments, including blood vessel replacement.
Collapse
Affiliation(s)
- Nada A. Sallam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr Al-Aini Street, Cairo 11562, Egypt;
| | - Ismail Laher
- Department of Anesthesiology, Faculty of Medicine, Pharmacology and Therapeutics, The University of British Columbia, 2176 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Correspondence: ; Tel.: +1-604-822-5882
| |
Collapse
|
18
|
Zhao J, Florentin J, Tai YY, Torrino S, Ohayon L, Brzoska T, Tang Y, Yang J, Negi V, Woodcock CSC, Risbano MG, Nouraie SM, Sundd P, Bertero T, Dutta P, Chan SY. Long Range Endocrine Delivery of Circulating miR-210 to Endothelium Promotes Pulmonary Hypertension. Circ Res 2020; 127:677-692. [PMID: 32493166 DOI: 10.1161/circresaha.119.316398] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
RATIONALE Unproven theories abound regarding the long-range uptake and endocrine activity of extracellular blood-borne microRNAs into tissue. In pulmonary hypertension (PH), microRNA-210 (miR-210) in pulmonary endothelial cells promotes disease, but its activity as an extracellular molecule is incompletely defined. OBJECTIVE We investigated whether chronic and endogenous endocrine delivery of extracellular miR-210 to pulmonary vascular endothelial cells promotes PH. METHODS AND RESULTS Using miR-210 replete (wild-type [WT]) and knockout mice, we tracked blood-borne miR-210 using bone marrow transplantation and parabiosis (conjoining of circulatory systems). With bone marrow transplantation, circulating miR-210 was derived predominantly from bone marrow. Via parabiosis during chronic hypoxia to induce miR-210 production and PH, miR-210 was undetectable in knockout-knockout mice pairs. However, in plasma and lung endothelium, but not smooth muscle or adventitia, miR-210 was observed in knockout mice of WT-knockout pairs. This was accompanied by downregulation of miR-210 targets ISCU (iron-sulfur assembly proteins)1/2 and COX10 (cytochrome c oxidase assembly protein-10), indicating endothelial import of functional miR-210. Via hemodynamic and histological indices, knockout-knockout pairs were protected from PH, whereas knockout mice in WT-knockout pairs developed PH. In particular, pulmonary vascular engraftment of miR-210-positive interstitial lung macrophages was observed in knockout mice of WT-knockout pairs. To address whether engrafted miR-210-positive myeloid or lymphoid cells contribute to paracrine miR-210 delivery, we studied miR-210 knockout mice parabiosed with miR-210 WT; Cx3cr1 knockout mice (deficient in myeloid recruitment) or miR-210 WT; Rag1 knockout mice (deficient in lymphocytes). In both pairs, miR-210 knockout mice still displayed miR-210 delivery and PH, thus demonstrating a pathogenic endocrine delivery of extracellular miR-210. CONCLUSIONS Endogenous blood-borne transport of miR-210 into pulmonary vascular endothelial cells promotes PH, offering fundamental insight into the systemic physiology of microRNA activity. These results also describe a platform for RNA-mediated crosstalk in PH, providing an impetus for developing blood-based miR-210 technologies for diagnosis and therapy in this disease.
Collapse
Affiliation(s)
- Jingsi Zhao
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute (J.Z., J.F., Y.-Y.T., L.O., T. Brzoska, Y.T., J.Y., V.N., C.-S.C.W., M.G.R., S.M.N., P.S., P.D., S.Y.C.), University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Jonathan Florentin
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute (J.Z., J.F., Y.-Y.T., L.O., T. Brzoska, Y.T., J.Y., V.N., C.-S.C.W., M.G.R., S.M.N., P.S., P.D., S.Y.C.), University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Yi-Yin Tai
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute (J.Z., J.F., Y.-Y.T., L.O., T. Brzoska, Y.T., J.Y., V.N., C.-S.C.W., M.G.R., S.M.N., P.S., P.D., S.Y.C.), University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Stéphanie Torrino
- Université Côte d'Azur, CNRS, IPMC, Valbonne, France (S.T., T. Bertero)
| | - Lee Ohayon
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute (J.Z., J.F., Y.-Y.T., L.O., T. Brzoska, Y.T., J.Y., V.N., C.-S.C.W., M.G.R., S.M.N., P.S., P.D., S.Y.C.), University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Tomasz Brzoska
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute (J.Z., J.F., Y.-Y.T., L.O., T. Brzoska, Y.T., J.Y., V.N., C.-S.C.W., M.G.R., S.M.N., P.S., P.D., S.Y.C.), University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Ying Tang
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute (J.Z., J.F., Y.-Y.T., L.O., T. Brzoska, Y.T., J.Y., V.N., C.-S.C.W., M.G.R., S.M.N., P.S., P.D., S.Y.C.), University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Jimin Yang
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute (J.Z., J.F., Y.-Y.T., L.O., T. Brzoska, Y.T., J.Y., V.N., C.-S.C.W., M.G.R., S.M.N., P.S., P.D., S.Y.C.), University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Vinny Negi
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute (J.Z., J.F., Y.-Y.T., L.O., T. Brzoska, Y.T., J.Y., V.N., C.-S.C.W., M.G.R., S.M.N., P.S., P.D., S.Y.C.), University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Chen-Shan Chen Woodcock
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute (J.Z., J.F., Y.-Y.T., L.O., T. Brzoska, Y.T., J.Y., V.N., C.-S.C.W., M.G.R., S.M.N., P.S., P.D., S.Y.C.), University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Michael G Risbano
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute (J.Z., J.F., Y.-Y.T., L.O., T. Brzoska, Y.T., J.Y., V.N., C.-S.C.W., M.G.R., S.M.N., P.S., P.D., S.Y.C.), University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine (M.G.R., S.M.N., P.S.), University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Seyed Mehdi Nouraie
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute (J.Z., J.F., Y.-Y.T., L.O., T. Brzoska, Y.T., J.Y., V.N., C.-S.C.W., M.G.R., S.M.N., P.S., P.D., S.Y.C.), University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine (M.G.R., S.M.N., P.S.), University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Prithu Sundd
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute (J.Z., J.F., Y.-Y.T., L.O., T. Brzoska, Y.T., J.Y., V.N., C.-S.C.W., M.G.R., S.M.N., P.S., P.D., S.Y.C.), University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine (M.G.R., S.M.N., P.S.), University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Thomas Bertero
- Université Côte d'Azur, CNRS, IPMC, Valbonne, France (S.T., T. Bertero)
| | - Partha Dutta
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute (J.Z., J.F., Y.-Y.T., L.O., T. Brzoska, Y.T., J.Y., V.N., C.-S.C.W., M.G.R., S.M.N., P.S., P.D., S.Y.C.), University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA.,Division of Cardiology, Department of Medicine (P.D., S.Y.C.), University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Stephen Y Chan
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute (J.Z., J.F., Y.-Y.T., L.O., T. Brzoska, Y.T., J.Y., V.N., C.-S.C.W., M.G.R., S.M.N., P.S., P.D., S.Y.C.), University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA.,Division of Cardiology, Department of Medicine (P.D., S.Y.C.), University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| |
Collapse
|
19
|
Gabbay U, Carmi D, Birk E, Dagan D, Shatz A, Kidron D. The Sudden Infant Death Syndrome mechanism of death may be a non-septic hyper-dynamic shock. Med Hypotheses 2018; 122:35-40. [PMID: 30593418 DOI: 10.1016/j.mehy.2018.10.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/15/2018] [Accepted: 10/20/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Sudden Infant Death Syndrome (SIDS) mechanisms of death remains obscured. SIDS' Triple Risk Model assumed coexistence of individual subtle vulnerability, critical developmental period and stressors. Prone sleeping is a major risk factor but provide no clues regarding the mechanism of death. The leading assumed mechanisms of death are either an acute respiratory crisis or arrhythmias but neither one is supported with evidence, hence both are eventually speculations. Postmortem findings do exist but are inconclusive to identify the mechanism of death. WHAT DOES THE PROPOSED HYPOTHESIS BASED ON?: 1. The stressors (suggested by the triple risk model) share a unified compensatory physiological response of decrease in systemic vascular resistant (SVR) to facilitate a compensatory increase in cardiac output (CO). 2. The cardiovascular/cardiorespiratory control of the vulnerable infant during a critical developmental period may be impaired. 3. A severe decrease in SVR is associated with hyper-dynamic state, high output failure and distributive shock. THE HYPOTHESIS Infant who is exposed to one or more stressors responds normally by decrease in SVR which increases CO. In normal circumstances once the needs are met both SVR and CO are stabilized on a new steady state. The incompetent cardiovascular control of the vulnerable infant fails to stabilize SVR which decreases in an uncontrolled manner. Accordingly CO increases above the needs to hyper-dynamic state, high output heart failure and hyper-dynamic shock. CONCLUSIONS The proposed hypothesis provides an appropriate alternative to either respiratory crises or arrhythmia though both speculations cannot be entirely excluded.
Collapse
Affiliation(s)
- Uri Gabbay
- Quality Unit, Rabin Medical Center, Petach Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Doron Carmi
- Shoham Pediatric Clinic, Southern District, Clalit Health Services, Shoham, Israel
| | - Einat Birk
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Pediatric Cardiology Unit, Schneider Children's Medical Center, Petach Tikva, Israel
| | - David Dagan
- Surgeon General's Headquarters, Israel Defense Forces, Ramat Gan, Israel
| | - Anat Shatz
- ENT, Shaare Zedek Medical Center, Jerusalem, Israel; Atid, the Israeli Society for the Study and Prevention of SIDS, Jerusalem, Israel
| | - Debora Kidron
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Pathology Department, Meir Medical Center, Kfar Saba, Israel
| |
Collapse
|
20
|
Ducsay CA, Goyal R, Pearce WJ, Wilson S, Hu XQ, Zhang L. Gestational Hypoxia and Developmental Plasticity. Physiol Rev 2018; 98:1241-1334. [PMID: 29717932 PMCID: PMC6088145 DOI: 10.1152/physrev.00043.2017] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hypoxia is one of the most common and severe challenges to the maintenance of homeostasis. Oxygen sensing is a property of all tissues, and the response to hypoxia is multidimensional involving complicated intracellular networks concerned with the transduction of hypoxia-induced responses. Of all the stresses to which the fetus and newborn infant are subjected, perhaps the most important and clinically relevant is that of hypoxia. Hypoxia during gestation impacts both the mother and fetal development through interactions with an individual's genetic traits acquired over multiple generations by natural selection and changes in gene expression patterns by altering the epigenetic code. Changes in the epigenome determine "genomic plasticity," i.e., the ability of genes to be differentially expressed according to environmental cues. The genomic plasticity defined by epigenomic mechanisms including DNA methylation, histone modifications, and noncoding RNAs during development is the mechanistic substrate for phenotypic programming that determines physiological response and risk for healthy or deleterious outcomes. This review explores the impact of gestational hypoxia on maternal health and fetal development, and epigenetic mechanisms of developmental plasticity with emphasis on the uteroplacental circulation, heart development, cerebral circulation, pulmonary development, and the hypothalamic-pituitary-adrenal axis and adipose tissue. The complex molecular and epigenetic interactions that may impact an individual's physiology and developmental programming of health and disease later in life are discussed.
Collapse
Affiliation(s)
- Charles A. Ducsay
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Ravi Goyal
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - William J. Pearce
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Sean Wilson
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Xiang-Qun Hu
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Lubo Zhang
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
21
|
Suresh K, Shimoda LA. Endothelial Cell Reactive Oxygen Species and Ca 2+ Signaling in Pulmonary Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 967:299-314. [PMID: 29047094 DOI: 10.1007/978-3-319-63245-2_18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pulmonary hypertension (PH) refers to a disorder characterized by elevated pulmonary arterial pressure, leading to right ventricular overload and eventually right ventricular failure, which results in high morbidity and mortality. PH is associated with heterogeneous etiologies and distinct molecular mechanisms, including abnormal migration and proliferation of endothelial and smooth muscle cells. Although the exact details are not fully elucidated, reactive oxygen species (ROS) have been shown to play a key role in promoting abnormal function in pulmonary arterial smooth muscle and endothelial cells in PH. In endothelial cells, ROS can be generated from sources such as NADPH oxidase and mitochondria, which in turn can serve as signaling molecules in a wide variety of processes including posttranslational modification of proteins involved in Ca2+ homeostasis. In this chapter, we discuss the role of ROS in promoting abnormal vasoreactivity and endothelial migration and proliferation in various models of PH. Furthermore, we draw particular attention to the role of ROS-induced increases in intracellular Ca2+ concentration in the pathobiology of PH.
Collapse
Affiliation(s)
- Karthik Suresh
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA. .,Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, Baltimore, MD, 21224, USA.
| | - Larissa A Shimoda
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| |
Collapse
|
22
|
Ohuchi H. Where Is the "Optimal" Fontan Hemodynamics? Korean Circ J 2017; 47:842-857. [PMID: 29035429 PMCID: PMC5711675 DOI: 10.4070/kcj.2017.0105] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/23/2017] [Indexed: 12/25/2022] Open
Abstract
Fontan circulation is generally characterized by high central venous pressure, low cardiac output, and slightly low arterial oxygen saturation, and it is quite different from normal biventricular physiology. Therefore, when a patient with congenital heart disease is selected as a candidate for this type of circulation, the ultimate goals of therapy consist of 2 components. One is a smooth adjustment to the new circulation, and the other is long-term circulatory stabilization after adjustment. When either of these goals is not achieved, the patient is categorized as having "failed" Fontan circulation, and the prognosis is dismal. For the first goal of smooth adjustment, a lot of effort has been made to establish criteria for patient selection and intensive management immediately after the Fontan operation. For the second goal of long-term circulatory stabilization, there is limited evidence of successful strategies for long-term hemodynamic stabilization. Furthermore, there have been no data on optimal hemodynamics in Fontan circulation that could be used as a reference for patient management. Although small clinical trials and case reports are available, the results cannot be generalized to the majority of Fontan survivors. We recently reported the clinical and hemodynamic characteristics of early and late failing Fontan survivors and their association with all-cause mortality. This knowledge could provide insight into the complex Fontan pathophysiology and might help establish a management strategy for long-term hemodynamic stabilization.
Collapse
Affiliation(s)
- Hideo Ohuchi
- Departments of Pediatric Cardiology and Adult Congenital Heart Disease, National Cerebral and Cardiovascular Center, Suita, Japan.
| |
Collapse
|
23
|
Strielkov I, Pak O, Sommer N, Weissmann N. Recent advances in oxygen sensing and signal transduction in hypoxic pulmonary vasoconstriction. J Appl Physiol (1985) 2017; 123:1647-1656. [PMID: 28751366 DOI: 10.1152/japplphysiol.00103.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypoxic pulmonary vasoconstriction (HPV) is a physiological reaction, which adapts lung perfusion to regional ventilation and optimizes gas exchange. Impaired HPV may cause systemic hypoxemia, while generalized HPV contributes to the development of pulmonary hypertension. The triggering mechanisms underlying HPV are still not fully elucidated. Several hypotheses are currently under debate, including a possible decrease as well as an increase in reactive oxygen species as a triggering event. Recent findings suggest an increase in the production of reactive oxygen species in pulmonary artery smooth muscle cells by complex III of the mitochondrial electron transport chain and occurrence of oxygen sensing at complex IV. Other essential components are voltage-dependent potassium and possibly L-type, transient receptor potential channel 6, and transient receptor potential vanilloid 4 channels. The release of arachidonic acid metabolites appears also to be involved in HPV regulation. Further investigation of the HPV mechanisms will facilitate the development of novel therapeutic strategies for the treatment of HPV-related disorders.
Collapse
Affiliation(s)
- Ievgen Strielkov
- Excellence Cluster Cardiopulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University, Giessen , Germany
| | - Oleg Pak
- Excellence Cluster Cardiopulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University, Giessen , Germany
| | - Natasha Sommer
- Excellence Cluster Cardiopulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University, Giessen , Germany
| | - Norbert Weissmann
- Excellence Cluster Cardiopulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University, Giessen , Germany
| |
Collapse
|
24
|
Ohuchi H, Miyazaki A, Negishi J, Hayama Y, Nakai M, Nishimura K, Ichikawa H, Shiraishi I, Yamada O. Hemodynamic determinants of mortality after Fontan operation. Am Heart J 2017. [PMID: 28625386 DOI: 10.1016/j.ahj.2017.03.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Elevated central venous pressure (CVP), low cardiac output, and mild hypoxia are common early and late after Fontan operations. However, the association of these characteristics with late mortality is unclear. We aimed to elucidate the hemodynamic determinants of mortality after Fontan operation. METHOD We evaluated early (group early; 0.5-5years postoperatively, n=387) and late (group late; ≥15years postoperatively, n=161) Fontan hemodynamics that included CVP (mm Hg), cardiac index (CI; L/min per m2), systemic ventricular end-diastolic volume index (mL/m2), ejection fraction (EF; %), and arterial blood oxygen saturation (%). We examined the effect of these variables on 5-year all-cause mortality. RESULTS Mortality was higher in group late than in group early (17 vs 11, P<.0001). In both groups, higher CVP (hazard ratio [HR]1.46 and 1.38, respectively; P<.001-.0001) and lower arterial blood oxygen saturation (HR 1.12, P<.001 for both) were associated with increased mortality. Greater end-diastolic volume index (HR per 20: 1.73) and lower EF (HR per 10%: 3.38) were associated with increased mortality only in group early (P<.0001 for both). In contrast, only in group late was higher CI associated with increased mortality (HR 2.50, 95% CI 1.30-4.55, P<.01). Seven patients in group late with both high CVP (≥14) and CI (≥3.0) had the highest mortality (HR 18.1, 5.55-52.4, P<.0001). CONCLUSIONS Elevated CVP and low arterial blood oxygen saturation correlate with mortality in both early and late Fontan survivors. End-diastolic volume index and EF are associated with mortality only in the earlier cohort, whereas interestingly, elevated cardiac output is associated with increased mortality in the later cohort.
Collapse
Affiliation(s)
- Hideo Ohuchi
- Department of Pediatric Cardiology, National Cerebral and Cardiovascular Center, Osaka, Japan; Department of Adult Congenital Heart Disease, National Cerebral and Cardiovascular Center, Osaka, Japan.
| | - Aya Miyazaki
- Department of Pediatric Cardiology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Jun Negishi
- Department of Pediatric Cardiology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yosuke Hayama
- Department of Pediatric Cardiology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Michikazu Nakai
- Department of Preventive Medicine and Epidemiologic Informatics, Center for Cerebral and Cardiovascular Center, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Kunihiro Nishimura
- Department of Preventive Medicine and Epidemiologic Informatics, Center for Cerebral and Cardiovascular Center, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Hajime Ichikawa
- Department of Pediatric Cardiovascular Surgery, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Isao Shiraishi
- Department of Pediatric Cardiology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Osamu Yamada
- Department of Pediatric Cardiology, National Cerebral and Cardiovascular Center, Osaka, Japan
| |
Collapse
|
25
|
Wang F, Chen ZH, Shabala S. Hypoxia Sensing in Plants: On a Quest for Ion Channels as Putative Oxygen Sensors. PLANT & CELL PHYSIOLOGY 2017; 58:1126-1142. [PMID: 28838128 DOI: 10.1093/pcp/pcx079] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 05/22/2017] [Indexed: 05/18/2023]
Abstract
Over 17 million km2 of land is affected by soil flooding every year, resulting in substantial yield losses and jeopardizing food security across the globe. A key step in resolving this problem and creating stress-tolerant cultivars is an understanding of the mechanisms by which plants sense low-oxygen stress. In this work, we review the current knowledge about the oxygen-sensing and signaling pathway in mammalian and plant systems and postulate the potential role of ion channels as putative oxygen sensors in plant roots. We first discuss the definition and requirements for the oxygen sensor and the difference between sensing and signaling. We then summarize the literature and identify several known candidates for oxygen sensing in the mammalian literature. This includes transient receptor potential (TRP) channels; K+-permeable channels (Kv, BK and TASK); Ca2+ channels (RyR and TPC); and various chemo- and reactive oxygen species (ROS)-dependent oxygen sensors. Identified key oxygen-sensing domains (PAS, GCS, GAF and PHD) in mammalian systems are used to predict the potential plant counterparts in Arabidopsis. Finally, the sequences of known mammalian ion channels with reported roles in oxygen sensing were employed to BLAST the Arabidopsis genome for the candidate genes. Several plasma membrane and tonoplast ion channels (such as TPC, AKT and KCO) and oxygen domain-containing proteins with predicted oxygen-sensing ability were identified and discussed. We propose a testable model for potential roles of ion channels in plant hypoxia sensing.
Collapse
Affiliation(s)
- Feifei Wang
- School of Land and Food, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Zhong-Hua Chen
- School of Science and Health, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Sergey Shabala
- School of Land and Food, University of Tasmania, Hobart, Tasmania 7001, Australia
| |
Collapse
|
26
|
Hernández-Saavedra D, Sanders L, Perez MJ, Kosmider B, Smith LP, Mitchell JD, Yoshida T, Tuder RM. RTP801 Amplifies Nicotinamide Adenine Dinucleotide Phosphate Oxidase-4-Dependent Oxidative Stress Induced by Cigarette Smoke. Am J Respir Cell Mol Biol 2017; 56:62-73. [PMID: 27556956 DOI: 10.1165/rcmb.2016-0144oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tobacco smoke (TS) causes chronic obstructive pulmonary disease, including chronic bronchitis, emphysema, and asthma. Rtp801, an inhibitor of mechanistic target of rapamycin, is induced by oxidative stress triggered by TS. Its up-regulation drives lung susceptibility to TS injury by enhancing inflammation and alveolar destruction. We postulated that Rtp801 is not only increased by reactive oxygen species (ROS) in TS but also instrumental in creating a feedforward process leading to amplification of endogenous ROS generation. We used cigarette smoke extract (CSE) to model the effect of TS in wild-type (Wt) and knockout (KO-Rtp801) mouse lung fibroblasts (MLF). The production of superoxide anion in KO-Rtp801 MLF was lower than that in Rtp801 Wt cells after CSE treatment, and it was inhibited in Wt MLF by silencing nicotinamide adenine dinucleotide phosphate oxidase-4 (Nox4) expression with small interfering Nox4 RNA. We observed a cytoplasmic location of ROS formation by real-time redox changes using reduction-oxidation-sensitive green fluorescent protein profluorescent probes. Both the superoxide production and the increase in the cytoplasmic redox were inhibited by apocynin. Reduction in the activity of Sod and decreases in the expression of Sod2 and Gpx1 genes were associated with Rtp801 CSE induction. The ROS produced by Nox4 in conjunction with the decrease in cellular antioxidant enzymatic defenses may account for the observed cytoplasmic redox changes and cellular damage caused by TS.
Collapse
Affiliation(s)
- Daniel Hernández-Saavedra
- 1 Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine.,2 Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, and
| | - Linda Sanders
- 1 Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine
| | - Mario J Perez
- 1 Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine
| | - Beata Kosmider
- 3 Department of Medicine, National Jewish Health, Denver, Colorado; and
| | - Lynelle P Smith
- 1 Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine
| | - John D Mitchell
- 4 Department of Surgery, Division of Cardiothoracic Surgery, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado
| | - Toshinori Yoshida
- 5 Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Rubin M Tuder
- 1 Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine
| |
Collapse
|
27
|
McElroy GS, Chandel NS. Mitochondria control acute and chronic responses to hypoxia. Exp Cell Res 2017; 356:217-222. [PMID: 28327410 DOI: 10.1016/j.yexcr.2017.03.034] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 03/16/2017] [Indexed: 12/30/2022]
Abstract
There are numerous mechanisms by which mammals respond to hypoxia. These include acute changes in pulmonary arterial tone due to smooth muscle cell contraction, acute increases in respiration triggered by the carotid body chemosensory cells, and chronic changes such as induction of red blood cell proliferation and angiogenesis by hypoxia inducible factor targets erythropoietin and vascular endothelial growth factor, respectively. Mitochondria account for the majority of oxygen consumption in the cell and have recently been appreciated to serve as signaling organelles required for the initiation or propagation of numerous homeostatic mechanisms. Mitochondria can influence cell signaling by production of reactive oxygen species and metabolites. Here we review recent evidence that mitochondrial signals can imitate acute and chronic hypoxia responses.
Collapse
Affiliation(s)
- G S McElroy
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - N S Chandel
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States.
| |
Collapse
|
28
|
Adesina SE, Wade BE, Bijli KM, Kang BY, Williams CR, Ma J, Go YM, Hart CM, Sutliff RL. Hypoxia inhibits expression and function of mitochondrial thioredoxin 2 to promote pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2017; 312:L599-L608. [PMID: 28130258 PMCID: PMC5451594 DOI: 10.1152/ajplung.00258.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 01/24/2017] [Accepted: 01/24/2017] [Indexed: 02/08/2023] Open
Abstract
Pulmonary hypertension (PH) is characterized by increased pulmonary vascular resistance, pulmonary vascular remodeling, and increased pulmonary vascular pressures that often result in right ventricular dysfunction, leading to right heart failure. Evidence suggests that reactive oxygen species (ROS) contribute to PH pathogenesis by altering pulmonary vascular cell proliferation and intracellular signaling pathways. However, the role of mitochondrial antioxidants and oxidant-derived stress signaling in the development of hypoxia-induced PH is largely unknown. Therefore, we examined the role of the major mitochondrial redox regulator thioredoxin 2 (Trx2). Levels of Trx2 mRNA and protein were examined in human pulmonary arterial endothelial cells (HPAECs) and smooth muscle cells (HPASMCs) exposed to hypoxia, a common stimulus for PH, for 72 h. Hypoxia decreased Trx2 mRNA and protein levels. In vitro overexpression of Trx2 reduced hypoxia-induced H2O2 production. The effects of increased Trx2 protein level were examined in transgenic mice expressing human Trx2 (TghTrx2) that were exposed to hypoxia (10% O2) for 3 wk. TghTrx2 mice exposed to hypoxia had exacerbated increases in right ventricular systolic pressures, right ventricular hypertrophy, and increased ROS in the lung tissue. Trx2 overexpression did not attenuate hypoxia-induced increases in Trx2 oxidation or Nox4 expression. Expression of a dominant negative C93S Trx2 mutant that mimics Trx2 oxidation exacerbated hypoxia-induced increases in HPASMC H2O2 levels and cell proliferation. In conclusion, Trx2 overexpression failed to attenuate hypoxia-induced HPASMC proliferation in vitro or hypoxia-induced PH in vivo. These findings indicate that strategies to enhance Trx2 expression are unlikely to exert therapeutic effects in PH pathogenesis.
Collapse
Affiliation(s)
- Sherry E Adesina
- Department of Medicine, Atlanta Veterans Affairs and Emory University Medical Centers, Atlanta, Georgia; and
| | - Brandy E Wade
- Department of Medicine, Atlanta Veterans Affairs and Emory University Medical Centers, Atlanta, Georgia; and
| | - Kaiser M Bijli
- Department of Medicine, Atlanta Veterans Affairs and Emory University Medical Centers, Atlanta, Georgia; and
| | - Bum-Yong Kang
- Department of Medicine, Atlanta Veterans Affairs and Emory University Medical Centers, Atlanta, Georgia; and
| | | | | | - Young-Mi Go
- Department of Medicine, Emory University, Atlanta, Georgia
| | - C Michael Hart
- Department of Medicine, Atlanta Veterans Affairs and Emory University Medical Centers, Atlanta, Georgia; and.,Department of Medicine, Emory University, Atlanta, Georgia
| | - Roy L Sutliff
- Department of Medicine, Atlanta Veterans Affairs and Emory University Medical Centers, Atlanta, Georgia; and .,Department of Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
29
|
Impaired climbing and flight behaviour in Drosophila melanogaster following carbon dioxide anaesthesia. Sci Rep 2015; 5:15298. [PMID: 26477397 PMCID: PMC4609961 DOI: 10.1038/srep15298] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 09/22/2015] [Indexed: 12/24/2022] Open
Abstract
Laboratories that study Drosophila melanogaster or other insects commonly use carbon dioxide (CO2) anaesthesia for sorting or other work. Unfortunately, the use of CO2 has potential unwanted physiological effects, including altered respiratory and muscle physiology, which impact motor function behaviours. The effects of CO2 at different levels and exposure times were examined on the subsequent recovery of motor function as assessed by climbing and flight assays. With as little as a five minute exposure to 100% CO2, D. melanogaster exhibited climbing deficits up to 24 hours after exposure. Any exposure length over five minutes produced climbing deficits that lasted for days. Flight behaviour was also impaired following CO2 exposure. Overall, there was a positive correlation between CO2 exposure length and recovery time for both behaviours. Furthermore, exposure to as little as 65% CO2 affected the motor capability of D. melanogaster. These negative effects are due to both a CO2-specific mechanism and an anoxic effect. These results indicate a heretofore unconsidered impact of CO2 anaesthesia on subsequent behavioural tests revealing the importance of monitoring and accounting for CO2 exposure when performing physiological or behavioural studies in insects.
Collapse
|
30
|
Adesina SE, Kang BY, Bijli KM, Ma J, Cheng J, Murphy TC, Michael Hart C, Sutliff RL. Targeting mitochondrial reactive oxygen species to modulate hypoxia-induced pulmonary hypertension. Free Radic Biol Med 2015; 87:36-47. [PMID: 26073127 PMCID: PMC4615392 DOI: 10.1016/j.freeradbiomed.2015.05.042] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 05/08/2015] [Accepted: 05/28/2015] [Indexed: 12/11/2022]
Abstract
Pulmonary hypertension (PH) is characterized by increased pulmonary vascular remodeling, resistance, and pressures. Reactive oxygen species (ROS) contribute to PH-associated vascular dysfunction. NADPH oxidases (Nox) and mitochondria are major sources of superoxide (O(2)(•-)) and hydrogen peroxide (H(2)O(2)) in pulmonary vascular cells. Hypoxia, a common stimulus of PH, increases Nox expression and mitochondrial ROS (mtROS) production. The interactions between these two sources of ROS generation continue to be defined. We hypothesized that mitochondria-derived O(2)(•-) (mtO(2)(•-)) and H(2)O(2) (mtH(2)O(2)) increase Nox expression to promote PH pathogenesis and that mitochondria-targeted antioxidants can reduce mtROS, Nox expression, and hypoxia-induced PH. Exposure of human pulmonary artery endothelial cells to hypoxia for 72 h increased mtO(2)(•-) and mtH(2)O(2). To assess the contribution of mtO(2)(•-) and mtH(2)O(2) to hypoxia-induced PH, mice that overexpress superoxide dismutase 2 (Tg(hSOD2)) or mitochondria-targeted catalase (MCAT) were exposed to normoxia (21% O(2)) or hypoxia (10% O(2)) for three weeks. Compared with hypoxic control mice, MCAT mice developed smaller hypoxia-induced increases in RVSP, α-SMA staining, extracellular H(2)O(2) (Amplex Red), Nox2 and Nox4 (qRT-PCR and Western blot), or cyclinD1 and PCNA (Western blot). In contrast, Tg(hSOD2) mice experienced exacerbated responses to hypoxia. These studies demonstrate that hypoxia increases mtO(2)(•-) and mtH(2)O(2). Targeting mtH(2)O(2) attenuates PH pathogenesis, whereas targeting mtO(2)(•-) exacerbates PH. These differences in PH pathogenesis were mirrored by RVSP, vessel muscularization, levels of Nox2 and Nox4, proliferation, and H(2)O(2) release. These studies suggest that targeted reductions in mtH(2)O(2) generation may be particularly effective in preventing hypoxia-induced PH.
Collapse
Affiliation(s)
- Sherry E Adesina
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Atlanta Veterans Affairs and Emory University Medical Centers, Atlanta, GA 30033, USA
| | - Bum-Yong Kang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Atlanta Veterans Affairs and Emory University Medical Centers, Atlanta, GA 30033, USA
| | - Kaiser M Bijli
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Atlanta Veterans Affairs and Emory University Medical Centers, Atlanta, GA 30033, USA
| | - Jing Ma
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Atlanta Veterans Affairs and Emory University Medical Centers, Atlanta, GA 30033, USA
| | - Juan Cheng
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Atlanta Veterans Affairs and Emory University Medical Centers, Atlanta, GA 30033, USA
| | - Tamara C Murphy
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Atlanta Veterans Affairs and Emory University Medical Centers, Atlanta, GA 30033, USA
| | - C Michael Hart
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Atlanta Veterans Affairs and Emory University Medical Centers, Atlanta, GA 30033, USA
| | - Roy L Sutliff
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Atlanta Veterans Affairs and Emory University Medical Centers, Atlanta, GA 30033, USA.
| |
Collapse
|
31
|
Veith C, Schermuly RT, Brandes RP, Weissmann N. Molecular mechanisms of hypoxia-inducible factor-induced pulmonary arterial smooth muscle cell alterations in pulmonary hypertension. J Physiol 2015; 594:1167-77. [PMID: 26228924 DOI: 10.1113/jp270689] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/28/2015] [Indexed: 12/18/2022] Open
Abstract
Oxygen (O2) is essential for the viability and function of most metazoan organisms and thus is closely monitored at both the organismal and the cellular levels. However, alveoli often encounter decreased O2 levels (hypoxia), leading to activation of physiological or pathophysiological responses in the pulmonary arteries. Such changes are achieved by activation of transcription factors. The hypoxia-inducible factors (HIFs) are the most prominent hypoxia-regulated transcription factors in this regard. HIFs bind to hypoxia-response elements (HREs) in the promoter region of target genes, whose expression and translation allows the organism, amongst other factors, to cope with decreased environmental O2 partial pressure (pO2). However, prolonged HIF activation can contribute to major structural alterations, especially in the lung, resulting in the development of pulmonary hypertension (PH). PH is characterized by a rise in pulmonary arterial pressure associated with pulmonary arterial remodelling, concomitant with a reduced intravascular lumen area. Patients with PH develop right heart hypertrophy and eventually die from right heart failure. Thus, understanding the molecular mechanisms of HIF regulation in PH is critical for the identification of novel therapeutic strategies. This review addresses the relationship of hypoxia and the HIF system with pulmonary arterial dysfunction in PH. We particularly focus on the cellular and molecular mechanisms underlying the HIF-driven pathophysiological processes.
Collapse
Affiliation(s)
- Christine Veith
- Universities of Giessen and Marburg Lung Centre (UGMLC), member of the German Centre for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary System (ECCPS), 35392, Giessen, Germany
| | - Ralph T Schermuly
- Universities of Giessen and Marburg Lung Centre (UGMLC), member of the German Centre for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary System (ECCPS), 35392, Giessen, Germany
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Goethe University Frankfurt, ECCPS, 60590, Frankfurt, Germany
| | - Norbert Weissmann
- Universities of Giessen and Marburg Lung Centre (UGMLC), member of the German Centre for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary System (ECCPS), 35392, Giessen, Germany
| |
Collapse
|
32
|
Harrison JF, Shingleton AW, Callier V. Stunted by Developing in Hypoxia: Linking Comparative and Model Organism Studies. Physiol Biochem Zool 2015; 88:455-70. [PMID: 26658244 DOI: 10.1086/682216] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Animals develop in atmospheric hypoxia in a wide range of habitats, and tissues may experience O2 limitation of ATP production during postembryonic development if O2 supply structures do not keep pace with growing O2 demand during ontogeny. Most animal species are stunted by postembryonic development in hypoxia, showing reduced growth rates and size in moderate hypoxia (5-15 kPa Po2). In mammals, the critical Po2 that limits resting metabolic rate also falls in this same moderate hypoxic range, so stunted growth may simply be due to hypoxic limits on ATP production. However, in most invertebrates and at least some lower vertebrates, hypoxic stunting occurs at Po2 values well above those that limit resting metabolism. Studies with diverse model organisms have identified multiple homologous O2-sensing signaling pathways that can inhibit feeding and growth during moderate hypoxia. Together, these comparative and model organism-based studies suggest that hypoxic stunting of growth and size can occur as programmed inhibition of growth, often by inhibition of insulin stimulation of growth processes. Furthermore, there is increasing evidence that these same O2 signaling pathways can be utilized during normal animal development to ensure matching of O2 supply and demand structures and in mediation of variation in animal performance.
Collapse
Affiliation(s)
- Jon F Harrison
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287; 2Department of Biology, Lake Forest College, Lake Forest, Illinois 60045
| | | | | |
Collapse
|
33
|
Abstract
SIGNIFICANCE The pulmonary circulation is a low-pressure, low-resistance, highly compliant vasculature. In contrast to the systemic circulation, it is not primarily regulated by a central nervous control mechanism. The regulation of resting membrane potential due to ion channels is of integral importance in the physiology and pathophysiology of the pulmonary vasculature. RECENT ADVANCES Redox-driven ion conductance changes initiated by direct oxidation, nitration, and S-nitrosylation of the cysteine thiols and indirect phosphorylation of the threonine and serine residues directly affect pulmonary vascular tone. CRITICAL ISSUES Molecular mechanisms of changes in ion channel conductance, especially the identification of the sites of action, are still not fully elucidated. FUTURE DIRECTIONS Further investigation of the interaction between redox status and ion channel gating, especially the physiological significance of S-glutathionylation and S-nitrosylation, could result in a better understanding of the physiological and pathophysiological importance of these mediators in general and the implications of such modifications in cellular functions and related diseases and their importance for targeted treatment strategies.
Collapse
Affiliation(s)
- Andrea Olschewski
- 1 Ludwig Boltzmann Institute for Lung Vascular Research , Graz, Austria
| | | |
Collapse
|
34
|
Abstract
SIGNIFICANCE Although oxygen (O2)-sensing cells and tissues have been known for decades, the identity of the O2-sensing mechanism has remained elusive. Evidence is accumulating that O2-dependent metabolism of hydrogen sulfide (H2S) is this enigmatic O2 sensor. RECENT ADVANCES The elucidation of biochemical pathways involved in H2S synthesis and metabolism have shown that reciprocal H2S/O2 interactions have been inexorably linked throughout eukaryotic evolution; there are multiple foci by which O2 controls H2S inactivation, and the effects of H2S on downstream signaling events are consistent with those activated by hypoxia. H2S-mediated O2 sensing has been demonstrated in a variety of O2-sensing tissues in vertebrate cardiovascular and respiratory systems, including smooth muscle in systemic and respiratory blood vessels and airways, carotid body, adrenal medulla, and other peripheral as well as central chemoreceptors. CRITICAL ISSUES Information is now needed on the intracellular location and stoichometry of these signaling processes and how and which downstream effectors are activated by H2S and its metabolites. FUTURE DIRECTIONS Development of specific inhibitors of H2S metabolism and effector activation as well as cellular organelle-targeted compounds that release H2S in a time- or environmentally controlled way will not only enhance our understanding of this signaling process but also provide direction for future therapeutic applications.
Collapse
Affiliation(s)
- Kenneth R Olson
- Department of Physiology, Indiana University School of Medicine-South Bend , South Bend, India na
| |
Collapse
|
35
|
Peroxiredoxin-5 targeted to the mitochondrial intermembrane space attenuates hypoxia-induced reactive oxygen species signalling. Biochem J 2015; 456:337-46. [PMID: 24044889 DOI: 10.1042/bj20130740] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The ability to adapt to acute and chronic hypoxia is critical for cellular survival. Two established functional responses to hypoxia include the regulation of gene transcription by HIF (hypoxia-inducible factor), and the constriction of pulmonary arteries in response to alveolar hypoxia. The mechanism of O2 sensing in these responses is not established, but some studies implicate hypoxia-induced mitochondrial ROS (reactive oxygen species) signalling. To further test this hypothesis, we expressed PRDX5 (peroxiredoxin-5), a H2O2 scavenger, in the IMS (mitochondrial intermembrane space), reasoning that the scavenging of ROS in that compartment should abrogate cellular responses triggered by the release of mitochondrial oxidants to the cytosol. Using adenoviral expression of IMS-PRDX5 (IMS-targeted PRDX5) in PASMCs (pulmonary artery smooth muscle cells) we show that IMS-PRDX5 inhibits hypoxia-induced oxidant signalling in the IMS and cytosol. It also inhibits HIF-1α stabilization and HIF activity in a dose-dependent manner without disrupting cellular oxygen consumption. IMS-PRDX5 expression also attenuates the increase in cytosolic [Ca(2+)] in PASMCs during hypoxia. These results extend previous work by demonstrating the importance of IMS-derived ROS signalling in both the HIF and lung vascular responses to hypoxia.
Collapse
|
36
|
Pugliese SC, Poth JM, Fini MA, Olschewski A, El Kasmi KC, Stenmark KR. The role of inflammation in hypoxic pulmonary hypertension: from cellular mechanisms to clinical phenotypes. Am J Physiol Lung Cell Mol Physiol 2014; 308:L229-52. [PMID: 25416383 DOI: 10.1152/ajplung.00238.2014] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hypoxic pulmonary hypertension (PH) comprises a heterogeneous group of diseases sharing the common feature of chronic hypoxia-induced pulmonary vascular remodeling. The disease is usually characterized by mild to moderate pulmonary vascular remodeling that is largely thought to be reversible compared with the progressive irreversible disease seen in World Health Organization (WHO) group I disease. However, in these patients, the presence of PH significantly worsens morbidity and mortality. In addition, a small subset of patients with hypoxic PH develop "out-of-proportion" severe pulmonary hypertension characterized by pulmonary vascular remodeling that is irreversible and similar to that in WHO group I disease. In all cases of hypoxia-related vascular remodeling and PH, inflammation, particularly persistent inflammation, is thought to play a role. This review focuses on the effects of hypoxia on pulmonary vascular cells and the signaling pathways involved in the initiation and perpetuation of vascular inflammation, especially as they relate to vascular remodeling and transition to chronic irreversible PH. We hypothesize that the combination of hypoxia and local tissue factors/cytokines ("second hit") antagonizes tissue homeostatic cellular interactions between mesenchymal cells (fibroblasts and/or smooth muscle cells) and macrophages and arrests these cells in an epigenetically locked and permanently activated proremodeling and proinflammatory phenotype. This aberrant cellular cross-talk between mesenchymal cells and macrophages promotes transition to chronic nonresolving inflammation and vascular remodeling, perpetuating PH. A better understanding of these signaling pathways may lead to the development of specific therapeutic targets, as none are currently available for WHO group III disease.
Collapse
Affiliation(s)
- Steven C Pugliese
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Departments of Medicine and Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado;
| | - Jens M Poth
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Departments of Medicine and Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Mehdi A Fini
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Departments of Medicine and Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; and
| | - Karim C El Kasmi
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, University of Colorado Denver, School of Medicine, Anschutz Medical Campus, Aurora, Colorado
| | - Kurt R Stenmark
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Departments of Medicine and Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
37
|
Koritzinsky M, Wouters BG. The roles of reactive oxygen species and autophagy in mediating the tolerance of tumor cells to cycling hypoxia. Semin Radiat Oncol 2014; 23:252-61. [PMID: 24012339 DOI: 10.1016/j.semradonc.2013.05.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tumor hypoxia (low oxygenation) causes treatment resistance and poor patient outcome. A substantial fraction of tumor cells experience cycling hypoxia, characterized by transient episodes of hypoxia and reoxygenation. These cells are under a unique burden of stress, mediated by excessive production of reactive oxygen species (ROS). Cellular components damaged by ROS can be cleared by autophagy, rendering cycling hypoxic tumor cells particularly vulnerable to inhibition of autophagy and its upstream regulatory pathways. Activation of the PERK-mediated signaling arm of the unfolded protein response during hypoxia plays a critical role in the defense against ROS, both by stimulating glutathione synthesis pathways and through promoting autophagy.
Collapse
Affiliation(s)
- Marianne Koritzinsky
- Ontario Cancer Institute and Campbell Family Institute for Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Canada; Institute of Medical Science, University of Toronto, Canada.
| | | |
Collapse
|
38
|
Schumacker PT, Gillespie MN, Nakahira K, Choi AMK, Crouser ED, Piantadosi CA, Bhattacharya J. Mitochondria in lung biology and pathology: more than just a powerhouse. Am J Physiol Lung Cell Mol Physiol 2014; 306:L962-74. [PMID: 24748601 DOI: 10.1152/ajplung.00073.2014] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
An explosion of new information about mitochondria reveals that their importance extends well beyond their time-honored function as the "powerhouse of the cell." In this Perspectives article, we summarize new evidence showing that mitochondria are at the center of a reactive oxygen species (ROS)-dependent pathway governing the response to hypoxia and to mitochondrial quality control. The potential role of the mitochondrial genome as a sentinel molecule governing cytotoxic responses of lung cells to ROS stress also is highlighted. Additional attention is devoted to the fate of damaged mitochondrial DNA relative to its involvement as a damage-associated molecular pattern driving adverse lung and systemic cell responses in severe illness or trauma. Finally, emerging strategies for replenishing normal populations of mitochondria after damage, either through promotion of mitochondrial biogenesis or via mitochondrial transfer, are discussed.
Collapse
Affiliation(s)
- Paul T Schumacker
- Northwestern University Feinberg School of Medicine, Department of Pediatrics, Chicago, Illinois
| | - Mark N Gillespie
- University of South Alabama College of Medicine, Department of Pharmacology, Mobile, Alabama;
| | - Kiichi Nakahira
- Weill Cornell Medical College, Department of Medicine, New York, New York
| | - Augustine M K Choi
- Weill Cornell Medical College, Department of Medicine, New York, New York
| | - Elliott D Crouser
- The Ohio State University College of Medicine, Department of Internal Medicine, Columbus, Ohio
| | - Claude A Piantadosi
- Duke University School of Medicine, Department of Medicine, Durham, North Carolina, and
| | - Jahar Bhattacharya
- Columbia University Medical Center, Department of Physiology and Cellular Biophysics, New York, New York
| |
Collapse
|
39
|
Moreno L, Moral-Sanz J, Morales-Cano D, Barreira B, Moreno E, Ferrarini A, Pandolfi R, Ruperez FJ, Cortijo J, Sanchez-Luna M, Villamor E, Perez-Vizcaino F, Cogolludo A. Ceramide mediates acute oxygen sensing in vascular tissues. Antioxid Redox Signal 2014; 20:1-14. [PMID: 23725018 PMCID: PMC3880904 DOI: 10.1089/ars.2012.4752] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AIMS A variety of vessels, such as resistance pulmonary arteries (PA) and fetoplacental arteries and the ductus arteriosus (DA) are specialized in sensing and responding to changes in oxygen tension. Despite opposite stimuli, normoxic DA contraction and hypoxic fetoplacental and PA vasoconstriction share some mechanistic features. Activation of neutral sphingomyelinase (nSMase) and subsequent ceramide production has been involved in hypoxic pulmonary vasoconstriction (HPV). Herein we aimed to study the possible role of nSMase-derived ceramide as a common factor in the acute oxygen-sensing function of specialized vascular tissues. RESULTS The nSMase inhibitor GW4869 and an anticeramide antibody reduced the hypoxic vasoconstriction in chicken PA and chorioallantoic arteries (CA) and the normoxic contraction of chicken DA. Incubation with interference RNA targeted to SMPD3 also inhibited HPV. Moreover, ceramide and reactive oxygen species production were increased by hypoxia in PA and by normoxia in DA. Either bacterial sphingomyelinase or ceramide mimicked the contractile responses of hypoxia in PA and CA and those of normoxia in the DA. Furthermore, ceramide inhibited voltage-gated potassium currents present in smooth muscle cells from PA and DA. Finally, the role of nSMase in acute oxygen sensing was also observed in human PA and DA. INNOVATION These data provide evidence for the proposal that nSMase-derived ceramide is a critical player in acute oxygen-sensing in specialized vascular tissues. CONCLUSION Our results indicate that an increase in ceramide generation is involved in the vasoconstrictor responses induced by two opposite stimuli, such as hypoxia (in PA and CA) and normoxia (in DA).
Collapse
Affiliation(s)
- Laura Moreno
- 1 Department of Pharmacology, School of Medicine, Universidad Complutense Madrid , Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Sunday ME. Oxygen, gastrin-releasing Peptide, and pediatric lung disease: life in the balance. Front Pediatr 2014; 2:72. [PMID: 25101250 PMCID: PMC4103080 DOI: 10.3389/fped.2014.00072] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 06/25/2014] [Indexed: 11/24/2022] Open
Abstract
Excessive oxygen (O2) can cause tissue injury, scarring, aging, and even death. Our laboratory is studying O2-sensing pulmonary neuroendocrine cells (PNECs) and the PNEC-derived product gastrin-releasing peptide (GRP). Reactive oxygen species (ROS) generated from exposure to hyperoxia, ozone, or ionizing radiation (RT) can induce PNEC degranulation and GRP secretion. PNEC degranulation is also induced by hypoxia, and effects of hypoxia are mediated by free radicals. We have determined that excessive GRP leads to lung injury with acute and chronic inflammation, leading to pulmonary fibrosis (PF), triggered via ROS exposure or by directly treating mice with exogenous GRP. In animal models, GRP-blockade abrogates lung injury, inflammation, and fibrosis. The optimal time frame for GRP-blockade and the key target cell types remain to be determined. The concept of GRP as a mediator of ROS-induced tissue damage represents a paradigm shift about how O2 can cause injury, inflammation, and fibrosis. The host PNEC response in vivo may depend on individual ROS sensing mechanisms and subsequent GRP secretion. Ongoing scientific and clinical investigations promise to further clarify the molecular pathways and clinical relevance of GRP in the pathogenesis of diverse pediatric lung diseases.
Collapse
Affiliation(s)
- Mary E Sunday
- Department of Pathology, Duke University Medical Center , Durham, NC , USA
| |
Collapse
|
41
|
Shimizu S, Takahashi N, Mori Y. TRPs as chemosensors (ROS, RNS, RCS, gasotransmitters). Handb Exp Pharmacol 2014; 223:767-94. [PMID: 24961969 DOI: 10.1007/978-3-319-05161-1_3] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The transient receptor potential (trp) gene superfamily encodes TRP proteins that act as multimodal sensor cation channels for a wide variety of stimuli from outside and inside the cell. Upon chemical or physical stimulation of cells, TRP channels transduce electrical and/or Ca(2+) signals via their cation channel activities. These functional features of TRP channels allow the body to react and adapt to different forms of environmental changes. Indeed, members of one class of TRP channels have emerged as sensors of reactive oxygen species (ROS), reactive nitrogen species (RNS), reactive carbonyl species (RCS), and gaseous messenger molecules including molecular oxygen (O2), hydrogen sulfide (H2S), and carbon dioxide (CO2). Hydrogen peroxide (H2O2), an ROS, triggers the production of ADP-ribose, which binds and activates TRPM2. In addition to TRPM2, TRPC5, TRPV1, and TRPA1 are also activated by H2O2 via modification of cysteine (Cys) free sulfhydryl groups. Nitric oxide (NO), a vasoactive gaseous molecule, regulates TRP channels directly via Cys S-nitrosylation or indirectly via cyclic GMP (cGMP)/protein kinase G (PKG)-dependent phosphorylation. Anoxia induced by O2-glucose deprivation and severe hypoxia activates TRPM7 and TRPC6, respectively, whereas TRPA1 serves as a sensor of mild hypoxia and hyperoxia in vagal and sensory neurons. TRPA1 also detects other gaseous molecules, such as hydrogen sulfide (H2S) and carbon dioxide (CO2). In this review, we highlight our current knowledge of TRP channels as chemosensors for ROS, RNS, RCS, and gaseous molecules and discuss their functional impacts on physiological and pathological events.
Collapse
Affiliation(s)
- Shunichi Shimizu
- Division of Physiology and Pathology, Department of Pharmacology, Toxicology and Therapeutics, Showa University School of Pharmacy, Tokyo, Japan
| | | | | |
Collapse
|
42
|
Nuñez C, Victor VM, Martí M, D'Ocon P. Role of endothelial nitric oxide in pulmonary and systemic arteries during hypoxia. Nitric Oxide 2013; 37:17-27. [PMID: 24365975 DOI: 10.1016/j.niox.2013.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 11/12/2013] [Accepted: 12/12/2013] [Indexed: 10/25/2022]
Abstract
UNLABELLED Our aim was to investigate the role played by endothelial nitric oxide (NO) during acute vascular response to hypoxia, as a modulator of both vascular tone (through guanylate cyclase (sGC) activation) and mitochondrial O2 consumption (through competitive inhibition of cytochrome-c-oxydase (CcO)). Organ bath experiments were performed and O2 consumption (Clark electrode) was determined in isolated aorta, mesenteric and pulmonary arteries of rats and eNOS-knockout mice. All pre-contracted vessels exhibited a triphasic hypoxic response consisting of an initial transient contraction (not observed in vessels from eNOS-knockout mice) followed by relaxation and subsequent sustained contraction. Removal of the endothelium, inhibition of eNOS (by L-NNA) and inhibition of sGC (by ODQ) abolished the initial contraction without altering the other two phases. The initial hypoxic contraction was observed in the presence of L-NNA+NO-donors. L-NNA and ODQ increases O2 consumption in hypoxic vessels and increases the arterial tone in normoxia but not in hypoxia. When L-NNA+mitochondrial inhibitors (cyanide, rotenone or myxothiazol) were added, the increase in tone was similar in normoxic and hypoxic vessels, which suggests that inhibition of the binding of NO to reduced CcO restored the action of NO on sGC. CONCLUSION A complex equilibrium is established between NO, sGC and CcO in vessels in function of the concentration of O2: as O2 falls, NO inhibition of mitochondrial O2 consumption increases and activation of sGC decreases, thus promoting a rapid increase in tone in both pulmonary and systemic vessels, which is followed by the triggering of NO-independent vasodilator/vasoconstrictor mechanisms.
Collapse
Affiliation(s)
- Cristina Nuñez
- Departamento de Farmacología and CIBERehd, Facultad de Medicina, Universidad de Valencia, Spain
| | - Victor M Victor
- Departamento de Farmacología and CIBERehd, Facultad de Medicina, Universidad de Valencia, Spain; FISABIO-Hospital Universitario Doctor Peset, Av. Gaspar Aguilar 90, 46017 Valencia, Spain; Department of Physiology, University of Valencia, Valencia, Spain
| | - Miguel Martí
- Departamento de Farmacología and CIBERehd, Facultad de Medicina, Universidad de Valencia, Spain
| | - Pilar D'Ocon
- Departamento de Farmacología and CIBERehd, Facultad de Medicina, Universidad de Valencia, Spain.
| |
Collapse
|
43
|
Martins D, Kathiresan M, English AM. Cytochrome c peroxidase is a mitochondrial heme-based H2O2 sensor that modulates antioxidant defense. Free Radic Biol Med 2013; 65:541-551. [PMID: 23831190 DOI: 10.1016/j.freeradbiomed.2013.06.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 06/17/2013] [Accepted: 06/20/2013] [Indexed: 01/15/2023]
Abstract
Hydrogen peroxide (H2O2) is a key signaling molecule that also induces apoptosis. Thus, cells must rapidly sense and tightly control H2O2 levels. Well-characterized cellular responses to exogenous H2O2 involve oxidation of specific cytosolic protein-based thiols but sensing of H2O2 generated by mitochondrial respiration is less well described. Here we provide substantial biochemical evidence that the heme enzyme Ccp1 (cytochrome c peroxidase), which is targeted to the intermembrane space, functions primarily as a mitochondrial H2O2 sensing and signaling protein in Saccharomyces cerevisiae. Key evidence for a sensing role for Ccp1 is the significantly higher H2O2 accumulation in ccp1-null cells(ccp1Δ) vs ccp1(W191F) cells producing the catalytically inactive Ccp1(W191F) variant. In fact, intracellular H2O2 levels (ccp1Δ>wildtype >ccp1(W191F)) correlate inversely with the activity of the mitochondrial (and peroxisomal) heme catalase, Cta1 (ccp1Δ<wildtype <ccp1(W191F)). Mitochondrial Sod2 activity also varies in the three strains (ccp1Δ>wildtype >ccp1(W191F)) and ccp1Δ cells exhibit low superoxide levels. Notably, Ccp1(W191F) is a more persistent H2O2 signaling protein than wild-type Ccp1, and this enhanced mitochondrial H2O2 signaling decreases the mitochondrial fitness of ccp1(W191F) cells. However, these cells are fully protected from a bolus (0.4mM) of exogenous H2O2 added after 12h of growth, whereas the viability of ccp1Δ cells drops below 20%, which additionally associates Ccp1 with Yap1-dependent H2O2 signaling. Combined, our results strongly implicate Ccp1, independent of its peroxidase activity, in mitochondrial H2O2 sensing and signaling to maintain reactive oxygen species homeostasis.
Collapse
Affiliation(s)
- Dorival Martins
- PROTEO and Department of Chemistry and Biochemistry, Concordia University, Montreal, QC, Canada, H4B 1R6
| | - Meena Kathiresan
- PROTEO and Department of Chemistry and Biochemistry, Concordia University, Montreal, QC, Canada, H4B 1R6
| | - Ann M English
- PROTEO and Department of Chemistry and Biochemistry, Concordia University, Montreal, QC, Canada, H4B 1R6.
| |
Collapse
|
44
|
Budinger GRS, Mutlu GM. Balancing the risks and benefits of oxygen therapy in critically III adults. Chest 2013; 143:1151-1162. [PMID: 23546490 DOI: 10.1378/chest.12-1215] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Oxygen therapy is an integral part of the treatment of critically ill patients. Maintenance of adequate oxygen delivery to vital organs often requires the administration of supplemental oxygen, sometimes at high concentrations. Although oxygen therapy is lifesaving, it may be associated with deleterious effects when administered for prolonged periods at high concentrations. Here, we review the recent advances in our understanding of the molecular responses to hypoxia and high levels of oxygen and review the current guidelines for oxygen therapy in critically ill patients.
Collapse
Affiliation(s)
- G R Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL.
| | - Gökhan M Mutlu
- Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
45
|
McNamee EN, Korns Johnson D, Homann D, Clambey ET. Hypoxia and hypoxia-inducible factors as regulators of T cell development, differentiation, and function. Immunol Res 2013; 55:58-70. [PMID: 22961658 DOI: 10.1007/s12026-012-8349-8] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oxygen is a molecule that is central to cellular respiration and viability, yet there are multiple physiologic and pathological contexts in which cells experience conditions of insufficient oxygen availability, a state known as hypoxia. Given the metabolic challenges of a low oxygen environment, hypoxia elicits a range of adaptive responses at the cellular, tissue, and systemic level to promote continued survival and function. Within this context, T lymphocytes are a highly migratory cell type of the adaptive immune system that frequently encounters a wide range of oxygen tensions in both health and disease. It is now clear that oxygen availability regulates T cell differentiation and function, a response orchestrated in large part by the hypoxia-inducible factor transcription factors. Here, we discuss the physiologic scope of hypoxia and hypoxic signaling, the contribution of these pathways in regulating T cell biology, and current gaps in our understanding. Finally, we discuss how emerging therapies that modulate the hypoxic response may offer new modalities to alter T cell function and the outcome of acute and chronic pathologies.
Collapse
Affiliation(s)
- Eóin N McNamee
- Mucosal Inflammation Program, Department of Anesthesiology, School of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | | | | | | |
Collapse
|
46
|
|
47
|
Han JA, Seo EY, Kim HJ, Park SJ, Yoo HY, Kim JY, Shin DM, Kim JK, Zhang YH, Kim SJ. Hypoxia-augmented constriction of deep femoral artery mediated by inhibition of eNOS in smooth muscle. Am J Physiol Cell Physiol 2013; 304:C78-88. [DOI: 10.1152/ajpcell.00176.2012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In contrast to the conventional belief that systemic arteries dilate under hypoxia, we found that α-adrenergic contraction of rat deep femoral artery (DFA) is largely augmented by hypoxia (HVCDFA) while hypoxia (3% Po2) alone had no effect. HVCDFA was consistently observed in both endothelium-intact and -denuded vessels with partial pretone by phenylephrine (PhE) or by other conditions (e.g., K+ channel blocker). Patch-clamp study showed no change in the membrane conductance of DFA myocytes by hypoxia. The RhoA-kinase inhibitor Y27632 attenuated HVCDFA. The nitric oxide synthase inhibitor [nitro-l-arginine methyl ester (l-NAME)] and soluble guanylate cyclase inhibitor [oxadiazole quinoxalin (ODQ)] strongly augmented the PhE-pretone, while neither of the agents had effect without pretone. NADPH oxidase type 4 (NOX4) inhibitors (diphenylene iodonium and plumbagin) also potentiated PhE-pretone, which was reversed by NO donor. No additive HVCDFA was observed under the pretreatment with l-NAME, ODQ, or plumbagin. Western blot and immunohistochemistry analysis showed that both NOX4 and endothelial nitric oxide synthase (eNOS) are expressed in smooth muscle layer of DFA. Various mitochondria inhibitors (rotenone, myxothiazol, and cyanide) prevented HVCDFA. From the pharmacological data, as a mechanism for HVCDFA, we suggest hypoxic inhibition of eNOS in myocytes. The putative role of NOX4 and mitochondria requires further investigation. The HVCDFA may prevent imbalance between cardiac output and skeletal blood flow under emergent hypoxia combined with increased sympathetic tone.
Collapse
Affiliation(s)
- Jung-A. Han
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Eun Yeoung Seo
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hae Jin Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
| | - Su Jung Park
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
| | - Hae Young Yoo
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
| | - Jin Young Kim
- Department of Anesthesiology-Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Korea; and
| | - Dong Min Shin
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Korea
| | - Jin Kyoung Kim
- Department of Anesthesiology-Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Korea; and
| | - Yin Hua Zhang
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
| | - Sung Joon Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
48
|
Waltz X, Pichon A, Lemonne N, Mougenel D, Lalanne-Mistrih ML, Lamarre Y, Tarer V, Tressières B, Etienne-Julan M, Hardy-Dessources MD, Hue O, Connes P. Normal muscle oxygen consumption and fatigability in sickle cell patients despite reduced microvascular oxygenation and hemorheological abnormalities. PLoS One 2012; 7:e52471. [PMID: 23285055 PMCID: PMC3527490 DOI: 10.1371/journal.pone.0052471] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 11/13/2012] [Indexed: 11/21/2022] Open
Abstract
Background/Aim Although it has been hypothesized that muscle metabolism and fatigability could be impaired in sickle cell patients, no study has addressed this issue. Methods We compared muscle metabolism and function (muscle microvascular oxygenation, microvascular blood flow, muscle oxygen consumption and muscle microvascular oxygenation variability, which reflects vasomotion activity, maximal muscle force and local muscle fatigability) and the hemorheological profile at rest between 16 healthy subjects (AA), 20 sickle cell-hemoglobin C disease (SC) patients and 16 sickle cell anemia (SS) patients. Results Muscle microvascular oxygenation was reduced in SS patients compared to the SC and AA groups and this reduction was not related to hemorhelogical abnormalities. No difference was observed between the three groups for oxygen consumption and vasomotion activity. Muscle microvascular blood flow was higher in SS patients compared to the AA group, and tended to be higher compared to the SC group. Multivariate analysis revealed that muscle oxygen consumption was independently associated with muscle microvascular blood flow in the two sickle cell groups (SC and SS). Finally, despite reduced muscle force in sickle cell patients, their local muscle fatigability was similar to that of the healthy subjects. Conclusions Sickle cell patients have normal resting muscle oxygen consumption and fatigability despite hemorheological alterations and, for SS patients only, reduced muscle microvascular oxygenation and increased microvascular blood flow. Two alternative mechanisms can be proposed for SS patients: 1) the increased muscle microvascular blood flow is a way to compensate for the lower muscle microvascular oxygenation to maintain muscle oxygen consumption to normal values or 2) the reduced microvascular oxygenation coupled with a normal resting muscle oxygen consumption could indicate that there is slight hypoxia within the muscle which is not sufficient to limit mitochondrial respiration but increases muscle microvascular blood flow.
Collapse
Affiliation(s)
- Xavier Waltz
- Inserm 665, Université des Antilles et de la Guyane, Pointe-à-Pitre, Guadeloupe, France
- Laboratory of Excellence GR-Ex « The red cell : from genesis to death », PRES Sorbonne Paris Cité, Paris, France
- Laboratoire ACTES (EA 3596 - Département de Physiologie), Université des Antilles et de la Guyane, Pointe-à-Pitre, Guadeloupe, France
| | - Aurélien Pichon
- Laboratory of Excellence GR-Ex « The red cell : from genesis to death », PRES Sorbonne Paris Cité, Paris, France
- Laboratoire «Réponses cellulaires et fonctionnelles à l'hypoxie» EA2363, Université Paris 13 - PRES Sorbonne Paris Cité, Bobigny, France
| | - Nathalie Lemonne
- Unité Transversale de la Drépanocytose, Centre Hospitalier et Universitaire, Pointe-à-Pitre, Guadeloupe, France
| | - Danièle Mougenel
- Unité Transversale de la Drépanocytose, Centre Hospitalier et Universitaire, Pointe-à-Pitre, Guadeloupe, France
| | - Marie-Laure Lalanne-Mistrih
- Inserm 665, Université des Antilles et de la Guyane, Pointe-à-Pitre, Guadeloupe, France
- CIC-EC 802 Inserm, Centre Hospitalier Universitaire, Pointe-à-Pitre, Guadeloupe, France
| | - Yann Lamarre
- Inserm 665, Université des Antilles et de la Guyane, Pointe-à-Pitre, Guadeloupe, France
- Laboratory of Excellence GR-Ex « The red cell : from genesis to death », PRES Sorbonne Paris Cité, Paris, France
| | - Vanessa Tarer
- Centre de référence maladies rares pour la drépanocytose aux Antilles-Guyane, Centre Hospitalier et Universitaire, Pointe-à-Pitre, Guadeloupe, France
| | - Benoit Tressières
- CIC-EC 802 Inserm, Centre Hospitalier Universitaire, Pointe-à-Pitre, Guadeloupe, France
| | - Maryse Etienne-Julan
- Unité Transversale de la Drépanocytose, Centre Hospitalier et Universitaire, Pointe-à-Pitre, Guadeloupe, France
| | - Marie-Dominique Hardy-Dessources
- Inserm 665, Université des Antilles et de la Guyane, Pointe-à-Pitre, Guadeloupe, France
- Laboratory of Excellence GR-Ex « The red cell : from genesis to death », PRES Sorbonne Paris Cité, Paris, France
| | - Olivier Hue
- Laboratoire ACTES (EA 3596 - Département de Physiologie), Université des Antilles et de la Guyane, Pointe-à-Pitre, Guadeloupe, France
| | - Philippe Connes
- Inserm 665, Université des Antilles et de la Guyane, Pointe-à-Pitre, Guadeloupe, France
- Laboratory of Excellence GR-Ex « The red cell : from genesis to death », PRES Sorbonne Paris Cité, Paris, France
- Laboratoire ACTES (EA 3596 - Département de Physiologie), Université des Antilles et de la Guyane, Pointe-à-Pitre, Guadeloupe, France
- * E-mail:
| |
Collapse
|
49
|
Suzuki N, Mittler R. Reactive oxygen species-dependent wound responses in animals and plants. Free Radic Biol Med 2012; 53:2269-76. [PMID: 23085520 DOI: 10.1016/j.freeradbiomed.2012.10.538] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 10/04/2012] [Accepted: 10/05/2012] [Indexed: 01/20/2023]
Abstract
Animals and plants evolved sophisticated mechanisms that regulate their responses to mechanical injury. Wound response in animals mainly promotes wound healing processes, nerve cell regeneration, and immune system responses at the vicinity of the wound site. In contrast, wound response in plants is primarily directed at sealing the wound site via deposition of various compounds and generating systemic signals that activate multiple defense mechanisms in remote tissues. Despite these differences between animals and plants, recent studies have shown that reactive oxygen species (ROS) play very common signaling and coordination roles in the wound responses of both systems. This review provides an update on recent findings related to ROS-regulated coordination of intercellular communications and signal transduction during wound response in plants and animals. In particular, differences and similarities in H2O2-dependent long-distance signaling between zebrafish and Arabidopsis thaliana are discussed.
Collapse
Affiliation(s)
- Nobuhiro Suzuki
- Department of Biological Sciences, College of Arts and Sciences, University of North Texas, Denton, TX 76203-5017, USA
| | - Ron Mittler
- Department of Biological Sciences, College of Arts and Sciences, University of North Texas, Denton, TX 76203-5017, USA.
| |
Collapse
|
50
|
Ye L, Liu J, Liu H, Ying L, Dou D, Chen Z, Xu X, Raj JU, Gao Y. Sulfhydryl-dependent dimerization of soluble guanylyl cyclase modulates the relaxation of porcine pulmonary arteries to nitric oxide. Pflugers Arch 2012; 465:333-41. [PMID: 23143201 DOI: 10.1007/s00424-012-1176-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 10/24/2012] [Accepted: 10/25/2012] [Indexed: 02/07/2023]
Abstract
The dimeric status of nitric oxide (NO)-sensitive soluble guanylyl cyclase (sGC) is obligatory for its catalyzing activity to synthesis the second messenger cyclic guanosine monophosphate (cGMP), which leads to vasodilatation. The present study was conducted to determine whether or not the dimerization of sGC is modulated by thiol-reducing agents and its influences on relaxation of pulmonary arteries caused by NO. The dimers and monomers of sGC and cGMP-dependent protein kinase (PKG) were analyzed by Western blotting. The intracellular cGMP content was measured by enzyme-linked immunosorbent assay. Relaxations of isolated porcine pulmonary arteries were determined by organ chamber technique. Protein levels of sGC dimers were decreased by thiol reductants dithiothreitol (DTT), reduced L-glutathione, L-cysteine, and tris(2-carboxyethyl)phosphine (TCEP), associated with decreased cGMP elevation, attenuated relaxations to NO. DTT at concentrations that affected sGC dimerization and activity showed no effect on PKG dimerization nor relaxation to 8-Br-cGMP. Hypoxia decreased the dimerization and activity of sGC of the arteries. The suppression of DTT and TCEP on sGC dimerization and activity was augmented by hypoxia. In the presence of DTT and TCEP, relaxations of porcine pulmonary artery caused by NO were significantly less under hypoxia compared with those under normoxia. These results suggest that the dimerization and activity of sGC along with NO-induced vasodilatation can be modulated in a thiol-dependent manner. Such a mechanism may be involved in the diminished response of pulmonary arteries to NO under hypoxia.
Collapse
Affiliation(s)
- Liping Ye
- Department of Pathophysiology, Liaoning Medical University, Jinzhou, Liaoning, China
| | | | | | | | | | | | | | | | | |
Collapse
|