1
|
Morgan BJ, Song R, McDermott I, Brinkman JA, Holbert K, Oler AT, Dresen AS, Sandbo N, Bernau K, Teodorescu M. Altered control of breathing in a rat model of allergic lower airway inflammation. J Neurophysiol 2024; 132:1650-1666. [PMID: 39382982 DOI: 10.1152/jn.00301.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/16/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024] Open
Abstract
Obstructive sleep apnea (OSA) is highly prevalent in patients with asthma. Asthma, dose-dependently to its duration, promotes incident OSA, suggesting that asthma plays a role in OSA pathogenesis. We hypothesized that asthma-related inflammation alters breathing control mechanisms, specifically the carotid chemoreflex. Accordingly, we measured hypoxic ventilatory responses (HVR) in awake, unrestrained, ovalbumin (OVA)-sensitized Brown Norway rats and compared them with responses in sham-sensitized (SALINE) controls. To differentiate the role of allergic inflammation from bronchoconstriction, we repeated hypoxic ventilatory response (HVR) after administration of formoterol, a long-acting bronchodilator. Blood and bronchoalveolar lavage (BAL) fluid were collected for quantification of inflammatory cytokines. The rise in ventilatory equivalent for O2 evoked by acute exposure to hypoxia was augmented following sensitization by OVA, whereas it remained stable after SALINE. This augmentation was driven by increased breathing frequency with no change in tidal volume. Tachypneic hyperventilation in normoxia was also observed with OVA. Neither the increased HVR nor excessive normoxic ventilation was affected by formoterol, suggesting that they were not secondary to lung mechanical constraints. Higher levels of inflammatory cytokines were observed in BAL fluid and serum of OVA versus SALINE. In OVA, serum interleukin-5 levels significantly correlated with change from baseline in ventilatory responses to severe hypoxia ([Formula: see text], 0.09). These observations are consistent with inflammation-induced enhancement of carotid chemoreflex function, i.e., increased controller gain, and they suggest a possible role for asthma-related allergic inflammation in the ventilatory instability known to promote upper airway collapse and sleep apnea in humans.NEW & NOTEWORTHY Asthma is a risk factor for obstructive sleep apnea (OSA); however, the mechanisms are incompletely understood. In a rat model of allergic inflammation associated with asthma, we found that ventilation in normoxia and ventilatory responses to hypoxia were markedly enhanced and related with systemic inflammation. These alterations indicating carotid chemoreflex sensitization, known to promote ventilatory instability during sleep in humans, may contribute to the increased OSA risk in asthma.
Collapse
Affiliation(s)
- Barbara J Morgan
- Department of Orthopedics and Rehabilitation, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States
| | - Ruolin Song
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States
| | - Ivy McDermott
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States
| | - Jacqueline A Brinkman
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States
| | - Kelsey Holbert
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States
| | - Angie T Oler
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States
| | - Amy S Dresen
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States
| | - Nathan Sandbo
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States
| | - Ksenija Bernau
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States
| | - Mihaela Teodorescu
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States
- William S. Middleton Memorial VA Medical Center, Madison, Wisconsin, United States
| |
Collapse
|
2
|
Jia X, Sun J, Zhuo Q, Zhao B, Liu Y. Effect of the NLRP3 inflammasome on increased hypoxic ventilation response after CIH exposure in mice. Respir Physiol Neurobiol 2024; 321:104204. [PMID: 38128772 DOI: 10.1016/j.resp.2023.104204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/27/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Chronic intermittent hypoxia (CIH) increases the hypoxic ventilation response (HVR). The downstream cytokine IL-1β of the NLRP3 inflammasome regulates respiration by acting on the carotid body (CB) and neurons in the respiratory center, but the effect of the NLRP3 inflammasome on HVR induced by CIH remains unclear. OBJECTIVE To investigate the effect of NLRP3 on the increased HVR and spontaneous apnea events and duration induced by CIH, the expression and localization of NLRP3 in the respiratory regulatory center of the rostral ventrolateral medulla (RVLM), and the effect of CIH on the activation of the NLRP3 inflammasome in the RVLM. METHODS Eighteen male, 7-week-old C57BL/6 N mice and eighteen male, 7-week-old C57BL/6 N NLRP3 knockout mice were randomly divided into CON-WT, CON-NLRP3-/-, CIH-WT and CIH-NLRP3-/- groups. Respiratory changes in mice were continuously detected using whole-body plethysmography. The expression and localization of the NLRP3 protein and the formation of apoptosis-associated speck-like protein containing CARD (ASC) specks were detected using immunofluorescence staining. RESULTS NLRP3 knockout reduced the increased HVR and the incidence and duration of spontaneous apnea events associated with CIH. The increase in HVR caused by CIH partially recovered after reoxygenation. After CIH, NLRP3 inflammasome activation in the RVLM, which is related to respiratory regulation after hypoxia, increased, which was consistent with the trend of the ventilation response. CONCLUSION The NLRP3 inflammasome may be involved in the increase in the HVR and the incidence and duration of spontaneous apnea induced by CIH. NLRP3 inhibitors may help reduce the increase in the HVR after CIH, which is important for ensuring sleep quality at night in patients with obstructive sleep apnea.
Collapse
Affiliation(s)
- Xinyun Jia
- Department of Respiratory, The First Affiliated Hospital of Xinxiang Medical University, 88 Jiankang Road, Weihui 453100, Henan, China; Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, 88 Jiankang Road, Weihui 453100, Henan, China
| | - Jianxia Sun
- Department of Respiratory, The First Affiliated Hospital of Xinxiang Medical University, 88 Jiankang Road, Weihui 453100, Henan, China; Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, 88 Jiankang Road, Weihui 453100, Henan, China
| | - Qingya Zhuo
- Department of Respiratory, The First Affiliated Hospital of Xinxiang Medical University, 88 Jiankang Road, Weihui 453100, Henan, China; Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, 88 Jiankang Road, Weihui 453100, Henan, China
| | - Baosheng Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan, China
| | - Yuzhen Liu
- Department of Respiratory, The First Affiliated Hospital of Xinxiang Medical University, 88 Jiankang Road, Weihui 453100, Henan, China; Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, 88 Jiankang Road, Weihui 453100, Henan, China; Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan, China.
| |
Collapse
|
3
|
Kagawa T, Yamaoka I. Intragastric infusion of a liquid diet with low-methoxyl pectin alleviates fecal inconsistency and local proinflammatory cytokine expression in lipopolysaccharide-septic rats. Nutrition 2024; 118:112271. [PMID: 38043391 DOI: 10.1016/j.nut.2023.112271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/16/2023] [Accepted: 10/21/2023] [Indexed: 12/05/2023]
Abstract
OBJECTIVE Diarrhea interrupts enteral nutrition management in hospitalized patients with severe illnesses, such as sepsis. Pectin, a water-soluble dietary fiber, has the potential to maintain intestinal function and may reduce inflammatory reactions. The aim of this study was to demonstrate that the addition of low-methoxyl (LM) pectin to a liquid diet suppresses softening of stool texture and reduces tissue inflammatory responses in enteral nutrition management during sepsis. METHODS A fat-enriched liquid diet with LM pectin (P-EN) or a liquid diet without dietary fiber (FF-EN) was given continuously to rats through a gastric catheter. Lipopolysaccharide (LPS; 10 mg/kg) was injected intraperitoneally 24 h (study 1) and 7 h (study 2) before sacrifice. RESULTS LPS injection significantly worsened fecal property scores in rats infused with FF-EN compared with the rats given P-EN in study 1. Whereas many myeloperoxidase-positive cells infiltrated the liver, and the hepatic expressions of chemokine genes were markedly elevated 24 h after LPS administration, these findings were clearly alleviated in the LM pectin-containing liquid diet group. In study 2, protein expressions of proinflammatory cytokines, such as small intestinal tumor necrosis factor-α and hepatic interleukin-1β, and interleukin-6, were significantly downregulated in the P-EN LPS group compared with the FF-EN LPS group. CONCLUSIONS A liquid diet containing LM pectin allows enteral nutrition management with a low risk for diarrhea and reduces local inflammation under septic conditions.
Collapse
Affiliation(s)
- Tomohiro Kagawa
- Medical Foods Research Institute, OS-1 Division, Otsuka Pharmaceutical Factory, Inc., Tateiwa, Muya-cho, Naruto, Tokushima, Japan
| | - Ippei Yamaoka
- Medical Foods Research Institute, OS-1 Division, Otsuka Pharmaceutical Factory, Inc., Tateiwa, Muya-cho, Naruto, Tokushima, Japan.
| |
Collapse
|
4
|
Lataro RM, Brognara F, Iturriaga R, Paton JFR. Inflammation of some visceral sensory systems and autonomic dysfunction in cardiovascular disease. Auton Neurosci 2024; 251:103137. [PMID: 38104365 DOI: 10.1016/j.autneu.2023.103137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/15/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
The sensitization and hypertonicity of visceral afferents are highly relevant to the development and progression of cardiovascular and respiratory disease states. In this review, we described the evidence that the inflammatory process regulates visceral afferent sensitivity and tonicity, affecting the control of the cardiovascular and respiratory system. Some inflammatory mediators like nitric oxide, angiotensin II, endothelin-1, and arginine vasopressin may inhibit baroreceptor afferents and contribute to the baroreflex impairment observed in cardiovascular diseases. Cytokines may act directly on peripheral afferent terminals that transmit information to the central nervous system (CNS). TLR-4 receptors, which recognize lipopolysaccharide, were identified in the nodose and petrosal ganglion and have been implicated in disrupting the blood-brain barrier, which can potentiate the inflammatory process. For example, cytokines may cross the blood-brain barrier to access the CNS. Additionally, pro-inflammatory cytokines such as IL-1β, IL-6, TNF-α and some of their receptors have been identified in the nodose ganglion and carotid body. These pro-inflammatory cytokines also sensitize the dorsal root ganglion or are released in the nucleus of the solitary tract. In cardiovascular disease, pro-inflammatory mediators increase in the brain, heart, vessels, and plasma and may act locally or systemically to activate/sensitize afferent nervous terminals. Recent evidence demonstrated that the carotid body chemoreceptor cells might sense systemic pro-inflammatory molecules, supporting the novel proposal that the carotid body is part of the afferent pathway in the central anti-inflammatory reflexes. The exact mechanisms of how pro-inflammatory mediators affects visceral afferent signals and contribute to the pathophysiology of cardiovascular diseases awaits future research.
Collapse
Affiliation(s)
- R M Lataro
- Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| | - F Brognara
- Department of Nursing, General and Specialized, Nursing School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - R Iturriaga
- Facultad de Ciencias Biológicas, Pontificia Universidad Catolica de Chile, Santiago, Chile; Centro de Investigación en Fisiología y Medicina en Altura - FIMEDALT, Universidad de Antofagasta, Antofagasta, Chile
| | - J F R Paton
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, Grafton, Auckland, New Zealand
| |
Collapse
|
5
|
Bavis RW, Benevides ES, Gutch S, Murphy EJ, West HR, Ceesay S, Reynoso Williams M, Cory P. Influence of chronic hypoxia on the hypoxic ventilatory response of juvenile and adult rats. Respir Physiol Neurobiol 2023; 316:104118. [PMID: 37460077 PMCID: PMC10528092 DOI: 10.1016/j.resp.2023.104118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/29/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
Chronic hypoxia (CH) from birth attenuates the acute hypoxic ventilatory response (HVR) in rats and other mammals, but CH is often reported to augment the HVR in adult mammals. To test the hypothesis that this transition - from blunting to augmenting the HVR - occurs in the third or fourth postnatal week in rats, juvenile and adult rats were exposed to normobaric CH (12% O2) for 7 days and the HVR was assessed by whole-body plethysmography. No transition was observed, however, and the acute HVR was reduced by 61 - 85% across all ages studied. The failure to observe an augmented HVR in adult rats could not be explained by the substrain of Sprague Dawley rats used, the duration of the CH exposure, the order in which test gases were presented, the level of hypoxia used for CH and to assess the HVR, or the effects of CH on the metabolic response to hypoxia and the hypercapnic ventilatory response. A literature survey revealed several distinct patterns of ventilatory acclimatization to hypoxia (VAH) in adult rats, with most studies (77%) revealing a decrease or no change in the acute HVR after CH. In conclusion, the effects of CH on respiratory control are qualitatively similar across age groups, at least within the populations of Sprague Dawley rats used in the present study, and there does not appear to be one "typical" pattern for VAH in adult rats.
Collapse
Affiliation(s)
- Ryan W Bavis
- Department of Biology, Bates College, Lewiston, ME 04240, USA.
| | | | - Sarah Gutch
- Department of Biology, Bates College, Lewiston, ME 04240, USA
| | - Erin J Murphy
- Department of Biology, Bates College, Lewiston, ME 04240, USA
| | - Hannah R West
- Department of Biology, Bates College, Lewiston, ME 04240, USA
| | - Sally Ceesay
- Department of Biology, Bates College, Lewiston, ME 04240, USA
| | | | - Pieter Cory
- Department of Biology, Bates College, Lewiston, ME 04240, USA
| |
Collapse
|
6
|
Yu JJ, Non AL, Heinrich EC, Gu W, Alcock J, Moya EA, Lawrence ES, Tift MS, O'Brien KA, Storz JF, Signore AV, Khudyakov JI, Milsom WK, Wilson SM, Beall CM, Villafuerte FC, Stobdan T, Julian CG, Moore LG, Fuster MM, Stokes JA, Milner R, West JB, Zhang J, Shyy JY, Childebayeva A, Vázquez-Medina JP, Pham LV, Mesarwi OA, Hall JE, Cheviron ZA, Sieker J, Blood AB, Yuan JX, Scott GR, Rana BK, Ponganis PJ, Malhotra A, Powell FL, Simonson TS. Time Domains of Hypoxia Responses and -Omics Insights. Front Physiol 2022; 13:885295. [PMID: 36035495 PMCID: PMC9400701 DOI: 10.3389/fphys.2022.885295] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
The ability to respond rapidly to changes in oxygen tension is critical for many forms of life. Challenges to oxygen homeostasis, specifically in the contexts of evolutionary biology and biomedicine, provide important insights into mechanisms of hypoxia adaptation and tolerance. Here we synthesize findings across varying time domains of hypoxia in terms of oxygen delivery, ranging from early animal to modern human evolution and examine the potential impacts of environmental and clinical challenges through emerging multi-omics approaches. We discuss how diverse animal species have adapted to hypoxic environments, how humans vary in their responses to hypoxia (i.e., in the context of high-altitude exposure, cardiopulmonary disease, and sleep apnea), and how findings from each of these fields inform the other and lead to promising new directions in basic and clinical hypoxia research.
Collapse
Affiliation(s)
- James J. Yu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Amy L. Non
- Department of Anthropology, Division of Social Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Erica C. Heinrich
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, United States
| | - Wanjun Gu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
- Herbert Wertheim School of Public Health and Longevity Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Joe Alcock
- Department of Emergency Medicine, University of New Mexico, Albuquerque, MX, United States
| | - Esteban A. Moya
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Elijah S. Lawrence
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Michael S. Tift
- Department of Biology and Marine Biology, College of Arts and Sciences, University of North Carolina Wilmington, Wilmington, NC, United States
| | - Katie A. O'Brien
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
- Department of Physiology, Development and Neuroscience, Faculty of Biology, School of Biological Sciences, University of Cambridge, Cambridge, ENG, United Kingdom
| | - Jay F. Storz
- School of Biological Sciences, College of Arts and Sciences, University of Nebraska-Lincoln, Lincoln, IL, United States
| | - Anthony V. Signore
- School of Biological Sciences, College of Arts and Sciences, University of Nebraska-Lincoln, Lincoln, IL, United States
| | - Jane I. Khudyakov
- Department of Biological Sciences, University of the Pacific, Stockton, CA, United States
| | | | - Sean M. Wilson
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda, CA, United States
| | | | | | | | - Colleen G. Julian
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Lorna G. Moore
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Aurora, CO, United States
| | - Mark M. Fuster
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Jennifer A. Stokes
- Department of Kinesiology, Southwestern University, Georgetown, TX, United States
| | - Richard Milner
- San Diego Biomedical Research Institute, San Diego, CA, United States
| | - John B. West
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Jiao Zhang
- Department of Medicine, UC San Diego School of Medicine, San Diego, CA, United States
| | - John Y. Shyy
- Department of Medicine, UC San Diego School of Medicine, San Diego, CA, United States
| | - Ainash Childebayeva
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - José Pablo Vázquez-Medina
- Department of Integrative Biology, College of Letters and Science, University of California, Berkeley, Berkeley, CA, United States
| | - Luu V. Pham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Omar A. Mesarwi
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - James E. Hall
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Zachary A. Cheviron
- Division of Biological Sciences, College of Humanities and Sciences, University of Montana, Missoula, MT, United States
| | - Jeremy Sieker
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Arlin B. Blood
- Department of Pediatrics Division of Neonatology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Jason X. Yuan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Graham R. Scott
- Department of Pediatrics Division of Neonatology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Brinda K. Rana
- Moores Cancer Center, UC San Diego, La Jolla, CA, United States
- Department of Psychiatry, UC San Diego, La Jolla, CA, United States
| | - Paul J. Ponganis
- Center for Marine Biotechnology and Biomedicine, La Jolla, CA, United States
| | - Atul Malhotra
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Frank L. Powell
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Tatum S. Simonson
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
7
|
Hedley KE, Callister RJ, Callister R, Horvat JC, Tadros MA. Alterations in brainstem respiratory centers following peripheral inflammation: A systematic review. J Neuroimmunol 2022; 369:577903. [DOI: 10.1016/j.jneuroim.2022.577903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/02/2022] [Accepted: 05/29/2022] [Indexed: 11/29/2022]
|
8
|
Iturriaga R, Del Rio R, Alcayaga J. Carotid Body Inflammation: Role in Hypoxia and in the Anti-inflammatory Reflex. Physiology (Bethesda) 2021; 37:128-140. [PMID: 34866399 DOI: 10.1152/physiol.00031.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Emergent evidence indicates that the carotid body (CB) chemoreceptors may sense systemic inflammatory molecules, and is an afferent-arm of the anti-inflammatory reflex. Moreover, a pro-inflammatory milieu within the CB is involved in the enhanced CB chemosensory responsiveness to oxygen following sustained and intermittent hypoxia. In this review, we focus on the physio-pathological participation of CBs in inflammatory diseases, such as sepsis and intermittent hypoxia.
Collapse
Affiliation(s)
- Rodrigo Iturriaga
- Laboratorio de Neurobiologia. Departamento de Fisiologia. Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Pontificia Universidad Catolica de Chile, Santiago-1, Región, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Santiago, Chile
| | - Rodrigo Del Rio
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Santiago, Chile.,Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Julio Alcayaga
- Laboratorio de Fisiología Celular, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
9
|
Exploring the Mediators that Promote Carotid Body Dysfunction in Type 2 Diabetes and Obesity Related Syndromes. Int J Mol Sci 2020; 21:ijms21155545. [PMID: 32756352 PMCID: PMC7432672 DOI: 10.3390/ijms21155545] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/26/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022] Open
Abstract
Carotid bodies (CBs) are peripheral chemoreceptors that sense changes in blood O2, CO2, and pH levels. Apart from ventilatory control, these organs are deeply involved in the homeostatic regulation of carbohydrates and lipid metabolism and inflammation. It has been described that CB dysfunction is involved in the genesis of metabolic diseases and that CB overactivation is present in animal models of metabolic disease and in prediabetes patients. Additionally, resection of the CB-sensitive nerve, the carotid sinus nerve (CSN), or CB ablation in animals prevents and reverses diet-induced insulin resistance and glucose intolerance as well as sympathoadrenal overactivity, meaning that the beneficial effects of decreasing CB activity on glucose homeostasis are modulated by target-related efferent sympathetic nerves, through a reflex initiated in the CBs. In agreement with our pre-clinical data, hyperbaric oxygen therapy, which reduces CB activity, improves glucose homeostasis in type 2 diabetes patients. Insulin, leptin, and pro-inflammatory cytokines activate the CB. In this manuscript, we review in a concise manner the putative pathways linking CB chemoreceptor deregulation with the pathogenesis of metabolic diseases and discuss and present new data that highlight the roles of hyperinsulinemia, hyperleptinemia, and chronic inflammation as major factors contributing to CB dysfunction in metabolic disorders.
Collapse
|
10
|
Ventilatory and carotid body responses to acute hypoxia in rats exposed to chronic hypoxia during the first and second postnatal weeks. Respir Physiol Neurobiol 2020; 275:103400. [PMID: 32006667 DOI: 10.1016/j.resp.2020.103400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/20/2019] [Accepted: 01/27/2020] [Indexed: 01/24/2023]
Abstract
Chronic hypoxia (CH) during postnatal development causes a blunted hypoxic ventilatory response (HVR) in neonatal mammals. The magnitude of the HVR generally increases with age, so CH could blunt the HVR by delaying this process. Accordingly, we predicted that CH would have different effects on the respiratory control of neonatal rats if initiated at birth versus initiated later in postnatal development (i.e., after the HVR has had time to mature). Rats had blunted ventilatory and carotid body responses to hypoxia whether CH (12 % O2) occurred for the first postnatal week (P0 to P7) or second postnatal week (P7 to P14). However, if initiated at P0, CH also caused the HVR to retain the "biphasic" shape characteristic of newborn mammals; CH during the second postnatal week did not result in a biphasic HVR. CH from birth delayed the transition from a biphasic HVR to a sustained HVR until at least P9-11, but the HVR attained a sustained (albeit blunted) phenotype by P13-15. Since delayed maturation of the HVR did not completely explain the blunted HVR, we tested the alternative hypothesis that the blunted HVR was caused by an inflammatory response to CH. Daily administration of the anti-inflammatory drug ibuprofen (4 mg kg-1, i.p.) did not alter the effects of CH on the HVR. Collectively, these data suggest that CH blunts the HVR in neonatal rats by impairing carotid body responses to hypoxia and by delaying (but not preventing) postnatal maturation of the biphasic HVR. The mechanisms underlying this plasticity require further investigation.
Collapse
|
11
|
Effects of inflammation on the developing respiratory system: Focus on hypoglossal (XII) neuron morphology, brainstem neurochemistry, and control of breathing. Respir Physiol Neurobiol 2020; 275:103389. [PMID: 31958568 DOI: 10.1016/j.resp.2020.103389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 01/03/2020] [Accepted: 01/16/2020] [Indexed: 12/20/2022]
Abstract
Breathing is fundamental to life and any adverse change in respiratory function can endanger the health of an organism or even be fatal. Perinatal inflammation is known to adversely affect breathing in preterm babies, but lung infection/inflammation impacts all stages of life from birth to death. Little is known about the role of inflammation in respiratory control, neuronal morphology, or neural function during development. Animal models of inflammation can provide understanding and insight into respiratory development and how inflammatory processes alter developmental phenotype in addition to providing insight into new treatment modalities. In this review, we focus on recent work concerning the development of neurons, models of perinatal inflammation with an emphasis on two common LPS-based models, inflammation and its impact on development, and current and potential treatments for inflammation within the respiratory control circuitry of the mammalian brainstem. We have also discussed models of inflammation in adults and have specifically focused on hypoglossal motoneurons (XII) and neurons of the nucleus tractus solitarii (nTS) as these nuclei have been studied more extensively than other brainstem nuclei participating in breathing and airway control. Understanding the impact of inflammation on the developmental aspects of respiratory control and breathing pattern is critical to addressing problems of cardiorespiratory dysregulation in disease and this overview points out many gaps in our current knowledge.
Collapse
|
12
|
Burgraff NJ, Neumueller SE, Buchholz KJ, Hodges MR, Pan L, Forster HV. Midbrain and cerebral inflammatory and glutamatergic adaptations during chronic hypercapnia in goats. Brain Res 2019; 1724:146437. [PMID: 31494104 DOI: 10.1016/j.brainres.2019.146437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/28/2019] [Accepted: 09/04/2019] [Indexed: 11/18/2022]
Abstract
Cognitive impairment is associated with multiple human diseases that have in common chronic hypercapnia. However, the mechanisms leading to chronic hypercapnia-induced cognitive decline are not known. We have previously shown chronic hypercapnia through exposure to increased inspired CO2 (6% InCO2) in conscious goats caused an immediate (within hours) and sustained decline in cognitive performance during a shape discrimination test. Herein, within the same goats, we assessed markers of neuroinflammation and glutamate receptor expression/phosphorylation within CNS regions important for cognitive function following 24 hours (h) or 30 days (d) of chronic hypercapnia. Within 24 h, chronic hypercapnia increased expression of the inflammatory cytokine IL-1β in the orbitofrontal cortex and medial prefrontal cortex, but at 30d IL-1β levels were not different relative to time-matched goats exposed to room-air. Additionally, Iba1 expression (a marker of microglial activation) was unaltered by chronic hypercapnia in all regions tested. Finally, levels of the total and phosphorylated AMPA receptor subunit GluR2 were reduced within the hippocampus at both 24 h and 30 d of hypercapnia, and reduced following 30 d within the anterior insular cortex. These data suggest that chronic hypercapnia leads to CNS site-dependent acute inflammatory responses and shifts in select glutamate receptor expression/phosphorylation in brain regions contributing to cognitive function. Such changes may be indicative of alterations in glutamatergic receptor-mediated signaling and neuronal dysfunction that contribute to declines in cognitive function associated with human diseases defined or marked by chronic CO2 retention.
Collapse
Affiliation(s)
- Nicholas J Burgraff
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Suzanne E Neumueller
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Kirstyn J Buchholz
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Matthew R Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, United States; Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Lawrence Pan
- Department of Physical Therapy, Marquette University, Milwaukee, WI 53226, United States
| | - Hubert V Forster
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, United States; Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, United States; Zablocki Veterans Affairs Medical Center, Milwaukee, WI 53226, United States.
| |
Collapse
|
13
|
Burgraff NJ, Neumueller SE, Buchholz KJ, LeClaire J, Hodges MR, Pan L, Forster HV. Brainstem serotonergic, catecholaminergic, and inflammatory adaptations during chronic hypercapnia in goats. FASEB J 2019; 33:14491-14505. [PMID: 31670983 DOI: 10.1096/fj.201901288rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Despite the prevalence of CO2 retention in human disease, little is known about the adaptive neurobiological effects of chronic hypercapnia. We have recently shown 30-d exposure to increased inspired CO2 (InCO2) leads to a steady-state ventilation that exceeds the level predicted by the sustained acidosis and the acute CO2/H+ chemoreflex, suggesting plasticity within respiratory control centers. Based on data showing brainstem changes in aminergic and inflammatory signaling during carotid body denervation-induced hypercapnia, we hypothesized chronic hypercapnia per se will lead to similar changes. We found that: 1) increased InCO2 increased IL-1β in the medullary raphe (MR), ventral respiratory column, and cuneate nucleus after 24 h, but not after 30 d of hypercapnia; 2) the number of serotonergic and total neurons were reduced within the MR and ventrolateral medulla following 30 d of increased InCO2; 3) markers of tryptophan metabolism were altered following 24 h, but not 30 d of InCO2; and 4) there were few changes in brainstem amine levels following 24 h or 30 d of increased InCO2. We conclude that these changes may contribute to initiating or maintaining respiratory neuroplasticity during chronic hypercapnia but alone do not account for ventilatory acclimatization to chronic increased InCO2.-Burgraff, N. J., Neumueller, S. E., Buchholz, K. J., LeClaire, J., Hodges, M. R., Pan, L., Forster, H. V. Brainstem serotonergic, catecholaminergic, and inflammatory adaptations during chronic hypercapnia in goats.
Collapse
Affiliation(s)
- Nicholas J Burgraff
- Department of Physiology, Medical College of Wisconsin, Wauwatosa, Wisconsin, USA
| | - Suzanne E Neumueller
- Department of Physiology, Medical College of Wisconsin, Wauwatosa, Wisconsin, USA
| | - Kirstyn J Buchholz
- Department of Physiology, Medical College of Wisconsin, Wauwatosa, Wisconsin, USA
| | - John LeClaire
- Department of Physiology, Medical College of Wisconsin, Wauwatosa, Wisconsin, USA
| | - Matthew R Hodges
- Department of Physiology, Medical College of Wisconsin, Wauwatosa, Wisconsin, USA.,Neuroscience Research Center Medical College of Wisconsin, Wauwatosa, Wisconsin, USA
| | - Lawrence Pan
- Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin, USA
| | - Hubert V Forster
- Department of Physiology, Medical College of Wisconsin, Wauwatosa, Wisconsin, USA.,Neuroscience Research Center Medical College of Wisconsin, Wauwatosa, Wisconsin, USA.,Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA
| |
Collapse
|
14
|
Lima-Silveira L, Accorsi-Mendonça D, Bonagamba LGH, Almado CEL, da Silva MP, Nedoboy PE, Pilowsky PM, Machado BH. Enhancement of excitatory transmission in NTS neurons projecting to ventral medulla of rats exposed to sustained hypoxia is blunted by minocycline. J Physiol 2019; 597:2903-2923. [PMID: 30993693 DOI: 10.1113/jp277532] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/16/2019] [Indexed: 01/13/2023] Open
Abstract
KEY POINTS Rats subjected to sustained hypoxia (SH) present increases in arterial pressure (AP) and in glutamatergic transmission in the nucleus tractus solitarius (NTS) neurons sending projections to ventrolateral medulla (VLM). Treatment with minocycline, a microglial inhibitor, attenuated the increase in AP in response to SH. The increase in the amplitude of glutamatergic postsynaptic currents in the NTS-VLM neurons, induced by postsynaptic mechanisms, was blunted by minocycline treatment. The number of microglial cells was increased in the NTS of vehicle-treated SH rats but not in the NTS of minocycline-treated rats. The data show that microglial recruitment/proliferation induced by SH is associated with the enhancement of excitatory neurotransmission in NTS-VLM neurons, which may contribute to the observed increase in AP. ABSTRACT Short-term sustained hypoxia (SH) produces significant autonomic and respiratory adjustments and triggers activation of microglia, the resident immune cells in the brain. SH also enhances glutamatergic neurotransmission in the NTS. Here we evaluated the role of microglial activation induced by SH on the cardiovascular changes and mainly on glutamatergic neurotransmission in NTS neurons sending projections to the ventrolateral medulla (NTS-VLM), using a microglia inhibitor (minocycline). Direct measurement of arterial pressure (AP) in freely moving rats showed that SH (24 h, fraction of inspired oxygen ( F I , O 2 ) 0.1) in vehicle and minocycline (30 mg/kg i.p. for 3 days)-treated groups produced a significant increase in AP in relation to control groups under normoxic conditions, but this increase was significantly lower in minocycline-treated rats. Whole-cell patch-clamp recordings revealed that the active properties of the membrane were comparable among the groups. Nevertheless, the amplitudes of glutamatergic postsynaptic currents, evoked by tractus solitarius stimulation, were increased in NTS-VLM neurons of SH rats. Changes in asynchronous glutamatergic currents indicated that the observed increase in amplitude was due to postsynaptic mechanisms. These changes were blunted in the SH group previously treated with minocycline. Using immunofluorescence, we found that the number of microglial cells was increased in the NTS of vehicle-treated SH rats but not in the NTS neurons of minocycline-treated rats. Our data support the concept that microglial activation induced by SH is associated with the enhancement of excitatory neurotransmission in NTS-VLM neurons, which may contribute to the increase in AP observed in this experimental model.
Collapse
Affiliation(s)
- Ludmila Lima-Silveira
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| | - Daniela Accorsi-Mendonça
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| | - Leni G H Bonagamba
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| | - Carlos Eduardo L Almado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| | - Melina P da Silva
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| | - Polina E Nedoboy
- The Heart Research Institute, Sydney, New South Wales, 2042, Australia
| | - Paul M Pilowsky
- The Heart Research Institute, Sydney, New South Wales, 2042, Australia
| | - Benedito H Machado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| |
Collapse
|
15
|
Peña-Ortega F. Clinical and experimental aspects of breathing modulation by inflammation. Auton Neurosci 2018; 216:72-86. [PMID: 30503161 DOI: 10.1016/j.autneu.2018.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 12/19/2022]
Abstract
Neuroinflammation is produced by local or systemic alterations and mediated mainly by glia, affecting the activity of various neural circuits including those involved in breathing rhythm generation and control. Several pathological conditions, such as sudden infant death syndrome, obstructive sleep apnea and asthma exert an inflammatory influence on breathing-related circuits. Consequently breathing (both resting and ventilatory responses to physiological challenges), is affected; e.g., responses to hypoxia and hypercapnia are compromised. Moreover, inflammation can induce long-lasting changes in breathing and affect adaptive plasticity; e.g., hypoxic acclimatization or long-term facilitation. Mediators of the influences of inflammation on breathing are most likely proinflammatory molecules such as cytokines and prostaglandins. The focus of this review is to summarize the available information concerning the modulation of the breathing function by inflammation and the cellular and molecular aspects of this process. I will consider: 1) some clinical and experimental conditions in which inflammation influences breathing; 2) the variety of experimental approaches used to understand this inflammatory modulation; 3) the likely cellular and molecular mechanisms.
Collapse
Affiliation(s)
- Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO 76230, México.
| |
Collapse
|
16
|
Bickler P, Feiner JR, Lundeberg J. Response to Burtscher re: "Increased Cytokines at High Altitude: Lack of Effect of Ibuprofen on Acute Mountain Sickness, Physiological Variables, or Cytokine Levels". High Alt Med Biol 2018; 19:304-305. [PMID: 30239230 DOI: 10.1089/ham.2018.0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Philip Bickler
- 1 Hypoxia Research Laboratory and Department of Anesthesia and Perioperative Care, University of California San Francisco , San Francisco, California
| | - John R Feiner
- 1 Hypoxia Research Laboratory and Department of Anesthesia and Perioperative Care, University of California San Francisco , San Francisco, California
| | - Jenny Lundeberg
- 2 Department of Anesthesiology, Karolinska Institute , Stockholm, Sweden
| |
Collapse
|
17
|
Burtscher M. Re: "Increased Cytokines at High Altitude: Lack of Effect of Ibuprofen on Acute Mountain Sickness, Physiological Variables, or Cytokine Levels" by Lundeberg, et al. (High Alt Med Biol 2018 19:249-258). High Alt Med Biol 2018; 19:303. [PMID: 30153038 DOI: 10.1089/ham.2018.0081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Martin Burtscher
- 1 Department of Sport Science, University of Innsbruck , Innsbruck, Austria .,2 Austrian Society for Alpine and High Altitude Medicine , Innsbruck, Austria
| |
Collapse
|
18
|
Moya EA, Powell FL. Serotonin and Adenosine G-protein Coupled Receptor Signaling for Ventilatory Acclimatization to Sustained Hypoxia. Front Physiol 2018; 9:860. [PMID: 30072908 PMCID: PMC6059110 DOI: 10.3389/fphys.2018.00860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/18/2018] [Indexed: 12/28/2022] Open
Abstract
Different patterns of hypoxia evoke different forms of plasticity in the neural control of ventilation. For example, acute intermittent hypoxia produces long term facilitation (LTF) of ventilation, while chronic sustained hypoxia (CH) causes ventilatory acclimatization to hypoxia (VAH). In both LTF and VAH, ventilation in normoxia is greater than normal after the hypoxic stimulus is removed and the acute hypoxic ventilatory response can increase. However, the mechanisms of LTF and VAH are thought to be different based on previous results showing serotonin 5HT2 receptors, which are G protein coupled receptors (GPCR) that activate GQ signaling, contribute to LTF but not VAH. Newer results show that a different GPCR, namely adenosine A2A receptors and the GS signaling pathway, cause LTF with more severe intermittent hypoxia, i.e., PaO2 = 25–30 Torr for GS versus 35–45 Torr for LTF with the GQ signaling pathway. We hypothesized adenosine A2A receptors and GS signaling are involved in establishing VAH with longer term moderate CH and tested this in adult male rats by measuring ventilatory responses to O2 and CO2 with barometric pressure plethysmography after administering MSX-3 or ketanserin (A2A and 5HT2 antagonists, respectively, both 1 mg/Kg i.p.) during CH for 7 days. Blocking GS or GQ signals throughout CH exposure, significantly decreased VAH. After VAH was established, GQ blockade did not affect ventilation while GS blockade increased VAH. Similar to LTF, data support roles for both GQ and GS pathways in the development of VAH but after VAH has been established, the GS pathway inhibits VAH.
Collapse
Affiliation(s)
- Esteban A Moya
- Division of Physiology, Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Frank L Powell
- Division of Physiology, Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
19
|
Oyarce MP, Iturriaga R. Contribution of Oxidative Stress and Inflammation to the Neurogenic Hypertension Induced by Intermittent Hypoxia. Front Physiol 2018; 9:893. [PMID: 30050461 PMCID: PMC6050421 DOI: 10.3389/fphys.2018.00893] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/21/2018] [Indexed: 12/11/2022] Open
Abstract
Chronic intermittent hypoxia (CIH), the hallmark of obstructive sleep apnea, is the main risk factor to develop systemic hypertension. Oxidative stress, inflammation, and sympathetic overflow have been proposed as possible mechanisms underlying the CIH-induced hypertension. CIH potentiates the carotid body (CB) chemosensory discharge leading to sympathetic overflow, autonomic dysfunction, and hypertension. Oxidative stress and pro-inflammatory molecules are involved in neurogenic models of hypertension, acting on brainstem and hypothalamic nuclei related to the cardiorespiratory control, such as the nucleus of the solitary tract, which is the primary site for the afferent inputs from the CB. Oxidative stress and pro-inflammatory molecules contribute to the activation of the CB chemoreflex pathway in CIH-induced hypertension. In this brief review, we will discuss new evidence for a critical role of oxidative stress and neuro-inflammation in development of the CIH-induced hypertension through activation of the CB chemoreflex pathway.
Collapse
Affiliation(s)
| | - Rodrigo Iturriaga
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
20
|
Lundeberg J, Feiner JR, Schober A, Sall JW, Eilers H, Bickler PE. Increased Cytokines at High Altitude: Lack of Effect of Ibuprofen on Acute Mountain Sickness, Physiological Variables, or Cytokine Levels. High Alt Med Biol 2018; 19:249-258. [PMID: 29924642 DOI: 10.1089/ham.2017.0144] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Lundeberg, Jenny, John R. Feiner, Andrew Schober, Jeffrey W. Sall, Helge Eilers, and Philip E. Bickler. Increased cytokines at high altitude: lack of effect of ibuprofen on acute mountain sickness, physiological variables or cytokine levels. High Alt Med Biol. 19:249-258, 2018. INTRODUCTION There is no consensus on the role of inflammation in high-altitude acclimatization. AIMS To determine the effects of a nonsteroidal anti-inflammatory drug (ibuprofen 400 mg every 8 hours) on blood cytokines, acclimatization, acute mountain sickness (AMS, Lake Louise Score), and noninvasive oxygenation in brain and muscle in healthy volunteers. MATERIALS AND METHODS In this double-blind study, 20 volunteers were randomized to receive ibuprofen or placebo at sea level and for 48 hours at 3800 m altitude. Arterial, brain, and leg muscle saturation with near infrared spectroscopy, pulse oximetry, and heart rate were measured. Blood samples were collected for cytokine levels and cytokine gene expression. RESULTS All of the placebo subjects and 8 of 11 ibuprofen subjects developed AMS at altitude (p = 0.22, comparing placebo and ibuprofen). On arrival at altitude, the oxygen saturation as measured by pulse oximetry (SpO2) was 84.5% ± 5.4% (mean ± standard deviation). Increase in blood interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-10 (IL-10), tumor necrosis factor-α (TNF-α), and granulocyte-macrophage colony-stimulating factor (GM-CSF) levels occurred comparably in the placebo and ibuprofen groups (all not significant, univariate test by Wilcoxon rank sum). Increased IL-6 was associated with higher AMS scores (p = 0.002 by Spearman rank correlation). However, we found no difference or association in AMS score and blood or tissue oxygenation between the ibuprofen and placebo groups. CONCLUSIONS We found that ibuprofen, at the package-recommended adult dose, did not have a significant effect on altitude-related increases in cytokines, AMS scores, blood, or tissue oxygenation in a population of healthy subjects with a high incidence of AMS.
Collapse
Affiliation(s)
- Jenny Lundeberg
- 1 Department of Anesthesia and Intensive Care, Institution for Clinical Science, Karolinska Institutet, Danderyds University Hospital , Stockholm, Sweden
| | - John R Feiner
- 2 Department of Anesthesia and Perioperative Care, University of California San Francisco , San Francisco, California
| | - Andrew Schober
- 2 Department of Anesthesia and Perioperative Care, University of California San Francisco , San Francisco, California
| | - Jeffrey W Sall
- 2 Department of Anesthesia and Perioperative Care, University of California San Francisco , San Francisco, California
| | - Helge Eilers
- 2 Department of Anesthesia and Perioperative Care, University of California San Francisco , San Francisco, California
| | - Philip E Bickler
- 2 Department of Anesthesia and Perioperative Care, University of California San Francisco , San Francisco, California
| |
Collapse
|
21
|
Silva TM, Chaar LJ, Silva RC, Takakura AC, Câmara NO, Antunes VR, Moreira TS. Minocycline alters expression of inflammatory markers in autonomic brain areas and ventilatory responses induced by acute hypoxia. Exp Physiol 2018. [DOI: 10.1113/ep086780] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Talita M. Silva
- Department of Physiology and Biophysics; University of São Paulo; 05508-000 São Paulo SP Brazil
| | - Laiali J. Chaar
- Department of Physiology and Biophysics; University of São Paulo; 05508-000 São Paulo SP Brazil
| | - Reinaldo C. Silva
- Department of Immunology; University of São Paulo; 05508-000 São Paulo SP Brazil
| | - Ana C. Takakura
- Department of Pharmacology; Institute of Biomedical Sciences, University of São Paulo; 05508-000 São Paulo SP Brazil
| | - Niels O. Câmara
- Department of Immunology; University of São Paulo; 05508-000 São Paulo SP Brazil
| | - Vagner R. Antunes
- Department of Physiology and Biophysics; University of São Paulo; 05508-000 São Paulo SP Brazil
| | - Thiago S. Moreira
- Department of Physiology and Biophysics; University of São Paulo; 05508-000 São Paulo SP Brazil
| |
Collapse
|
22
|
Oyarce MP, Iturriaga R. Proinflammatory Cytokines in the Nucleus of the Solitary Tract of Hypertensive Rats Exposed to Chronic Intermittent Hypoxia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1071:69-74. [DOI: 10.1007/978-3-319-91137-3_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
23
|
De La Zerda DJ, Stokes JA, Do J, Go A, Fu Z, Powell FL. Ibuprofen does not reverse ventilatory acclimatization to chronic hypoxia. Respir Physiol Neurobiol 2017; 256:29-35. [PMID: 28757366 DOI: 10.1016/j.resp.2017.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 01/13/2023]
Abstract
Ventilatory acclimatization to hypoxia involves an increase in the acute hypoxic ventilatory response that is blocked by non-steroidal anti-inflammatory drugs administered during sustained hypoxia. We tested the hypothesis that inflammatory signals are necessary to sustain ventilatory acclimatization to hypoxia once it is established. Adult, rats were acclimatized to normoxia or chronic hypoxia (CH, [Formula: see text] =70Torr) for 11-12days and treated with ibuprofen or saline for the last 2days of hypoxia. Ventilation, metabolic rate, and arterial blood gas responses to O2 and CO2 were not affected by ibuprofen after acclimatization had been established. Immunohistochemistry and image analysis showed acute (1h) hypoxia activated microglia in a medullary respiratory center (nucleus tractus solitarius, NTS) and this was blocked by ibuprofen administered from the beginning of hypoxic exposure. Microglia returned to the control state after 7days of CH and were not affected by ibuprofen administered for 2 more days of CH. In contrast, NTS astrocytes were activated by CH but not acute hypoxia and activation was not reversed by administering ibuprofen for the last 2days of CH. Hence, ibuprofen cannot reverse ventilatory acclimatization or astrocyte activation after they have been established by sustained hypoxia. The results are consistent with a model for microglia activation or other ibuprofen-sensitive processes being necessary for the induction but not maintenance of ventilatory acclimatization to hypoxia.
Collapse
Affiliation(s)
- D J De La Zerda
- Division of Pulmonary and Critical Care Medicinea, Department of Medicine, University of California, 9500 Gilman Drive La Jolla, Medicine San Diego, CA 92093, United States; Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Miami, 1600 NW 10th Ave RMSB, Suite 7063, Miami, FL 33136, United States.
| | - J A Stokes
- Division of Physiology, Department of Medicine, University of California, 9500 Gilman Drive La Jolla, San Diego, CA 92093, United States.
| | - J Do
- Division of Physiology, Department of Medicine, University of California, 9500 Gilman Drive La Jolla, San Diego, CA 92093, United States
| | - A Go
- Division of Physiology, Department of Medicine, University of California, 9500 Gilman Drive La Jolla, San Diego, CA 92093, United States.
| | - Z Fu
- Division of Physiology, Department of Medicine, University of California, 9500 Gilman Drive La Jolla, San Diego, CA 92093, United States.
| | - F L Powell
- Division of Physiology, Department of Medicine, University of California, 9500 Gilman Drive La Jolla, San Diego, CA 92093, United States.
| |
Collapse
|
24
|
Casillan AJ, Chao J, Wood JG, Gonzalez NC. Acclimatization of the systemic microcirculation to alveolar hypoxia is mediated by an iNOS-dependent increase in nitric oxide availability. J Appl Physiol (1985) 2017; 123:974-982. [PMID: 28302706 DOI: 10.1152/japplphysiol.00322.2016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 02/15/2017] [Accepted: 03/12/2017] [Indexed: 11/22/2022] Open
Abstract
Rats breathing 10% O2 show a rapid and widespread systemic microvascular inflammation that results from nitric oxide (NO) depletion secondary to increased reactive O2 species (ROS) generation. The inflammation eventually resolves, and the microcirculation becomes resistant to more severe hypoxia. These experiments were directed to determine the mechanisms underlying this microvascular acclimatization process. Intravital microscopy of the mesentery showed that after 3 wk of hypoxia (barometric pressure ~380 Torr; partial pressure of inspired O2 ~68-70 Torr), rats showed no evidence of inflammation; however, treatment with the inducible NO synthase (iNOS) inhibitor L-N6-(1-iminoethyl) lysine dihydrochloride led to ROS generation, leukocyte-endothelial adherence and emigration, and increased vascular permeability. Mast cells harvested from normoxic rats underwent degranulation when exposed in vitro to monocyte chemoattractant protein-1 (MCP-1), the proximate mediator of mast cell degranulation in acute hypoxia. Mast cell degranulation by MCP-1 was prevented by the NO donor spermine-NONOate. MCP-1 did not induce degranulation of mast cells harvested from 6-day hypoxic rats; however, pretreatment with either the general NOS inhibitor L-NG-monomethyl arginine citrate or the selective iNOS inhibitor N-[3-(aminomethyl) benzyl] acetamidine restored the effect of MCP-1. iNOS was demonstrated in mast cells and alveolar macrophages of acclimatized rats. Nitrate + nitrite plasma levels decreased significantly in acute hypoxia and were restored after 6 days of acclimatization. The results support the hypothesis that the microvascular acclimatization to hypoxia results from the restoration of the ROS/NO balance mediated by iNOS expression at key sites in the inflammatory cascade.NEW & NOTEWORTHY The study shows that the systemic inflammation of acute hypoxia resolves via an inducible nitric oxide (NO) synthase-induced restoration of the reactive O2 species/NO balance in the systemic microcirculation. It is proposed that the acute systemic inflammation may represent the first step of the microvascular acclimatization process.
Collapse
Affiliation(s)
- Alfred J Casillan
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and
| | - Jie Chao
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and
| | - John G Wood
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and.,Department of Surgery, University of Kansas Medical Center, Kansas City, Kansas
| | - Norberto C Gonzalez
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and
| |
Collapse
|
25
|
Stokes JA, Arbogast TE, Moya EA, Fu Z, Powell FL. Minocycline blocks glial cell activation and ventilatory acclimatization to hypoxia. J Neurophysiol 2017; 117:1625-1635. [PMID: 28100653 DOI: 10.1152/jn.00525.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 01/11/2017] [Accepted: 01/11/2017] [Indexed: 01/14/2023] Open
Abstract
Ventilatory acclimatization to hypoxia (VAH) is the time-dependent increase in ventilation, which persists upon return to normoxia and involves plasticity in both central nervous system respiratory centers and peripheral chemoreceptors. We investigated the role of glial cells in VAH in male Sprague-Dawley rats using minocycline, an antibiotic that inhibits microglia activation and has anti-inflammatory properties, and barometric pressure plethysmography to measure ventilation. Rats received either minocycline (45mg/kg ip daily) or saline beginning 1 day before and during 7 days of chronic hypoxia (CH, PiO2 = 70 Torr). Minocycline had no effect on normoxic control rats or the hypercapnic ventilatory response in CH rats, but minocycline significantly (P < 0.001) decreased ventilation during acute hypoxia in CH rats. However, minocycline administration during only the last 3 days of CH did not reverse VAH. Microglia and astrocyte activation in the nucleus tractus solitarius was quantified from 30 min to 7 days of CH. Microglia showed an active morphology (shorter and fewer branches) after 1 h of hypoxia and returned to the control state (longer filaments and extensive branching) after 4 h of CH. Astrocytes increased glial fibrillary acidic protein antibody immunofluorescent intensity, indicating activation, at both 4 and 24 h of CH. Minocycline had no effect on glia in normoxia but significantly decreased microglia activation at 1 h of CH and astrocyte activation at 24 h of CH. These results support a role for glial cells, providing an early signal for the induction but not maintenance of neural plasticity underlying ventilatory acclimatization to hypoxia.NEW & NOTEWORTHY The signals for neural plasticity in medullary respiratory centers underlying ventilatory acclimatization to chronic hypoxia are unknown. We show that chronic hypoxia activates microglia and subsequently astrocytes. Minocycline, an antibiotic that blocks microglial activation and has anti-inflammatory properties, also blocks astrocyte activation in respiratory centers during chronic hypoxia and ventilatory acclimatization. However, minocycline cannot reverse ventilatory acclimatization after it is established. Hence, glial cells may provide signals that initiate but do not sustain ventilatory acclimatization.
Collapse
Affiliation(s)
- Jennifer A Stokes
- Division of Physiology, Department of Medicine; University of California, San Diego, La Jolla, California
| | - Tara E Arbogast
- Division of Physiology, Department of Medicine; University of California, San Diego, La Jolla, California
| | - Esteban A Moya
- Division of Physiology, Department of Medicine; University of California, San Diego, La Jolla, California
| | - Zhenxing Fu
- Division of Physiology, Department of Medicine; University of California, San Diego, La Jolla, California
| | - Frank L Powell
- Division of Physiology, Department of Medicine; University of California, San Diego, La Jolla, California
| |
Collapse
|
26
|
Hocker AD, Stokes JA, Powell FL, Huxtable AG. The impact of inflammation on respiratory plasticity. Exp Neurol 2017; 287:243-253. [PMID: 27476100 PMCID: PMC5121034 DOI: 10.1016/j.expneurol.2016.07.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 07/22/2016] [Accepted: 07/26/2016] [Indexed: 02/08/2023]
Abstract
Breathing is a vital homeostatic behavior and must be precisely regulated throughout life. Clinical conditions commonly associated with inflammation, undermine respiratory function may involve plasticity in respiratory control circuits to compensate and maintain adequate ventilation. Alternatively, other clinical conditions may evoke maladaptive plasticity. Yet, we have only recently begun to understand the effects of inflammation on respiratory plasticity. Here, we review some of common models used to investigate the effects of inflammation and discuss the impact of inflammation on nociception, chemosensory plasticity, medullary respiratory centers, motor plasticity in motor neurons and respiratory frequency, and adaptation to high altitude. We provide new data suggesting glial cells contribute to CNS inflammatory gene expression after 24h of sustained hypoxia and inflammation induced by 8h of intermittent hypoxia inhibits long-term facilitation of respiratory frequency. We also discuss how inflammation can have opposite effects on the capacity for plasticity, whereby it is necessary for increases in the hypoxic ventilatory response with sustained hypoxia, but inhibits phrenic long term facilitation after intermittent hypoxia. This review highlights gaps in our knowledge about the effects of inflammation on respiratory control (development, age, and sex differences). In summary, data to date suggest plasticity can be either adaptive or maladaptive and understanding how inflammation alters the respiratory system is crucial for development of better therapeutic interventions to promote breathing and for utilization of plasticity as a clinical treatment.
Collapse
Affiliation(s)
- Austin D Hocker
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States
| | - Jennifer A Stokes
- Division of Physiology, Department of Medicine, University of California San Diego, La Jolla, California, United States
| | - Frank L Powell
- Division of Physiology, Department of Medicine, University of California San Diego, La Jolla, California, United States
| | - Adrianne G Huxtable
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States.
| |
Collapse
|
27
|
Donovan LM, Kapur VK. Prevalence and Characteristics of Central Compared to Obstructive Sleep Apnea: Analyses from the Sleep Heart Health Study Cohort. Sleep 2016; 39:1353-9. [PMID: 27166235 DOI: 10.5665/sleep.5962] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 04/04/2016] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES Determine the prevalence of central sleep apnea (CSA) in a large community-based cohort using current definitions and contrast the clinical characteristics of subjects with CSA to those with obstructive sleep apnea (OSA) and no sleep apnea. METHODS A cross sectional analysis of baseline data from 5,804 participants of the Sleep Heart Health study was performed. Subjects meeting contemporary diagnostic criteria for CSA and Cheyne Stokes respiration (CSR) were compared to those without sleep apnea and those with OSA. Demographic data, medical comorbidities, medication use, and sleep related symptoms were compared between the groups. RESULTS The prevalences of CSA and Cheyne Stokes respiration (CSR) in this sample were 0.9 (95% confidence intervals [CI]: 0.7-1.2)% and 0.4 (95% CI: 0.3-0.6)%, respectively. Individuals with CSA were older, had lower body mass indexes (BMI), lower Epworth Sleepiness Scale scores, and were more likely to be male than individuals with obstructive sleep apnea OSA. Among those with self-reported heart failure (HF), OSA was much more common at 55.1% (95% CI: 45.6-64.6) than CSA 4.1% (95% CI: 0.3-7.9). CONCLUSIONS This is the largest community-based study of the prevalence and characteristics of CSA to date and demonstrates a prevalence of CSA that is intermediate to those previously noted. Contrary to prior data from clinic based samples, individuals with heart failure were much more likely to have OSA than CSA.
Collapse
Affiliation(s)
- Lucas M Donovan
- Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, WA
| | - Vishesh K Kapur
- Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, WA
| |
Collapse
|
28
|
Pamenter ME, Powell FL. Time Domains of the Hypoxic Ventilatory Response and Their Molecular Basis. Compr Physiol 2016; 6:1345-85. [PMID: 27347896 DOI: 10.1002/cphy.c150026] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ventilatory responses to hypoxia vary widely depending on the pattern and length of hypoxic exposure. Acute, prolonged, or intermittent hypoxic episodes can increase or decrease breathing for seconds to years, both during the hypoxic stimulus, and also after its removal. These myriad effects are the result of a complicated web of molecular interactions that underlie plasticity in the respiratory control reflex circuits and ultimately control the physiology of breathing in hypoxia. Since the time domains of the physiological hypoxic ventilatory response (HVR) were identified, considerable research effort has gone toward elucidating the underlying molecular mechanisms that mediate these varied responses. This research has begun to describe complicated and plastic interactions in the relay circuits between the peripheral chemoreceptors and the ventilatory control circuits within the central nervous system. Intriguingly, many of these molecular pathways seem to share key components between the different time domains, suggesting that varied physiological HVRs are the result of specific modifications to overlapping pathways. This review highlights what has been discovered regarding the cell and molecular level control of the time domains of the HVR, and highlights key areas where further research is required. Understanding the molecular control of ventilation in hypoxia has important implications for basic physiology and is emerging as an important component of several clinical fields. © 2016 American Physiological Society. Compr Physiol 6:1345-1385, 2016.
Collapse
Affiliation(s)
| | - Frank L Powell
- Physiology Division, Department of Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
29
|
Cardiorespiratory events in preterm infants: etiology and monitoring technologies. J Perinatol 2016; 36:165-71. [PMID: 26583939 DOI: 10.1038/jp.2015.164] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/05/2015] [Indexed: 12/13/2022]
Abstract
Every year, an estimated 15 million infants are born prematurely (<37 weeks gestation) with premature birth rates ranging from 5 to 18% across 184 countries. Although there are a multitude of reasons for this high rate of preterm birth, once birth occurs, a major challenge of infant care includes the stabilization of respiration and oxygenation. Clinical care of this vulnerable infant population continues to improve, yet there are major areas that have yet to be resolved including the identification of optimal respiratory support modalities and oxygen saturation targets, and reduction of associated short- and long-term morbidities. As intermittent hypoxemia is a consequence of immature respiratory control and resultant apnea superimposed upon an immature lung, improvements in clinical care must include a thorough knowledge of premature lung development and pathophysiology that is unique to premature birth. In Part 1 of a two-part review, we summarize early lung development and diagnostic methods for cardiorespiratory monitoring.
Collapse
|
30
|
Basaran KE, Villongco M, Ho B, Ellis E, Zarndt R, Antonova J, Hopkins SR, Powell FL. Ibuprofen Blunts Ventilatory Acclimatization to Sustained Hypoxia in Humans. PLoS One 2016; 11:e0146087. [PMID: 26726885 PMCID: PMC4699648 DOI: 10.1371/journal.pone.0146087] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/27/2015] [Indexed: 12/21/2022] Open
Abstract
Ventilatory acclimatization to hypoxia is a time-dependent increase in ventilation and the hypoxic ventilatory response (HVR) that involves neural plasticity in both carotid body chemoreceptors and brainstem respiratory centers. The mechanisms of such plasticity are not completely understood but recent animal studies show it can be blocked by administering ibuprofen, a nonsteroidal anti-inflammatory drug, during chronic hypoxia. We tested the hypothesis that ibuprofen would also block the increase in HVR with chronic hypoxia in humans in 15 healthy men and women using a double-blind, placebo controlled, cross-over trial. The isocapnic HVR was measured with standard methods in subjects treated with ibuprofen (400mg every 8 hrs) or placebo for 48 hours at sea level and 48 hours at high altitude (3,800 m). Subjects returned to sea level for at least 30 days prior to repeating the protocol with the opposite treatment. Ibuprofen significantly decreased the HVR after acclimatization to high altitude compared to placebo but it did not affect ventilation or arterial O2 saturation breathing ambient air at high altitude. Hence, compensatory responses prevent hypoventilation with decreased isocapnic ventilatory O2-sensitivity from ibuprofen at this altitude. The effect of ibuprofen to decrease the HVR in humans provides the first experimental evidence that a signaling mechanism described for ventilatory acclimatization to hypoxia in animal models also occurs in people. This establishes a foundation for the future experiments to test the potential role of different mechanisms for neural plasticity and ventilatory acclimatization in humans with chronic hypoxemia from lung disease.
Collapse
Affiliation(s)
- Kemal Erdem Basaran
- Division of Physiology, Department of Medicine, University of California San Diego, San Diego, California, United States of America
- Department of Medical Physiology, Faculty of Medicine, Erciyes University, Melikgazi, Kayseri, Turkey
| | - Michael Villongco
- Division of Physiology, Department of Medicine, University of California San Diego, San Diego, California, United States of America
| | - Baran Ho
- Division of Physiology, Department of Medicine, University of California San Diego, San Diego, California, United States of America
| | - Erika Ellis
- Division of Physiology, Department of Medicine, University of California San Diego, San Diego, California, United States of America
| | - Rachel Zarndt
- Division of Physiology, Department of Medicine, University of California San Diego, San Diego, California, United States of America
| | - Julie Antonova
- Division of Physiology, Department of Medicine, University of California San Diego, San Diego, California, United States of America
| | - Susan R. Hopkins
- Division of Physiology, Department of Medicine, University of California San Diego, San Diego, California, United States of America
- Department of Radiology, University of California San Diego, San Diego, California, United States of America
| | - Frank L. Powell
- Division of Physiology, Department of Medicine, University of California San Diego, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
31
|
Expressions of angiotensin and cytokine receptors in the paracrine signaling of the carotid body in hypoxia and sleep apnea. Respir Physiol Neurobiol 2015; 209:6-12. [DOI: 10.1016/j.resp.2014.09.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 09/18/2014] [Accepted: 09/22/2014] [Indexed: 01/27/2023]
|
32
|
Pamenter ME, Go A, Fu Z, Powell FL. No evidence of a role for neuronal nitric oxide synthase in the nucleus tractus solitarius in ventilatory responses to acute or chronic hypoxia in awake rats. J Appl Physiol (1985) 2015; 118:750-9. [PMID: 25571988 PMCID: PMC4360023 DOI: 10.1152/japplphysiol.00333.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 01/02/2015] [Indexed: 11/22/2022] Open
Abstract
When exposed to a hypoxic environment, the body's first response is a reflex increase in ventilation, termed the hypoxic ventilatory response (HVR). With chronic sustained hypoxia (CSH), such as during acclimatization to high altitude, an additional time-dependent increase in ventilation occurs, which increases the HVR and is termed ventilatory acclimatization to hypoxia (VAH). This secondary increase persists after exposure to CSH and involves plasticity within the circuits in the central nervous system that control breathing. The mechanisms of HVR plasticity are currently poorly understood. We hypothesized that changes in neuronal nitric oxide synthase (nNOS) activity or expression in the nucleus tractus solitarius contribute to this plasticity and underlie VAH in rats. To test this, we treated rats held in normoxia or 10% O2 (CSH, PIO2 = 70 Torr) for 7-9 days and measured ventilation in conscious, unrestrained animals before and after microinjecting the general NOS antagonist L-NG-Nitroarginine methyl ester into the nucleus tractus solitarius (NTS) or systemically injecting the nNOS-specific antagonist S-methyl-l-thiocitrulline. Localization of injection sites in the NTS was confirmed by histology following the experiment. We found that 1) neither NTS-specific nor systemic nNOS antagonism had any effect on hypoxia-mediated changes in breathing or metabolism (P > 0.05), but 2) nNOS protein expression was increased in the middle and caudal NTS by CSH. A persistent HVR after nNOS blockade in the NTS contrasts with results in awake mice, and our findings do not support the hypotheses that nNOS in the NTS contribute to the HVR or VAH in awake rats.
Collapse
Affiliation(s)
- Matthew E Pamenter
- Division of Physiology, Department of Medicine, University of California, San Diego, La Jolla, California; and Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ariel Go
- Division of Physiology, Department of Medicine, University of California, San Diego, La Jolla, California; and
| | - Zhenxing Fu
- Division of Physiology, Department of Medicine, University of California, San Diego, La Jolla, California; and
| | - Frank L Powell
- Division of Physiology, Department of Medicine, University of California, San Diego, La Jolla, California; and
| |
Collapse
|
33
|
Iturriaga R, Moya EA, Del Rio R. Inflammation and oxidative stress during intermittent hypoxia: the impact on chemoreception. Exp Physiol 2015; 100:149-55. [DOI: 10.1113/expphysiol.2014.079525] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 12/12/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Rodrigo Iturriaga
- Laboratorio de Neurobiología; Facultad de Ciencias Biológicas; Pontificia Universidad Católica de Chile; Santiago Chile
| | - Esteban A. Moya
- Laboratorio de Neurobiología; Facultad de Ciencias Biológicas; Pontificia Universidad Católica de Chile; Santiago Chile
| | - Rodrigo Del Rio
- Laboratorio de Neurobiología; Facultad de Ciencias Biológicas; Pontificia Universidad Católica de Chile; Santiago Chile
- Centro de Investigación Biomédica; Universidad Autónoma de Chile; Santiago Chile
| |
Collapse
|
34
|
Pathogenic roles of the carotid body inflammation in sleep apnea. Mediators Inflamm 2014; 2014:354279. [PMID: 25276055 PMCID: PMC4170702 DOI: 10.1155/2014/354279] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/15/2014] [Accepted: 08/27/2014] [Indexed: 11/30/2022] Open
Abstract
Breathing difficulties in sleep are a hallmark of sleep-disordered breathing commonly observed in patients with sleep disorders. The pathophysiology of sleep apnea is in part due to an augmented activity of the carotid body chemoreflex. Arterial chemoreceptors in the carotid body are sensitive to inflammatory cytokines and immunogenic molecules in the circulation, because cytokine receptors are expressed in the carotid body in experimental animals and human. Intriguingly, proinflammatory cytokines are also locally produced and released in the carotid body. Also, there are significant increases in the expression of proinflammatory cytokines, cytokine receptors, and inflammatory mediators in the carotid body under hypoxic conditions, suggesting an inflammatory response of the carotid body. These upregulated cytokine signaling pathways could enhance the carotid chemoreceptor activity, leading to an overactivity of the chemoreflex adversely effecting breathing instability and autonomic imbalance. This review aims to summarize findings of the literature relevant to inflammation in the carotid body, with highlights on the pathophysiological impact in sleep apnea. It is concluded that local inflammation in the carotid body plays a pathogenic role in sleep apnea, which could potentially be a therapeutic target for the treatment of the pathophysiological consequence of sleep apnea.
Collapse
|
35
|
Pamenter ME, Nguyen J, Carr JA, Powell FL. The effect of combined glutamate receptor blockade in the NTS on the hypoxic ventilatory response in awake rats differs from the effect of individual glutamate receptor blockade. Physiol Rep 2014; 2:2/8/e12092. [PMID: 25107985 PMCID: PMC4246593 DOI: 10.14814/phy2.12092] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Ventilatory acclimatization to hypoxia (VAH) increases the hypoxic ventilatory response (HVR) and causes persistent hyperventilation when normoxia is restored, which is consistent with the occurrence of synaptic plasticity in acclimatized animals. Recently, we demonstrated that antagonism of individual glutamate receptor types (GluRs) within the nucleus tractus solitarii (NTS) modifies this plasticity and VAH (J. Physiol. 592(8):1839–1856); however, the effects of combined GluR antagonism remain unknown in awake rats. To evaluate this, we exposed rats to room air or chronic sustained hypobaric hypoxia (CSH, PiO2 = 70 Torr) for 7–9 days. On the experimental day, we microinjected artificial cerebrospinal fluid (ACSF: sham) and then a “cocktail” of the GluR antagonists MK‐801 and DNQX into the NTS. The location of injection sites in the NTS was confirmed by glutamate injections on a day before the experiment and with histology following the experiment. Ventilation was measured in awake, unrestrained rats breathing normoxia or acute hypoxia (10% O2) in 15‐min intervals using barometric pressure plethysmography. In control (CON) rats, acute hypoxia increased ventilation; NTS microinjections of GluR antagonists, but not ACSF, significantly decreased ventilation and breathing frequency in acute hypoxia but not normoxia (P <0.05). CSH increased ventilation in hypoxia and acute normoxia. In CSH‐conditioned rats, GluR antagonists in the NTS significantly decreased ventilation in normoxia and breathing frequency in hypoxia. A persistent HVR after combined GluR blockade in the NTS contrasts with the effect of individual GluR blockade and also with results in anesthetized rats. Our findings support the hypotheses that GluRs in the NTS contribute to, but cannot completely explain, VAH in awake rats. Ventilatory acclimatization to hypoxia involves plasticity in the central nervous system, as well as in arterial chemoreceptors. NMDA and AMPA glutamate receptors in the NTS contribute to different aspects of ventilatory acclimatization to hypoxia. However, total ionotropic glutamate receptor blockade in the NTS does not block acclimatization and the effects are not predictable from those of individual antagonists.
Collapse
Affiliation(s)
- Matthew E Pamenter
- Division of Physiology, Department of Medicine, University of California San Diego, La Jolla, California Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jetson Nguyen
- Division of Physiology, Department of Medicine, University of California San Diego, La Jolla, California
| | - John A Carr
- Division of Physiology, Department of Medicine, University of California San Diego, La Jolla, California
| | - Frank L Powell
- Division of Physiology, Department of Medicine, University of California San Diego, La Jolla, California
| |
Collapse
|
36
|
Kåhlin J, Mkrtchian S, Ebberyd A, Hammarstedt-Nordenvall L, Nordlander B, Yoshitake T, Kehr J, Prabhakar N, Poellinger L, Fagerlund MJ, Eriksson LI. The human carotid body releases acetylcholine, ATP and cytokines during hypoxia. Exp Physiol 2014; 99:1089-98. [PMID: 24887113 DOI: 10.1113/expphysiol.2014.078873] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Studies on experimental animals established that the carotid bodies are sensory organs for detecting arterial blood O2 levels and that the ensuing chemosensory reflex is a major regulator of cardiorespiratory functions during hypoxia. However, little information is available on the human carotid body responses to hypoxia. The present study was performed on human carotid bodies obtained from surgical patients undergoing elective head and neck cancer surgery. Our results show that exposing carotid body slices to hypoxia for a period as brief as 5 min markedly facilitates the release of ACh and ATP. Furthermore, prolonged hypoxia for 1 h induces an increased release of interleukin (IL)-1β, IL-4, IL-6, IL-8 and IL-10. Immunohistochemical analysis revealed that type 1 cells of the human carotid body express an array of cytokine receptors as well as hypoxia-inducible factor-1α and hypoxia-inducible factor-2α. Taken together, these results demonstrate that ACh and ATP are released from the human carotid body in response to hypoxia, suggesting that these neurotransmitters, as in several experimental animal models, play a role in hypoxic signalling also in the human carotid body. The finding that the human carotid body releases cytokines in response to hypoxia adds to the growing body of information suggesting that the carotid body may play a role in detecting inflammation, providing a link between the immune system and the nervous system.
Collapse
Affiliation(s)
- Jessica Kåhlin
- Section for Anesthesiology and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden Department of Anesthesiology, Surgical Services and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Souren Mkrtchian
- Section for Anesthesiology and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Anette Ebberyd
- Section for Anesthesiology and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Britt Nordlander
- Department of Otorhinolaryngology (ENT), Karolinska University Hospital, Stockholm, Sweden
| | - Takashi Yoshitake
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jan Kehr
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Nanduri Prabhakar
- Institute for Integrative Physiology & Center for Systems Biology of O2 Sensing, Biological Sciences Division, University of Chicago, Chicago, IL, USA
| | - Lorenz Poellinger
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Malin Jonsson Fagerlund
- Section for Anesthesiology and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden Department of Anesthesiology, Surgical Services and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Lars I Eriksson
- Section for Anesthesiology and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden Department of Anesthesiology, Surgical Services and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
37
|
Liu C, Croft QPP, Kalidhar S, Brooks JT, Herigstad M, Smith TG, Dorrington KL, Robbins PA. Dexamethasone mimics aspects of physiological acclimatization to 8 hours of hypoxia but suppresses plasma erythropoietin. J Appl Physiol (1985) 2013; 114:948-56. [PMID: 23393065 PMCID: PMC3633439 DOI: 10.1152/japplphysiol.01414.2012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 01/31/2013] [Indexed: 11/22/2022] Open
Abstract
Dexamethasone ameliorates the severity of acute mountain sickness (AMS) but it is unknown whether it obtunds normal physiological responses to hypoxia. We studied whether dexamethasone enhanced or inhibited the ventilatory, cardiovascular, and pulmonary vascular responses to sustained (8 h) hypoxia. Eight healthy volunteers were studied, each on four separate occasions, permitting four different protocols. These were: dexamethasone (20 mg orally) beginning 2 h before a control period of 8 h of air breathing; dexamethasone with 8 h of isocapnic hypoxia (end-tidal Po(2) = 50 Torr); placebo with 8 h of air breathing; and placebo with 8 h of isocapnic hypoxia. Before and after each protocol, the following were determined under both euoxic and hypoxic conditions: ventilation; pulmonary artery pressure (estimated using echocardiography to assess maximum tricuspid pressure difference); heart rate; and cardiac output. Plasma concentrations of erythropoietin (EPO) were also determined. Dexamethasone had no early (2-h) effect on any variable. Both dexamethasone and 8 h of hypoxia increased euoxic values of ventilation, pulmonary artery pressure, and heart rate, together with the ventilatory sensitivity to acute hypoxia. These effects were independent and additive. Eight hours of hypoxia, but not dexamethasone, increased the sensitivity of pulmonary artery pressure to acute hypoxia. Dexamethasone, but not 8 h of hypoxia, increased both cardiac output and systemic arterial pressure. Dexamethasone abolished the rise in EPO induced by 8 h of hypoxia. In summary, dexamethasone enhances ventilatory acclimatization to hypoxia. Thus, dexamethasone in AMS may improve oxygenation and thereby indirectly lower pulmonary artery pressure.
Collapse
Affiliation(s)
- Chun Liu
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Porzionato A, Macchi V, De Caro R, Di Giulio C. Inflammatory and immunomodulatory mechanisms in the carotid body. Respir Physiol Neurobiol 2013; 187:31-40. [PMID: 23485800 DOI: 10.1016/j.resp.2013.02.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 02/05/2013] [Accepted: 02/19/2013] [Indexed: 10/27/2022]
Abstract
Evidence is available about the role of inflammatory/immunological factors in the physiology and plasticity of the carotid body, with potential clinical implications in obstructive sleep apnea syndrome and sudden infant death syndrome. In humans, lymphomonocytic aggregations (chronic carotid glomitis) have been reported in aging and opiate addiction. Glomus cells produce prostaglandin E2 and the cytokines interleukin 1β, interleukin 6 and TNF-α, with corresponding receptors. These factors modulate glomus cell excitability, catecholamine release and/or chemoreceptor discharge. The above cytokines are up-regulated in chronic sustained or intermittent hypoxia, and prevention of these changes, with ibuprofen or dexamethasone, may modulate hypoxia-induced changes in carotid body chemosensitivity. The main transcription factors considered to be involved are NF-kB and HIFs. Circulating immunogens (lipopolysaccharide) and cytokines may also affect peripheral arterial chemoreception, with the carotid body exerting an immunosensing function.
Collapse
Affiliation(s)
- Andrea Porzionato
- Section of Anatomy, Department of Molecular Medicine, University of Padova, Padova, Italy.
| | | | | | | |
Collapse
|
39
|
Gauda EB, Shirahata M, Mason A, Pichard LE, Kostuk EW, Chavez-Valdez R. Inflammation in the carotid body during development and its contribution to apnea of prematurity. Respir Physiol Neurobiol 2013; 185:120-31. [DOI: 10.1016/j.resp.2012.08.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 07/20/2012] [Accepted: 08/02/2012] [Indexed: 01/09/2023]
|
40
|
Abstract
BACKGROUND Apnea associated with infection and inflammation is a major medical concern in preterm infants. Prostaglandin E(2) (PGE(2)) serves as a critical mediator between infection and apnea. We hypothesize that alteration of the microsomal PGE synthase-1 (mPGES-1) PGE(2) pathway influences respiratory control and response to hypoxia. METHODS Nine-d-old wild-type (WT) mice, mPGES-1 heterozygote (mPGES-1(+/-)), and mPGES-1 knockout (mPGES-1(-/-)) mice were used. Respiration was investigated in mice using flow plethysmography after the mice received either interleukin-1β (IL-1β) (10 µg/kg) or saline. Mice were subjected to a period of normoxia, subsequent exposure to hyperoxia, and finally either moderate (5 min) or severe hypoxia (until 1 min after last gasp). RESULTS IL-1β worsened survival in WT mice but not in mice with reduced or no mPGES-1. Reduced expression of mPGES-1 prolonged gasping duration and increased the number of gasps during hypoxia. Response to intracerebroventricular PGE(2) was not dependent on mPGES-1 expression. CONCLUSION Activation of mPGES-1 is involved in the rapid and vital response to severe hypoxia as well as inflammation. Attenuation of mPGES-1 appears to have no detrimental effects, yet prolongs autoresuscitation efforts and improves survival. Consequently, inhibition of the mPGES-1 pathway may serve as a potential therapeutic target for the treatment of apnea and respiratory disorders.
Collapse
|
41
|
Inflammation and cardio-respiratory control. Foreword. Respir Physiol Neurobiol 2011; 178:359-61. [PMID: 21712104 DOI: 10.1016/j.resp.2011.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 06/14/2011] [Indexed: 11/21/2022]
|
42
|
A chronic pain: inflammation-dependent chemoreceptor adaptation in rat carotid body. Respir Physiol Neurobiol 2011; 178:362-9. [PMID: 21397054 DOI: 10.1016/j.resp.2011.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 03/02/2011] [Accepted: 03/03/2011] [Indexed: 11/20/2022]
Abstract
Experiments in recent years have revealed labile electrophysiological and neurochemical phenotypes in primary afferent neurons exposed to specific stimulus conditions associated with the development of chronic pain. These studies collectively demonstrate that the mechanisms responsible for functional plasticity are primarily mediated by novel neuroimmune interactions involving circulating and resident immune cells and their secretory products, which together induce hyperexcitability in the primary sensory neurons. In another peripheral sensory modality, namely the arterial chemoreceptors, sustained stimulation in the form of chronic hypoxia (CH) elicits increased chemoafferent excitability from the mammalian carotid body. Previous studies which focused on functional changes in oxygen-sensitive type I cells in this organ have only partially elucidated the molecular and cellular mechanisms which initiate and control this adaptive response. Recent studies in our laboratory indicate a unique role for the immune system in regulating the chemo-adaptive response of the carotid body to physiologically relevant levels of hypoxia.
Collapse
|