1
|
Badurdeen S, Galinsky R, Roberts CT, Crossley KJ, Zahra VA, Thiel A, Pham Y, Davis PG, Hooper SB, Polglase GR, Camm EJ. Rapid oxygen titration following cardiopulmonary resuscitation mitigates cerebral overperfusion and striatal mitochondrial dysfunction in asphyxiated newborn lambs. J Cereb Blood Flow Metab 2024:271678X241302738. [PMID: 39576879 PMCID: PMC11584996 DOI: 10.1177/0271678x241302738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 11/24/2024]
Abstract
Asphyxiated neonates must have oxygenation rapidly restored to limit ongoing hypoxic-ischemic injury. However, the effects of transient hyperoxia after return of spontaneous circulation (ROSC) are poorly understood. We randomly allocated acutely asphyxiated, near-term lambs to cardiopulmonary resuscitation in 100% oxygen ("standard oxygen", n = 8) or air (n = 7) until 5 minutes after ROSC, or to resuscitation in 100% oxygen immediately weaned to air upon ROSC ("rapid-wean", n = 7). From 5 minutes post-ROSC, oxygen was titrated to target preductal oxygen saturation between 90-95%. Cerebral tissue oxygenation was transiently but markedly elevated following ROSC in the standard oxygen group compared to the air and rapid-wean groups. The air group had a delayed rise in cerebral tissue oxygenation from 5 minutes after ROSC coincident with up-titration of oxygen. These alterations in oxygen kinetics corresponded with similar overshoots in cerebral perfusion (pressure and flow), indicating a physiological mechanism. Transient cerebral tissue hyperoxia in the standard oxygen and air groups resulted in significant alterations in mitochondrial respiration and dynamics, relative to the rapid-wean group. Overall, rapid-wean of oxygen following ROSC preserved striatal mitochondrial respiratory function and reduced the expression of genes involved in free radical generation and apoptosis, suggesting a potential therapeutic strategy to limit cerebral reperfusion injury.
Collapse
Affiliation(s)
- Shiraz Badurdeen
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Australia
- Melbourne Children’s Global Health, Murdoch Children’s Research Institute, Parkville, Australia
- Department of Obstetrics, Gynaecology and Newborn Health, University of Melbourne, Parkville VIC, Australia
| | - Robert Galinsky
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Australia
| | - Calum T Roberts
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Australia
- Monash Newborn, Monash Children’s Hospital, Clayton, Australia
| | - Kelly J Crossley
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Australia
| | - Valerie A Zahra
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Australia
| | - Alison Thiel
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Australia
| | - Yen Pham
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Australia
| | - Peter G Davis
- Department of Obstetrics, Gynaecology and Newborn Health, University of Melbourne, Parkville VIC, Australia
| | - Stuart B Hooper
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Australia
| | - Graeme R Polglase
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Australia
- Department of Paediatrics, Monash University, Clayton, Australia
| | - Emily J Camm
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Australia
| |
Collapse
|
2
|
Bhogal J, Solevåg AL, O’Reilly M, Lee TF, Joynt C, Hornberger LK, Schmölzer GM, Cheung PY. Hemodynamic effects of high frequency oscillatory ventilation with volume guarantee in a piglet model of respiratory distress syndrome. PLoS One 2021; 16:e0246996. [PMID: 33592023 PMCID: PMC7886162 DOI: 10.1371/journal.pone.0246996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 01/30/2021] [Indexed: 11/24/2022] Open
Abstract
Respiratory failure is a common condition faced by critically ill neonates with respiratory distress syndrome (RDS). High frequency oscillatory ventilation (HFOV) is often used for neonates with refractory respiratory failure related to RDS. Volume guarantee (VG) mode has been added to some HFOV ventilators for providing consistent tidal volume. We sought to examine the impact of adding the VG mode during HFOV on systemic and cerebral hemodynamics, which has not been studied to date. A neonatal piglet model of moderate to severe RDS was induced by saline lavage. Piglets (full term, age 1–3 days, weight 1.5–2.4 kg) were randomized to have RDS induced and receive either HFOV or HFOV+VG (n = 8/group) or sham-operation (n = 6) without RDS. Cardiac function measured by a Millar® catheter placed in the left ventricle as well as systemic and carotid hemodynamic and oxygen tissue saturation parameters were collected over 240 min of ventilation. Mean airway pressure, alveolar-arterial oxygen difference and left ventricular cardiac index of piglets on HFOV vs. HFOV+VG were not significantly different during the experimental period. Right common carotid artery flow index by in-situ ultrasonic flow measurement and cerebral tissue oxygen saturation (near-infrared spectroscopy) significantly decreased in HFOV+VG at 240 min compared to HFOV (14 vs. 31 ml/kg/min, and 30% vs. 43%, respectively; p<0.05). There were no significant differences in lung, brain and heart tissue markers of oxidative stress, ischemia and inflammation. HFOV+VG compared to HFOV was associated with similar left ventricular function, however HFOV+VG had a negative effect on cerebral blood flow and oxygenation.
Collapse
Affiliation(s)
- Jagmeet Bhogal
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| | - Anne Lee Solevåg
- Department of Paediatric and Adolescent Medicine, Akershus University Hospital, Lørenskog, Norway
- Department of Paediatric and Adolescent Medicine, Oslo University Hospital, Nydalen, Norway
| | - Megan O’Reilly
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
- Centre for the Studies of Asphyxia and Resuscitation, Royal Alexandra Hospital, Edmonton, Alberta, Canada
| | - Tze-Fun Lee
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
- Centre for the Studies of Asphyxia and Resuscitation, Royal Alexandra Hospital, Edmonton, Alberta, Canada
| | - Chloe Joynt
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Lisa K. Hornberger
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Georg M. Schmölzer
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
- Centre for the Studies of Asphyxia and Resuscitation, Royal Alexandra Hospital, Edmonton, Alberta, Canada
| | - Po-Yin Cheung
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
- Centre for the Studies of Asphyxia and Resuscitation, Royal Alexandra Hospital, Edmonton, Alberta, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
3
|
Solevåg AL, Schmölzer GM, Cheung PY. Novel interventions to reduce oxidative-stress related brain injury in neonatal asphyxia. Free Radic Biol Med 2019; 142:113-122. [PMID: 31039399 DOI: 10.1016/j.freeradbiomed.2019.04.028] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 04/15/2019] [Accepted: 04/23/2019] [Indexed: 01/10/2023]
Abstract
Perinatal asphyxia-induced brain injury may present as hypoxic-ischemic encephalopathy in the neonatal period, and disability including cerebral palsy in the long term. The brain injury is secondary to both the hypoxic-ischemic event and the reoxygenation-reperfusion following resuscitation. Early events in the cascade of brain injury can be classified as either inflammation or oxidative stress through the generation of free radicals. The objective of this paper is to present efforts that have been made to limit the oxidative stress associated with hypoxic-ischemic encephalopathy. In the acute phase of ischemia/hypoxia and reperfusion/reoxygenation, the outcomes of asphyxiated infants can be improved by optimizing the initial delivery room stabilization. Interventions include limiting oxygen exposure, and shortening the time to return of spontaneous circulation through improved methods for supporting hemodynamics and ventilation. Allopurinol, melatonin, noble gases such as xenon and argon, and magnesium administration also target the acute injury phase. Therapeutic hypothermia, N-acetylcysteine2-iminobiotin, remote ischemic postconditioning, cannabinoids and doxycycline target the subacute phase. Erythropoietin, mesenchymal stem cells, topiramate and memantine could potentially limit injury in the repair phase after asphyxia. To limit the injurious biochemical processes during the different stages of brain injury, determination of the stage of injury in any particular infant remains essential. Currently, therapeutic hypothermia is the only established treatment in the subacute phase of asphyxia-induced brain injury. The effects and side effects of oxidative stress reducing/limiting medications may however be difficult to predict in infants during therapeutic hypothermia. Future neuroprotection in asphyxiated infants may indeed include a combination of therapies. Challenges include timing, dosing and administration route for each neuroprotectant.
Collapse
Affiliation(s)
- A L Solevåg
- Department of Pediatric and Adolescent Medicine, Akershus University Hospital, Lørenskog, Norway
| | - G M Schmölzer
- Centre for the Studies of Asphyxia and Resuscitation, Neonatal Research Unit, Royal Alexandra Hospital, Edmonton, Alberta, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - P-Y Cheung
- Centre for the Studies of Asphyxia and Resuscitation, Neonatal Research Unit, Royal Alexandra Hospital, Edmonton, Alberta, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
4
|
Solevåg AL, Schmölzer GM, Cheung PY. Is Supplemental Oxygen Needed in Cardiac Compression?-The Influence of Oxygen on Cerebral Perfusion in Severely Asphyxiated Neonates With Bradycardia or Cardiac Asystole. Front Pediatr 2019; 7:486. [PMID: 31824899 PMCID: PMC6879425 DOI: 10.3389/fped.2019.00486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 11/06/2019] [Indexed: 11/13/2022] Open
Abstract
Background: Previous studies have investigated hemodynamic recovery using 21% vs. 100% oxygen during cardiopulmonary resuscitation (CPR) with chest compression (CC) in term infants. Animal studies indicate that systemic circulatory recovery is the same whether 21 or 100% oxygen is used during neonatal CPR. One of the main goals of resuscitation is to maintain cerebral oxygen delivery and prevent cerebral hypo- and hyperoxygenation. Oxygen delivery to the brain depends on cerebral hemodynamics, concentration of inhaled oxygen and blood oxygen content. The aim of this paper was to synthesize available research about cerebral oxygen delivery during CPR using different oxygen concentrations. Our research questions included how do different oxygen concentrations during CPR with CC influence cerebral perfusion and oxygen delivery, and how do cerebral hemodynamics during CC influence outcomes. Methods: A search in Medline Ovid using the search terms hypoxia AND oxygen AND cerebrovascular circulation AND infant, newborn. Inclusion criteria included studies of hypoxia and resuscitation of term infants. Studies were excluded if no measures of cerebral blood flow (CBF), oxygenation, or perfusion were reported. Results: The search retrieved 21 papers. None of the studies directly fulfilled our inclusion criteria. The reference lists of some of the retrieved papers provided relevant animal studies with slightly conflicting results regarding blood flow and oxygen delivery to the brain using 21 or 100% oxygen. No study in term infants was identified, but we included one study in preterm infants. Studies in asphyxiated animals indicate that 100% oxygen increases CBF and oxygenation during and after CC with a potential increase in oxidative stress. Conclusion: In asphyxia, cerebral autoregulation may be impaired. Pure oxygen administration during CC may result in cerebral hyperperfusion and increased cerebral oxygen delivery, which may be associated with oxidative stress-related damage to the brain tissue. As systemic circulatory recovery is the same whether 21 or 100% oxygen is used during neonatal CPR, it is important to investigate whether brain damage could be aggravated when 100% oxygen is used.
Collapse
Affiliation(s)
- Anne Lee Solevåg
- Department of Paediatric and Adolescent Medicine, Akershus University Hospital, Lørenskog, Norway
| | - Georg M Schmölzer
- Neonatal Research Unit, Centre for the Studies of Asphyxia and Resuscitation, Royal Alexandra Hospital, Edmonton, AB, Canada.,Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Po-Yin Cheung
- Neonatal Research Unit, Centre for the Studies of Asphyxia and Resuscitation, Royal Alexandra Hospital, Edmonton, AB, Canada.,Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
5
|
Bendix I, Serdar M, Herz J, von Haefen C, Nasser F, Rohrer B, Endesfelder S, Felderhoff-Mueser U, Spies CD, Sifringer M. Inhibition of acetylcholinesterase modulates NMDA receptor antagonist mediated alterations in the developing brain. Int J Mol Sci 2014; 15:3784-98. [PMID: 24595240 PMCID: PMC3975367 DOI: 10.3390/ijms15033784] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/20/2014] [Accepted: 02/21/2014] [Indexed: 01/05/2023] Open
Abstract
Exposure to N-methyl-d-aspartate (NMDA) receptor antagonists has been demonstrated to induce neurodegeneration in newborn rats. However, in clinical practice the use of NMDA receptor antagonists as anesthetics and sedatives cannot always be avoided. The present study investigated the effect of the indirect cholinergic agonist physostigmine on neurotrophin expression and the extracellular matrix during NMDA receptor antagonist induced injury to the immature rat brain. The aim was to investigate matrix metalloproteinase (MMP)-2 activity, as well as expression of tissue inhibitor of metalloproteinase (TIMP)-2 and brain-derived neurotrophic factor (BDNF) after co-administration of the non-competitive NMDA receptor antagonist MK801 (dizocilpine) and the acetylcholinesterase (AChE) inhibitor physostigmine. The AChE inhibitor physostigmine ameliorated the MK801-induced reduction of BDNF mRNA and protein levels, reduced MK801-triggered MMP-2 activity and prevented decreased TIMP-2 mRNA expression. Our results indicate that AChE inhibition may prevent newborn rats from MK801-mediated brain damage by enhancing neurotrophin-associated signaling pathways and by modulating the extracellular matrix.
Collapse
Affiliation(s)
- Ivo Bendix
- Department of Pediatrics I, Neonatology, University Hospital Essen, Essen 45122, Germany.
| | - Meray Serdar
- Department of Pediatrics I, Neonatology, University Hospital Essen, Essen 45122, Germany.
| | - Josephine Herz
- Department of Pediatrics I, Neonatology, University Hospital Essen, Essen 45122, Germany.
| | - Clarissa von Haefen
- Department of Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin 13353, Germany.
| | - Fatme Nasser
- Department of Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin 13353, Germany.
| | - Benjamin Rohrer
- Department of Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin 13353, Germany.
| | - Stefanie Endesfelder
- Department of Neonatology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin 13353, Germany.
| | | | - Claudia D Spies
- Department of Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin 13353, Germany.
| | - Marco Sifringer
- Department of Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin 13353, Germany.
| |
Collapse
|
6
|
Solberg R, Escobar J, Arduini A, Torres-Cuevas I, Lahoz A, Sastre J, Saugstad OD, Vento M, Kuligowski J, Quintás G. Metabolomic Analysis of the Effect of Postnatal Hypoxia on the Retina in a Newly Born Piglet Model. PLoS One 2013; 8:e66540. [PMID: 23823578 PMCID: PMC3688918 DOI: 10.1371/journal.pone.0066540] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 05/07/2013] [Indexed: 01/18/2023] Open
Abstract
The availability of reliable biomarkers of brain injury secondary to birth asphyxia could substantially improve clinical grading, therapeutic intervention strategies, and prognosis. In this study, changes in the metabolome of retinal tissue caused by profound hypoxia in an established neonatal piglet model were investigated using an ultra performance liquid chromatography - quadrupole time of flight mass spectrometry (UPLC-QTOFMS) untargeted metabolomic approach, which included Partial Least Squares - Discriminant Analysis (PLSDA) multivariate data analysis. The initial identification of a set of discriminant metabolites from UPLC-QTOFMS data was confirmed by target UPLC-MS/MS and allowed the selection of endogenous CDP-choline as a promising candidate biomarker for hypoxia-derived brain damage assessing intensity of retinal hypoxia. Results from this study will foster further research on CDP-choline changes occurring during resuscitation.
Collapse
Affiliation(s)
- Rønnaug Solberg
- Department of Pediatric Research, Institute for Surgical Research, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Javier Escobar
- Neonatal Research Group, Health Research Institute Hospital La Fe, Valencia, Spain
| | - Alessandro Arduini
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Isabel Torres-Cuevas
- Neonatal Research Group, Health Research Institute Hospital La Fe, Valencia, Spain
| | - Agustín Lahoz
- Hepatología Experimental y Trasplante Hepático, Health Research Institute Hospital La Fe, Valencia, Spain
| | - Juan Sastre
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Ola Didrik Saugstad
- Department of Pediatric Research, Institute for Surgical Research, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Máximo Vento
- Neonatal Research Group, Health Research Institute Hospital La Fe, Valencia, Spain
- Division of Neonatology, University & Polytechnic Hospital La Fe, Valencia, Spain
| | - Julia Kuligowski
- Neonatal Research Group, Health Research Institute Hospital La Fe, Valencia, Spain
| | - Guillermo Quintás
- Leitat Technological Center, Bio In Vitro Division, Barcelona, Spain
| |
Collapse
|
7
|
Gill RS, Lee TF, Liu JQ, Chaudhary H, Brocks DR, Bigam DL, Cheung PY. Cyclosporine treatment reduces oxygen free radical generation and oxidative stress in the brain of hypoxia-reoxygenated newborn piglets. PLoS One 2012; 7:e40471. [PMID: 22792343 PMCID: PMC3392221 DOI: 10.1371/journal.pone.0040471] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 06/08/2012] [Indexed: 11/05/2022] Open
Abstract
Oxygen free radicals have been implicated in the pathogenesis of hypoxic-ischemic encephalopathy. It has previously been shown in traumatic brain injury animal models that treatment with cyclosporine reduces brain injury. However, the potential neuroprotective effect of cyclosporine in asphyxiated neonates has yet to be fully studied. Using an acute newborn swine model of hypoxia-reoxygenation, we evaluated the effects of cyclosporine on the brain, focusing on hydrogen peroxide (H(2)O(2)) production and markers of oxidative stress. Piglets (1-4 d, 1.4-2.5 kg) were block-randomized into three hypoxia-reoxygenation experimental groups (2 h hypoxia followed by 4 h reoxygenation) (n = 8/group). At 5 min after reoxygenation, piglets were given either i.v. saline (placebo, controls) or cyclosporine (2.5 or 10 mg/kg i.v. bolus) in a blinded-randomized fashion. An additional sham-operated group (n = 4) underwent no hypoxia-reoxygenation. Systemic hemodynamics, carotid arterial blood flow (transit-time ultrasonic probe), cerebral cortical H(2)O(2) production (electrochemical sensor), cerebral tissue glutathione (ELISA) and cytosolic cytochrome-c (western blot) levels were examined. Hypoxic piglets had cardiogenic shock (cardiac output 40-48% of baseline), hypotension (mean arterial pressure 27-31 mmHg) and acidosis (pH 7.04) at the end of 2 h of hypoxia. Post-resuscitation cyclosporine treatment, particularly the higher dose (10 mg/kg), significantly attenuated the increase in cortical H(2)O(2) concentration during reoxygenation, and was associated with lower cerebral oxidized glutathione levels. Furthermore, cyclosporine treatment significantly attenuated the increase in cortical cytochrome-c and lactate levels. Carotid blood arterial flow was similar among groups during reoxygenation. Conclusively, post-resuscitation administration of cyclosporine significantly attenuates H(2)O(2) production and minimizes oxidative stress in newborn piglets following hypoxia-reoxygenation.
Collapse
Affiliation(s)
- Richdeep S. Gill
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Tze-Fun Lee
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Jiang-Qin Liu
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Hetal Chaudhary
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Dion R. Brocks
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - David L. Bigam
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Po-Yin Cheung
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
8
|
Solberg R, Løberg EM, Andresen JH, Wright MS, Charrat E, Khrestchatisky M, Rivera S, Saugstad OD. Resuscitation of newborn piglets. short-term influence of FiO2 on matrix metalloproteinases, caspase-3 and BDNF. PLoS One 2010; 5:e14261. [PMID: 21151608 PMCID: PMC3000320 DOI: 10.1371/journal.pone.0014261] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 11/10/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Perinatal hypoxia-ischemia is a major cause of mortality and cerebral morbidity, and using oxygen during newborn resuscitation may further harm the brain. The aim was to examine how supplementary oxygen used for newborn resuscitation would influence early brain tissue injury, cell death and repair processes and the regulation of genes related to apoptosis, neurodegeneration and neuroprotection. METHODS AND FINDINGS Anesthetized newborn piglets were subjected to global hypoxia and then randomly assigned to resuscitation with 21%, 40% or 100% O(2) for 30 min and followed for 9 h. An additional group received 100% O(2) for 30 min without preceding hypoxia. The left hemisphere was used for histopathology and immunohistochemistry and the right hemisphere was used for in situ zymography in the corpus striatum; gene expression and the activity of various relevant biofactors were measured in the frontal cortex. There was an increase in the net matrix metalloproteinase gelatinolytic activity in the corpus striatum from piglets resuscitated with 100% oxygen vs. 21%. Hematoxylin-eosin (HE) staining revealed no significant changes. Nine hours after oxygen-assisted resuscitation, caspase-3 expression and activity was increased by 30-40% in the 100% O(2) group (n = 9/10) vs. the 21% O(2) group (n = 10; p<0.04), whereas brain-derived neurotrophic factor (BDNF) activity was decreased by 65% p<0.03. CONCLUSIONS The use of 100% oxygen for resuscitation resulted in increased potentially harmful proteolytic activities and attenuated BDNF activity when compared with 21%. Although there were no significant changes in short term cell loss, hyperoxia seems to cause an early imbalance between neuroprotective and neurotoxic mechanisms that might compromise the final pathological outcome.
Collapse
Affiliation(s)
- Rønnaug Solberg
- Department of Paediatric Research, University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Emara M, Obaid L, Johnson S, Bigam DL, Cheung PY. Angiostatins decrease in the kidney of newborn piglets after hypoxia-reoxygenation. Eur J Pharmacol 2010; 644:203-8. [PMID: 20621087 DOI: 10.1016/j.ejphar.2010.06.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2010] [Revised: 06/11/2010] [Accepted: 06/24/2010] [Indexed: 02/06/2023]
Abstract
Little is known about the expression of kidney angiostatin in the hypoxia and reoxygenation of neonates. In this study, we compared the effect of 21% and 100% reoxygenation on kidney levels of angiostatin and its related factors in newborn piglets subjected to hypoxia-reoxygenation. Newborn piglets were subjected to 2h hypoxia followed by 1h of reoxygenation with either 21% or 100% oxygen and observed for 4days. There were 3 isoforms (38, 43 and 50kDa) of angiostatins identified in the kidney tissue of newborn piglets with the 38kDa being the major isoform (~60%). The 38kDa, but not 43 and 50kDa, angiostatin isoform correlated significantly with the levels of total angiostatin and plasminogen (r=0.95 and r=0.58, respectively). On day 4 of recovery in 100% hypoxic-reoxygenated group, there were decreases in kidney tissue levels of plasminogen, total angiostatin, angiostatin (38 and 43kDa, but not 50kDa), whereas no significant changes were found in the 21% hypoxic-reoxygenated group when compared to the sham-operated piglets with no hypoxia-reoxygenation. Both 21% and 100% hypoxic-reoxygenated groups did not show significant changes in kidney tissue levels of 50kDa angiostatin, MMP-2, MMP-9 and HIF-1alpha. In comparison to 21% oxygen, neonatal resuscitation with 100% oxygen decreased the kidney tissue levels of plasminogen and angiostatin that may play a role in neonatal kidney injury and altered renal development in adulthood.
Collapse
Affiliation(s)
- Marwan Emara
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | | | | | | | | |
Collapse
|
10
|
Liu JQ, Saugstad OD, Cheung PY. Using 100% oxygen for the resuscitation of term neonates until evidence of spontaneous circulation: More investigations needed. Resuscitation 2010; 81:145-7. [DOI: 10.1016/j.resuscitation.2009.11.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 11/30/2009] [Indexed: 01/12/2023]
|
11
|
INTESTINAL HEMODYNAMIC EFFECTS OF MILRINONE IN ASPHYXIATED NEWBORN PIGS AFTER REOXYGENATION WITH 100% OXYGEN. Shock 2009; 31:292-9. [DOI: 10.1097/shk.0b013e31817fd752] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Aguar M, Thió M, Escrig R, Brugada M, Vento M. Investigación en reanimación neonatal: últimos avances. An Pediatr (Barc) 2009; 70:173-82. [DOI: 10.1016/j.anpedi.2008.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 10/21/2008] [Accepted: 10/23/2008] [Indexed: 11/30/2022] Open
|
13
|
Lee TF, Tymafichuk CN, Bigam DL, Cheung PY. Effects of postresuscitation N-acetylcysteine on cerebral free radical production and perfusion during reoxygenation of hypoxic newborn piglets. Pediatr Res 2008; 64:256-61. [PMID: 18437097 DOI: 10.1203/pdr.0b013e31817cfcc0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Hydrogen peroxide (H2O2) and nitric oxide (NO) contribute to the pathogenesis of cerebral hypoxic-ischemic injury. We evaluated the neuroprotective effect of N-acetyl-l-cysteine (NAC, a free radical scavenger) against oxidative stress and perfusion in a model of neonatal hypoxia-reoxygenation (H-R). Piglets (1-3 d, 1.6-2.3 kg) were randomized into a sham-operated group (without H-R) (n = 5) and two H-R experimental groups (2 h normocapnic alveolar hypoxia followed by 4 h reoxygenation) (n = 7/group). Five minutes after reoxygenation, piglets were given either i.v. saline (H-R controls) or NAC (30 mg/kg bolus then 20 mg/kg/h infusion) in a blinded-randomized fashion. Heart rate, mean arterial pressure, carotid arterial blood flow (transit-time ultrasonic probe), cerebral cortical H2O2 and NO production (electrochemical sensor), cerebral tissue glutathione and nitrotyrosine levels (enzyme-linked immunosorbent assay) were examined. Hypoxic piglets were acidotic (pH 6.88-6.90), which recovered similarly in the H-R groups (p > 0.05 versus shams). Postresuscitation NAC treatment significantly attenuated the increase in cortical H2O2, but not NO, concentration during reoxygenation, with lower cerebral oxidized glutathione levels. NAC-treated piglets had significantly higher carotid oxygen delivery and lower cerebral lactate levels than that of H-R controls with corresponding changes in carotid arterial flow and vascular resistance. In newborn piglets with H-R, postresuscitation administration of NAC reduced cerebral oxidative stress and improved cerebral perfusion.
Collapse
Affiliation(s)
- Tze-Fun Lee
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
14
|
Jantzie LL, Cheung PY, Obaid L, Emara M, Johnson ST, Bigam DL, Todd KG. Persistent neurochemical changes in neonatal piglets after hypoxia–ischemia and resuscitation with 100%, 21% or 18% oxygen. Resuscitation 2008; 77:111-20. [DOI: 10.1016/j.resuscitation.2007.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 10/10/2007] [Accepted: 10/16/2007] [Indexed: 11/27/2022]
|
15
|
Andresen JH, Solberg R, Løberg EM, Munkeby BH, Stray-Pedersen B, Saugstad OD. Resuscitation with 21 or 100% oxygen in hypoxic nicotine-pretreated newborn piglets: possible neuroprotective effects of nicotine. Neonatology 2008; 93:36-44. [PMID: 17630496 DOI: 10.1159/000105523] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Accepted: 04/16/2007] [Indexed: 11/19/2022]
Abstract
BACKGROUND Perinatal asphyxia is a major concern in perinatal medicine. Resuscitation and ways to prevent and minimize adverse outcomes after perinatal asphyxia are subject to extensive research. OBJECTIVES In this study we hypothesized that, prior to hypoxia, intravenously administered nicotine might have an effect on how newborn piglets tolerate hypoxia, with regard to the time and degree of damage inflicted, due to its suggested neuroprotective abilities, and further that resuscitation with 21 compared with 100% oxygen in nicotine-pretreated animals would cause less cerebral damage. METHODS Thirty anesthetized newborn piglets were randomized to either hypoxia or control groups, and pretreatment with either saline or nicotine. In addition, the nicotine/hypoxia group was randomized to resuscitation with either 21 or 100% oxygen for 15 min following hypoxia. RESULTS We found significantly more necrosis in the striatum and cortex combined (p = 0.036), and in the striatum alone (p = 0.026), in the animals pretreated with nicotine and resuscitated with 100% when compared to 21% oxygen. There was no significant difference in the cerebellum. We also found significantly increased tolerance to hypoxia as measured by the time interval that the animals endured hypoxia: 103.8 +/- 28.2 min in the nicotine-pretreated animals vs. 66.5 +/- 19.5 min in the saline-pretreated animals (p = 0.035). CONCLUSION Nicotine enhances newborn piglets' ability to endure hypoxia, and resuscitation with 21% oxygen inflicts less necrosis than 100% oxygen. The potential neuroprotective effects of nicotine in the newborn brain should be further investigated.
Collapse
Affiliation(s)
- Jannicke H Andresen
- Department of Pediatric Research, Medical Faculty, University of Oslo, Rikshospitalet-Radiumhospitalet Medical Center, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
16
|
Postresuscitation N-acetylcysteine treatment reduces cerebral hydrogen peroxide in the hypoxic piglet brain. Intensive Care Med 2007; 34:190-7. [PMID: 17938888 DOI: 10.1007/s00134-007-0880-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Accepted: 09/07/2007] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Reactive oxygen species have been implicated in the pathogenesis of hypoxia-reoxygenation injury. However, little information is known regarding the temporal profile of cerebral hydrogen peroxide (HPO) production and its response to N-acetylcysteine (an antioxidant) administration during neonatal hypoxia-reoxygenation. Using an acute swine model of neonatal hypoxia-reoxygenation, we examined the short-term neuroprotective effects of N-acetylcysteine on cerebral HPO production and oxidative stress in the brain. DESIGN Controlled, block-randomized animal study. SETTING University animal research laboratory. SUBJECTS Newborn piglets (1-3 days, 1.7-2.1 kg). INTERVENTIONS At 5 min after reoxygenation, piglets were given either saline or N-acetylcysteine (20 or 100 mg/kg/h) in a blinded, randomized fashion. MEASUREMENTS AND RESULTS Newborn piglets were block-randomized into a sham-operated group (without hypoxia-reoxygenation, n = 5) and three hypoxic-reoxygenated groups (2 h of normocapnic alveolar hypoxia followed by 2h of reoxygenation, n = 7/group). Heart rate, mean arterial pressure, cortical HPO concentration, amino acid levels in cerebral microdialysate, and cerebral tissue glutathione and lipid hydroperoxide levels were examined. Hypoxic piglets were hypotensive and acidotic, and they recovered similarly in all hypoxic-reoxygenated groups. In hypoxic-reoxygenated control piglets, the cortical HPO concentration gradually increased during reoxygenation. Both doses of N-acetylcysteine abolished the increased HPO concentration and oxidized glutathione levels and tended to reduce the glutathione ratio and lipid hydroperoxide levels in the cerebral cortex (p = 0.08 and p = 0.1 vs. controls, respectively). N-acetylcysteine at 100mg/kg/h also increased the cerebral extracellular taurine levels. CONCLUSION In newborn piglets with hypoxia-reoxygenation, postresuscitation administration of N-acetylcysteine reduces cerebral HPO production and oxidative stress, probably through a taurine-related mechanism.
Collapse
|
17
|
Emara M, Obaid L, Johnson S, Bigam DL, Cheung PY. Expression of angiostatin and its related factors in the plasma of newborn pigs with hypoxia and reoxygenation. Arch Biochem Biophys 2007; 466:136-44. [PMID: 17718998 DOI: 10.1016/j.abb.2007.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 07/10/2007] [Accepted: 07/13/2007] [Indexed: 12/12/2022]
Abstract
Little is known about angiostatin and its related factors in the hypoxia-reoxygenation of neonates. In this study we compared the effect of 21% and 100% reoxygenation on temporal changes in the plasma level of these factors in newborn piglets subjected to hypoxia. Newborn piglets were subjected to 2 h hypoxia followed by 1 h of reoxygenation with either 21% or 100% oxygen and observed for 4 days. On day 4 of recovery in 100% hypoxic-reoxygenated group, there were increases in total angiostatin, plasminogen/plasmin and MMP-2 levels, and decreases in VEGF levels (vs. respective baseline levels, all P <0.001), whereas no significant temporal changes were found in the 21% hypoxic-reoxygenated and sham-operated groups. Angiostatin levels correlated positively with the levels of MMP-2 and HIF-1alpha and negatively with VEGF levels in 100% hypoxic-reoxygenated group (all P <0.05). In comparison to 21% oxygen, neonatal resuscitation with 100% oxygen was found to increase the levels anti-angiogenic factors.
Collapse
Affiliation(s)
- Marwan Emara
- Department of Pediatrics, University of Alberta, Edmonton, Alta., Canada T6G 2S2
| | | | | | | | | |
Collapse
|
18
|
Respuesta de los autores. An Pediatr (Barc) 2007. [DOI: 10.1016/s1695-4033(07)70400-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
19
|
Affiliation(s)
- Ola Didrik Saugstad
- Department of Pediatric Research, Rikshospitalet University Hospital, 0027 Oslo, Norway.
| | | | | |
Collapse
|
20
|
In this issue. Resuscitation 2006. [DOI: 10.1016/j.resuscitation.2006.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|