1
|
Eugenín J, Beltrán-Castillo S, Irribarra E, Pulgar-Sepúlveda R, Abarca N, von Bernhardi R. Microglial reactivity in brainstem chemosensory nuclei in response to hypercapnia. Front Physiol 2024; 15:1332355. [PMID: 38476146 PMCID: PMC10927973 DOI: 10.3389/fphys.2024.1332355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/08/2024] [Indexed: 03/14/2024] Open
Abstract
Microglia, the resident immune cells of the CNS, surveil, detect, and respond to various extracellular signals. Depending on the nature of these signals, an integrative microglial response can be triggered, resulting in a phenotypic transformation. Here, we evaluate whether hypercapnia modifies microglia phenotype in brainstem respiratory-related nuclei. Adult C57BL/6 inbred mice were exposed to 10% CO2 enriched air (hypercapnia), or pure air (control), for 10 or 30 min and immediately processed for immunohistochemistry to detect the ubiquitous microglia marker, ionized calcium binding adaptor molecule 1 (Iba1). Hypercapnia for thirty, but not 10 min reduced the Iba1 labeling percent coverage in the ventral respiratory column (VRC), raphe nucleus (RN), and nucleus tractus solitarius (NTS) and the number of primary branches in VRC. The morphological changes persisted, at least, for 60 min breathing air after the hypercapnic challenge. No significant changes were observed in Iba1+ cells in the spinal trigeminal nucleus (Sp5) and the hippocampus. In CF-1 outbred mice, 10% CO2 followed by 60 min of breathing air, resulted in the reduction of Iba1 labeling percent coverage and the number and length of primary branches in VRC, RN, and NTS. No morphological change was observed in Iba1+ cells in Sp5 and hippocampus. Double immunofluorescence revealed that prolonged hypercapnia increased the expression of CD86, an inflammatory marker for reactive state microglia, in Iba1+ cells in VRC, RN, and NTS, but not in Sp5 and hippocampus in CF-1 mice. By contrast, the expression of CD206, a marker of regulatory state microglia, persisted unmodified. In brainstem, but not in hippocampal microglia cultures, hypercapnia increased the level of IL1β, but not that of TGFβ measured by ELISA. Our results show that microglia from respiratory-related chemosensory nuclei, are reactive to prolonged hypercapnia acquiring an inflammatory-like phenotype.
Collapse
Affiliation(s)
- Jaime Eugenín
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Sebastián Beltrán-Castillo
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago, Chile
| | - Estefanía Irribarra
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | | | - Nicolás Abarca
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Rommy von Bernhardi
- Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
2
|
Wang BC, Lion RP, Avesar M, Abdala J, Deming DD, Wilson CG. Comparison of Local and Systemic Inflammation During Invasive Versus Noninvasive Ventilation in Rats. J Interferon Cytokine Res 2022; 42:343-348. [PMID: 35704907 DOI: 10.1089/jir.2022.0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The impact of noninvasive ventilation (NIV) on local and systemic inflammation is poorly characterized, particularly when compared with invasive mechanical ventilation (IMV). We sought to quantify the local and systemic inflammatory response of these 2 respiratory treatments in rats with lipopolysaccharide (LPS)-induced lung injury (LPS-injured) and healthy rats. Animals were subjected to 4 h of NIV or IMV treatments at noninjurious settings, or 4 h of control treatment in which healthy or LPS-injured animals remained spontaneously breathing under isoflurane anesthesia with no respiratory support. Cytokines were then quantified in the serum and lung tissue by multiplex enzyme-linked immunosorbent assay. Contrary to our hypothesis, there were no significant differences in cytokine levels in serum or lung when comparing the NIV- and IMV-treated groups; this was true in both LPS-injured and healthy rats. However, within the LPS-injured group, pulmonary levels of interleukin (IL)-1α, IL-6, and tumor necrosis factor α were significantly lower in the NIV-treated group than in control but not in the IMV-treated group compared with control. We conclude that NIV, unlike IMV, could attenuate local inflammation.
Collapse
Affiliation(s)
- Billy C Wang
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, OSF Children's Hospital of Illinois, Peoria, Illinois, USA
| | - Richard P Lion
- Department of Pediatrics, Texas Center for Pediatric and Congenital Heart Disease, UT Health Austin/Dell Children's Medical Center, University of Texas Dell Medical School, Austin, Texas, USA
| | - Michael Avesar
- Division of Pediatric Critical Care Medicine, Loma Linda University Children's Hospital, Loma Linda, California, USA
| | - Jonathan Abdala
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Douglas D Deming
- Division of Neonatology, Loma Linda University Children's Hospital, Loma Linda, California, USA
| | - Christopher G Wilson
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California, USA
| |
Collapse
|
3
|
Camacho-Hernández P, Lorea-Hernández JJ, Pinedo-Vargas L, Peña-Ortega F. Perinatal inflammation and gestational intermittent hypoxia disturbs respiratory rhythm generation and long-term facilitation in vitro: partial protection by acute minocycline. Respir Physiol Neurobiol 2021; 297:103829. [PMID: 34921999 DOI: 10.1016/j.resp.2021.103829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 10/31/2021] [Accepted: 12/13/2021] [Indexed: 01/04/2023]
Abstract
Perinatal inflammation triggers breathing disturbances early in life and affects the respiratory adaptations to challenging conditions, including the generation of amplitude long-term facilitation (LTF) by acute intermittent hypoxia (AIH). Some of these effects can be avoided by anti-inflammatory treatments like minocycline. Since little is known about the effects of perinatal inflammation on the inspiratory rhythm generator, located in the preBötzinger complex (preBötC), we tested the impact of acute lipopolysaccharide (LPS) systemic administration (sLPS), as well as gestational LPS (gLPS) and gestational chronic IH (gCIH), on respiratory rhythm generation and its long-term response to AIH in a brainstem slice preparation from neonatal mice. We also evaluated whether acute minocycline administration could influence these effects. We found that perinatal inflammation induced by sLPS or gLPS, as well as gCIH, modulate the frequency, signal-to-noise ratio and/or amplitude (and their regularity) of the respiratory rhythm recorded from the preBötC in the brainstem slice. Moreover, all these perinatal conditions inhibited frequency LTF and amplitude long-term depression (LTD); gCIH even induced frequency LTD of the respiratory rhythm after AIH. Some of the alterations were not observed in slices pre-treated in vitro with minocycline, when compared with slices obtained from naïve pups, suggesting that ongoing inflammatory conditions affect respiratory rhythm generation and its plasticity. Thus, it is likely that alterations in the inspiratory rhythm generator and its adaptive responses could contribute to the respiratory disturbances observed in neonates that suffered from perinatal inflammatory challenges.
Collapse
Affiliation(s)
- Polet Camacho-Hernández
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, Mexico
| | - Jonathan Julio Lorea-Hernández
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, Mexico
| | - Laura Pinedo-Vargas
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, Mexico
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, Mexico.
| |
Collapse
|
4
|
Vitaliti G, Falsaperla R. Chorioamnionitis, Inflammation and Neonatal Apnea: Effects on Preterm Neonatal Brainstem and on Peripheral Airways: Chorioamnionitis and Neonatal Respiratory Functions. CHILDREN-BASEL 2021; 8:children8100917. [PMID: 34682182 PMCID: PMC8534519 DOI: 10.3390/children8100917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/01/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022]
Abstract
Background: The present manuscript aims to be a narrative review evaluating the association between inflammation in chorioamnionitis and damage on respiratory centers, peripheral airways, and lungs, explaining the pathways responsible for apnea in preterm babies born by delivery after chorioamnionitis. Methods: A combination of keywords and MESH words was used, including: "inflammation", "chorioamnionitis", "brainstem", "cytokines storm", "preterm birth", "neonatal apnea", and "apnea physiopathology". All identified papers were screened for title and abstracts by the two authors to verify whether they met the proper criteria to write the topic. Results: Chorioamnionitis is usually associated with Fetal Inflammatory Response Syndrome (FIRS), resulting in injury of brain and lungs. Literature data have shown that infections causing chorioamnionitis are mostly associated with inflammation and consequent hypoxia-mediated brain injury. Moreover, inflammation and infection induce apneic episodes in neonates, as well as in animal samples. Chorioamnionitis-induced inflammation favors the systemic secretion of pro-inflammatory cytokines that are involved in abnormal development of the respiratory centers in the brainstem and in alterations of peripheral airways and lungs. Conclusions: Preterm birth shows a suboptimal development of the brainstem and abnormalities and altered development of peripheral airways and lungs. These alterations are responsible for reduced respiratory control and apnea. To date, mostly animal studies have been published. Therefore, more clinical studies on the role of chorioamninitis-induced inflammation on prematurity and neonatal apnea are necessary.
Collapse
Affiliation(s)
- Giovanna Vitaliti
- Unit of Pediatrics, Department of Medical Sciences, Section of Pediatrics, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: ; Tel.: +39-34-0471-0614
| | - Raffaele Falsaperla
- Pediatrics and Pediatric Emergency Operative Unit, Azienda Ospedaliero Universitaria Policlinico G.Rodolico-San Marco, San Marco Hospital, University of Catania, 95124 Catania, Italy;
- Neonatal Intensive Care Unit, Azienda Ospedaliero Universitaria Policlinico G.Rodolico-San Marco, San Marco Hospital, San Marco Hospital, University of Catania, 95124 Catania, Italy
| |
Collapse
|
5
|
Papagianis PC, Ahmadi-Noorbakhsh S, Lim R, Wallace E, Polglase G, Pillow JJ, Moss TJ. The effect of human amnion epithelial cells on lung development and inflammation in preterm lambs exposed to antenatal inflammation. PLoS One 2021; 16:e0253456. [PMID: 34170941 PMCID: PMC8232434 DOI: 10.1371/journal.pone.0253456] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/04/2021] [Indexed: 11/19/2022] Open
Abstract
Background Lung inflammation and impaired alveolarization are hallmarks of bronchopulmonary dysplasia (BPD). We hypothesize that human amnion epithelial cells (hAECs) are anti-inflammatory and reduce lung injury in preterm lambs born after antenatal exposure to inflammation. Methods Pregnant ewes received either intra-amniotic lipopolysaccharide (LPS, from E.coli 055:B5; 4mg) or saline (Sal) on day 126 of gestation. Lambs were delivered by cesarean section at 128 d gestation (term ~150 d). Lambs received intravenous hAECs (LPS/hAECs: n = 7; 30x106 cells) or equivalent volumes of saline (LPS/Sal, n = 10; or Sal/Sal, n = 9) immediately after birth. Respiratory support was gradually de-escalated, aimed at early weaning from mechanical ventilation towards unassisted respiration. Lung tissue was collected 1 week after birth. Lung morphology was assessed and mRNA levels for inflammatory mediators were measured. Results Respiratory support required by LPS/hAEC lambs was not different to Sal/Sal or LPS/Sal lambs. Lung tissue:airspace ratio was lower in the LPS/Sal compared to Sal/Sal lambs (P<0.05), but not LPS/hAEC lambs. LPS/hAEC lambs tended to have increased septation in their lungs versus LPS/Sal (P = 0.08). Expression of inflammatory cytokines was highest in LPS/hAECs lambs. Conclusions Postnatal administration of a single dose of hAECs stimulates a pulmonary immune response without changing ventilator requirements in preterm lambs born after intrauterine inflammation.
Collapse
Affiliation(s)
- Paris Clarice Papagianis
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, School of Clinical Health Sciences, Monash University, Clayton, Victoria, Australia
- School of Human Sciences, The University of Western Australia, Crawley, WA, Australia
- School of Health Sciences and Health Innovations Research Institute, RMIT University, Melbourne, VIC, Australia
- * E-mail:
| | | | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, School of Clinical Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Euan Wallace
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, School of Clinical Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Graeme Polglase
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, School of Clinical Health Sciences, Monash University, Clayton, Victoria, Australia
| | - J. Jane Pillow
- School of Human Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Timothy J. Moss
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, School of Clinical Health Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
6
|
Lorea-Hernández JJ, Camacho-Hernández NP, Peña-Ortega F. Interleukin 1-beta but not the interleukin-1 receptor antagonist modulates inspiratory rhythm generation in vitro. Neurosci Lett 2020; 734:134934. [PMID: 32259558 DOI: 10.1016/j.neulet.2020.134934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 10/24/2022]
Abstract
Interleukin 1-beta (IL-1β) is a cytokine that modulates breathing when applied systemically or directly into the brain. IL-1β is expressed, along with its receptors, in IL-1β-sensitive respiratory-related circuits, which likely include the inspiratory rhythm generator (the preBötzinger complex, preBötC). Thus, considering that IL-1β might directly modulate preBötC function, we tested whether IL-1β and its endogenous antagonist IL1Ra modulate inspiratory rhythm generation in the brainstem slice preparation containing the preBötC. We found that IL-1β reduces, in a concentration-dependent manner, the amplitude of the fictive inspiratory rhythm generated by the preBötC, which is prevented by IL1Ra. Only a negligible effect on the rhythm frequency was observed at one of the concentrations tested (10 ng/mL). In sum, these findings indicate that IL-1β modulates respiratory rhythm generation. In contrast, IL1Ra did not produce a major effect but slightly increased burst amplitude regularity of the fictive respiratory rhythm. Our findings show that IL-1β modulates breathing by directly modulating the inspiratory rhythm generation. This modulation could contribute to the respiratory response to inflammation in health and disease.
Collapse
Affiliation(s)
- Jonathan Julio Lorea-Hernández
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Qro, 76230, México
| | - Neira Polet Camacho-Hernández
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Qro, 76230, México
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Qro, 76230, México.
| |
Collapse
|
7
|
Nault S, Creuze V, Al-Omar S, Levasseur A, Nadeau C, Samson N, Imane R, Tremblay S, Carrault G, Pladys P, Praud JP. Cardiorespiratory Alterations in a Newborn Ovine Model of Systemic Inflammation Induced by Lipopolysaccharide Injection. Front Physiol 2020; 11:585. [PMID: 32625107 PMCID: PMC7311791 DOI: 10.3389/fphys.2020.00585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 05/11/2020] [Indexed: 12/14/2022] Open
Abstract
Although it is well known that neonatal sepsis can induce important alterations in cardiorespiratory control, their detailed early features and the mechanisms involved remain poorly understood. As a first step in resolving this issue, the main goal of this study was to characterize these alterations more extensively by setting up a full-term newborn lamb model of systemic inflammation using lipopolysaccharide (LPS) injection. Two 6-h polysomnographic recordings were performed on two consecutive days on eight full-term lambs: the first after an IV saline injection (control condition, CTRL); the second, after an IV injection of 2.5 μg/kg Escherichia coli LPS 0127:B8 (LPS condition). Rectal temperature, locomotor activity, state of alertness, arterial blood gases, respiratory frequency and heart rate, mean arterial blood pressure, apneas and cardiac decelerations, and heart-rate and respiratory-rate variability (HRV and RRV) were assessed. LPS injection decreased locomotor activity (p = 0.03) and active wakefulness (p = 0.01) compared to the CTRL. In addition, LPS injection led to a biphasic increase in rectal temperature (p = 0.01 at ∼30 and 180 min) and in respiratory frequency and heart rate (p = 0.0005 and 0.005, respectively), and to an increase in cardiac decelerations (p = 0.05). An overall decrease in HRV and RRV was also observed. Interestingly, the novel analysis of the representations of the horizontal and vertical visibility network yielded the most statistically significant alterations in HRV structure, suggesting its potential clinical importance for providing an earlier diagnosis of neonatal bacterial sepsis. A second goal was to assess whether the reflexivity of the autonomic nervous system was altered after LPS injection by studying the cardiorespiratory components of the laryngeal and pulmonary chemoreflexes. No difference was found. Lastly, preliminary results provide proof of principle that brainstem inflammation (increased IL-8 and TNF-α mRNA expression) can be shown 6 h after LPS injection. In conclusion, this full-term lamb model of systemic inflammation reproduces several important aspects of neonatal bacterial sepsis and paves the way for studies in preterm lambs aiming to assess both the effect of prematurity and the central neural mechanisms of cardiorespiratory control alterations observed during neonatal sepsis.
Collapse
Affiliation(s)
- Stéphanie Nault
- Neonatal Respiratory Research Unit, Departments of Pediatrics and Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Sally Al-Omar
- Neonatal Respiratory Research Unit, Departments of Pediatrics and Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Annabelle Levasseur
- Neonatal Respiratory Research Unit, Departments of Pediatrics and Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Charlène Nadeau
- Neonatal Respiratory Research Unit, Departments of Pediatrics and Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Nathalie Samson
- Neonatal Respiratory Research Unit, Departments of Pediatrics and Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Roqaya Imane
- CHU Sainte-Justine Research Center, Departments of Neurosciences and Pediatrics, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Sophie Tremblay
- CHU Sainte-Justine Research Center, Departments of Neurosciences and Pediatrics, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Guy Carrault
- Inserm, LTSI - UMR 1099, CHU Rennes, Université Rennes 1, Rennes, France
| | - Patrick Pladys
- Inserm, LTSI - UMR 1099, CHU Rennes, Université Rennes 1, Rennes, France
| | - Jean-Paul Praud
- Neonatal Respiratory Research Unit, Departments of Pediatrics and Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
8
|
Gauda EB, McLemore GL. Premature birth, homeostatic plasticity and respiratory consequences of inflammation. Respir Physiol Neurobiol 2019; 274:103337. [PMID: 31733340 DOI: 10.1016/j.resp.2019.103337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/11/2019] [Accepted: 11/10/2019] [Indexed: 12/23/2022]
Abstract
Infants who are born premature can have persistent apnea beyond term gestation, reemergence of apnea associated with inflammation during infancy, increased risk of sudden unexplained death, and sleep disorder breathing during infancy and childhood. The autonomic nervous system, particularly the central neural networks that control breathing and peripheral and central chemoreceptors and mechanoreceptors that modulate the activity of the central respiratory network, are rapidly developing during the last trimester (22-37 weeks gestation) of fetal life. With advances in neonatology, in well-resourced, developed countries, infants born as young as 23 weeks gestation can survive. Thus, a substantial part of maturation of central and peripheral systems that control breathing occurs ex-utero in infants born at the limit of viability. The balance of excitatory and inhibitory influences dictates the ultimate output from the central respiratory network. We propose in this review that simply being born early in the last trimester can trigger homeostatic plasticity within the respiratory network tipping the balance toward inhibition that persists in infancy. We discuss the intersection of premature birth, homeostatic plasticity and biological mechanisms leading to respiratory depression during inflammation in former premature infants.
Collapse
Affiliation(s)
- Estelle B Gauda
- The Hospital for Sick Children, Division of Neonatology, Department of Pediatrics, University of Toronto, Toronto, Ontario, M5G 1X8, Canada.
| | - Gabrielle L McLemore
- Department of Biology, School of Computer, Mathematics and Natural Sciences (SCMNS), Morgan State University, Baltimore, MD, 21251, United States
| |
Collapse
|
9
|
Morrison NR, Johnson SM, Hocker AD, Kimyon RS, Watters JJ, Huxtable AG. Time and dose-dependent impairment of neonatal respiratory motor activity after systemic inflammation. Respir Physiol Neurobiol 2019; 272:103314. [PMID: 31614211 DOI: 10.1016/j.resp.2019.103314] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/07/2019] [Accepted: 10/02/2019] [Indexed: 02/06/2023]
Abstract
Neonatal respiratory impairment during infection is common, yet its effects on respiratory neural circuitry are not fully understood. We hypothesized that the timing and severity of systemic inflammation is positively correlated with impairment in neonatal respiratory activity. To test this, we evaluated time- and dose-dependent impairment of in vitro fictive respiratory activity. Systemic inflammation (induced by lipopolysaccharide, LPS, 5 mg/kg, i.p.) impaired burst amplitude during the early (1 h) inflammatory response. The greatest impairment in respiratory activity (decreased amplitude, frequency, and increased rhythm disturbances) occurred during the peak (3 h) inflammatory response in brainstem-spinal cord preparations. Surprisingly, isolated medullary respiratory circuitry within rhythmic slices showed decreased baseline frequency and delayed onset of rhythm only after higher systemic inflammation (LPS 10 mg/kg) early in the inflammatory response (1 h), with no impairments at the peak inflammatory response (3 h). Thus, different components of neonatal respiratory circuitry have differential temporal and dose sensitivities to systemic inflammation, creating multiple windows of vulnerability for neonates after systemic inflammation.
Collapse
Affiliation(s)
- Nina R Morrison
- Department of Human Physiology, University of Oregon, Eugene, OR, 97403, United States
| | - Stephen M Johnson
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, 53706, United States
| | - Austin D Hocker
- Department of Human Physiology, University of Oregon, Eugene, OR, 97403, United States
| | - Rebecca S Kimyon
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, 53706, United States
| | - Jyoti J Watters
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, 53706, United States
| | - Adrianne G Huxtable
- Department of Human Physiology, University of Oregon, Eugene, OR, 97403, United States.
| |
Collapse
|
10
|
Ramirez SC, Koschnitzky JE, Youngquist TM, Baertsch NA, Smith CV, Ramirez JM. Perinatal Breathing Patterns and Survival in Mice Born Prematurely and at Term. Front Physiol 2019; 10:1113. [PMID: 31543825 PMCID: PMC6728753 DOI: 10.3389/fphys.2019.01113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/12/2019] [Indexed: 11/29/2022] Open
Abstract
Infants born prematurely, often associated with maternal infection, frequently exhibit breathing instabilities that require resuscitation. We hypothesized that breathing patterns during the first hour of life would be predictive of survival in an animal model of prematurity. Using plethysmography, we measured breathing patterns during the first hour after birth in mice born at term (Term 19.5), delivered prematurely on gestational day 18.5 following administration of low-dose lipopolysaccharide (LPS; 0.14 mg/kg) to pregnant dams (LPS 18.5), or delivered on gestational day 18.7 or 17.5 by caesarian section (C-S 18.5 and C-S 17.5, respectively). Our experimental approach allowed us to dissociate effects caused by inflammation, from effects due to premature birth in the absence of an inflammatory response. C-S 17.5 mice did not survive, whereas mortality was not increased in C-S 18.5 mice. However, in premature pups born at the same gestational age (day 18.5) in response to maternal LPS injection, mortality was significantly increased. Overall, mice that survived had higher birth weights and showed eupneic or gasping activity that was able to transition to normal breathing. Some mice also exhibited a “saw tooth” breathing pattern that was able to transition into eupnea during the first hour of life. In contrast, mice that did not survive showed distinct, large amplitude, long-lasting breaths that occurred at low frequency and did not transition into eupnea. This breathing pattern was only observed during the first hour of life and was more prevalent in LPS 18.5 and C-S 18.5 mice. Indeed, breath tidal volumes were higher in inflammation-induced premature pups than in pups delivered via C-section at equivalent gestational ages, whereas breathing frequencies were low in both LPS-induced and C-section-induced premature pups. We conclude that a breathing pattern characterized by low frequency and large tidal volume is a predictor for the failure to survive, and that these characteristics are more often seen when prematurity occurs in the context of maternal inflammation. Further insights into the mechanisms that generate these breathing patterns and how they transition to normal breathing may facilitate development of novel strategies to manage premature birth in humans.
Collapse
Affiliation(s)
- Sanja C Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Jenna E Koschnitzky
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Tiffany M Youngquist
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Nathan A Baertsch
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Charles V Smith
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
11
|
Peña-Ortega F. Clinical and experimental aspects of breathing modulation by inflammation. Auton Neurosci 2018; 216:72-86. [PMID: 30503161 DOI: 10.1016/j.autneu.2018.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 12/19/2022]
Abstract
Neuroinflammation is produced by local or systemic alterations and mediated mainly by glia, affecting the activity of various neural circuits including those involved in breathing rhythm generation and control. Several pathological conditions, such as sudden infant death syndrome, obstructive sleep apnea and asthma exert an inflammatory influence on breathing-related circuits. Consequently breathing (both resting and ventilatory responses to physiological challenges), is affected; e.g., responses to hypoxia and hypercapnia are compromised. Moreover, inflammation can induce long-lasting changes in breathing and affect adaptive plasticity; e.g., hypoxic acclimatization or long-term facilitation. Mediators of the influences of inflammation on breathing are most likely proinflammatory molecules such as cytokines and prostaglandins. The focus of this review is to summarize the available information concerning the modulation of the breathing function by inflammation and the cellular and molecular aspects of this process. I will consider: 1) some clinical and experimental conditions in which inflammation influences breathing; 2) the variety of experimental approaches used to understand this inflammatory modulation; 3) the likely cellular and molecular mechanisms.
Collapse
Affiliation(s)
- Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO 76230, México.
| |
Collapse
|
12
|
Johnson SM, Randhawa KS, Epstein JJ, Gustafson E, Hocker AD, Huxtable AG, Baker TL, Watters JJ. Gestational intermittent hypoxia increases susceptibility to neuroinflammation and alters respiratory motor control in neonatal rats. Respir Physiol Neurobiol 2018; 256:128-142. [PMID: 29174411 PMCID: PMC5963968 DOI: 10.1016/j.resp.2017.11.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/13/2017] [Accepted: 11/21/2017] [Indexed: 10/18/2022]
Abstract
Sleep disordered breathing (SDB) and obstructive sleep apnea (OSA) during pregnancy are growing health concerns because these conditions are associated with adverse outcomes for newborn infants. SDB/OSA during pregnancy exposes the mother and the fetus to intermittent hypoxia. Direct exposure of adults and neonates to IH causes neuroinflammation and neuronal apoptosis, and exposure to IH during gestation (GIH) causes long-term deficits in offspring respiratory function. However, the role of neuroinflammation in CNS respiratory control centers of GIH offspring has not been investigated. Thus, the goal of this hybrid review/research article is to comprehensively review the available literature both in humans and experimental rodent models of SDB in order to highlight key gaps in knowledge. To begin to address some of these gaps, we also include data demonstrating the consequences of GIH on respiratory rhythm generation and neuroinflammation in CNS respiratory control regions. Pregnant rats were exposed to daily intermittent hypoxia during gestation (G10-G21). Neuroinflammation in brainstem and cervical spinal cord was evaluated in P0-P3 pups that were injected with saline or lipopolysaccharide (LPS; 0.1mg/kg, 3h). In CNS respiratory control centers, we found that GIH attenuated the normal CNS immune response to LPS challenge in a gene-, sex-, and CNS region-specific manner. GIH also altered normal respiratory motor responses to LPS in newborn offspring brainstem-spinal cord preparations. These data underscore the need for further study of the long-term consequences of maternal SDB on the relationship between inflammation and the respiratory control system, in both neonatal and adult offspring.
Collapse
Affiliation(s)
- Stephen M Johnson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, United States.
| | - Karanbir S Randhawa
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Jenna J Epstein
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Ellen Gustafson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Austin D Hocker
- Department of Human Physiology, University of Oregon, Eugene, OR 97401, United States
| | - Adrianne G Huxtable
- Department of Human Physiology, University of Oregon, Eugene, OR 97401, United States
| | - Tracy L Baker
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Jyoti J Watters
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, United States
| |
Collapse
|
13
|
Ramirez JM, Severs LJ, Ramirez SC, Agosto‐Marlin IM. Advances in cellular and integrative control of oxygen homeostasis within the central nervous system. J Physiol 2018; 596:3043-3065. [PMID: 29742297 PMCID: PMC6068258 DOI: 10.1113/jp275890] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 04/04/2018] [Indexed: 12/31/2022] Open
Abstract
Mammals must continuously regulate the levels of O2 and CO2 , which is particularly important for the brain. Failure to maintain adequate O2 /CO2 homeostasis has been associated with numerous disorders including sleep apnoea, Rett syndrome and sudden infant death syndrome. But, O2 /CO2 homeostasis poses major regulatory challenges, even in the healthy brain. Neuronal activities change in a differentiated, spatially and temporally complex manner, which is reflected in equally complex changes in O2 demand. This raises important questions: is oxygen sensing an emergent property, locally generated within all active neuronal networks, and/or the property of specialized O2 -sensitive CNS regions? Increasing evidence suggests that the regulation of the brain's redox state involves properties that are intrinsic to many networks, but that specialized regions in the brainstem orchestrate the integrated control of respiratory and cardiovascular functions. Although the levels of O2 in arterial blood and the CNS are very different, neuro-glial interactions and purinergic signalling are critical for both peripheral and CNS chemosensation. Indeed, the specificity of neuroglial interactions seems to determine the differential responses to O2 , CO2 and the changes in pH.
Collapse
Affiliation(s)
- Jan Marino Ramirez
- Center for Integrative Brain ResearchSeattle Children's Research InstituteDepartment of Neurological SurgeryUniversity of Washington School of MedicineSeattleWAUSA
- Department of Physiology and BiophysicsUniversity of WashingtonSeattleWAUSA
| | - Liza J. Severs
- Department of Physiology and BiophysicsUniversity of WashingtonSeattleWAUSA
| | - Sanja C. Ramirez
- Center for Integrative Brain ResearchSeattle Children's Research InstituteDepartment of Neurological SurgeryUniversity of Washington School of MedicineSeattleWAUSA
| | - Ibis M. Agosto‐Marlin
- Center for Integrative Brain ResearchSeattle Children's Research InstituteDepartment of Neurological SurgeryUniversity of Washington School of MedicineSeattleWAUSA
| |
Collapse
|
14
|
Hocker AD, Huxtable AG. IL-1 receptor activation undermines respiratory motor plasticity after systemic inflammation. J Appl Physiol (1985) 2018; 125:504-512. [PMID: 29565772 DOI: 10.1152/japplphysiol.01051.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Inflammation undermines respiratory motor plasticity, yet we are just beginning to understand the inflammatory signaling involved. Because interleukin-1 (IL-1) signaling promotes or inhibits plasticity in other central nervous system regions, we tested the following hypotheses: 1) IL-1 receptor (IL-1R) activation after systemic inflammation is necessary to undermine phrenic long-term facilitation (pLTF), a model of respiratory motor plasticity induced by acute intermittent hypoxia (AIH), and 2) spinal IL-1β is sufficient to undermine pLTF. pLTF is significantly reduced 24 h after lipopolysaccharide (LPS; 100 μg/kg ip, 12 ± 18%, n = 5) compared with control (57 ± 25%, n = 6) and restored by peripheral IL-1R antagonism (63 ± 13%, n = 5, AF-12198, 0.5 mg/kg ip, 24 h). Furthermore, acute, spinal IL-1R antagonism (1 mM AF-12198, 15 μl it) restored pLTF (53 ± 15%, n = 4) compared with LPS-treated rats (11 ± 10%; n = 5), demonstrating IL-1R activation is necessary to undermine pLTF after systemic inflammation. However, in healthy animals, pLTF persisted after spinal, exogenous recombinant rat IL-1β (rIL-1β) (1 ng ± AIH; 66 ± 26%, n = 3, 10 ng ± AIH; 102 ± 49%, n = 4, 100 ng + AIH; 93 ± 51%, n = 3, 300 ng ± AIH; 37 ± 40%, n = 3; P < 0.05 from baseline). In the absence of AIH, spinal rIL-1β induced progressive, dose-dependent phrenic amplitude facilitation (1 ng; −3 ± 5%, n = 3, 10 ng; 8 ± 22%, n = 3, 100 ng; 31 ± 12%, P < 0.05, n = 4, 300 ng; 51 ± 17%, P < 0.01 from baseline, n = 4). In sum, IL-1R activation, both systemically and spinally, undermines pLTF after LPS-induced systemic inflammation, but IL-1R activation is not sufficient to abolish plasticity. Understanding the inflammatory signaling inhibiting respiratory plasticity is crucial to developing treatment strategies utilizing respiratory plasticity to promote breathing during ventilatory control disorders.NEW & NOTEWORTHY This study gives novel insights concerning mechanisms by which systemic inflammation undermines respiratory motor plasticity. We demonstrate that interleukin-1 signaling, both peripherally and centrally, undermines respiratory motor plasticity. However, acute, exogenous interleukin-1 signaling is not sufficient to undermine respiratory motor plasticity.
Collapse
Affiliation(s)
- Austin D. Hocker
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | | |
Collapse
|
15
|
Stojanovska V, Miller SL, Hooper SB, Polglase GR. The Consequences of Preterm Birth and Chorioamnionitis on Brainstem Respiratory Centers: Implications for Neurochemical Development and Altered Functions by Inflammation and Prostaglandins. Front Cell Neurosci 2018; 12:26. [PMID: 29449803 PMCID: PMC5799271 DOI: 10.3389/fncel.2018.00026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/17/2018] [Indexed: 11/16/2022] Open
Abstract
Preterm birth is a major cause for neonatal morbidity and mortality, and is frequently associated with adverse neurological outcomes. The transition from intrauterine to extrauterine life at birth is particularly challenging for preterm infants. The main physiological driver for extrauterine transition is the establishment of spontaneous breathing. However, preterm infants have difficulty clearing lung liquid, have insufficient surfactant levels, and underdeveloped lungs. Further, preterm infants have an underdeveloped brainstem, resulting in reduced respiratory drive. These factors facilitate the increased requirement for respiratory support. A principal cause of preterm birth is intrauterine infection/inflammation (chorioamnionitis), and infants with chorioamnionitis have an increased risk and severity of neurological damage, but also demonstrate impaired autoresuscitation capacity and prevalent apnoeic episodes. The brainstem contains vital respiratory centers which provide the neural drive for breathing, but the impact of preterm birth and/or chorioamnionitis on this brain region is not well understood. The aim of this review is to provide an overview of the role and function of the brainstem respiratory centers, and to highlight the proposed mechanisms of how preterm birth and chorioamnionitis may affect central respiratory functions.
Collapse
Affiliation(s)
- Vanesa Stojanovska
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University and Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Stuart B Hooper
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University and Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Graeme R Polglase
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University and Hudson Institute of Medical Research, Melbourne, VIC, Australia
| |
Collapse
|
16
|
Ribeiro A, Mayer C, Wilson C, Martin R, MacFarlane P. Intratracheal LPS administration attenuates the acute hypoxic ventilatory response: Role of brainstem IL-1β receptors. Respir Physiol Neurobiol 2017; 242:45-51. [DOI: 10.1016/j.resp.2017.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 01/01/2023]
|
17
|
Master ZR, Porzionato A, Kesavan K, Mason A, Chavez-Valdez R, Shirahata M, Gauda EB. Lipopolysaccharide exposure during the early postnatal period adversely affects the structure and function of the developing rat carotid body. J Appl Physiol (1985) 2016; 121:816-827. [PMID: 27418689 DOI: 10.1152/japplphysiol.01094.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 07/12/2016] [Indexed: 12/15/2022] Open
Abstract
The carotid body (CB) substantially influences breathing in premature infants by affecting the frequency of apnea and periodic breathing. In adult animals, inflammation alters the structure and chemosensitivity of the CB, yet it is not known if this pertains to neonates. We hypothesized that early postnatal inflammation leads to morphological and functional changes in the developing rat CB, which persists for 1 wk after the initial provoking insult. To test our hypothesis, we exposed rat pups at postnatal day 2 (P2) to lipopolysaccharide (LPS; 100 μg/kg) or saline (SAL) intraperitoneally. At P9-10 (1 wk after treatment), LPS-exposed animals had significantly more spontaneous intermittent hypoxic (IH) events, attenuated ventilatory responses to changes in oxygen tension (measured by whole body plethysmography), and attenuated hypoxic chemosensitivity of the carotid sinus nerve (measured in vitro), compared with SAL-exposed controls. These functional changes were associated with the following: 1) increased inflammatory cytokine mRNA levels; 2) decreased volume of supportive type II cells; and 3) elevated dopamine levels (a major inhibitory neuromodulator) within the CB. These findings suggest that early postnatal inflammation in newborn rats adversely affects the structure and function of the CB and is associated with increased frequency of intermittent desaturations, similar to the phenomenon observed in premature infants. Furthermore, this is the first newborn model of spontaneous intermittent desaturations that may be used to understand the mechanisms contributing to IH events in newborns.
Collapse
Affiliation(s)
- Zankhana R Master
- Department of Pediatrics, Division of Neonatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andrea Porzionato
- Department of Molecular Medicine, University of Padova, Padova, Italy; and
| | - Kalpashri Kesavan
- Department of Pediatrics, Division of Neonatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ariel Mason
- Department of Pediatrics, Division of Neonatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Raul Chavez-Valdez
- Department of Pediatrics, Division of Neonatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Machiko Shirahata
- Department of Environmental Health Sciences, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Estelle B Gauda
- Department of Pediatrics, Division of Neonatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland;
| |
Collapse
|
18
|
Lorea-Hernández JJ, Morales T, Rivera-Angulo AJ, Alcantara-Gonzalez D, Peña-Ortega F. Microglia modulate respiratory rhythm generation and autoresuscitation. Glia 2015; 64:603-19. [DOI: 10.1002/glia.22951] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 11/18/2015] [Accepted: 11/18/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Jonathan-Julio Lorea-Hernández
- Departamento de Neurobiología del Desarrollo y Neurofisiología; Instituto De Neurobiología, UNAM Campus Juriquilla; Querétaro México
| | - Teresa Morales
- Departamento de Neurobiología del Desarrollo y Neurofisiología; Instituto De Neurobiología, UNAM Campus Juriquilla; Querétaro México
| | - Ana-Julia Rivera-Angulo
- Departamento de Neurobiología del Desarrollo y Neurofisiología; Instituto De Neurobiología, UNAM Campus Juriquilla; Querétaro México
| | - David Alcantara-Gonzalez
- Departamento de Neurobiología del Desarrollo y Neurofisiología; Instituto De Neurobiología, UNAM Campus Juriquilla; Querétaro México
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología; Instituto De Neurobiología, UNAM Campus Juriquilla; Querétaro México
| |
Collapse
|
19
|
Funk GD, Rajani V, Alvares TS, Revill AL, Zhang Y, Chu NY, Biancardi V, Linhares-Taxini C, Katzell A, Reklow R. Neuroglia and their roles in central respiratory control; an overview. Comp Biochem Physiol A Mol Integr Physiol 2015; 186:83-95. [PMID: 25634606 DOI: 10.1016/j.cbpa.2015.01.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 01/15/2015] [Accepted: 01/16/2015] [Indexed: 01/12/2023]
Abstract
While once viewed as mere housekeepers, providing structural and metabolic support for neurons, it is now clear that neuroglia do much more. Phylogenetically, they have undergone enormous proliferation and diversification as central nervous systems grew in their complexity. In addition, they: i) are morphologically and functionally diverse; ii) play numerous, vital roles in maintaining CNS homeostasis; iii) are key players in brain development and responses to injury; and, iv) via gliotransmission, are likely participants in information processing. In this review, we discuss the diverse roles of neuroglia in maintaining homeostasis in the CNS, their evolutionary origins, the different types of neuroglia and their functional significance for respiratory control, and finally consider evidence that they contribute to the processing of chemosensory information in the respiratory network and the homeostatic control of blood gases.
Collapse
Affiliation(s)
- Gregory D Funk
- Department of Physiology, Neuroscience and Mental Health Institute, Women and Children's Health Research Institute (WCHRI), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| | - Vishaal Rajani
- Department of Physiology, Neuroscience and Mental Health Institute, Women and Children's Health Research Institute (WCHRI), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Tucaauê S Alvares
- Department of Physiology, Neuroscience and Mental Health Institute, Women and Children's Health Research Institute (WCHRI), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Ann L Revill
- Department of Physiology, Neuroscience and Mental Health Institute, Women and Children's Health Research Institute (WCHRI), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Yong Zhang
- Department of Physiology, Neuroscience and Mental Health Institute, Women and Children's Health Research Institute (WCHRI), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Nathan Y Chu
- Department of Physiology, Neuroscience and Mental Health Institute, Women and Children's Health Research Institute (WCHRI), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Vivian Biancardi
- Department of Physiology, Neuroscience and Mental Health Institute, Women and Children's Health Research Institute (WCHRI), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Department of Animal Morphology and Physiology, Fac. de Ciências Agrárias e Veterinárias/UNESP, Via de Acesso Paulo Donato Castellane km 05, Jaboticabal, SP 14884-900, Brazil
| | - Camila Linhares-Taxini
- Department of Physiology, Neuroscience and Mental Health Institute, Women and Children's Health Research Institute (WCHRI), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Department of Animal Morphology and Physiology, Fac. de Ciências Agrárias e Veterinárias/UNESP, Via de Acesso Paulo Donato Castellane km 05, Jaboticabal, SP 14884-900, Brazil
| | - Alexis Katzell
- Department of Physiology, Neuroscience and Mental Health Institute, Women and Children's Health Research Institute (WCHRI), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Robert Reklow
- Department of Physiology, Neuroscience and Mental Health Institute, Women and Children's Health Research Institute (WCHRI), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
20
|
Abstract
Apnea of prematurity is a significant problem due to immaturity of the central neural control circuitry responsible for integrating afferent input and central rhythm. In this review, we provide an overview of the pathogenesis of apnea of prematurity--including our current understanding of the role that afferent input to the brain stem plays in synergy with the central pattern generation circuitry in the emergence of apnea of prematurity. We then discuss the interplay of apnea, bradycardia, desaturation, as well as the genesis of central, mixed, and obstructive apnea. Finally, we provide a summary of the physiological basis for current therapeutic approaches to treating apnea of prematurity, and conclude with an overview of proposed long-term consequences of the resultant intermittent hypoxic episodes.
Collapse
Affiliation(s)
- Richard J Martin
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA.
| | | |
Collapse
|
21
|
Bierman AM, Tankersley CG, Wilson CG, Chavez-Valdez R, Gauda EB. Perinatal hyperoxic exposure reconfigures the central respiratory network contributing to intolerance to anoxia in newborn rat pups. J Appl Physiol (1985) 2013; 116:47-53. [PMID: 24157524 DOI: 10.1152/japplphysiol.00224.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Perinatal exposure to hyperoxia (30-60% O2) alters the respiratory control system via modulation of peripheral arterial chemoreceptor development and function. Furthermore, hyperoxic exposure during the first two postnatal weeks of life can alternatively modulate the different phases of the hypoxic ventilatory response. Given the effects of perinatal hyperoxia, the aims of our study were 1) to determine the effect on survival time in response to lethal anoxic stimuli in rat pups and 2) to characterize the output of the isolated central respiratory network in response to acute hypoxic stimuli. We hypothesized that perinatal hyperoxic exposure would modify the neonatal rat ventilatory response to anoxia by affecting a central component of the respiratory network in addition to the maturation of the carotid body chemoreceptors. We found that animals continuously exposed to 60% oxygen up to age 5 days after parturition (P5) have reduced breathing frequency at baseline and within the first 10 min of a fatal anoxic challenge. Hyperoxic rat pups also have a shortened time to last gasp in response to anoxia that is not associated with lung injury or inflammation. This study is the first to demonstrate that these in vivo findings correlate with reduced phrenic burst frequency from the isolated brainstem ex vivo. Thus hyperoxic exposure reduced the phrenic burst frequency at baseline and in response to ex vivo anoxia. Importantly, our data suggest that perinatal hyperoxia alters ventilation and the response to anoxia at P5 in part by altering the frequency of phrenic bursts generated by the central respiratory network.
Collapse
Affiliation(s)
- Alexis M Bierman
- Department of Pediatrics, Neonatology Research Laboratories, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | | | | | | | | |
Collapse
|
22
|
Apnea of prematurity--perfect storm. Respir Physiol Neurobiol 2013; 189:213-22. [PMID: 23727228 DOI: 10.1016/j.resp.2013.05.026] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 05/17/2013] [Accepted: 05/21/2013] [Indexed: 12/23/2022]
Abstract
With increased survival of preterm infants as young as 23 weeks gestation, maintaining adequate respiration and corresponding oxygenation represents a clinical challenge in this unique patient cohort. Respiratory instability characterized by apnea and periodic breathing occurs in premature infants because of immature development of the respiratory network. While short respiratory pauses and apnea may be of minimal consequence if oxygenation is maintained, they can be problematic if accompanied by chronic intermittent hypoxemia. Underdevelopment of the lung and the resultant lung injury that occurs in this population concurrent with respiratory instability creates the perfect storm leading to frequent episodes of profound and recurrent hypoxemia. Chronic intermittent hypoxemia contributes to the immediate and long term co-morbidities that occur in this population. In this review we discuss the pathophysiology leading to the perfect storm, diagnostic assessment of breathing instability in this unique population and therapeutic interventions that aim to stabilize breathing without contributing to tissue injury.
Collapse
|
23
|
Jafri A, Belkadi A, Zaidi SIA, Getsy P, Wilson CG, Martin RJ. Lung inflammation induces IL-1β expression in hypoglossal neurons in rat brainstem. Respir Physiol Neurobiol 2013; 188:21-8. [PMID: 23648475 DOI: 10.1016/j.resp.2013.04.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 04/25/2013] [Accepted: 04/26/2013] [Indexed: 10/26/2022]
Abstract
Perinatal inflammation is associated with respiratory morbidity. Immune modulation of brainstem respiratory control centers may provide a link for this pathobiology. We exposed 11-day old rats to intratracheal lipopolysaccharide (LPS, 0.5 μg/g) to test the hypothesis that intrapulmonary inflammation increases expression of the proinflammatory cytokine IL-1β within respiratory-related brainstem regions. Intratracheal LPS resulted in a 32% increase in IL-1β protein expression in the medulla oblongata. In situ hybridization showed increased intensity of IL-1β mRNA but no change in neuronal numbers. Co-localization experiments showed that hypoglossal neurons express IL-1β mRNA and immunostaining showed a 43% increase in IL-1β protein-expressing cells after LPS exposure. LPS treatment also significantly increased microglial cell numbers though they did not express IL-1β mRNA. LPS-induced brainstem expression of neuronal IL-1β mRNA and protein may have implications for our understanding of the vulnerability of neonatal respiratory control in response to a peripheral proinflammatory stimulus.
Collapse
Affiliation(s)
- Anjum Jafri
- Department of Pediatrics, Division of Neonatology, Rainbow Babies & Children's Hospital, Cleveland, OH 44106, USA
| | | | | | | | | | | |
Collapse
|
24
|
Balan KV, Kc P, Mayer CA, Wilson CG, Belkadi A, Martin RJ. Intrapulmonary lipopolysaccharide exposure upregulates cytokine expression in the neonatal brainstem. Acta Paediatr 2012; 101:466-71. [PMID: 22176020 DOI: 10.1111/j.1651-2227.2011.02564.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
UNLABELLED Perinatal inflammation and neonatal sepsis trigger lung and brain injury. We hypothesized that endotoxin exposure in the immature lung upregulates proinflammatory cytokine expression in the brainstem and impairs respiratory control. Lipopolysaccharide (LPS) or saline was administered intratracheally to vagal intact or denervated rat pups. LPS increased brainstem IL-1β and vagotomy blunted this response. There was an attenuated ventilatory response to hypoxia and increased brainstem IL-1β expression after LPS. CONCLUSION Intratracheal endotoxin exposure in rat pups is associated with upregulation of IL-1β in the brainstem that is vagally mediated and associated with an impaired hypoxic ventilatory response.
Collapse
Affiliation(s)
- Kannan V Balan
- Rainbow Babies & Children's Hospital, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, OH 44106-6010, USA
| | | | | | | | | | | |
Collapse
|
25
|
Moore J, Haouzi P, Van de Louw A, Bell HJ. Hypocapnia-dependent facilitation of augmented breaths: observations in awake vs. anesthetized rats. Respir Physiol Neurobiol 2011; 180:105-11. [PMID: 22063924 DOI: 10.1016/j.resp.2011.10.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 10/14/2011] [Accepted: 10/24/2011] [Indexed: 12/31/2022]
Abstract
We investigated whether commonly used injectable laboratory anesthetics alter the regulation of augmented breaths (ABs) in different respiratory backgrounds. Male rats were studied on three separate experimental days, receiving one of three injections in randomized order: ethyl carbamate ('urethane'; 1.2mgkg(-1)), ketamine/xylazine (ket/xyl; 80/10mgkg(-1)), or normal saline. Following each of the three interventions, breathing was monitored during 15min exposures to normoxia (room air), hypoxia (10% O(2)) and hypoxia+CO(2) (10% O(2), 5% CO(2)). Urethane anesthesia completely eliminated ABs from the breathing rhythm in room air conditions (p<0.001), and decreased the hypocapnia-dependent component of this response (p<0.001). ket/xyl left the normal incidence of ABs in room air breathing intact but significantly suppressed the hypoxia-induced facilitation of ABs (p=0.0015). These results provide the first clear evidence that laboratory anesthesia can profoundly alter the regulation of ABs including the hypocapnia-dependent component of their facilitation.
Collapse
Affiliation(s)
- J Moore
- Division of Pulmonary and Critical Care, Department of Medicine, Penn State University College of Medicine, Hershey, PA, USA
| | | | | | | |
Collapse
|
26
|
Inflammation and cardio-respiratory control. Foreword. Respir Physiol Neurobiol 2011; 178:359-61. [PMID: 21712104 DOI: 10.1016/j.resp.2011.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 06/14/2011] [Indexed: 11/21/2022]
|